research communications
H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}iron(II) methanol disolvate
of bis{3-(3,4-dimethylphenyl)-5-[6-(1aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, and bDepartment of Inorganic Polymers, "Petru Poni", Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania
*Correspondence e-mail: mlseredyuk@gmail.com
As a result of the high symmetry of the Aea2 structure, the of the title compound, [FeII(C18H15N6)2]·2MeOH, consists of half of a charge-neutral complex molecule and a discrete methanol molecule. The planar anionic tridentate ligand 2-[5-(3,4-dimethylphenyl)-4H-1,2,4-triazol-3-ato]-6-(1H-pyrazol-1-yl)pyridine coordinates the FeII ion meridionally through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo-octahedral coordination sphere of the central ion. The average Fe—N bond distance is 1.955 Å, indicating a low-spin state of the FeII ion. Neighbouring cone-shaped molecules, nested into each other, are linked through double weak C—H(pz)⋯π(ph') interactions into mono-periodic columns, which are further linked through weak C—H⋯N′/C′ interactions into di-periodic layers. No interactions shorter than the sum of the van der Waals radii of the neighbouring layers are observed. Energy framework analysis at the B3LYP/6–31 G(d,p) theory level, performed to quantify the intermolecular interaction energies, reproduces the weak interlayer interactions in contrast to the strong interaction within the layers. Intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, showing the relative contributions of the contacts to the crystal packing to be H⋯H 48.5%, H⋯C/C⋯H 28.9%, H⋯N/N⋯H 16.2% and C⋯C 2.4%.
Keywords: crystal structure; spin-crossover; spin transition; energy frameworks.
CCDC reference: 2211089
1. Chemical context
Bisazolepyridines are a broad class of meridional tridentate ligands used to synthesize charged FeII compounds capable of switching between a spin state with the t2g4eg2 configuration (high-spin, total spin S = 2) and a spin state with the t2g6eg0 configuration (low-spin, total spin S = 0) due to temperature variation, light irradiation or external pressure (Halcrow, 2014; Halcrow et al., 2019). In the case of asymmetric ligand design, where one of the azole groups carries a hydrogen on the nitrogen heteroatom, it was shown that deprotonation can produce neutral complex species that can be high-spin (Schäfer et al., 2013), low-spin (Shiga et al., 2019) or exhibit temperature-induced transitions between the spin states of the central atom (Seredyuk et al., 2014), depending on the strength. The substituents of ligands can also play an important role in behaviour of the solid samples, determining the way molecules interact with each other and, therefore, influencing the spin state adopted by the central atom. As we have recently shown, the dynamic rearrangement of the substituent groups can lead to an abnormally large hysteresis of the thermal high-spin transition due to the supramolecular mechanism of blocking the deformation of the complex molecule by the methoxy group (Seredyuk et al., 2022).
In a continuation of our interest in 3d-metal complexes formed by polydentate ligands (Bartual-Murgui et al., 2017; Bonhommeau et al., 2012; Valverde-Muñoz et al., 2020), we report here the structural characterization of a new electroneutral complex [FeIIL2]0 based on an asymmetric mono-deprotonated ligand with two methyl substituents on the phenyl group, L = 2-[5-(3,4-dimethylphenyl)-4H-1,2,4-triazol-3-ato]-6-(1H-pyrazol-1-yl)pyridine.
2. Structural commentary
The ). The FeII ion has a pseudo-octahedral coordination environment composed of the nitrogen donor atoms of the pyrazole (pz), pyridine (py) and trz heterocycles with an average Fe—N distance of 1.957 Å (V[FeN6] = 9.654 Å3) being typical for low-spin complexes with an N6 coordination environment (Gütlich & Goodwin, 2004). The pz, py, trz and phenyl rings, together with the two methyl substituents of one ligand, all lie essentially in the same plane.
comprises half of the molecule and a discrete MeOH molecule forming a hydrogen bond O26—H26⋯N12 with the triazole (trz) ring (Fig. 1The average trigonal distortion parameters, Σ = Σ112(|90 − φi|), with φi being the N—Fe—N′ angle (Drew et al., 1995), and Θ = Σ124(|60 − θi|), with θi being the angle generated by superposition of two opposite faces of the octahedron (Chang et al., 1990), are 92.8 and 295.0°, respectively. The values reveal a deviation of the coordination environment from an ideal octahedron which is, however, in the expected range for complexes with similar bisazolepyridine ligands (see below). The calculated continuous shape measure (CShM) value relative to the ideal Oh symmetry is 2.18 (Kershaw Cook et al., 2015).
3. Supramolecular features
As a result of the tapered shape, neighbouring complex molecules are embedded in each other and interact through two weak intermolecular C—H(pz)⋯π(ph') contacts between the pyrazole (pz) and phenyl (ph) groups, respectively [distance C2)(pz)⋯Cg(ph') is 3.392 Å, angle between planes of the rings is 73.77°]. The formed mono-periodic supramolecular columns protrude along the c-axis with a stacking periodicity equal to 10.6511 (7) Å (= cell parameter c) (Fig. 2a). Weak intermolecular hydrogen-bonding interactions C—H(pz, py)⋯N/C(pz, trz)/O(MeOH) in the range 2.257–2.893 Å (Table 1), link neighbouring columns into corrugated di-periodic layers in the bc plane (Fig. 2b,c). The layers stack along the b-axis direction without any strong or weak interlayer interactions shorter than the sum of the van der Waals radii (Fig. 2c). The voids between the layers are occupied by methanol molecules, which participate in the strong hydrogen bonding mentioned above, and weak hydrogen bonding with the aromatic substituents within the layers (a complete list of intermolecular interactions is given in Table 1).
|
4. Hirshfeld surface and 2D fingerprint plots
Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer (Spackman et al., 2021), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.6122 (red) to 1.3609 (blue) a.u. (Fig. 3). The pale-red spots symbolize short contacts and negative dnorm values on the surface correspond to the interactions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 4. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯N/N⋯H and C⋯C contacts, and the two-dimensional fingerprint plots, associated with their relative contributions to the Hirshfeld surface. At 48.5%, the largest contribution to the overall crystal packing is from H⋯H interactions, which are located mostly in the central region of the fingerprint plot. H⋯C/C⋯H contacts contribute 28.9%, resulting in a pair of characteristic wings. The H⋯N/N⋯H contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 16.2% contribution to the Hirshfeld surface. Finally, C⋯C contacts, which account for a contribution of 2.4%, are mostly distributed in the middle part of the plot.
5. Energy frameworks
The energy frameworks, calculated using the wave function at the B3LYP/6-31G(d,p) theory level, including the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot), are shown in Fig. 5 (Spackman et al., 2021). The cylindrical radii, adjusted to the same scale factor of 100, are proportional to the relative strength of the corresponding energies. The major contribution to the intermolecular interactions comes from dispersion forces (Edis), reflecting the dominant interactions in the network of the electroneutral molecules. The topology of the energy framework resembles the topology of the intermolecular interactions within and between the supramolecular layers described above. Because of the high lattice symmetry, there are only two different attractive interactions between the molecules within the layers, equal to −58.5 and −90.6 kJ mol−1. As for the interlayer interactions, the absence of supramolecular bonding leads to very weak interactions in the range −7.4 to +2.5 kJ mol−1, i.e. from weakly attracting to weakly repulsive. The colour-coded interaction mappings within a radius of 3.8 Å of a central reference molecule for the title compound together with full details of the various contributions to the total energy (Etot) are given in the supporting information
6. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016) reveals several similar neutral FeII complexes with a deprotonated azole group, for example, those based on pyrazole-pyridine-benzimidazole, XODCEB (Shiga et al., 2019), phenathroline-tetrazole, QIDJET (Zhang et al., 2007), and phenanthroline-benzimidazole, DOMQUT (Seredyuk et al., 2014). We also included in the comparison data for three polymorphs, in different spin states, of a complex structurally similar to the title compound, but carrying a methoxy group on the phenyl substituent (EJQOA, BEJQUG, BEJQUG01, BEJRAN, BEJRER; Seredyuk et al., 2022) (see schematic structures of all complexes in the supporting information. The Fe—N distances of these complexes in the low-spin state are 1.946–1.991 Å, while in the high-spin state they are in the range 2.138–2.184 Å. The values of the trigonal distortion and CShM(Oh) change correspondingly, and in the low-spin state they are systematically lower than in the high-spin state. The respective structural parameters of the title compound and related complexes are given in Table 2.
7. Synthesis and crystallization
The ligand L was synthesized by the Suzuki cross-coupling reaction from the commercially available precursors (Enamine Ltd.) according to the method described in the literature (Seredyuk et al., 2022). The synthesis of the title compound was performed with a layering technique in a standard test tube. The layering sequence was as follows: the bottom layer contained a solution of [Fe(L2)](BF4)2 prepared by dissolving L = 2-[(3,4-dimethylphenyl)-4H-1,2,4-triazol-3-yl)]-6-(1H-pyrazol-1-yl)pyridine (100 mg, 0.316 mmol) and Fe(BF4)2·6H2O (53 mg, 0.158 mmol) in boiling acetone, to which chloroform (5 ml) was then added. The middle layer was a methanol–chloroform mixture (1:10, 10 ml), which was covered by a layer of methanol (10 ml), to which 100 µl of NEt3 was added dropwise. The tube was sealed, and black plate-like single crystals appeared within 3-4 weeks (yield ca 75%). Elemental analysis calculated for C38H38FeN12O2: C, 60.80; H, 5.10; N, 22.39. Found: C, 60.50; H, 5.31; N, 22.71.
8. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions using idealized geometries, with C—H = 0.98 Å for methyl groups and 0.95 Å for aromatic H atoms, and refined using a riding model with Uiso(H) = 1.2–1.5Ueq(C); the hydrogen atom H26 was refined freely. Two OMIT commands were used to exclude beamstop-affected data.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2211089
https://doi.org/10.1107/S2056989022009744/yz2021sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022009744/yz2021Isup2.hkl
Supporting data for energy framework analysis and schematic structures of related complexes. DOI: https://doi.org/10.1107/S2056989022009744/yz2021sup4.doc
Supporting information file. DOI: https://doi.org/10.1107/S2056989022009744/yz2021Isup5.cdx
Data collection: CrysAlis PRO (Rigaku OD, 2022); cell
CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Fe(C18H15N6)2]·2CH4O | Dx = 1.402 Mg m−3 |
Mr = 750.65 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Aea2 | Cell parameters from 1363 reflections |
a = 12.6854 (10) Å | θ = 2.6–22.8° |
b = 26.315 (2) Å | µ = 0.48 mm−1 |
c = 10.6511 (7) Å | T = 180 K |
V = 3555.5 (5) Å3 | Plate, clear dark red |
Z = 4 | 0.3 × 0.24 × 0.04 mm |
F(000) = 1568 |
Xcalibur, Eos diffractometer | 3047 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 2211 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
Detector resolution: 16.1593 pixels mm-1 | θmax = 25.0°, θmin = 2.2° |
ω scans | h = −12→15 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −25→31 |
Tmin = 0.824, Tmax = 1.000 | l = −12→12 |
6911 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.061 | w = 1/[σ2(Fo2) + (0.0192P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.100 | (Δ/σ)max < 0.001 |
S = 1.00 | Δρmax = 0.84 e Å−3 |
3047 reflections | Δρmin = −0.50 e Å−3 |
247 parameters | Absolute structure: Flack x determined using 703 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
1 restraint | Absolute structure parameter: −0.02 (3) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.500000 | 0.500000 | 0.32399 (13) | 0.0198 (3) | |
N13 | 0.3533 (4) | 0.48261 (19) | 0.3181 (6) | 0.0170 (12) | |
N23 | 0.4520 (4) | 0.5467 (2) | 0.1903 (5) | 0.0202 (15) | |
N19 | 0.3481 (4) | 0.5393 (2) | 0.1587 (4) | 0.0219 (15) | |
N10 | 0.4953 (5) | 0.4455 (3) | 0.4514 (5) | 0.0211 (15) | |
O26 | 0.1937 (5) | 0.3536 (3) | 0.6135 (7) | 0.074 (3) | |
H26 | 0.255 (9) | 0.359 (4) | 0.602 (8) | 0.10 (4)* | |
N12 | 0.3978 (4) | 0.3867 (2) | 0.5544 (4) | 0.0214 (15) | |
N9 | 0.5624 (4) | 0.4206 (2) | 0.5293 (5) | 0.0205 (15) | |
C14 | 0.2907 (5) | 0.5053 (3) | 0.2340 (6) | 0.0189 (17) | |
C16 | 0.1439 (5) | 0.4588 (3) | 0.3039 (6) | 0.0266 (18) | |
H16 | 0.070880 | 0.450760 | 0.300859 | 0.032* | |
C11 | 0.3991 (6) | 0.4244 (3) | 0.4689 (6) | 0.0187 (17) | |
C18 | 0.3142 (5) | 0.4458 (3) | 0.3926 (6) | 0.0208 (17) | |
C17 | 0.2084 (5) | 0.4332 (3) | 0.3877 (6) | 0.0232 (18) | |
H17 | 0.180469 | 0.407444 | 0.440732 | 0.028* | |
C2 | 0.5444 (6) | 0.3525 (3) | 0.6874 (6) | 0.0221 (17) | |
C15 | 0.1835 (5) | 0.4957 (3) | 0.2245 (5) | 0.0231 (17) | |
H15 | 0.139860 | 0.513428 | 0.166841 | 0.028* | |
C20 | 0.3249 (6) | 0.5650 (3) | 0.0514 (6) | 0.028 (2) | |
H20 | 0.258538 | 0.565681 | 0.010235 | 0.034* | |
C7 | 0.6517 (6) | 0.3493 (3) | 0.7117 (6) | 0.031 (2) | |
H7 | 0.698294 | 0.368889 | 0.661329 | 0.037* | |
C21 | 0.4130 (6) | 0.5893 (3) | 0.0140 (7) | 0.031 (2) | |
H21 | 0.420863 | 0.610314 | −0.057996 | 0.038* | |
C6 | 0.6947 (6) | 0.3191 (3) | 0.8056 (7) | 0.0300 (19) | |
C5 | 0.6260 (7) | 0.2904 (3) | 0.8814 (7) | 0.036 (2) | |
C4 | 0.5194 (7) | 0.2928 (3) | 0.8593 (6) | 0.040 (2) | |
H4 | 0.473076 | 0.273418 | 0.910428 | 0.048* | |
C22 | 0.4901 (6) | 0.5776 (3) | 0.1021 (7) | 0.0274 (19) | |
H22 | 0.560432 | 0.589870 | 0.099718 | 0.033* | |
C24 | 0.8132 (5) | 0.3196 (3) | 0.8284 (8) | 0.048 (2) | |
H24A | 0.846198 | 0.345213 | 0.774413 | 0.072* | |
H24B | 0.842489 | 0.286043 | 0.808838 | 0.072* | |
H24C | 0.827202 | 0.327787 | 0.916573 | 0.072* | |
C8 | 0.5027 (5) | 0.3860 (3) | 0.5907 (6) | 0.0205 (17) | |
C3 | 0.4769 (6) | 0.3232 (3) | 0.7632 (6) | 0.035 (2) | |
H3 | 0.402940 | 0.323876 | 0.749434 | 0.042* | |
C27 | 0.1677 (7) | 0.3185 (4) | 0.7045 (8) | 0.060 (3) | |
H27A | 0.208643 | 0.287319 | 0.691455 | 0.089* | |
H27B | 0.092312 | 0.310638 | 0.699199 | 0.089* | |
H27C | 0.183692 | 0.332462 | 0.787647 | 0.089* | |
C25 | 0.6686 (7) | 0.2584 (3) | 0.9889 (7) | 0.057 (3) | |
H25A | 0.722244 | 0.234986 | 0.956909 | 0.085* | |
H25B | 0.610868 | 0.238992 | 1.026777 | 0.085* | |
H25C | 0.700073 | 0.280733 | 1.052319 | 0.085* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0140 (7) | 0.0239 (8) | 0.0216 (6) | −0.0013 (8) | 0.000 | 0.000 |
N13 | 0.010 (3) | 0.020 (3) | 0.022 (3) | 0.000 (3) | −0.003 (3) | 0.002 (3) |
N23 | 0.014 (3) | 0.028 (4) | 0.019 (3) | −0.003 (3) | 0.000 (3) | −0.002 (3) |
N19 | 0.016 (3) | 0.024 (4) | 0.025 (3) | −0.002 (3) | −0.002 (3) | 0.002 (3) |
N10 | 0.019 (3) | 0.026 (4) | 0.018 (3) | 0.001 (3) | −0.003 (3) | 0.002 (3) |
O26 | 0.024 (4) | 0.082 (6) | 0.115 (6) | 0.009 (4) | 0.018 (4) | 0.066 (5) |
N12 | 0.013 (3) | 0.025 (4) | 0.026 (3) | 0.000 (3) | −0.004 (3) | 0.001 (3) |
N9 | 0.020 (4) | 0.024 (4) | 0.018 (3) | 0.000 (3) | −0.003 (3) | 0.004 (3) |
C14 | 0.012 (4) | 0.024 (5) | 0.021 (4) | −0.007 (4) | 0.003 (3) | −0.003 (3) |
C16 | 0.013 (4) | 0.034 (5) | 0.032 (5) | −0.005 (4) | 0.003 (3) | 0.000 (4) |
C11 | 0.022 (4) | 0.019 (5) | 0.015 (4) | −0.001 (4) | −0.004 (3) | −0.002 (3) |
C18 | 0.014 (4) | 0.028 (5) | 0.020 (3) | −0.002 (4) | 0.002 (3) | −0.004 (3) |
C17 | 0.012 (4) | 0.032 (5) | 0.025 (4) | −0.009 (4) | −0.002 (3) | 0.000 (4) |
C2 | 0.025 (4) | 0.024 (5) | 0.017 (4) | −0.002 (4) | −0.005 (3) | −0.001 (3) |
C15 | 0.015 (4) | 0.027 (5) | 0.028 (4) | 0.001 (4) | −0.007 (3) | 0.004 (4) |
C20 | 0.027 (5) | 0.036 (5) | 0.022 (4) | 0.014 (4) | 0.001 (3) | 0.004 (4) |
C7 | 0.032 (5) | 0.032 (5) | 0.027 (5) | 0.010 (4) | 0.003 (4) | 0.001 (4) |
C21 | 0.024 (5) | 0.035 (6) | 0.035 (5) | 0.006 (5) | 0.004 (4) | 0.017 (4) |
C6 | 0.038 (5) | 0.024 (4) | 0.028 (4) | 0.013 (4) | −0.013 (4) | −0.007 (4) |
C5 | 0.051 (6) | 0.028 (5) | 0.030 (4) | 0.006 (5) | −0.019 (4) | 0.001 (4) |
C4 | 0.056 (6) | 0.033 (5) | 0.031 (6) | −0.017 (5) | −0.006 (4) | 0.013 (4) |
C22 | 0.025 (5) | 0.029 (5) | 0.029 (4) | −0.010 (4) | 0.006 (4) | 0.006 (4) |
C24 | 0.040 (5) | 0.060 (6) | 0.045 (4) | 0.020 (5) | −0.008 (5) | 0.012 (6) |
C8 | 0.017 (4) | 0.024 (5) | 0.021 (4) | 0.002 (4) | 0.002 (3) | −0.005 (3) |
C3 | 0.029 (5) | 0.044 (6) | 0.031 (4) | −0.009 (4) | −0.011 (4) | 0.001 (4) |
C27 | 0.043 (6) | 0.056 (7) | 0.080 (6) | 0.008 (6) | 0.020 (5) | 0.025 (6) |
C25 | 0.080 (8) | 0.044 (7) | 0.047 (5) | 0.002 (6) | −0.024 (5) | 0.012 (4) |
Fe1—N13 | 1.917 (5) | C2—C8 | 1.455 (9) |
Fe1—N13i | 1.917 (5) | C2—C3 | 1.407 (9) |
Fe1—N23i | 1.977 (6) | C15—H15 | 0.9500 |
Fe1—N23 | 1.977 (6) | C20—H20 | 0.9500 |
Fe1—N10i | 1.974 (6) | C20—C21 | 1.349 (9) |
Fe1—N10 | 1.974 (6) | C7—H7 | 0.9500 |
N13—C14 | 1.338 (8) | C7—C6 | 1.389 (9) |
N13—C18 | 1.348 (8) | C21—H21 | 0.9500 |
N23—N19 | 1.375 (7) | C21—C22 | 1.389 (9) |
N23—C22 | 1.333 (9) | C6—C5 | 1.409 (10) |
N19—C14 | 1.403 (8) | C6—C24 | 1.522 (9) |
N19—C20 | 1.360 (8) | C5—C4 | 1.373 (10) |
N10—N9 | 1.358 (8) | C5—C25 | 1.520 (10) |
N10—C11 | 1.355 (9) | C4—H4 | 0.9500 |
O26—H26 | 0.79 (11) | C4—C3 | 1.406 (9) |
O26—C27 | 1.380 (9) | C22—H22 | 0.9500 |
N12—C11 | 1.345 (8) | C24—H24A | 0.9800 |
N12—C8 | 1.386 (8) | C24—H24B | 0.9800 |
N9—C8 | 1.352 (8) | C24—H24C | 0.9800 |
C14—C15 | 1.387 (8) | C3—H3 | 0.9500 |
C16—H16 | 0.9500 | C27—H27A | 0.9800 |
C16—C17 | 1.386 (9) | C27—H27B | 0.9800 |
C16—C15 | 1.383 (9) | C27—H27C | 0.9800 |
C11—C18 | 1.463 (9) | C25—H25A | 0.9800 |
C18—C17 | 1.384 (8) | C25—H25B | 0.9800 |
C17—H17 | 0.9500 | C25—H25C | 0.9800 |
C2—C7 | 1.388 (9) | ||
N13—Fe1—N13i | 176.2 (4) | C14—C15—H15 | 121.9 |
N13—Fe1—N23 | 80.0 (3) | C16—C15—C14 | 116.2 (6) |
N13—Fe1—N23i | 97.3 (2) | C16—C15—H15 | 121.9 |
N13i—Fe1—N23 | 97.3 (2) | N19—C20—H20 | 126.1 |
N13i—Fe1—N23i | 80.0 (3) | C21—C20—N19 | 107.8 (7) |
N13—Fe1—N10 | 79.6 (3) | C21—C20—H20 | 126.1 |
N13—Fe1—N10i | 103.0 (2) | C2—C7—H7 | 118.2 |
N13i—Fe1—N10i | 79.6 (3) | C6—C7—C2 | 123.7 (7) |
N13i—Fe1—N10 | 103.0 (2) | C6—C7—H7 | 118.2 |
N23i—Fe1—N23 | 87.9 (3) | C20—C21—H21 | 127.0 |
N10i—Fe1—N23 | 93.0 (2) | C20—C21—C22 | 106.1 (7) |
N10—Fe1—N23i | 93.0 (2) | C22—C21—H21 | 127.0 |
N10i—Fe1—N23i | 159.5 (2) | C7—C6—C5 | 118.4 (7) |
N10—Fe1—N23 | 159.5 (2) | C7—C6—C24 | 119.9 (7) |
N10—Fe1—N10i | 93.2 (4) | C5—C6—C24 | 121.6 (7) |
C14—N13—Fe1 | 119.4 (5) | C6—C5—C25 | 120.6 (7) |
C14—N13—C18 | 119.8 (6) | C4—C5—C6 | 119.1 (7) |
C18—N13—Fe1 | 120.6 (5) | C4—C5—C25 | 120.3 (8) |
N19—N23—Fe1 | 112.5 (4) | C5—C4—H4 | 119.1 |
C22—N23—Fe1 | 140.8 (5) | C5—C4—C3 | 121.9 (7) |
C22—N23—N19 | 105.2 (6) | C3—C4—H4 | 119.1 |
N23—N19—C14 | 116.6 (5) | N23—C22—C21 | 110.9 (7) |
C20—N19—N23 | 110.0 (6) | N23—C22—H22 | 124.5 |
C20—N19—C14 | 133.2 (6) | C21—C22—H22 | 124.5 |
N9—N10—Fe1 | 138.8 (5) | C6—C24—H24A | 109.5 |
C11—N10—Fe1 | 114.9 (5) | C6—C24—H24B | 109.5 |
C11—N10—N9 | 106.3 (6) | C6—C24—H24C | 109.5 |
C27—O26—H26 | 117 (7) | H24A—C24—H24B | 109.5 |
C11—N12—C8 | 100.8 (6) | H24A—C24—H24C | 109.5 |
C8—N9—N10 | 105.7 (5) | H24B—C24—H24C | 109.5 |
N13—C14—N19 | 111.0 (6) | N12—C8—C2 | 123.7 (6) |
N13—C14—C15 | 123.3 (6) | N9—C8—N12 | 113.2 (6) |
C15—C14—N19 | 125.7 (6) | N9—C8—C2 | 123.1 (6) |
C17—C16—H16 | 119.3 | C2—C3—C4 | 119.8 (7) |
C15—C16—H16 | 119.3 | C2—C3—H3 | 120.1 |
C15—C16—C17 | 121.4 (7) | C4—C3—H3 | 120.1 |
N10—C11—C18 | 115.4 (6) | O26—C27—H27A | 109.5 |
N12—C11—N10 | 114.0 (6) | O26—C27—H27B | 109.5 |
N12—C11—C18 | 130.6 (7) | O26—C27—H27C | 109.5 |
N13—C18—C11 | 109.5 (6) | H27A—C27—H27B | 109.5 |
N13—C18—C17 | 120.5 (6) | H27A—C27—H27C | 109.5 |
C17—C18—C11 | 130.0 (7) | H27B—C27—H27C | 109.5 |
C16—C17—H17 | 120.6 | C5—C25—H25A | 109.5 |
C18—C17—C16 | 118.7 (7) | C5—C25—H25B | 109.5 |
C18—C17—H17 | 120.6 | C5—C25—H25C | 109.5 |
C7—C2—C8 | 121.7 (6) | H25A—C25—H25B | 109.5 |
C7—C2—C3 | 117.2 (7) | H25A—C25—H25C | 109.5 |
C3—C2—C8 | 121.1 (6) | H25B—C25—H25C | 109.5 |
Fe1—N13—C14—N19 | 1.3 (8) | C11—N12—C8—C2 | 177.6 (6) |
Fe1—N13—C14—C15 | −178.9 (5) | C11—C18—C17—C16 | −178.4 (6) |
Fe1—N13—C18—C11 | −0.5 (8) | C18—N13—C14—N19 | −174.9 (6) |
Fe1—N13—C18—C17 | −179.7 (5) | C18—N13—C14—C15 | 4.9 (10) |
Fe1—N23—N19—C14 | 7.5 (7) | C17—C16—C15—C14 | 0.0 (10) |
Fe1—N23—N19—C20 | −168.3 (4) | C2—C7—C6—C5 | −0.6 (11) |
Fe1—N23—C22—C21 | 163.0 (6) | C2—C7—C6—C24 | −177.8 (7) |
Fe1—N10—N9—C8 | −178.8 (5) | C15—C16—C17—C18 | 1.1 (11) |
Fe1—N10—C11—N12 | 178.9 (5) | C20—N19—C14—N13 | 168.7 (7) |
Fe1—N10—C11—C18 | −1.0 (8) | C20—N19—C14—C15 | −11.1 (12) |
N13—C14—C15—C16 | −3.1 (10) | C20—C21—C22—N23 | 0.6 (9) |
N13—C18—C17—C16 | 0.7 (11) | C7—C2—C8—N12 | 173.2 (6) |
N23—N19—C14—N13 | −5.8 (8) | C7—C2—C8—N9 | −8.5 (11) |
N23—N19—C14—C15 | 174.4 (6) | C7—C2—C3—C4 | 0.6 (11) |
N23—N19—C20—C21 | −0.4 (8) | C7—C6—C5—C4 | 0.5 (11) |
N19—N23—C22—C21 | −0.8 (8) | C7—C6—C5—C25 | −177.4 (7) |
N19—C14—C15—C16 | 176.7 (6) | C6—C5—C4—C3 | 0.0 (12) |
N19—C20—C21—C22 | −0.1 (9) | C5—C4—C3—C2 | −0.6 (11) |
N10—N9—C8—N12 | 0.9 (8) | C22—N23—N19—C14 | 176.5 (6) |
N10—N9—C8—C2 | −177.5 (6) | C22—N23—N19—C20 | 0.8 (8) |
N10—C11—C18—N13 | 1.0 (8) | C24—C6—C5—C4 | 177.7 (7) |
N10—C11—C18—C17 | −179.9 (7) | C24—C6—C5—C25 | −0.3 (12) |
N12—C11—C18—N13 | −178.9 (7) | C8—N12—C11—N10 | 0.4 (7) |
N12—C11—C18—C17 | 0.2 (13) | C8—N12—C11—C18 | −179.8 (7) |
N9—N10—C11—N12 | 0.2 (8) | C8—C2—C7—C6 | 177.9 (6) |
N9—N10—C11—C18 | −179.7 (6) | C8—C2—C3—C4 | −177.3 (6) |
C14—N13—C18—C11 | 175.7 (6) | C3—C2—C7—C6 | 0.0 (11) |
C14—N13—C18—C17 | −3.6 (10) | C3—C2—C8—N12 | −8.9 (11) |
C14—N19—C20—C21 | −175.2 (7) | C3—C2—C8—N9 | 169.3 (7) |
C11—N10—N9—C8 | −0.6 (7) | C25—C5—C4—C3 | 178.0 (7) |
C11—N12—C8—N9 | −0.8 (7) |
Symmetry code: (i) −x+1, −y+1, z. |
Hydrogen bond | Length | Symmetry operation of the contact atom |
C7···H—C21(pz) | 2.827 | 1 - x, 1 - y, 1 + z |
C6···H—C21(pz) | 2.777 | 1 - x, 1 - y, 1 + z |
C5···H—C21(pz) | 2.756 | 1 - x, 1 - y, 1 + z |
C4···H—C21(pz) | 2.802 | 1 - x, 1 - y, 1 + z |
C3···H—C21(pz) | 2.893 | 1 - x, 1 - y, 1 + z |
N9···H—C15(py) | 2.475 | 1/2 + x, 1 - y, 1/2 + z |
N9···H—C20(pz) | 2.522 | 1/2 + x, 1 - y, 1/2 + z |
H7···C20(pz) | 2.641 | 1/2 + x, 1 - y, 1/2 + z |
N12···H—O26 | 2.017 | x, y, z |
H17···O26 | 2.329 | x, y, z |
O26···H—C22(pz) | 2.257 | -1/2 + x, 1 - y, 1/2 + z |
CSD code | Spin state | <Fe—N> | Σ | Θ | CShM(Oh) |
Title compound | Low-spin | 1.957 | 92.8 | 295.0 | 2.18 |
XODCEBa | Low-spin | 1.950 | 87.4 | 276.6 | 1.92 |
QIDJET01b | Low-spin | 1.970 | 90.3 | 341.3 | 2.47 |
QIDJETb | High-spin | 2.184 | 145.5 | 553.3 | 5.88 |
DOMQIHc | Low-spin | 1.962 | 83.8 | 280.7 | 2.02 |
DOMQUTc | Low-spin | 1.991 | 88.5 | 320.0 | 2.48 |
DOMQUT02c | High-spin | 2.183 | 139.6 | 486.9 | 5.31 |
EJQOAd | Low-spin | 1.946 | 87.5 | 308.9 | 2.16 |
BEJQUGd | Low-spin | 1.952 | 97.9 | 309.9 | 2.37 |
BEJQUG01d | High-spin | 2.138 | 118.0 | 375.9 | 3.34 |
BEJRANd | Low-spin | 1.946 | 107.7 | 384.5 | 3.20 |
BEJRERd | High-spin | 2.139 | 147.8 | 507.2 | 4.92 |
Notes: (a) Shiga et al. (2019); (b) Zhang et al. (2007); (c) Seredyuk et al. (2014); (d) Seredyuk et al. (2014). |
Acknowledgements
Author contributions are as follows: Conceptualization, KZ and MS; methodology, KZ; formal analysis, IOF; synthesis, SOM; single-crystal measurements, SS; writing (original draft), MS; writing (review and editing of the manuscript), TYS, MS; visualization and calculations, VMA; funding acquisition, KZ, MS.
Funding information
Funding for this research was provided by a grant from the Ministry of Education and Science of Ukraine for perspective development of a scientific direction `Mathematical sciences and natural sciences' at Taras Shevchenko National University of Kyiv.
References
Bartual-Murgui, C., Piñeiro-López, L., Valverde-Muñoz, F. J., Muñoz, M. C., Seredyuk, M. & Real, J. A. (2017). Inorg. Chem. 56, 13535–13546. Web of Science CAS PubMed Google Scholar
Bonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C, 116, 11251–11255. Web of Science CrossRef CAS Google Scholar
Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038. CSD CrossRef Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47. Google Scholar
Halcrow, M. A. (2014). New J. Chem. 38, 1868–1882. Web of Science CrossRef CAS Google Scholar
Halcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811–9821. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Schäfer, B., Rajnák, C., Šalitroš, I., Fuhr, O., Klar, D., Schmitz-Antoniak, C., Weschke, E., Wende, H. & Ruben, M. (2013). Chem. Commun. 49, 10986–10988. Google Scholar
Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. 144, 14297–14309. Web of Science CSD CrossRef CAS PubMed Google Scholar
Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387–16394. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658–5662. Web of Science CSD CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Valverde-Muñoz, F.-J., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632–18638. Google Scholar
Zhang, W., Zhao, F., Liu, T., Yuan, M., Wang, Z. M. & Gao, S. (2007). Inorg. Chem. 46, 2541–2555. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.