research communications
N′-(4-methylbenzylidene)benzohydrazidato}nickel(II)
of bis{4-[(4-methylbenzyl)oxy]-aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, cDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, and dDepartment of Chemical and Pharmaceutical SCiences, University of Trieste, Italy
*Correspondence e-mail: mbhhowlader@yahoo.com
In the title complex, [Ni(C23H21N2O2)2], the central NiII atom is located on an inversion centre and exhibits a slightly distorted square-planar N2O2 coordination environment. A trans-configuration of the N,O chelating ligands results from the imposed of the central NiII atom. In the crystal, individual molecules stack along the a axis through weak π–π stacking interactions between the phenyl rings.
CCDC reference: 2174697
1. Chemical context
Variously substituted hydrazone ligands have attracted special attention because of their chelating capabilities and structural properties, such as the degree of rigidity, a conjugated π-system and an N—H unit that readily participates in hydrogen bonding and may be easily deprotonated. The corresponding nickel(II) complexes are of considerable interest since they exhibit a broad spectrum of physiological and pharmacological activities (Yang et al., 2020; Al-Qadsy et al., 2021; Neethu et al., 2021; Krishnamoorthy et al., 2012), most of which are structure-dependent properties.
We report here the synthesis and II complex with a derivatized hydrazone ligand.
of another Ni2. Structural commentary
The central metal NiII atom of the title complex is located on an inversion center. Hence, the comprises half a molecule (Fig. 1). The enolizable O atom and the azomethine N atom of the ligand coordinate to the NiII atom to form a five-membered chelate ring. The NiII atom exhibits a slightly distorted square-planar coordination environment with the deprotonated ligands in a trans configuration imposed by the crystal symmetry. The Ni—N1 and Ni—O1 bond lengths are 1.8677 (12) and 1.8363 (10) Å, respectively, with a chelating angle of 83.47 (5)°. These data are in agreement with previously reported crystal structures of related complexes (Yang et al., 2020; Al-Qadsy et al., 2021; Neethu et al., 2021; Krishnamoorthy et al., 2012), irrespective of the substituents present in the ligand.
As expected, the C9—O1 bond length of 1.3009 (18) Å lies between a C—O single bond (1.43 Å; Allen et al., 1987) and a C=O double bond (1.21 Å; Allen et al., 1987). The bond lengths N1—C8 of 1.2977 (19) Å and N2—C9 of 1.3145 (18) Å are close to the value of a typical C=N bond (1.30 Å; Allen et al., 1987). These data reveal that the —CH=N—N=C—O fragment of the ligand remains a even after the loss of a H atom from its enolized carbonyl O atom. The complex is stabilized by weak intramolecular C8—H8⋯O1, C3—H3⋯N2 and C11—H11⋯O1 hydrogen bonds involving phenyl and methylene donor groups and the coordinating atoms as acceptor groups (Table 1). The benzylidene ring is tilted by 26.06 (6)° with respect to the N2O2 coordination plane, while the phenyl rings of the ether moiety form a dihedral angle of 83.29 (5)°.
|
The bond-valence sum (BVS) calculated for the NiII atom present in the complex, using the parameters of Brese & O'Keeffe (1991), indicate a higher value (2.97 valence units) than expected for a formal ionic charge of +2. The calculated high value can be reasonably attributed to a very pronounced covalent bonding associated with the Ni—O and Ni—N bonds. As a matter of fact, a set of new optimized r0 parameters to be used for the BVS calculation for model compounds involving NiII—O, NiII—S, NiII—N interactions has been proposed (Liu & Thorp, 1993). By using these values, the BVS calculation for this complex gives a value of 2.36 valence units.
3. Supramolecular features
Individual molecular complexes are weakly packed along the a axis through π-ring interactions involving the phenyl rings, with centroid-to-centroid distances of 4.6914 (2) Å and a slippage of ca 3.0-3.3 Å, as shown in Fig. 2. In addition, the five-membered chelate rings of neighbouring complexes have even shorter distances [3.4555 (2) Å with a slippage of 0.96 Å].
4. Database survey
A search in the Cambridge et al., 2016) retrieved more than twenty bis-chelated square-planar nickel(II) complexes with hydrazone-based ligands also bearing bulky ferrocenyl groups (Krishnamoorthy et al., 2012), 2,2′-bithiophenyl (Yang et al., 2020) or 9-anthrylmethylene fragments (Mondal et al., 2014). However, no species comprising a long benzyl-phenyl ether chain has been reported so far. It is worth noting that all characterized NiII complexes exhibit a trans-configuration of ligands, where the —CH=N—N=C—O fragment is chelating, and the coordination Ni—O and Ni—N bond lengths do not appear to be significantly affected by the electronic or steric properties of groups present on the ligands.
Database (CSD, version 5.43, update June 2022); Groom5. Synthesis and crystallization
To a solution of 4-(4-methylbenzyloxy)benzoylhydrazine (0.26 g, 1 mmol in 25 ml of ethanol), 4-methyl benzaldehyde (0.12 g, 1 mmol) was added and the mixture was refluxed for half an hour. A solution of nickel(II) acetate tetrahydrate (0.13 g, 0.5 mmol in 5 ml of ethanol) was then added and refluxing was continued for 2 h. The obtained orange precipitate was filtered off and washed three times with hot ethanol. The product was recrystallized from a mixture of chloroform and acetonitrile (5:1, v/v) and orange crystals, suitable for X-ray diffraction, were filtered off, washed with hot ethanol, and left to dry in a desiccator over silica gel. Yield: 0.45 g, 58%. Melting point: >523 K. FT–IR: 1603, 1585 ν (C=N—N=C), 486 ν (M—N), 503 ν (M—O). LC–MS (ESI) m/z: [M + H]+. Calculated for C46H42N4O4Ni 773.2632; found 773.2636. μeff: 0.832 B·M. Molar conductance (ohm−1 cm2 mol−1): 1.0. NMR spectra were not obtained due to the low solubility of the complex even in DMSO.
6. Refinement
Crystal data, data collection and structure . The hydrogen atoms were included in idealized positions as riding contributions with fixed isotropic displacement parameters [C—H = 0.95–0.99 Å; Uiso(H) = 1.2 or 1.5 Ueq(C)].
details are summarized in Table 2Supporting information
CCDC reference: 2174697
https://doi.org/10.1107/S2056989022009392/wm5661sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022009392/wm5661Isup2.hkl
Data collection: CrystalStructure (Rigaku, 2018); cell
CrystalStructure (Rigaku, 2018); data reduction: CrystalStructure (Rigaku, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).[Ni(C23H21N2O2)2] | Z = 1 |
Mr = 773.54 | F(000) = 406 |
Triclinic, P1 | Dx = 1.334 Mg m−3 |
a = 4.6914 (2) Å | Mo Kα radiation, λ = 0.71075 Å |
b = 13.0677 (7) Å | Cell parameters from 8457 reflections |
c = 16.9923 (8) Å | θ = 1.7–27.5° |
α = 68.441 (5)° | µ = 0.55 mm−1 |
β = 83.739 (6)° | T = 173 K |
γ = 88.032 (6)° | Platelet, orange |
V = 963.05 (9) Å3 | 0.32 × 0.08 × 0.03 mm |
Rigaku R-AXIS RAPID diffractometer | 3883 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.024 |
ω scans | θmax = 27.5°, θmin = 2.5° |
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) | h = −6→5 |
Tmin = 0.761, Tmax = 0.984 | k = −16→16 |
9456 measured reflections | l = −22→22 |
4375 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0564P)2 + 0.1727P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.006 |
4375 reflections | Δρmax = 0.42 e Å−3 |
252 parameters | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 1.000000 | 0.000000 | 1.000000 | 0.02390 (10) | |
O1 | 0.8708 (2) | 0.13421 (8) | 0.93185 (7) | 0.0267 (2) | |
O2 | 0.2680 (3) | 0.52033 (9) | 0.65888 (7) | 0.0339 (3) | |
N1 | 0.7701 (3) | −0.05385 (10) | 0.94061 (8) | 0.0250 (3) | |
N2 | 0.6329 (3) | 0.02767 (10) | 0.87729 (8) | 0.0272 (3) | |
C1 | 0.1840 (3) | −0.32649 (13) | 0.85447 (11) | 0.0313 (3) | |
C2 | 0.2533 (4) | −0.21651 (14) | 0.80907 (11) | 0.0389 (4) | |
H2 | 0.183365 | −0.181019 | 0.755246 | 0.047* | |
C3 | 0.4201 (4) | −0.15681 (13) | 0.83933 (11) | 0.0354 (4) | |
H3 | 0.457644 | −0.081018 | 0.807386 | 0.042* | |
C4 | 0.5340 (3) | −0.20830 (12) | 0.91727 (10) | 0.0267 (3) | |
C5 | 0.4694 (4) | −0.31917 (12) | 0.96220 (10) | 0.0302 (3) | |
H5 | 0.546693 | −0.355980 | 1.014716 | 0.036* | |
C6 | 0.2951 (4) | −0.37703 (13) | 0.93214 (11) | 0.0325 (3) | |
H6 | 0.250866 | −0.452077 | 0.964938 | 0.039* | |
C7 | −0.0032 (4) | −0.38838 (15) | 0.82047 (13) | 0.0408 (4) | |
H7A | −0.191485 | −0.353241 | 0.813325 | 0.049* | |
H7B | −0.026408 | −0.464591 | 0.860552 | 0.049* | |
H7C | 0.086306 | −0.387620 | 0.765383 | 0.049* | |
C8 | 0.7190 (3) | −0.15674 (12) | 0.95597 (10) | 0.0269 (3) | |
H8 | 0.818971 | −0.207025 | 0.999831 | 0.032* | |
C9 | 0.7016 (3) | 0.12306 (12) | 0.87971 (9) | 0.0248 (3) | |
C10 | 0.5783 (3) | 0.22452 (12) | 0.82102 (9) | 0.0246 (3) | |
C11 | 0.6537 (4) | 0.32665 (12) | 0.82264 (10) | 0.0285 (3) | |
H11 | 0.782209 | 0.329648 | 0.861251 | 0.034* | |
C12 | 0.5427 (4) | 0.42268 (12) | 0.76866 (10) | 0.0311 (3) | |
H12 | 0.592488 | 0.491322 | 0.770952 | 0.037* | |
C13 | 0.3584 (3) | 0.41942 (12) | 0.71090 (9) | 0.0272 (3) | |
C14 | 0.2802 (4) | 0.31891 (13) | 0.70838 (10) | 0.0300 (3) | |
H14 | 0.154229 | 0.316308 | 0.669017 | 0.036* | |
C15 | 0.3889 (4) | 0.22253 (12) | 0.76416 (10) | 0.0289 (3) | |
H15 | 0.332585 | 0.153781 | 0.763416 | 0.035* | |
C16 | 0.1042 (4) | 0.52370 (13) | 0.59118 (10) | 0.0338 (4) | |
H16A | −0.077691 | 0.482264 | 0.614859 | 0.041* | |
H16B | 0.214098 | 0.489949 | 0.553892 | 0.041* | |
C17 | 0.0433 (4) | 0.64249 (13) | 0.54117 (10) | 0.0342 (4) | |
C18 | 0.1936 (5) | 0.69725 (15) | 0.46333 (12) | 0.0467 (5) | |
H18 | 0.341540 | 0.660436 | 0.441520 | 0.056* | |
C19 | 0.1304 (6) | 0.80648 (16) | 0.41616 (13) | 0.0533 (5) | |
H19 | 0.235121 | 0.842724 | 0.362308 | 0.064* | |
C20 | −0.0782 (5) | 0.86203 (16) | 0.44579 (14) | 0.0549 (6) | |
C21 | −0.2279 (6) | 0.80699 (18) | 0.52500 (17) | 0.0641 (6) | |
H21 | −0.372618 | 0.844499 | 0.547317 | 0.077* | |
C22 | −0.1685 (5) | 0.69813 (16) | 0.57170 (14) | 0.0490 (5) | |
H22 | −0.274742 | 0.661553 | 0.625238 | 0.059* | |
C23 | −0.1500 (7) | 0.98005 (19) | 0.3935 (2) | 0.0871 (10) | |
H23A | −0.100061 | 1.028406 | 0.422521 | 0.104* | |
H23B | −0.355632 | 0.985730 | 0.387091 | 0.104* | |
H23C | −0.040649 | 1.002234 | 0.337299 | 0.104* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.02565 (16) | 0.01922 (14) | 0.02805 (16) | 0.00079 (10) | −0.01098 (11) | −0.00788 (11) |
O1 | 0.0289 (6) | 0.0218 (5) | 0.0305 (5) | 0.0003 (4) | −0.0119 (4) | −0.0083 (4) |
O2 | 0.0470 (7) | 0.0234 (5) | 0.0318 (6) | 0.0040 (5) | −0.0195 (5) | −0.0069 (5) |
N1 | 0.0265 (6) | 0.0217 (6) | 0.0269 (6) | 0.0018 (5) | −0.0089 (5) | −0.0073 (5) |
N2 | 0.0305 (7) | 0.0212 (6) | 0.0303 (6) | 0.0023 (5) | −0.0131 (5) | −0.0074 (5) |
C1 | 0.0277 (8) | 0.0324 (8) | 0.0412 (9) | 0.0015 (6) | −0.0071 (7) | −0.0214 (7) |
C2 | 0.0479 (11) | 0.0329 (8) | 0.0393 (9) | 0.0032 (8) | −0.0218 (8) | −0.0128 (7) |
C3 | 0.0457 (10) | 0.0248 (7) | 0.0360 (9) | −0.0020 (7) | −0.0170 (7) | −0.0077 (7) |
C4 | 0.0287 (8) | 0.0234 (7) | 0.0306 (8) | 0.0018 (6) | −0.0084 (6) | −0.0117 (6) |
C5 | 0.0353 (9) | 0.0253 (7) | 0.0313 (8) | 0.0008 (6) | −0.0093 (7) | −0.0106 (6) |
C6 | 0.0363 (9) | 0.0252 (7) | 0.0376 (8) | −0.0041 (6) | −0.0050 (7) | −0.0126 (7) |
C7 | 0.0373 (10) | 0.0442 (10) | 0.0525 (11) | −0.0026 (8) | −0.0119 (8) | −0.0291 (9) |
C8 | 0.0282 (8) | 0.0235 (7) | 0.0297 (7) | 0.0019 (6) | −0.0097 (6) | −0.0088 (6) |
C9 | 0.0236 (7) | 0.0245 (7) | 0.0264 (7) | 0.0004 (6) | −0.0054 (6) | −0.0086 (6) |
C10 | 0.0251 (7) | 0.0229 (7) | 0.0252 (7) | 0.0010 (6) | −0.0052 (6) | −0.0075 (6) |
C11 | 0.0324 (8) | 0.0256 (7) | 0.0294 (8) | 0.0010 (6) | −0.0114 (6) | −0.0100 (6) |
C12 | 0.0396 (9) | 0.0226 (7) | 0.0328 (8) | −0.0003 (6) | −0.0126 (7) | −0.0098 (6) |
C13 | 0.0308 (8) | 0.0235 (7) | 0.0251 (7) | 0.0025 (6) | −0.0069 (6) | −0.0055 (6) |
C14 | 0.0333 (8) | 0.0275 (7) | 0.0316 (8) | 0.0016 (6) | −0.0142 (7) | −0.0107 (6) |
C15 | 0.0318 (8) | 0.0236 (7) | 0.0329 (8) | −0.0010 (6) | −0.0095 (6) | −0.0103 (6) |
C16 | 0.0415 (10) | 0.0290 (8) | 0.0323 (8) | 0.0039 (7) | −0.0175 (7) | −0.0095 (7) |
C17 | 0.0419 (10) | 0.0281 (8) | 0.0329 (8) | 0.0019 (7) | −0.0176 (7) | −0.0079 (7) |
C18 | 0.0639 (13) | 0.0373 (10) | 0.0352 (9) | 0.0030 (9) | −0.0061 (9) | −0.0090 (8) |
C19 | 0.0788 (16) | 0.0381 (10) | 0.0358 (10) | −0.0077 (10) | −0.0143 (10) | −0.0021 (8) |
C20 | 0.0710 (15) | 0.0297 (9) | 0.0589 (13) | 0.0028 (9) | −0.0322 (11) | −0.0033 (9) |
C21 | 0.0626 (15) | 0.0408 (11) | 0.0793 (16) | 0.0178 (10) | −0.0088 (13) | −0.0120 (11) |
C22 | 0.0490 (12) | 0.0379 (10) | 0.0505 (11) | 0.0070 (9) | −0.0047 (9) | −0.0055 (9) |
C23 | 0.111 (2) | 0.0359 (12) | 0.097 (2) | 0.0088 (13) | −0.0446 (19) | 0.0047 (13) |
Ni1—O1i | 1.8363 (10) | C10—C15 | 1.389 (2) |
Ni1—O1 | 1.8363 (10) | C10—C11 | 1.403 (2) |
Ni1—N1 | 1.8677 (12) | C11—C12 | 1.378 (2) |
Ni1—N1i | 1.8678 (12) | C11—H11 | 0.9500 |
O1—C9 | 1.3009 (18) | C12—C13 | 1.390 (2) |
O2—C13 | 1.3736 (17) | C12—H12 | 0.9500 |
O2—C16 | 1.4383 (18) | C13—C14 | 1.392 (2) |
N1—C8 | 1.2977 (19) | C14—C15 | 1.389 (2) |
N1—N2 | 1.4030 (16) | C14—H14 | 0.9500 |
N2—C9 | 1.3145 (18) | C15—H15 | 0.9500 |
C1—C2 | 1.389 (2) | C16—C17 | 1.506 (2) |
C1—C6 | 1.391 (2) | C16—H16A | 0.9900 |
C1—C7 | 1.504 (2) | C16—H16B | 0.9900 |
C2—C3 | 1.382 (2) | C17—C18 | 1.376 (3) |
C2—H2 | 0.9500 | C17—C22 | 1.378 (3) |
C3—C4 | 1.402 (2) | C18—C19 | 1.396 (3) |
C3—H3 | 0.9500 | C18—H18 | 0.9500 |
C4—C5 | 1.393 (2) | C19—C20 | 1.360 (3) |
C4—C8 | 1.460 (2) | C19—H19 | 0.9500 |
C5—C6 | 1.385 (2) | C20—C21 | 1.393 (3) |
C5—H5 | 0.9500 | C20—C23 | 1.518 (3) |
C6—H6 | 0.9500 | C21—C22 | 1.386 (3) |
C7—H7A | 0.9800 | C21—H21 | 0.9500 |
C7—H7B | 0.9800 | C22—H22 | 0.9500 |
C7—H7C | 0.9800 | C23—H23A | 0.9800 |
C8—H8 | 0.9500 | C23—H23B | 0.9800 |
C9—C10 | 1.479 (2) | C23—H23C | 0.9800 |
O1i—Ni1—O1 | 180.0 | C12—C11—C10 | 120.54 (14) |
O1i—Ni1—N1 | 96.53 (5) | C12—C11—H11 | 119.7 |
O1—Ni1—N1 | 83.47 (5) | C10—C11—H11 | 119.7 |
O1i—Ni1—N1i | 83.47 (5) | C11—C12—C13 | 120.22 (14) |
O1—Ni1—N1i | 96.53 (5) | C11—C12—H12 | 119.9 |
N1—Ni1—N1i | 180.00 (5) | C13—C12—H12 | 119.9 |
C9—O1—Ni1 | 111.02 (9) | O2—C13—C12 | 114.99 (13) |
C13—O2—C16 | 117.77 (12) | O2—C13—C14 | 124.86 (14) |
C8—N1—N2 | 119.42 (12) | C12—C13—C14 | 120.15 (14) |
C8—N1—Ni1 | 125.97 (11) | C15—C14—C13 | 119.15 (14) |
N2—N1—Ni1 | 114.52 (9) | C15—C14—H14 | 120.4 |
C9—N2—N1 | 107.12 (12) | C13—C14—H14 | 120.4 |
C2—C1—C6 | 117.53 (15) | C14—C15—C10 | 121.40 (14) |
C2—C1—C7 | 121.02 (16) | C14—C15—H15 | 119.3 |
C6—C1—C7 | 121.45 (15) | C10—C15—H15 | 119.3 |
C3—C2—C1 | 122.41 (16) | O2—C16—C17 | 107.78 (13) |
C3—C2—H2 | 118.8 | O2—C16—H16A | 110.2 |
C1—C2—H2 | 118.8 | C17—C16—H16A | 110.2 |
C2—C3—C4 | 119.88 (15) | O2—C16—H16B | 110.2 |
C2—C3—H3 | 120.1 | C17—C16—H16B | 110.2 |
C4—C3—H3 | 120.1 | H16A—C16—H16B | 108.5 |
C5—C4—C3 | 117.81 (14) | C18—C17—C22 | 118.55 (17) |
C5—C4—C8 | 116.21 (13) | C18—C17—C16 | 120.82 (17) |
C3—C4—C8 | 125.97 (14) | C22—C17—C16 | 120.61 (16) |
C6—C5—C4 | 121.58 (15) | C17—C18—C19 | 120.5 (2) |
C6—C5—H5 | 119.2 | C17—C18—H18 | 119.7 |
C4—C5—H5 | 119.2 | C19—C18—H18 | 119.7 |
C5—C6—C1 | 120.75 (15) | C20—C19—C18 | 121.3 (2) |
C5—C6—H6 | 119.6 | C20—C19—H19 | 119.3 |
C1—C6—H6 | 119.6 | C18—C19—H19 | 119.3 |
C1—C7—H7A | 109.5 | C19—C20—C21 | 118.14 (18) |
C1—C7—H7B | 109.5 | C19—C20—C23 | 121.1 (2) |
H7A—C7—H7B | 109.5 | C21—C20—C23 | 120.7 (2) |
C1—C7—H7C | 109.5 | C22—C21—C20 | 120.8 (2) |
H7A—C7—H7C | 109.5 | C22—C21—H21 | 119.6 |
H7B—C7—H7C | 109.5 | C20—C21—H21 | 119.6 |
N1—C8—C4 | 130.93 (14) | C17—C22—C21 | 120.6 (2) |
N1—C8—H8 | 114.5 | C17—C22—H22 | 119.7 |
C4—C8—H8 | 114.5 | C21—C22—H22 | 119.7 |
O1—C9—N2 | 123.84 (13) | C20—C23—H23A | 109.5 |
O1—C9—C10 | 117.23 (12) | C20—C23—H23B | 109.5 |
N2—C9—C10 | 118.93 (13) | H23A—C23—H23B | 109.5 |
C15—C10—C11 | 118.51 (14) | C20—C23—H23C | 109.5 |
C15—C10—C9 | 122.35 (13) | H23A—C23—H23C | 109.5 |
C11—C10—C9 | 119.15 (13) | H23B—C23—H23C | 109.5 |
N1—Ni1—O1—C9 | −1.22 (10) | O1—C9—C10—C11 | 1.6 (2) |
N1i—Ni1—O1—C9 | 178.78 (10) | N2—C9—C10—C11 | −179.24 (15) |
O1i—Ni1—N1—C8 | 5.45 (14) | C15—C10—C11—C12 | −0.3 (2) |
O1—Ni1—N1—C8 | −174.55 (14) | C9—C10—C11—C12 | 179.90 (14) |
O1i—Ni1—N1—N2 | −178.16 (10) | C10—C11—C12—C13 | −1.1 (3) |
O1—Ni1—N1—N2 | 1.84 (10) | C16—O2—C13—C12 | 172.90 (15) |
C8—N1—N2—C9 | 174.67 (14) | C16—O2—C13—C14 | −6.6 (2) |
Ni1—N1—N2—C9 | −1.98 (15) | C11—C12—C13—O2 | −178.27 (15) |
C6—C1—C2—C3 | −1.5 (3) | C11—C12—C13—C14 | 1.3 (3) |
C7—C1—C2—C3 | 178.71 (17) | O2—C13—C14—C15 | 179.45 (15) |
C1—C2—C3—C4 | 2.2 (3) | C12—C13—C14—C15 | 0.0 (3) |
C2—C3—C4—C5 | −0.9 (3) | C13—C14—C15—C10 | −1.4 (3) |
C2—C3—C4—C8 | 178.31 (16) | C11—C10—C15—C14 | 1.5 (2) |
C3—C4—C5—C6 | −1.0 (3) | C9—C10—C15—C14 | −178.65 (15) |
C8—C4—C5—C6 | 179.76 (15) | C13—O2—C16—C17 | −177.34 (14) |
C4—C5—C6—C1 | 1.6 (3) | O2—C16—C17—C18 | 103.66 (19) |
C2—C1—C6—C5 | −0.4 (3) | O2—C16—C17—C22 | −77.6 (2) |
C7—C1—C6—C5 | 179.40 (16) | C22—C17—C18—C19 | −0.6 (3) |
N2—N1—C8—C4 | 0.3 (3) | C16—C17—C18—C19 | 178.15 (17) |
Ni1—N1—C8—C4 | 176.52 (13) | C17—C18—C19—C20 | 0.6 (3) |
C5—C4—C8—N1 | −164.03 (17) | C18—C19—C20—C21 | 0.1 (3) |
C3—C4—C8—N1 | 16.8 (3) | C18—C19—C20—C23 | −178.8 (2) |
Ni1—O1—C9—N2 | 0.40 (19) | C19—C20—C21—C22 | −0.9 (4) |
Ni1—O1—C9—C10 | 179.52 (10) | C23—C20—C21—C22 | 178.1 (2) |
N1—N2—C9—O1 | 1.0 (2) | C18—C17—C22—C21 | −0.2 (3) |
N1—N2—C9—C10 | −178.07 (12) | C16—C17—C22—C21 | −178.91 (19) |
O1—C9—C10—C15 | −178.23 (14) | C20—C21—C22—C17 | 0.9 (4) |
N2—C9—C10—C15 | 0.9 (2) |
Symmetry code: (i) −x+2, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1i | 0.95 | 2.38 | 2.9455 (18) | 118 |
C3—H3···N2 | 0.95 | 2.37 | 2.945 (2) | 118 |
C11—H11···O1 | 0.95 | 2.43 | 2.7590 (19) | 100 |
Symmetry code: (i) −x+2, −y, −z+2. |
Acknowledgements
The authors are grateful to the Department of Chemistry, University of Rajshahi for laboratory facilities. MCS thanks the Department of Applied Chemistry, Faculty of Engineering, University of Toyama, for the use of analytical facilities.
Funding information
Funding for this research was provided by: Faculty of Science, University of Rajshahi .
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Robin Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1–S19. Google Scholar
Al-Qadsy, I., Al-Odayni, A.-B., Saeed, W. S., Alrabie, A., Al-Adhreai, A., Al-Faqeeh, L. A. S., Lama, P., Alghamdi, A. A. & Farooqui, M. (2021). Crystals, 11, 110. Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krishnamoorthy, P., Sathyadevi, P., Butorac, R. R., Cowley, A. H., Bhuvanesh, N. S. P. & Dharmaraj, N. (2012). Dalton Trans. 41, 4423–4436. Web of Science CSD CrossRef CAS PubMed Google Scholar
Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105. CrossRef CAS Web of Science Google Scholar
Mondal, S., Das, C., Ghosh, B., Pakhira, B., Blake, A. J., Drew, M. G. B. & Chattopadhyay, S. K. (2014). Polyhedron, 80, 272–281. CrossRef CAS Google Scholar
Neethu, K. S., Sivaselvam, S., Theetharappan, M., Ranjitha, J., Bhuvanesh, N. S. P., Ponpandian, N., Neelakantan, M. A. & Kaveri, M. V. (2021). Inorg. Chim. Acta, 524, 120419. CrossRef Google Scholar
Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Yang, P., Chen, H., Wang, Z.-Z., Zhang, L.-L., Zhang, D.-D., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 213, 111248. CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.