research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{3-(3,4-di­methyl­phen­yl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}iron(II) methanol disolvate

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, and bDepartment of Inorganic Polymers, "Petru Poni", Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania
*Correspondence e-mail: mlseredyuk@gmail.com

Edited by C. Schulzke, Universität Greifswald, Germany (Received 31 August 2022; accepted 4 October 2022; online 11 October 2022)

As a result of the high symmetry of the Aea2 structure, the asymmetric unit of the title compound, [FeII(C18H15N6)2]·2MeOH, consists of half of a charge-neutral complex mol­ecule and a discrete methanol mol­ecule. The planar anionic tridentate ligand 2-[5-(3,4-di­methyl­phen­yl)-4H-1,2,4-triazol-3-ato]-6-(1H-pyrazol-1-yl)pyridine coordinates the FeII ion meridionally through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo-octa­hedral coordination sphere of the central ion. The average Fe—N bond distance is 1.955 Å, indicating a low-spin state of the FeII ion. Neighbouring cone-shaped mol­ecules, nested into each other, are linked through double weak C—H(pz)⋯π(ph') inter­actions into mono-periodic columns, which are further linked through weak C—H⋯N′/C′ inter­actions into di-periodic layers. No inter­actions shorter than the sum of the van der Waals radii of the neighbouring layers are observed. Energy framework analysis at the B3LYP/6–31 G(d,p) theory level, performed to qu­antify the inter­molecular inter­action energies, reproduces the weak inter­layer inter­actions in contrast to the strong inter­action within the layers. Inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, showing the relative contributions of the contacts to the crystal packing to be H⋯H 48.5%, H⋯C/C⋯H 28.9%, H⋯N/N⋯H 16.2% and C⋯C 2.4%.

1. Chemical context

Bisazole­pyridines are a broad class of meridional tridentate ligands used to synthesize charged FeII compounds capable of switching between a spin state with the t2g4eg2 configuration (high-spin, total spin S = 2) and a spin state with the t2g6eg0 configuration (low-spin, total spin S = 0) due to temperature variation, light irradiation or external pressure (Halcrow, 2014[Halcrow, M. A. (2014). New J. Chem. 38, 1868-1882.]; Halcrow et al., 2019[Halcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811-9821.]). In the case of asymmetric ligand design, where one of the azole groups carries a hydrogen on the nitro­gen heteroatom, it was shown that deprotonation can produce neutral complex species that can be high-spin (Schäfer et al., 2013[Schäfer, B., Rajnák, C., Šalitroš, I., Fuhr, O., Klar, D., Schmitz-Antoniak, C., Weschke, E., Wende, H. & Ruben, M. (2013). Chem. Commun. 49, 10986-10988.]), low-spin (Shiga et al., 2019[Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658-5662.]) or exhibit temperature-induced transitions between the spin states of the central atom (Seredyuk et al., 2014[Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387-16394.]), depending on the ligand field strength. The substituents of ligands can also play an important role in behaviour of the solid samples, determining the way mol­ecules inter­act with each other and, therefore, influencing the spin state adopted by the central atom. As we have recently shown, the dynamic rearrangement of the substituent groups can lead to an abnormally large hysteresis of the thermal high-spin transition due to the supra­molecular mechanism of blocking the deformation of the complex mol­ecule by the meth­oxy group (Seredyuk et al., 2022[Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. 144, 14297-14309.]).

[Scheme 1]

In a continuation of our inter­est in 3d-metal complexes formed by polydentate ligands (Bartual-Murgui et al., 2017[Bartual-Murgui, C., Piñeiro-López, L., Valverde-Muñoz, F. J., Muñoz, M. C., Seredyuk, M. & Real, J. A. (2017). Inorg. Chem. 56, 13535-13546.]; Bonhommeau et al., 2012[Bonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C, 116, 11251-11255.]; Valverde-Muñoz et al., 2020[Valverde-Muñoz, F.-J., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632-18638.]), we report here the structural characterization of a new electroneutral complex [FeIIL2]0 based on an asymmetric mono-deprotonated ligand with two methyl substituents on the phenyl group, L = 2-[5-(3,4-di­methyl­phen­yl)-4H-1,2,4-triazol-3-ato]-6-(1H-pyrazol-1-yl)pyridine.

2. Structural commentary

The asymmetric unit comprises half of the mol­ecule and a discrete MeOH mol­ecule forming a hydrogen bond O26—H26⋯N12 with the triazole (trz) ring (Fig. 1[link]). The FeII ion has a pseudo-octa­hedral coordination environment composed of the nitro­gen donor atoms of the pyrazole (pz), pyridine (py) and trz heterocycles with an average Fe—N distance of 1.957 Å (V[FeN6] = 9.654 Å3) being typical for low-spin complexes with an N6 coordination environment (Gütlich & Goodwin, 2004[Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1-47.]). The pz, py, trz and phenyl rings, together with the two methyl substituents of one ligand, all lie essentially in the same plane.

[Figure 1]
Figure 1
The mol­ecular structure of half the title compound as refined in the asymmetric unit with displacement ellipsoids drawn at the 50% probability level. The O—H⋯N hydrogen bond is indicated by the dashed line. This and the next figure were generated with the program Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

The average trigonal distortion parameters, Σ = Σ112(|90 − φi|), with φi being the N—Fe—N′ angle (Drew et al., 1995[Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035-1038.]), and Θ = Σ124(|60 − θi|), with θi being the angle generated by superposition of two opposite faces of the octa­hedron (Chang et al., 1990[Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814-6827.]), are 92.8 and 295.0°, respectively. The values reveal a deviation of the coordination environment from an ideal octa­hedron which is, however, in the expected range for complexes with similar bis­azole­pyridine ligands (see below). The calculated continuous shape measure (CShM) value relative to the ideal Oh symmetry is 2.18 (Kershaw Cook et al., 2015[Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289-290, 2-12.]).

3. Supra­molecular features

As a result of the tapered shape, neighbouring complex mol­ecules are embedded in each other and inter­act through two weak inter­molecular C—H(pz)⋯π(ph') contacts between the pyrazole (pz) and phenyl (ph) groups, respectively [distance C2)(pz)⋯Cg(ph') is 3.392 Å, angle between planes of the rings is 73.77°]. The formed mono-periodic supra­molecular columns protrude along the c-axis with a stacking periodicity equal to 10.6511 (7) Å (= cell parameter c) (Fig. 2[link]a). Weak inter­molecular hydrogen-bonding inter­actions C—H(pz, py)⋯N/C(pz, trz)/O(MeOH) in the range 2.257–2.893 Å (Table 1[link]), link neighbouring columns into corrugated di-periodic layers in the bc plane (Fig. 2[link]b,c). The layers stack along the b-axis direction without any strong or weak inter­layer inter­actions shorter than the sum of the van der Waals radii (Fig. 2[link]c). The voids between the layers are occupied by methanol mol­ecules, which participate in the strong hydrogen bonding mentioned above, and weak hydrogen bonding with the aromatic substituents within the layers (a complete list of inter­molecular inter­actions is given in Table 1[link]).

Table 1
Hydrogen bonding (Å) of the title compound

Hydrogen bond Length Symmetry operation of the contact atom
C7⋯H—C21(pz) 2.827 1 − x, 1 − y, 1 + z
C6⋯H—C21(pz) 2.777 1 − x, 1 − y, 1 + z
C5⋯H—C21(pz) 2.756 1 − x, 1 − y, 1 + z
C4⋯H—C21(pz) 2.802 1 − x, 1 − y, 1 + z
C3⋯H—C21(pz) 2.893 1 − x, 1 − y, 1 + z
N9⋯H—C15(py) 2.475 [{1\over 2}] + x, 1 − y, [{1\over 2}] + z
N9⋯H—C20(pz) 2.522 [{1\over 2}] + x, 1 − y, [{1\over 2}] + z
H7⋯C20(pz) 2.641 [{1\over 2}] + x, 1 − y, [{1\over 2}] + z
N12⋯H—O26 2.017 x, y, z
H17⋯O26 2.329 x, y, z
O26⋯H—C22(pz) 2.257 [{1\over 2}] + x, 1 − y, [{1\over 2}] + z
[Figure 2]
Figure 2
(a) A fragment of the mono-periodic supra­molecular columns formed by stacking of mol­ecules along the c axis. (b) Di-periodic supra­molecular layers formed by stacking of the supra­molecular columns. For a better representation, each column has a different colour. Red dashed lines represent weak hydrogen bonds. (c) Stacking of the di-periodic layers along the c axis. Blue shaded areas correspond to the inter­layer space without inter­molecular inter­actions shorter than the sum of the van der Waals radii. The methanol mol­ecules are not shown for clarity.

4. Hirshfeld surface and 2D fingerprint plots

Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.6122 (red) to 1.3609 (blue) a.u. (Fig. 3[link]). The pale-red spots symbolize short contacts and negative dnorm values on the surface correspond to the inter­actions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 4[link]. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯N/N⋯H and C⋯C contacts, and the two-dimensional fingerprint plots, associated with their relative contributions to the Hirshfeld surface. At 48.5%, the largest contribution to the overall crystal packing is from H⋯H inter­actions, which are located mostly in the central region of the fingerprint plot. H⋯C/C⋯H contacts contribute 28.9%, resulting in a pair of characteristic wings. The H⋯N/N⋯H contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 16.2% contribution to the Hirshfeld surface. Finally, C⋯C contacts, which account for a contribution of 2.4%, are mostly distributed in the middle part of the plot.

[Figure 3]
Figure 3
A projection of dnorm mapped on the Hirshfeld surface, showing the inter­molecular inter­actions within the mol­ecule. Red areas represent regions where contacts are shorter than the sum of the van der Waals radii, blue areas represent regions where contacts are longer than the sum of van der Waals radii, and white areas are regions where contacts are close to the sum of van der Waals radii. This and the next two figures were generated with the program Crystal Explorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]).
[Figure 4]
Figure 4
(a) The overall two-dimensional fingerprint plot and those decomposed into specified inter­actions. (b) Hirshfeld surface representations with the function dnorm plotted onto the surface for the different inter­actions.

5. Energy frameworks

The energy frameworks, calculated using the wave function at the B3LYP/6-31G(d,p) theory level, including the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot), are shown in Fig. 5[link] (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The cylindrical radii, adjusted to the same scale factor of 100, are proportional to the relative strength of the corresponding energies. The major contribution to the inter­molecular inter­actions comes from dispersion forces (Edis), reflecting the dominant inter­actions in the network of the electroneutral mol­ecules. The topology of the energy framework resembles the topology of the inter­molecular inter­actions within and between the supra­molecular layers described above. Because of the high lattice symmetry, there are only two different attractive inter­actions between the mol­ecules within the layers, equal to −58.5 and −90.6 kJ mol−1. As for the inter­layer inter­actions, the absence of supra­molecular bonding leads to very weak inter­actions in the range −7.4 to +2.5 kJ mol−1, i.e. from weakly attracting to weakly repulsive. The colour-coded inter­action mappings within a radius of 3.8 Å of a central reference mol­ecule for the title compound together with full details of the various contributions to the total energy (Etot) are given in the supporting information

[Figure 5]
Figure 5
The calculated energy frameworks, showing (a) the electrostatic potential forces (Eele), (b) the dispersion forces (Edis) and (c) the total energy diagrams (Etot). Tube size is set at 100 scale.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals several similar neutral FeII complexes with a deprotonated azole group, for example, those based on pyrazole-pyridine-benzimidazole, XODCEB (Shiga et al., 2019[Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658-5662.]), phenathroline-tetra­zole, QIDJET (Zhang et al., 2007[Zhang, W., Zhao, F., Liu, T., Yuan, M., Wang, Z. M. & Gao, S. (2007). Inorg. Chem. 46, 2541-2555.]), and phenanthroline-benzimidazole, DOMQUT (Seredyuk et al., 2014[Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387-16394.]). We also included in the comparison data for three polymorphs, in different spin states, of a complex structurally similar to the title compound, but carrying a meth­oxy group on the phenyl substituent (EJQOA, BEJQUG, BEJQUG01, BEJRAN, BEJRER; Seredyuk et al., 2022[Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. 144, 14297-14309.]) (see schematic structures of all complexes in the supporting information. The Fe—N distances of these complexes in the low-spin state are 1.946–1.991 Å, while in the high-spin state they are in the range 2.138–2.184 Å. The values of the trigonal distortion and CShM(Oh) change correspondingly, and in the low-spin state they are systematically lower than in the high-spin state. The respective structural parameters of the title compound and related complexes are given in Table 2[link].

Table 2
Computed distortion indices (Å, °) for the title compound and similar literature complexes

CSD code Spin state <Fe—N> Σ Θ CShM(Oh)
Title compound Low-spin 1.957 92.8 295.0 2.18
XODCEBa Low-spin 1.950 87.4 276.6 1.92
QIDJET01b Low-spin 1.970 90.3 341.3 2.47
QIDJETb High-spin 2.184 145.5 553.3 5.88
DOMQIHc Low-spin 1.962 83.8 280.7 2.02
DOMQUTc Low-spin 1.991 88.5 320.0 2.48
DOMQUT02c High-spin 2.183 139.6 486.9 5.31
EJQOAd Low-spin 1.946 87.5 308.9 2.16
BEJQUGd Low-spin 1.952 97.9 309.9 2.37
BEJQUG01d High-spin 2.138 118.0 375.9 3.34
BEJRANd Low-spin 1.946 107.7 384.5 3.20
BEJRERd High-spin 2.139 147.8 507.2 4.92
Notes: (a) Shiga et al. (2019[Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658-5662.]); (b) Zhang et al. (2007[Zhang, W., Zhao, F., Liu, T., Yuan, M., Wang, Z. M. & Gao, S. (2007). Inorg. Chem. 46, 2541-2555.]); (c) Seredyuk et al. (2014[Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387-16394.]); (d) Seredyuk et al. (2022[Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. 144, 14297-14309.]).

7. Synthesis and crystallization

The ligand L was synthesized by the Suzuki cross-coupling reaction from the commercially available precursors (Enamine Ltd.) according to the method described in the literature (Seredyuk et al., 2022[Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. 144, 14297-14309.]). The synthesis of the title compound was performed with a layering technique in a standard test tube. The layering sequence was as follows: the bottom layer contained a solution of [Fe(L2)](BF4)2 prepared by dissolving L = 2-[(3,4-di­methyl­phen­yl)-4H-1,2,4-triazol-3-yl)]-6-(1H-pyrazol-1-yl)pyridine (100 mg, 0.316 mmol) and Fe(BF4)2·6H2O (53 mg, 0.158 mmol) in boiling acetone, to which chloro­form (5 ml) was then added. The middle layer was a methanol–chloro­form mixture (1:10, 10 ml), which was covered by a layer of methanol (10 ml), to which 100 µl of NEt3 was added dropwise. The tube was sealed, and black plate-like single crystals appeared within 3-4 weeks (yield ca 75%). Elemental analysis calculated for C38H38FeN12O2: C, 60.80; H, 5.10; N, 22.39. Found: C, 60.50; H, 5.31; N, 22.71.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in calculated positions using idealized geometries, with C—H = 0.98 Å for methyl groups and 0.95 Å for aromatic H atoms, and refined using a riding model with Uiso(H) = 1.2–1.5Ueq(C); the hydrogen atom H26 was refined freely. Two OMIT commands were used to exclude beamstop-affected data.

Table 3
Experimental details

Crystal data
Chemical formula [Fe(C18H15N6)2]·2CH4O
Mr 750.65
Crystal system, space group Orthorhombic, Aea2
Temperature (K) 180
a, b, c (Å) 12.6854 (10), 26.315 (2), 10.6511 (7)
V3) 3555.5 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.48
Crystal size (mm) 0.3 × 0.24 × 0.04
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.824, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6911, 3047, 2211
Rint 0.071
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.100, 1.00
No. of reflections 3047
No. of parameters 247
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.84, −0.50
Absolute structure Flack x determined using 703 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter −0.02 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis{3-(3,4-dimethylphenyl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}iron(II) methanol disolvate top
Crystal data top
[Fe(C18H15N6)2]·2CH4ODx = 1.402 Mg m3
Mr = 750.65Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Aea2Cell parameters from 1363 reflections
a = 12.6854 (10) Åθ = 2.6–22.8°
b = 26.315 (2) ŵ = 0.48 mm1
c = 10.6511 (7) ÅT = 180 K
V = 3555.5 (5) Å3Plate, clear dark red
Z = 40.3 × 0.24 × 0.04 mm
F(000) = 1568
Data collection top
Xcalibur, Eos
diffractometer
3047 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2211 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 16.1593 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = 1215
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 2531
Tmin = 0.824, Tmax = 1.000l = 1212
6911 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.061 w = 1/[σ2(Fo2) + (0.0192P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.84 e Å3
3047 reflectionsΔρmin = 0.50 e Å3
247 parametersAbsolute structure: Flack x determined using 703 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
1 restraintAbsolute structure parameter: 0.02 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.5000000.5000000.32399 (13)0.0198 (3)
N130.3533 (4)0.48261 (19)0.3181 (6)0.0170 (12)
N230.4520 (4)0.5467 (2)0.1903 (5)0.0202 (15)
N190.3481 (4)0.5393 (2)0.1587 (4)0.0219 (15)
N100.4953 (5)0.4455 (3)0.4514 (5)0.0211 (15)
O260.1937 (5)0.3536 (3)0.6135 (7)0.074 (3)
H260.255 (9)0.359 (4)0.602 (8)0.10 (4)*
N120.3978 (4)0.3867 (2)0.5544 (4)0.0214 (15)
N90.5624 (4)0.4206 (2)0.5293 (5)0.0205 (15)
C140.2907 (5)0.5053 (3)0.2340 (6)0.0189 (17)
C160.1439 (5)0.4588 (3)0.3039 (6)0.0266 (18)
H160.0708800.4507600.3008590.032*
C110.3991 (6)0.4244 (3)0.4689 (6)0.0187 (17)
C180.3142 (5)0.4458 (3)0.3926 (6)0.0208 (17)
C170.2084 (5)0.4332 (3)0.3877 (6)0.0232 (18)
H170.1804690.4074440.4407320.028*
C20.5444 (6)0.3525 (3)0.6874 (6)0.0221 (17)
C150.1835 (5)0.4957 (3)0.2245 (5)0.0231 (17)
H150.1398600.5134280.1668410.028*
C200.3249 (6)0.5650 (3)0.0514 (6)0.028 (2)
H200.2585380.5656810.0102350.034*
C70.6517 (6)0.3493 (3)0.7117 (6)0.031 (2)
H70.6982940.3688890.6613290.037*
C210.4130 (6)0.5893 (3)0.0140 (7)0.031 (2)
H210.4208630.6103140.0579960.038*
C60.6947 (6)0.3191 (3)0.8056 (7)0.0300 (19)
C50.6260 (7)0.2904 (3)0.8814 (7)0.036 (2)
C40.5194 (7)0.2928 (3)0.8593 (6)0.040 (2)
H40.4730760.2734180.9104280.048*
C220.4901 (6)0.5776 (3)0.1021 (7)0.0274 (19)
H220.5604320.5898700.0997180.033*
C240.8132 (5)0.3196 (3)0.8284 (8)0.048 (2)
H24A0.8461980.3452130.7744130.072*
H24B0.8424890.2860430.8088380.072*
H24C0.8272020.3277870.9165730.072*
C80.5027 (5)0.3860 (3)0.5907 (6)0.0205 (17)
C30.4769 (6)0.3232 (3)0.7632 (6)0.035 (2)
H30.4029400.3238760.7494340.042*
C270.1677 (7)0.3185 (4)0.7045 (8)0.060 (3)
H27A0.2086430.2873190.6914550.089*
H27B0.0923120.3106380.6991990.089*
H27C0.1836920.3324620.7876470.089*
C250.6686 (7)0.2584 (3)0.9889 (7)0.057 (3)
H25A0.7222440.2349860.9569090.085*
H25B0.6108680.2389921.0267770.085*
H25C0.7000730.2807331.0523190.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0140 (7)0.0239 (8)0.0216 (6)0.0013 (8)0.0000.000
N130.010 (3)0.020 (3)0.022 (3)0.000 (3)0.003 (3)0.002 (3)
N230.014 (3)0.028 (4)0.019 (3)0.003 (3)0.000 (3)0.002 (3)
N190.016 (3)0.024 (4)0.025 (3)0.002 (3)0.002 (3)0.002 (3)
N100.019 (3)0.026 (4)0.018 (3)0.001 (3)0.003 (3)0.002 (3)
O260.024 (4)0.082 (6)0.115 (6)0.009 (4)0.018 (4)0.066 (5)
N120.013 (3)0.025 (4)0.026 (3)0.000 (3)0.004 (3)0.001 (3)
N90.020 (4)0.024 (4)0.018 (3)0.000 (3)0.003 (3)0.004 (3)
C140.012 (4)0.024 (5)0.021 (4)0.007 (4)0.003 (3)0.003 (3)
C160.013 (4)0.034 (5)0.032 (5)0.005 (4)0.003 (3)0.000 (4)
C110.022 (4)0.019 (5)0.015 (4)0.001 (4)0.004 (3)0.002 (3)
C180.014 (4)0.028 (5)0.020 (3)0.002 (4)0.002 (3)0.004 (3)
C170.012 (4)0.032 (5)0.025 (4)0.009 (4)0.002 (3)0.000 (4)
C20.025 (4)0.024 (5)0.017 (4)0.002 (4)0.005 (3)0.001 (3)
C150.015 (4)0.027 (5)0.028 (4)0.001 (4)0.007 (3)0.004 (4)
C200.027 (5)0.036 (5)0.022 (4)0.014 (4)0.001 (3)0.004 (4)
C70.032 (5)0.032 (5)0.027 (5)0.010 (4)0.003 (4)0.001 (4)
C210.024 (5)0.035 (6)0.035 (5)0.006 (5)0.004 (4)0.017 (4)
C60.038 (5)0.024 (4)0.028 (4)0.013 (4)0.013 (4)0.007 (4)
C50.051 (6)0.028 (5)0.030 (4)0.006 (5)0.019 (4)0.001 (4)
C40.056 (6)0.033 (5)0.031 (6)0.017 (5)0.006 (4)0.013 (4)
C220.025 (5)0.029 (5)0.029 (4)0.010 (4)0.006 (4)0.006 (4)
C240.040 (5)0.060 (6)0.045 (4)0.020 (5)0.008 (5)0.012 (6)
C80.017 (4)0.024 (5)0.021 (4)0.002 (4)0.002 (3)0.005 (3)
C30.029 (5)0.044 (6)0.031 (4)0.009 (4)0.011 (4)0.001 (4)
C270.043 (6)0.056 (7)0.080 (6)0.008 (6)0.020 (5)0.025 (6)
C250.080 (8)0.044 (7)0.047 (5)0.002 (6)0.024 (5)0.012 (4)
Geometric parameters (Å, º) top
Fe1—N131.917 (5)C2—C81.455 (9)
Fe1—N13i1.917 (5)C2—C31.407 (9)
Fe1—N23i1.977 (6)C15—H150.9500
Fe1—N231.977 (6)C20—H200.9500
Fe1—N10i1.974 (6)C20—C211.349 (9)
Fe1—N101.974 (6)C7—H70.9500
N13—C141.338 (8)C7—C61.389 (9)
N13—C181.348 (8)C21—H210.9500
N23—N191.375 (7)C21—C221.389 (9)
N23—C221.333 (9)C6—C51.409 (10)
N19—C141.403 (8)C6—C241.522 (9)
N19—C201.360 (8)C5—C41.373 (10)
N10—N91.358 (8)C5—C251.520 (10)
N10—C111.355 (9)C4—H40.9500
O26—H260.79 (11)C4—C31.406 (9)
O26—C271.380 (9)C22—H220.9500
N12—C111.345 (8)C24—H24A0.9800
N12—C81.386 (8)C24—H24B0.9800
N9—C81.352 (8)C24—H24C0.9800
C14—C151.387 (8)C3—H30.9500
C16—H160.9500C27—H27A0.9800
C16—C171.386 (9)C27—H27B0.9800
C16—C151.383 (9)C27—H27C0.9800
C11—C181.463 (9)C25—H25A0.9800
C18—C171.384 (8)C25—H25B0.9800
C17—H170.9500C25—H25C0.9800
C2—C71.388 (9)
N13—Fe1—N13i176.2 (4)C14—C15—H15121.9
N13—Fe1—N2380.0 (3)C16—C15—C14116.2 (6)
N13—Fe1—N23i97.3 (2)C16—C15—H15121.9
N13i—Fe1—N2397.3 (2)N19—C20—H20126.1
N13i—Fe1—N23i80.0 (3)C21—C20—N19107.8 (7)
N13—Fe1—N1079.6 (3)C21—C20—H20126.1
N13—Fe1—N10i103.0 (2)C2—C7—H7118.2
N13i—Fe1—N10i79.6 (3)C6—C7—C2123.7 (7)
N13i—Fe1—N10103.0 (2)C6—C7—H7118.2
N23i—Fe1—N2387.9 (3)C20—C21—H21127.0
N10i—Fe1—N2393.0 (2)C20—C21—C22106.1 (7)
N10—Fe1—N23i93.0 (2)C22—C21—H21127.0
N10i—Fe1—N23i159.5 (2)C7—C6—C5118.4 (7)
N10—Fe1—N23159.5 (2)C7—C6—C24119.9 (7)
N10—Fe1—N10i93.2 (4)C5—C6—C24121.6 (7)
C14—N13—Fe1119.4 (5)C6—C5—C25120.6 (7)
C14—N13—C18119.8 (6)C4—C5—C6119.1 (7)
C18—N13—Fe1120.6 (5)C4—C5—C25120.3 (8)
N19—N23—Fe1112.5 (4)C5—C4—H4119.1
C22—N23—Fe1140.8 (5)C5—C4—C3121.9 (7)
C22—N23—N19105.2 (6)C3—C4—H4119.1
N23—N19—C14116.6 (5)N23—C22—C21110.9 (7)
C20—N19—N23110.0 (6)N23—C22—H22124.5
C20—N19—C14133.2 (6)C21—C22—H22124.5
N9—N10—Fe1138.8 (5)C6—C24—H24A109.5
C11—N10—Fe1114.9 (5)C6—C24—H24B109.5
C11—N10—N9106.3 (6)C6—C24—H24C109.5
C27—O26—H26117 (7)H24A—C24—H24B109.5
C11—N12—C8100.8 (6)H24A—C24—H24C109.5
C8—N9—N10105.7 (5)H24B—C24—H24C109.5
N13—C14—N19111.0 (6)N12—C8—C2123.7 (6)
N13—C14—C15123.3 (6)N9—C8—N12113.2 (6)
C15—C14—N19125.7 (6)N9—C8—C2123.1 (6)
C17—C16—H16119.3C2—C3—C4119.8 (7)
C15—C16—H16119.3C2—C3—H3120.1
C15—C16—C17121.4 (7)C4—C3—H3120.1
N10—C11—C18115.4 (6)O26—C27—H27A109.5
N12—C11—N10114.0 (6)O26—C27—H27B109.5
N12—C11—C18130.6 (7)O26—C27—H27C109.5
N13—C18—C11109.5 (6)H27A—C27—H27B109.5
N13—C18—C17120.5 (6)H27A—C27—H27C109.5
C17—C18—C11130.0 (7)H27B—C27—H27C109.5
C16—C17—H17120.6C5—C25—H25A109.5
C18—C17—C16118.7 (7)C5—C25—H25B109.5
C18—C17—H17120.6C5—C25—H25C109.5
C7—C2—C8121.7 (6)H25A—C25—H25B109.5
C7—C2—C3117.2 (7)H25A—C25—H25C109.5
C3—C2—C8121.1 (6)H25B—C25—H25C109.5
Fe1—N13—C14—N191.3 (8)C11—N12—C8—C2177.6 (6)
Fe1—N13—C14—C15178.9 (5)C11—C18—C17—C16178.4 (6)
Fe1—N13—C18—C110.5 (8)C18—N13—C14—N19174.9 (6)
Fe1—N13—C18—C17179.7 (5)C18—N13—C14—C154.9 (10)
Fe1—N23—N19—C147.5 (7)C17—C16—C15—C140.0 (10)
Fe1—N23—N19—C20168.3 (4)C2—C7—C6—C50.6 (11)
Fe1—N23—C22—C21163.0 (6)C2—C7—C6—C24177.8 (7)
Fe1—N10—N9—C8178.8 (5)C15—C16—C17—C181.1 (11)
Fe1—N10—C11—N12178.9 (5)C20—N19—C14—N13168.7 (7)
Fe1—N10—C11—C181.0 (8)C20—N19—C14—C1511.1 (12)
N13—C14—C15—C163.1 (10)C20—C21—C22—N230.6 (9)
N13—C18—C17—C160.7 (11)C7—C2—C8—N12173.2 (6)
N23—N19—C14—N135.8 (8)C7—C2—C8—N98.5 (11)
N23—N19—C14—C15174.4 (6)C7—C2—C3—C40.6 (11)
N23—N19—C20—C210.4 (8)C7—C6—C5—C40.5 (11)
N19—N23—C22—C210.8 (8)C7—C6—C5—C25177.4 (7)
N19—C14—C15—C16176.7 (6)C6—C5—C4—C30.0 (12)
N19—C20—C21—C220.1 (9)C5—C4—C3—C20.6 (11)
N10—N9—C8—N120.9 (8)C22—N23—N19—C14176.5 (6)
N10—N9—C8—C2177.5 (6)C22—N23—N19—C200.8 (8)
N10—C11—C18—N131.0 (8)C24—C6—C5—C4177.7 (7)
N10—C11—C18—C17179.9 (7)C24—C6—C5—C250.3 (12)
N12—C11—C18—N13178.9 (7)C8—N12—C11—N100.4 (7)
N12—C11—C18—C170.2 (13)C8—N12—C11—C18179.8 (7)
N9—N10—C11—N120.2 (8)C8—C2—C7—C6177.9 (6)
N9—N10—C11—C18179.7 (6)C8—C2—C3—C4177.3 (6)
C14—N13—C18—C11175.7 (6)C3—C2—C7—C60.0 (11)
C14—N13—C18—C173.6 (10)C3—C2—C8—N128.9 (11)
C14—N19—C20—C21175.2 (7)C3—C2—C8—N9169.3 (7)
C11—N10—N9—C80.6 (7)C25—C5—C4—C3178.0 (7)
C11—N12—C8—N90.8 (7)
Symmetry code: (i) x+1, y+1, z.
Hydrogen bonding (Å) of the title compound top
Hydrogen bondLengthSymmetry operation of the contact atom
C7···H—C21(pz)2.8271 - x, 1 - y, 1 + z
C6···H—C21(pz)2.7771 - x, 1 - y, 1 + z
C5···H—C21(pz)2.7561 - x, 1 - y, 1 + z
C4···H—C21(pz)2.8021 - x, 1 - y, 1 + z
C3···H—C21(pz)2.8931 - x, 1 - y, 1 + z
N9···H—C15(py)2.4751/2 + x, 1 - y, 1/2 + z
N9···H—C20(pz)2.5221/2 + x, 1 - y, 1/2 + z
H7···C20(pz)2.6411/2 + x, 1 - y, 1/2 + z
N12···H—O262.017x, y, z
H17···O262.329x, y, z
O26···H—C22(pz)2.257-1/2 + x, 1 - y, 1/2 + z
Computed distortion indices (Å, °) for the title compound and similar literature complexes top
CSD codeSpin state<Fe—N>ΣΘCShM(Oh)
Title compoundLow-spin1.95792.8295.02.18
XODCEBaLow-spin1.95087.4276.61.92
QIDJET01bLow-spin1.97090.3341.32.47
QIDJETbHigh-spin2.184145.5553.35.88
DOMQIHcLow-spin1.96283.8280.72.02
DOMQUTcLow-spin1.99188.5320.02.48
DOMQUT02cHigh-spin2.183139.6486.95.31
EJQOAdLow-spin1.94687.5308.92.16
BEJQUGdLow-spin1.95297.9309.92.37
BEJQUG01dHigh-spin2.138118.0375.93.34
BEJRANdLow-spin1.946107.7384.53.20
BEJRERdHigh-spin2.139147.8507.24.92
Notes: (a) Shiga et al. (2019); (b) Zhang et al. (2007); (c) Seredyuk et al. (2014); (d) Seredyuk et al. (2014).
 

Acknowledgements

Author contributions are as follows: Conceptualization, KZ and MS; methodology, KZ; formal analysis, IOF; synthesis, SOM; single-crystal measurements, SS; writing (original draft), MS; writing (review and editing of the manuscript), TYS, MS; visualization and calculations, VMA; funding acquisition, KZ, MS.

Funding information

Funding for this research was provided by a grant from the Ministry of Education and Science of Ukraine for perspective development of a scientific direction `Mathematical sciences and natural sciences' at Taras Shevchenko National University of Kyiv.

References

First citationBartual-Murgui, C., Piñeiro-López, L., Valverde-Muñoz, F. J., Muñoz, M. C., Seredyuk, M. & Real, J. A. (2017). Inorg. Chem. 56, 13535–13546.  Web of Science CAS PubMed Google Scholar
First citationBonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C, 116, 11251–11255.  Web of Science CrossRef CAS Google Scholar
First citationChang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.  CSD CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47.  Google Scholar
First citationHalcrow, M. A. (2014). New J. Chem. 38, 1868–1882.  Web of Science CrossRef CAS Google Scholar
First citationHalcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811–9821.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSchäfer, B., Rajnák, C., Šalitroš, I., Fuhr, O., Klar, D., Schmitz-Antoniak, C., Weschke, E., Wende, H. & Ruben, M. (2013). Chem. Commun. 49, 10986–10988.  Google Scholar
First citationSeredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. 144, 14297–14309.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387–16394.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658–5662.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValverde-Muñoz, F.-J., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632–18638.  Google Scholar
First citationZhang, W., Zhao, F., Liu, T., Yuan, M., Wang, Z. M. & Gao, S. (2007). Inorg. Chem. 46, 2541–2555.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds