research communications
of a copper–mefenamate complex solvated with diglyme and water
aEPSRC Future Continuous Manufacturing and Advanced Crystallisation Research Hub, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, United Kingdom, bWestCHEM, Department of Pure and Applied Chemistry and Centre for Process Analytics and Control Technology (CPACT), University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, United Kingdom, cDepartment of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, United Kingdom, and dStrathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow, United Kingdom
*Correspondence e-mail: magdalene.chong@strath.ac.uk, martin.ward@strath.ac.uk
In the copper–mefenamate complex tetrakis[μ-2-(2,3-dimethylanilino)benzoato-κ2O:O′]bis[aquacopper(II)]–1-methoxy-2-(2-methoxyethoxy)ethane (1/2), [Cu2(C15H14NO2)4(H2O)2]·2C6H14O3, the comprises a CuII cation coordinated to two mefenamate ligands solvated with a water molecule and a diglyme molecule. The complex adopts a paddlewheel motif and is compared to structural analogues crystallized with dimethylformamide and dimethyl sulfoxide.
Keywords: crystal structure; copper(II); mefenamic acid; diglyme; paddlewheel.
CCDC reference: 2217265
1. Chemical context
Mefenamic acid is a non-steroidal anti-inflammatory drug (NSAID) that is synthesized through reaction of 2-chlorobenzoic acid and 2,3-dimethylaniline in the presence of a copper catalyst (Trinus et al., 1977). Subsequently, pharmacopoeia specifications for mefenamic acid specify a maximum limit of 10 ppm for the quantity of copper present in the final drug product (British Pharmacopoeia, 2017). In exploring strategies to ensure removal of copper from the crude reaction mixture, a new copper–mefenamate complex was isolated. The of a copper–mefenamate complex solvated with water and diglyme is reported.
2. Structural commentary
The complex [Cu2(mefenamate)4(H2O)2].2(diglyme) crystallizes in the P21/n, with a {Cu2(RCO2)4(H2O)2} paddlewheel motif that is typical for coordination of four carboxylate groups to two CuII cations (Chong et al., 2022). Within the (Fig. 1a), the planes of the 2,3-dimethylphenyls from the two mefenamate molecules are 42.61 (1)° apart. A water molecule occupies each of the apical positions of the paddlewheel motif, which is hydrogen bonded to a diglyme molecule (Fig. 1a). The diglyme molecule is oriented such that it fits between the 2,3-dimethyphenyl units of the two mefenamate molecules in the and is hydrogen bonded to the coordinated water via the diglyme outer oxygen positions (Fig. 1a). A distorted square-pyramidal geometry is adopted by each CuII cation in the paddlewheel motif (Fig. 1b), with equatorial Cu—O distances of 1.968 (1), 1.961 (1), 1.954 (1), and 1.969 (1) Å between CuII and the carboxylate moieties. The axial Cu—O distance, between the copper(II) cation and water molecule, is 2.108 (1) Å. The distance between the two CuII cations is 2.6126 (4) Å. There is an intramolecular bond between the amine and carboxylate groups of the mefenamate, with O⋯H distances of 1.86 (3) and 1.87 (2) Å for mefenamate units A and B, respectively (Table 1).
|
3. Supramolecular features
There are no obvious interactions, such as π–π stacking, between neighbouring paddlewheel units within the packed structure. The paddlewheel units interact through edge-to-face interactions of the phenyl groups of the mefanamate ligands (Fig. 1c). In the global packing of the structure, the paddlewheel units are arranged as 2D sheets along the crystallographic ab plane, with symmetry-equivalent sheets repeating throughout the crystallographic c axis at a distance corresponding to c. A second 2D arrangement is intercalated halfway between the symmetry-equivalent sheets.
4. Database survey
There are three other similar copper–mefenamate paddlewheel structures in the CSD (version 5.43, November 2021; Groom et al., 2016), with different solvents occupying the apical positions. Two entries, MPANCU10 (Yatsimirskii et al., 1979) and MPANCU20 (Mys'kiv et al., 1982), are with N,N-dimethylformamide (DMF) and one entry, SUTPIG (Facchin et al., 1998), has dimethyl sulfoxide (DMSO) occupying the apical position. The DMF analogue also crystallizes in a monoclinic (Table 2). The cell volume of [Cu2(mefenamate)4(H2O)2]·2(diglyme) [3538.64 (12) Å3] is larger than the DMF analogue (3026.535 Å3), to accommodate the larger diglyme molecule. The axial Cu—O distance in [Cu2(mefenamate)4(H2O)2]·2(diglyme) is shorter than those in structures MPANCU20 and SUTPIG (Table 2). This may be attributed to the higher polarity of water (1.000) compared to DMF and DMSO (0.386 and 0.444, respectively; Reichardt & Welton, 2011). In the DMSO analogue, the 2,3-dimethylphenyls from the two mefenamate molecules within the are almost coplanar, the planes are 9.06° apart, and the methyl groups of the DMSO point away from the 2,3-dimethylphenyls. For the DMF analogue, the two 2,3-dimethylphenyls are oriented such that they can accommodate one of the methyl groups from the DMF, therefore the planes are 70.22° apart.
|
Three polymorphic forms are known for mefenamic acid, with significant differences between the forms in the C9—N10—C11—C16 torsion angle τ3 (Fig. 1a; SeethaLekshmi & Guru Row, 2012). The larger torsion angle τ3 observed with the copper complex (Table 2) is more consistent with those of the form I polymorph of −119.99 ° (XYANAC; McConnell & Company, 1976) and −120.1 (1) ° (XYANAC06; Mague & Ouzidan, 2017). The increased torsional angle can be explained by the location of the dimethylphenyl group with respect to the diglyme group. The phenyl group needs to rotate to ensure a more planar packing arrangement with the diglyme molecule. In comparison to other polymorphs, the metastable form II suffers from significant disorder around the dimethylphenyl ring system, however the torsion angle τ3 is 68 (2)° for XYANAC04 (SeethaLekshmi & Guru Row, 2012), 74.5 (3)° for XYANAC05 (Yang et al., 2012) and −90 (2)° for XYANAC07 (Abbas et al., 2017). The latter of these data collections is at high pressure and the disorder is not modelled, possibly because of the lack of data present due to the diamond anvil cell. The thermal parameters indicate that some disorder may still be present even at these higher pressures. For metastable form III, the reported torsion angle τ3 is −80.8 (2)° (XYANAC03; SeethaLekshmi & Guru Row, 2012).
5. Synthesis and crystallization
Chemicals were purchased from commercial suppliers and used as received without further purification. Deionized water was obtained from an in-house Milli-Q (Millipore) purification system. A solution was prepared comprising mefenamic acid (25.0 g), diglyme (281.6 g), water (74.7 g) and copper (II) acetate (7.3 g). An
(4 mL) of this solution was removed and mefenamic acid (0.4 g) added to generate a slurry. The mixture was filtered and the filtrate stored in the dark at room temperature for two weeks, after which large green block-shaped crystals of the complex had formed.6. Refinement
Crystal data, data collection and structure . The diglyme moiety was found to be disordered over two positions. Initial isotropic of the diglyme allowed the residual electron density to be observed. Using the functionality in OLEX2, the atoms were moved to ensure that they overlapped the electron density in a zigzag bonding pattern usually observed for alkyl chains. Distance restraints were applied to ensure the molecular integrity. Using the SPLIT function, the alkyl chain was duplicated and rotated to align with the remaining electron density. This model was refined isotropically before applying EADP restraints to the atoms and refining anisotropically. This provided a stable refined structure. The water hydrogen atoms were added from the difference map and refined with ideal DFIX restraints in place. C-bound hydrogen atoms were placed geometrically and a riding model applied [C—H = 0.95–0.99 Å; Uiso(H) = 1.2–1.5Ueq(C)]. All data underpinning this publication are openly available from the University of Strathclyde KnowledgeBase at https://doi.org/10.15129/39f97ad1-8173-4999-b0b6-41c6ae923fe6.
details are summarized in Table 3Supporting information
CCDC reference: 2217265
Link https://doi.org/10.15129/39f97ad1-8173-4999-b0b6-41c6ae923fe6
repository link to the raw and processed diffraction data used in publication
https://doi.org/10.1107/S2056989022010647/ex2060sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022010647/ex2060Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Cu2(C15H14NO2)4(H2O)2]·2C6H14O3 | F(000) = 1468 |
Mr = 1392.54 | Dx = 1.307 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 15.5420 (3) Å | Cell parameters from 9398 reflections |
b = 14.0010 (3) Å | θ = 4.9–68.2° |
c = 16.3217 (3) Å | µ = 1.30 mm−1 |
β = 94.791 (1)° | T = 105 K |
V = 3539.25 (12) Å3 | Block, clear green |
Z = 2 | 0.2 × 0.15 × 0.1 mm |
Bruker Photon100 CMOS diffractometer | 5989 reflections with I > 2σ(I) |
Radiation source: Incoatec microfocus Cu source | Rint = 0.039 |
φ and ω scans | θmax = 68.3°, θmin = 4.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −18→18 |
Tmin = 0.781, Tmax = 0.881 | k = −16→16 |
209288 measured reflections | l = −19→19 |
6424 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0435P)2 + 2.0003P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
6424 reflections | Δρmax = 0.28 e Å−3 |
477 parameters | Δρmin = −0.40 e Å−3 |
410 restraints |
Experimental. The X-ray intensities were collected on a Bruker D8 Venture diffractometer using a Photon 100 Detector. The data were reduced using APEX3 and absorption correction applied using SADABS (Bruker, 2016). The crystal structure was solved and refined using SHELXT and SHELXL via the Olex2 refinement package (Dolomanov et al., 2009). Non-hydrogen atom positions were refined anisotropically. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. RIGU restarint applied. Diglyme disorder modelled using DFIX and SADI restraints. The ADPs for both diglyme parts were constrained using EADP constraint. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.54253 (2) | 0.42405 (2) | 0.48032 (2) | 0.02442 (8) | |
O1B | 0.51049 (8) | 0.45091 (8) | 0.36430 (7) | 0.0329 (3) | |
O2B | 0.43845 (8) | 0.58088 (8) | 0.39902 (7) | 0.0326 (3) | |
O1A | 0.43605 (8) | 0.35049 (8) | 0.48736 (7) | 0.0351 (3) | |
O2A | 0.36511 (7) | 0.48032 (8) | 0.52427 (7) | 0.0331 (3) | |
O10S | 0.62229 (8) | 0.30515 (9) | 0.46326 (8) | 0.0376 (3) | |
N10B | 0.37240 (10) | 0.69540 (10) | 0.28457 (9) | 0.0362 (3) | |
O2S1 | 0.7835 (9) | 0.2813 (9) | 0.5321 (12) | 0.0540 (12) | 0.666 (3) |
C3B | 0.46922 (10) | 0.52671 (11) | 0.34617 (9) | 0.0265 (3) | |
C9B | 0.41162 (10) | 0.63824 (11) | 0.22997 (9) | 0.0285 (3) | |
C3A | 0.37072 (10) | 0.39031 (11) | 0.51303 (9) | 0.0284 (3) | |
C4A | 0.29745 (11) | 0.32888 (12) | 0.53288 (10) | 0.0308 (3) | |
C4B | 0.45728 (10) | 0.55460 (11) | 0.25802 (9) | 0.0269 (3) | |
O5S1 | 0.73581 (16) | 0.15001 (18) | 0.40989 (17) | 0.0438 (6) | 0.666 (3) |
C11B | 0.33426 (11) | 0.78619 (12) | 0.27016 (10) | 0.0312 (3) | |
C8B | 0.40932 (11) | 0.65984 (13) | 0.14555 (10) | 0.0345 (4) | |
H8B | 0.3794 | 0.7152 | 0.1250 | 0.041* | |
C5B | 0.49629 (11) | 0.49735 (13) | 0.20199 (10) | 0.0348 (4) | |
H5B | 0.5262 | 0.4414 | 0.2212 | 0.042* | |
C5A | 0.30263 (12) | 0.23152 (12) | 0.51507 (10) | 0.0349 (4) | |
H5A | 0.3501 | 0.2088 | 0.4875 | 0.042* | |
N10A | 0.21962 (12) | 0.45875 (13) | 0.59054 (14) | 0.0588 (5) | |
C16A | 0.17474 (12) | 0.58519 (13) | 0.67658 (11) | 0.0367 (4) | |
O8S1 | 0.5611 (3) | 0.1715 (4) | 0.3438 (5) | 0.0604 (14) | 0.666 (3) |
C16B | 0.36286 (11) | 0.86224 (12) | 0.32109 (10) | 0.0322 (3) | |
C15A | 0.10932 (12) | 0.64349 (13) | 0.70386 (11) | 0.0388 (4) | |
C6B | 0.49276 (13) | 0.51950 (15) | 0.11960 (11) | 0.0447 (4) | |
H6B | 0.5192 | 0.4792 | 0.0821 | 0.054* | |
C7B | 0.44963 (13) | 0.60229 (15) | 0.09242 (11) | 0.0429 (4) | |
H7B | 0.4481 | 0.6193 | 0.0360 | 0.052* | |
C17A | 0.26827 (12) | 0.60465 (15) | 0.70369 (12) | 0.0441 (4) | |
H17A | 0.2948 | 0.6400 | 0.6605 | 0.066* | |
H17B | 0.2987 | 0.5440 | 0.7139 | 0.066* | |
H17C | 0.2720 | 0.6426 | 0.7543 | 0.066* | |
C6A | 0.24089 (12) | 0.16743 (13) | 0.53636 (11) | 0.0400 (4) | |
H6A | 0.2446 | 0.1018 | 0.5222 | 0.048* | |
C9A | 0.22586 (11) | 0.36315 (13) | 0.57261 (12) | 0.0395 (4) | |
C17B | 0.43678 (13) | 0.85116 (14) | 0.38602 (11) | 0.0418 (4) | |
H17D | 0.4145 | 0.8498 | 0.4404 | 0.063* | |
H17E | 0.4766 | 0.9051 | 0.3830 | 0.063* | |
H17F | 0.4674 | 0.7914 | 0.3770 | 0.063* | |
C11A | 0.15206 (12) | 0.50948 (14) | 0.62317 (13) | 0.0453 (4) | |
C12B | 0.26720 (12) | 0.79882 (15) | 0.20959 (12) | 0.0439 (4) | |
H12B | 0.2476 | 0.7465 | 0.1760 | 0.053* | |
C14A | 0.02351 (12) | 0.62150 (15) | 0.68039 (12) | 0.0447 (4) | |
H14A | −0.0210 | 0.6595 | 0.7002 | 0.054* | |
C18A | 0.13044 (14) | 0.72995 (17) | 0.75676 (13) | 0.0536 (5) | |
H18A | 0.1576 | 0.7096 | 0.8103 | 0.080* | |
H18B | 0.0773 | 0.7651 | 0.7647 | 0.080* | |
H18C | 0.1703 | 0.7714 | 0.7297 | 0.080* | |
C15B | 0.32210 (14) | 0.95162 (14) | 0.30921 (12) | 0.0453 (4) | |
C14B | 0.25653 (16) | 0.96269 (16) | 0.24775 (13) | 0.0561 (6) | |
H14B | 0.2299 | 1.0234 | 0.2395 | 0.067* | |
C7A | 0.17319 (12) | 0.20059 (14) | 0.57892 (11) | 0.0422 (4) | |
H7A | 0.1319 | 0.1567 | 0.5964 | 0.051* | |
C8A | 0.16519 (13) | 0.29586 (15) | 0.59604 (13) | 0.0473 (5) | |
H8A | 0.1177 | 0.3170 | 0.6243 | 0.057* | |
C13B | 0.22881 (14) | 0.88734 (18) | 0.19800 (13) | 0.0561 (6) | |
H13B | 0.1835 | 0.8962 | 0.1559 | 0.067* | |
C6S1 | 0.6846 (5) | 0.0737 (6) | 0.3762 (5) | 0.0517 (16) | 0.666 (3) |
H6SA | 0.6530 | 0.0435 | 0.4196 | 0.062* | 0.666 (3) |
H6SB | 0.7220 | 0.0247 | 0.3535 | 0.062* | 0.666 (3) |
C13A | 0.00184 (13) | 0.54565 (16) | 0.62903 (15) | 0.0534 (5) | |
H13A | −0.0572 | 0.5313 | 0.6143 | 0.064* | |
C12A | 0.06577 (13) | 0.49027 (16) | 0.59881 (16) | 0.0569 (6) | |
H12A | 0.0509 | 0.4395 | 0.5617 | 0.068* | |
C3S1 | 0.8407 (4) | 0.2105 (3) | 0.5096 (3) | 0.0564 (12) | 0.666 (3) |
H3SA | 0.8808 | 0.1936 | 0.5577 | 0.068* | 0.666 (3) |
H3SB | 0.8753 | 0.2356 | 0.4661 | 0.068* | 0.666 (3) |
C7S1 | 0.6224 (2) | 0.1110 (2) | 0.3099 (2) | 0.0487 (8) | 0.666 (3) |
H7SA | 0.6538 | 0.1472 | 0.2697 | 0.058* | 0.666 (3) |
H7SB | 0.5922 | 0.0570 | 0.2808 | 0.058* | 0.666 (3) |
C18B | 0.3508 (2) | 1.03494 (17) | 0.36428 (18) | 0.0787 (8) | |
H18D | 0.3400 | 1.0200 | 0.4212 | 0.118* | |
H18E | 0.3182 | 1.0922 | 0.3463 | 0.118* | |
H18F | 0.4126 | 1.0464 | 0.3609 | 0.118* | |
C1S1 | 0.8212 (6) | 0.3611 (4) | 0.5730 (4) | 0.0698 (15) | 0.666 (3) |
H1SA | 0.8572 | 0.3952 | 0.5361 | 0.105* | 0.666 (3) |
H1SB | 0.8571 | 0.3400 | 0.6219 | 0.105* | 0.666 (3) |
H1SC | 0.7758 | 0.4037 | 0.5896 | 0.105* | 0.666 (3) |
C4S1 | 0.7934 (3) | 0.1233 (3) | 0.4788 (3) | 0.0558 (10) | 0.666 (3) |
H4SA | 0.8347 | 0.0746 | 0.4623 | 0.067* | 0.666 (3) |
H4SB | 0.7605 | 0.0959 | 0.5226 | 0.067* | 0.666 (3) |
H10C | 0.3857 (14) | 0.6801 (16) | 0.3367 (15) | 0.049 (6)* | |
H10D | 0.2643 (16) | 0.4898 (18) | 0.5786 (15) | 0.057 (7)* | |
H10A | 0.6808 (5) | 0.2953 (16) | 0.4844 (13) | 0.064 (7)* | |
H10B | 0.6103 (14) | 0.2545 (13) | 0.4247 (13) | 0.085 (9)* | |
C9S2 | 0.4948 (9) | 0.2144 (16) | 0.3063 (12) | 0.0550 (15) | 0.31 (3) |
H9SD | 0.4759 | 0.1747 | 0.2586 | 0.082* | 0.31 (3) |
H9SE | 0.4922 | 0.2819 | 0.2903 | 0.082* | 0.31 (3) |
H9SF | 0.4568 | 0.2033 | 0.3503 | 0.082* | 0.31 (3) |
O2S2 | 0.795 (2) | 0.274 (2) | 0.536 (2) | 0.0540 (12) | 0.334 (3) |
C3S2 | 0.8316 (8) | 0.1859 (8) | 0.5313 (7) | 0.0564 (12) | 0.334 (3) |
H3SC | 0.8115 | 0.1445 | 0.5750 | 0.068* | 0.334 (3) |
H3SD | 0.8951 | 0.1922 | 0.5410 | 0.068* | 0.334 (3) |
C1S2 | 0.8244 (13) | 0.3376 (10) | 0.5961 (9) | 0.0698 (15) | 0.334 (3) |
H1SD | 0.7960 | 0.3995 | 0.5862 | 0.105* | 0.334 (3) |
H1SE | 0.8870 | 0.3454 | 0.5949 | 0.105* | 0.334 (3) |
H1SF | 0.8116 | 0.3132 | 0.6500 | 0.105* | 0.334 (3) |
C4S2 | 0.8103 (7) | 0.1404 (7) | 0.4509 (6) | 0.0558 (10) | 0.334 (3) |
H4SC | 0.8281 | 0.1827 | 0.4068 | 0.067* | 0.334 (3) |
H4SD | 0.8426 | 0.0796 | 0.4483 | 0.067* | 0.334 (3) |
O5S2 | 0.7218 (4) | 0.1224 (4) | 0.4386 (3) | 0.0438 (6) | 0.334 (3) |
C6S2 | 0.6944 (11) | 0.0843 (14) | 0.3610 (11) | 0.0517 (16) | 0.334 (3) |
H6SC | 0.7120 | 0.0165 | 0.3589 | 0.062* | 0.334 (3) |
H6SD | 0.7230 | 0.1193 | 0.3180 | 0.062* | 0.334 (3) |
C7S2 | 0.6002 (5) | 0.0912 (5) | 0.3437 (5) | 0.0487 (8) | 0.334 (3) |
H7SC | 0.5813 | 0.0560 | 0.2927 | 0.058* | 0.334 (3) |
H7SD | 0.5705 | 0.0637 | 0.3896 | 0.058* | 0.334 (3) |
O8S2 | 0.5806 (7) | 0.1903 (9) | 0.3344 (11) | 0.0604 (14) | 0.334 (3) |
C9S1 | 0.5085 (5) | 0.2183 (6) | 0.2840 (7) | 0.0550 (15) | 0.69 (3) |
H9SA | 0.5442 | 0.2550 | 0.2486 | 0.082* | 0.69 (3) |
H9SB | 0.4697 | 0.2617 | 0.3103 | 0.082* | 0.69 (3) |
H9SC | 0.4743 | 0.1713 | 0.2508 | 0.082* | 0.69 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03002 (14) | 0.02114 (13) | 0.02236 (13) | 0.00405 (8) | 0.00367 (9) | −0.00087 (8) |
O1B | 0.0443 (6) | 0.0296 (6) | 0.0245 (5) | 0.0110 (5) | 0.0006 (5) | −0.0010 (4) |
O2B | 0.0447 (7) | 0.0288 (6) | 0.0245 (5) | 0.0108 (5) | 0.0040 (5) | 0.0000 (4) |
O1A | 0.0371 (6) | 0.0271 (6) | 0.0420 (6) | 0.0001 (5) | 0.0089 (5) | −0.0062 (5) |
O2A | 0.0346 (6) | 0.0259 (6) | 0.0394 (6) | −0.0001 (5) | 0.0078 (5) | −0.0027 (5) |
O10S | 0.0403 (7) | 0.0311 (6) | 0.0403 (7) | 0.0141 (5) | −0.0020 (5) | −0.0086 (5) |
N10B | 0.0532 (9) | 0.0289 (7) | 0.0262 (7) | 0.0110 (6) | 0.0012 (6) | 0.0013 (6) |
O2S1 | 0.045 (4) | 0.046 (2) | 0.066 (2) | 0.0094 (16) | −0.020 (2) | −0.0047 (19) |
C3B | 0.0281 (7) | 0.0246 (7) | 0.0268 (7) | −0.0014 (6) | 0.0016 (6) | −0.0018 (6) |
C9B | 0.0307 (8) | 0.0270 (8) | 0.0273 (7) | −0.0023 (6) | −0.0005 (6) | −0.0005 (6) |
C3A | 0.0351 (8) | 0.0281 (8) | 0.0213 (7) | 0.0004 (6) | −0.0015 (6) | −0.0016 (6) |
C4A | 0.0350 (8) | 0.0298 (8) | 0.0272 (8) | −0.0032 (6) | 0.0004 (6) | −0.0011 (6) |
C4B | 0.0295 (7) | 0.0265 (7) | 0.0243 (7) | −0.0008 (6) | 0.0000 (6) | −0.0008 (6) |
O5S1 | 0.0477 (11) | 0.0355 (14) | 0.0483 (16) | 0.0125 (10) | 0.0050 (10) | −0.0008 (10) |
C11B | 0.0338 (8) | 0.0309 (8) | 0.0296 (8) | 0.0056 (6) | 0.0063 (6) | 0.0038 (6) |
C8B | 0.0415 (9) | 0.0342 (9) | 0.0269 (8) | 0.0021 (7) | −0.0024 (7) | 0.0022 (7) |
C5B | 0.0409 (9) | 0.0349 (9) | 0.0281 (8) | 0.0064 (7) | 0.0003 (7) | −0.0022 (7) |
C5A | 0.0436 (9) | 0.0321 (8) | 0.0284 (8) | −0.0026 (7) | 0.0001 (7) | −0.0021 (7) |
N10A | 0.0418 (9) | 0.0365 (9) | 0.1029 (16) | −0.0080 (7) | 0.0353 (10) | −0.0175 (9) |
C16A | 0.0372 (9) | 0.0356 (9) | 0.0390 (9) | 0.0052 (7) | 0.0128 (7) | 0.0097 (7) |
O8S1 | 0.057 (2) | 0.045 (2) | 0.075 (2) | 0.0121 (18) | −0.018 (2) | −0.0332 (19) |
C16B | 0.0368 (8) | 0.0312 (8) | 0.0297 (8) | 0.0053 (7) | 0.0099 (7) | 0.0026 (6) |
C15A | 0.0424 (9) | 0.0416 (10) | 0.0337 (9) | 0.0107 (8) | 0.0103 (7) | 0.0103 (7) |
C6B | 0.0567 (11) | 0.0521 (11) | 0.0254 (8) | 0.0160 (9) | 0.0036 (8) | −0.0046 (8) |
C7B | 0.0528 (11) | 0.0512 (11) | 0.0243 (8) | 0.0080 (9) | 0.0001 (7) | 0.0024 (7) |
C17A | 0.0387 (9) | 0.0484 (11) | 0.0462 (11) | 0.0061 (8) | 0.0093 (8) | −0.0007 (9) |
C6A | 0.0521 (10) | 0.0306 (9) | 0.0364 (9) | −0.0079 (8) | −0.0010 (8) | −0.0018 (7) |
C9A | 0.0370 (9) | 0.0341 (9) | 0.0478 (10) | −0.0039 (7) | 0.0062 (8) | −0.0050 (8) |
C17B | 0.0481 (10) | 0.0396 (10) | 0.0371 (9) | 0.0009 (8) | −0.0005 (8) | −0.0044 (8) |
C11A | 0.0384 (9) | 0.0359 (9) | 0.0645 (12) | −0.0005 (8) | 0.0205 (9) | −0.0007 (9) |
C12B | 0.0419 (10) | 0.0491 (11) | 0.0396 (10) | 0.0082 (8) | −0.0038 (8) | −0.0009 (8) |
C14A | 0.0396 (10) | 0.0490 (11) | 0.0474 (10) | 0.0120 (8) | 0.0141 (8) | 0.0103 (9) |
C18A | 0.0523 (12) | 0.0632 (13) | 0.0456 (11) | 0.0199 (10) | 0.0059 (9) | −0.0103 (10) |
C15B | 0.0596 (12) | 0.0338 (9) | 0.0444 (10) | 0.0148 (8) | 0.0160 (9) | 0.0014 (8) |
C14B | 0.0713 (14) | 0.0515 (12) | 0.0467 (11) | 0.0362 (11) | 0.0115 (10) | 0.0074 (9) |
C7A | 0.0441 (10) | 0.0414 (10) | 0.0403 (10) | −0.0143 (8) | −0.0004 (8) | 0.0007 (8) |
C8A | 0.0400 (10) | 0.0432 (10) | 0.0604 (12) | −0.0096 (8) | 0.0142 (9) | −0.0069 (9) |
C13B | 0.0518 (12) | 0.0723 (14) | 0.0433 (11) | 0.0313 (11) | −0.0020 (9) | 0.0054 (10) |
C6S1 | 0.071 (2) | 0.033 (2) | 0.051 (3) | 0.0145 (16) | 0.006 (2) | −0.009 (2) |
C13A | 0.0347 (10) | 0.0564 (13) | 0.0707 (14) | −0.0004 (9) | 0.0128 (9) | 0.0044 (11) |
C12A | 0.0415 (10) | 0.0480 (12) | 0.0837 (16) | −0.0075 (9) | 0.0195 (10) | −0.0120 (11) |
C3S1 | 0.0391 (17) | 0.053 (3) | 0.075 (3) | 0.0136 (18) | −0.0069 (19) | 0.0068 (19) |
C7S1 | 0.067 (2) | 0.0370 (16) | 0.042 (2) | 0.0056 (13) | 0.0058 (14) | −0.0119 (14) |
C18B | 0.123 (2) | 0.0385 (12) | 0.0743 (17) | 0.0224 (14) | 0.0046 (16) | −0.0143 (11) |
C1S1 | 0.0702 (18) | 0.057 (3) | 0.076 (4) | 0.001 (3) | −0.032 (3) | −0.005 (2) |
C4S1 | 0.058 (2) | 0.041 (2) | 0.067 (3) | 0.0176 (15) | −0.0042 (19) | 0.0105 (18) |
C9S2 | 0.057 (2) | 0.0484 (16) | 0.059 (4) | 0.0007 (19) | −0.001 (2) | −0.009 (3) |
O2S2 | 0.045 (4) | 0.046 (2) | 0.066 (2) | 0.0094 (16) | −0.020 (2) | −0.0047 (19) |
C3S2 | 0.0391 (17) | 0.053 (3) | 0.075 (3) | 0.0136 (18) | −0.0069 (19) | 0.0068 (19) |
C1S2 | 0.0702 (18) | 0.057 (3) | 0.076 (4) | 0.001 (3) | −0.032 (3) | −0.005 (2) |
C4S2 | 0.058 (2) | 0.041 (2) | 0.067 (3) | 0.0176 (15) | −0.0042 (19) | 0.0105 (18) |
O5S2 | 0.0477 (11) | 0.0355 (14) | 0.0483 (16) | 0.0125 (10) | 0.0050 (10) | −0.0008 (10) |
C6S2 | 0.071 (2) | 0.033 (2) | 0.051 (3) | 0.0145 (16) | 0.006 (2) | −0.009 (2) |
C7S2 | 0.067 (2) | 0.0370 (16) | 0.042 (2) | 0.0056 (13) | 0.0058 (14) | −0.0119 (14) |
O8S2 | 0.057 (2) | 0.045 (2) | 0.075 (2) | 0.0121 (18) | −0.018 (2) | −0.0332 (19) |
C9S1 | 0.057 (2) | 0.0484 (16) | 0.059 (4) | 0.0007 (19) | −0.001 (2) | −0.009 (3) |
Cu1—Cu1i | 2.6126 (4) | C11A—C12A | 1.393 (3) |
Cu1—O1B | 1.9539 (11) | C12B—H12B | 0.9500 |
Cu1—O2Bi | 1.9682 (11) | C12B—C13B | 1.382 (3) |
Cu1—O1A | 1.9608 (12) | C14A—H14A | 0.9500 |
Cu1—O2Ai | 1.9689 (11) | C14A—C13A | 1.377 (3) |
Cu1—O10S | 2.1078 (11) | C18A—H18A | 0.9800 |
O1B—C3B | 1.2624 (19) | C18A—H18B | 0.9800 |
O2B—Cu1i | 1.9682 (11) | C18A—H18C | 0.9800 |
O2B—C3B | 1.2715 (19) | C15B—C14B | 1.378 (3) |
O1A—C3A | 1.260 (2) | C15B—C18B | 1.517 (3) |
O2A—Cu1i | 1.9690 (11) | C14B—H14B | 0.9500 |
O2A—C3A | 1.278 (2) | C14B—C13B | 1.378 (3) |
O10S—H10A | 0.956 (3) | C7A—H7A | 0.9500 |
O10S—H10B | 0.956 (3) | C7A—C8A | 1.371 (3) |
N10B—C9B | 1.377 (2) | C8A—H8A | 0.9500 |
N10B—C11B | 1.414 (2) | C13B—H13B | 0.9500 |
N10B—H10C | 0.88 (2) | C6S1—H6SA | 0.9900 |
O2S1—C3S1 | 1.401 (10) | C6S1—H6SB | 0.9900 |
O2S1—C1S1 | 1.404 (10) | C6S1—C7S1 | 1.484 (8) |
C3B—C4B | 1.487 (2) | C13A—H13A | 0.9500 |
C9B—C4B | 1.425 (2) | C13A—C12A | 1.383 (3) |
C9B—C8B | 1.408 (2) | C12A—H12A | 0.9500 |
C3A—C4A | 1.484 (2) | C3S1—H3SA | 0.9900 |
C4A—C5A | 1.397 (2) | C3S1—H3SB | 0.9900 |
C4A—C9A | 1.418 (2) | C3S1—C4S1 | 1.490 (7) |
C4B—C5B | 1.392 (2) | C7S1—H7SA | 0.9900 |
O5S1—C6S1 | 1.416 (8) | C7S1—H7SB | 0.9900 |
O5S1—C4S1 | 1.428 (5) | C18B—H18D | 0.9800 |
C11B—C16B | 1.400 (2) | C18B—H18E | 0.9800 |
C11B—C12B | 1.387 (2) | C18B—H18F | 0.9800 |
C8B—H8B | 0.9500 | C1S1—H1SA | 0.9800 |
C8B—C7B | 1.373 (3) | C1S1—H1SB | 0.9800 |
C5B—H5B | 0.9500 | C1S1—H1SC | 0.9800 |
C5B—C6B | 1.377 (2) | C4S1—H4SA | 0.9900 |
C5A—H5A | 0.9500 | C4S1—H4SB | 0.9900 |
C5A—C6A | 1.379 (3) | C9S2—H9SD | 0.9800 |
N10A—C9A | 1.375 (2) | C9S2—H9SE | 0.9800 |
N10A—C11A | 1.409 (2) | C9S2—H9SF | 0.9800 |
N10A—H10D | 0.86 (2) | C9S2—O8S2 | 1.414 (14) |
C16A—C15A | 1.405 (2) | O2S2—C3S2 | 1.369 (19) |
C16A—C17A | 1.509 (3) | O2S2—C1S2 | 1.37 (2) |
C16A—C11A | 1.399 (3) | C3S2—H3SC | 0.9900 |
O8S1—C7S1 | 1.421 (7) | C3S2—H3SD | 0.9900 |
O8S1—C9S1 | 1.383 (8) | C3S2—C4S2 | 1.471 (15) |
C16B—C17B | 1.505 (2) | C1S2—H1SD | 0.9800 |
C16B—C15B | 1.409 (2) | C1S2—H1SE | 0.9800 |
C15A—C14A | 1.391 (3) | C1S2—H1SF | 0.9800 |
C15A—C18A | 1.507 (3) | C4S2—H4SC | 0.9900 |
C6B—H6B | 0.9500 | C4S2—H4SD | 0.9900 |
C6B—C7B | 1.393 (3) | C4S2—O5S2 | 1.397 (12) |
C7B—H7B | 0.9500 | O5S2—C6S2 | 1.407 (17) |
C17A—H17A | 0.9800 | C6S2—H6SC | 0.9900 |
C17A—H17B | 0.9800 | C6S2—H6SD | 0.9900 |
C17A—H17C | 0.9800 | C6S2—C7S2 | 1.471 (17) |
C6A—H6A | 0.9500 | C7S2—H7SC | 0.9900 |
C6A—C7A | 1.388 (3) | C7S2—H7SD | 0.9900 |
C9A—C8A | 1.408 (3) | C7S2—O8S2 | 1.426 (14) |
C17B—H17D | 0.9800 | C9S1—H9SA | 0.9800 |
C17B—H17E | 0.9800 | C9S1—H9SB | 0.9800 |
C17B—H17F | 0.9800 | C9S1—H9SC | 0.9800 |
O1B—Cu1—Cu1i | 89.34 (3) | H18A—C18A—H18C | 109.5 |
O1B—Cu1—O2Bi | 168.92 (5) | H18B—C18A—H18C | 109.5 |
O1B—Cu1—O1A | 90.57 (5) | C16B—C15B—C18B | 119.69 (19) |
O1B—Cu1—O2Ai | 87.70 (5) | C14B—C15B—C16B | 119.80 (19) |
O1B—Cu1—O10S | 97.42 (5) | C14B—C15B—C18B | 120.51 (19) |
O2Bi—Cu1—Cu1i | 79.58 (3) | C15B—C14B—H14B | 119.4 |
O2Bi—Cu1—O2Ai | 90.74 (5) | C15B—C14B—C13B | 121.24 (18) |
O2Bi—Cu1—O10S | 93.65 (5) | C13B—C14B—H14B | 119.4 |
O1A—Cu1—Cu1i | 88.07 (3) | C6A—C7A—H7A | 119.6 |
O1A—Cu1—O2Bi | 88.85 (5) | C8A—C7A—C6A | 120.85 (17) |
O1A—Cu1—O2Ai | 168.82 (5) | C8A—C7A—H7A | 119.6 |
O1A—Cu1—O10S | 95.82 (5) | C9A—C8A—H8A | 119.3 |
O2Ai—Cu1—Cu1i | 80.87 (3) | C7A—C8A—C9A | 121.44 (18) |
O2Ai—Cu1—O10S | 95.36 (5) | C7A—C8A—H8A | 119.3 |
O10S—Cu1—Cu1i | 172.15 (4) | C12B—C13B—H13B | 120.1 |
C3B—O1B—Cu1 | 118.18 (10) | C14B—C13B—C12B | 119.72 (19) |
C3B—O2B—Cu1i | 128.64 (10) | C14B—C13B—H13B | 120.1 |
C3A—O1A—Cu1 | 119.63 (10) | O5S1—C6S1—H6SA | 109.8 |
C3A—O2A—Cu1i | 127.34 (10) | O5S1—C6S1—H6SB | 109.8 |
Cu1—O10S—H10A | 128.2 (12) | O5S1—C6S1—C7S1 | 109.2 (6) |
Cu1—O10S—H10B | 126.1 (13) | H6SA—C6S1—H6SB | 108.3 |
H10A—O10S—H10B | 104.9 (7) | C7S1—C6S1—H6SA | 109.8 |
C9B—N10B—C11B | 128.08 (14) | C7S1—C6S1—H6SB | 109.8 |
C9B—N10B—H10C | 113.6 (14) | C14A—C13A—H13A | 119.9 |
C11B—N10B—H10C | 116.1 (15) | C14A—C13A—C12A | 120.19 (19) |
C3S1—O2S1—C1S1 | 116.0 (10) | C12A—C13A—H13A | 119.9 |
O1B—C3B—O2B | 123.71 (14) | C11A—C12A—H12A | 120.2 |
O1B—C3B—C4B | 117.85 (13) | C13A—C12A—C11A | 119.6 (2) |
O2B—C3B—C4B | 118.43 (13) | C13A—C12A—H12A | 120.2 |
N10B—C9B—C4B | 120.34 (14) | O2S1—C3S1—H3SA | 109.4 |
N10B—C9B—C8B | 122.13 (15) | O2S1—C3S1—H3SB | 109.4 |
C8B—C9B—C4B | 117.53 (15) | O2S1—C3S1—C4S1 | 111.3 (7) |
O1A—C3A—O2A | 123.41 (15) | H3SA—C3S1—H3SB | 108.0 |
O1A—C3A—C4A | 118.05 (14) | C4S1—C3S1—H3SA | 109.4 |
O2A—C3A—C4A | 118.53 (14) | C4S1—C3S1—H3SB | 109.4 |
C5A—C4A—C3A | 117.47 (15) | O8S1—C7S1—C6S1 | 110.1 (5) |
C5A—C4A—C9A | 119.10 (16) | O8S1—C7S1—H7SA | 109.6 |
C9A—C4A—C3A | 123.33 (15) | O8S1—C7S1—H7SB | 109.6 |
C9B—C4B—C3B | 123.03 (14) | C6S1—C7S1—H7SA | 109.6 |
C5B—C4B—C3B | 117.28 (14) | C6S1—C7S1—H7SB | 109.6 |
C5B—C4B—C9B | 119.64 (14) | H7SA—C7S1—H7SB | 108.1 |
C6S1—O5S1—C4S1 | 113.8 (4) | C15B—C18B—H18D | 109.5 |
C16B—C11B—N10B | 118.49 (15) | C15B—C18B—H18E | 109.5 |
C12B—C11B—N10B | 120.86 (16) | C15B—C18B—H18F | 109.5 |
C12B—C11B—C16B | 120.58 (16) | H18D—C18B—H18E | 109.5 |
C9B—C8B—H8B | 119.5 | H18D—C18B—H18F | 109.5 |
C7B—C8B—C9B | 121.08 (16) | H18E—C18B—H18F | 109.5 |
C7B—C8B—H8B | 119.5 | O2S1—C1S1—H1SA | 109.5 |
C4B—C5B—H5B | 119.1 | O2S1—C1S1—H1SB | 109.5 |
C6B—C5B—C4B | 121.86 (16) | O2S1—C1S1—H1SC | 109.5 |
C6B—C5B—H5B | 119.1 | H1SA—C1S1—H1SB | 109.5 |
C4A—C5A—H5A | 119.0 | H1SA—C1S1—H1SC | 109.5 |
C6A—C5A—C4A | 121.92 (17) | H1SB—C1S1—H1SC | 109.5 |
C6A—C5A—H5A | 119.0 | O5S1—C4S1—C3S1 | 108.0 (4) |
C9A—N10A—C11A | 129.73 (17) | O5S1—C4S1—H4SA | 110.1 |
C9A—N10A—H10D | 111.9 (16) | O5S1—C4S1—H4SB | 110.1 |
C11A—N10A—H10D | 118.3 (16) | C3S1—C4S1—H4SA | 110.1 |
C15A—C16A—C17A | 120.49 (17) | C3S1—C4S1—H4SB | 110.1 |
C11A—C16A—C15A | 119.10 (17) | H4SA—C4S1—H4SB | 108.4 |
C11A—C16A—C17A | 120.41 (16) | H9SD—C9S2—H9SE | 109.5 |
C9S1—O8S1—C7S1 | 112.6 (8) | H9SD—C9S2—H9SF | 109.5 |
C11B—C16B—C17B | 121.71 (15) | H9SE—C9S2—H9SF | 109.5 |
C11B—C16B—C15B | 118.49 (16) | O8S2—C9S2—H9SD | 109.5 |
C15B—C16B—C17B | 119.78 (17) | O8S2—C9S2—H9SE | 109.5 |
C16A—C15A—C18A | 121.28 (17) | O8S2—C9S2—H9SF | 109.5 |
C14A—C15A—C16A | 119.14 (18) | C3S2—O2S2—C1S2 | 121 (2) |
C14A—C15A—C18A | 119.57 (17) | O2S2—C3S2—H3SC | 109.1 |
C5B—C6B—H6B | 120.7 | O2S2—C3S2—H3SD | 109.1 |
C5B—C6B—C7B | 118.52 (17) | O2S2—C3S2—C4S2 | 112.4 (15) |
C7B—C6B—H6B | 120.7 | H3SC—C3S2—H3SD | 107.9 |
C8B—C7B—C6B | 121.35 (16) | C4S2—C3S2—H3SC | 109.1 |
C8B—C7B—H7B | 119.3 | C4S2—C3S2—H3SD | 109.1 |
C6B—C7B—H7B | 119.3 | O2S2—C1S2—H1SD | 109.5 |
C16A—C17A—H17A | 109.5 | O2S2—C1S2—H1SE | 109.5 |
C16A—C17A—H17B | 109.5 | O2S2—C1S2—H1SF | 109.5 |
C16A—C17A—H17C | 109.5 | H1SD—C1S2—H1SE | 109.5 |
H17A—C17A—H17B | 109.5 | H1SD—C1S2—H1SF | 109.5 |
H17A—C17A—H17C | 109.5 | H1SE—C1S2—H1SF | 109.5 |
H17B—C17A—H17C | 109.5 | C3S2—C4S2—H4SC | 109.5 |
C5A—C6A—H6A | 120.6 | C3S2—C4S2—H4SD | 109.5 |
C5A—C6A—C7A | 118.74 (17) | H4SC—C4S2—H4SD | 108.1 |
C7A—C6A—H6A | 120.6 | O5S2—C4S2—C3S2 | 110.6 (9) |
N10A—C9A—C4A | 119.92 (16) | O5S2—C4S2—H4SC | 109.5 |
N10A—C9A—C8A | 122.18 (17) | O5S2—C4S2—H4SD | 109.5 |
C8A—C9A—C4A | 117.82 (17) | C4S2—O5S2—C6S2 | 114.8 (10) |
C16B—C17B—H17D | 109.5 | O5S2—C6S2—H6SC | 109.3 |
C16B—C17B—H17E | 109.5 | O5S2—C6S2—H6SD | 109.3 |
C16B—C17B—H17F | 109.5 | O5S2—C6S2—C7S2 | 111.7 (14) |
H17D—C17B—H17E | 109.5 | H6SC—C6S2—H6SD | 107.9 |
H17D—C17B—H17F | 109.5 | C7S2—C6S2—H6SC | 109.3 |
H17E—C17B—H17F | 109.5 | C7S2—C6S2—H6SD | 109.3 |
C16A—C11A—N10A | 117.43 (17) | C6S2—C7S2—H7SC | 110.4 |
C12A—C11A—N10A | 121.68 (19) | C6S2—C7S2—H7SD | 110.4 |
C12A—C11A—C16A | 120.71 (18) | H7SC—C7S2—H7SD | 108.6 |
C11B—C12B—H12B | 119.9 | O8S2—C7S2—C6S2 | 106.5 (10) |
C13B—C12B—C11B | 120.15 (19) | O8S2—C7S2—H7SC | 110.4 |
C13B—C12B—H12B | 119.9 | O8S2—C7S2—H7SD | 110.4 |
C15A—C14A—H14A | 119.4 | C9S2—O8S2—C7S2 | 117.0 (13) |
C13A—C14A—C15A | 121.22 (18) | O8S1—C9S1—H9SA | 109.5 |
C13A—C14A—H14A | 119.4 | O8S1—C9S1—H9SB | 109.5 |
C15A—C18A—H18A | 109.5 | O8S1—C9S1—H9SC | 109.5 |
C15A—C18A—H18B | 109.5 | H9SA—C9S1—H9SB | 109.5 |
C15A—C18A—H18C | 109.5 | H9SA—C9S1—H9SC | 109.5 |
H18A—C18A—H18B | 109.5 | H9SB—C9S1—H9SC | 109.5 |
Cu1—O1B—C3B—O2B | −8.6 (2) | C5B—C6B—C7B—C8B | −1.7 (3) |
Cu1—O1B—C3B—C4B | 170.41 (10) | C5A—C4A—C9A—N10A | −179.92 (18) |
Cu1i—O2B—C3B—O1B | 9.2 (2) | C5A—C4A—C9A—C8A | 3.2 (3) |
Cu1i—O2B—C3B—C4B | −169.80 (10) | C5A—C6A—C7A—C8A | 3.2 (3) |
Cu1—O1A—C3A—O2A | 10.2 (2) | N10A—C9A—C8A—C7A | −178.9 (2) |
Cu1—O1A—C3A—C4A | −168.37 (10) | N10A—C11A—C12A—C13A | −176.3 (2) |
Cu1i—O2A—C3A—O1A | −8.7 (2) | C16A—C15A—C14A—C13A | −2.0 (3) |
Cu1i—O2A—C3A—C4A | 169.93 (10) | C16A—C11A—C12A—C13A | −1.2 (3) |
O1B—C3B—C4B—C9B | 179.72 (14) | C16B—C11B—C12B—C13B | 1.1 (3) |
O1B—C3B—C4B—C5B | −3.1 (2) | C16B—C15B—C14B—C13B | 1.0 (3) |
O2B—C3B—C4B—C9B | −1.2 (2) | C15A—C16A—C11A—N10A | 173.66 (18) |
O2B—C3B—C4B—C5B | 176.01 (15) | C15A—C16A—C11A—C12A | −1.6 (3) |
O1A—C3A—C4A—C5A | −5.4 (2) | C15A—C14A—C13A—C12A | −0.8 (3) |
O1A—C3A—C4A—C9A | 171.06 (16) | C17A—C16A—C15A—C14A | −177.50 (17) |
O2A—C3A—C4A—C5A | 175.93 (14) | C17A—C16A—C15A—C18A | 3.5 (3) |
O2A—C3A—C4A—C9A | −7.6 (2) | C17A—C16A—C11A—N10A | −5.6 (3) |
N10B—C9B—C4B—C3B | −3.1 (2) | C17A—C16A—C11A—C12A | 179.1 (2) |
N10B—C9B—C4B—C5B | 179.74 (15) | C6A—C7A—C8A—C9A | −1.2 (3) |
N10B—C9B—C8B—C7B | 179.34 (17) | C9A—C4A—C5A—C6A | −1.2 (3) |
N10B—C11B—C16B—C17B | 4.4 (2) | C9A—N10A—C11A—C16A | 144.7 (2) |
N10B—C11B—C16B—C15B | −177.08 (16) | C9A—N10A—C11A—C12A | −40.0 (4) |
N10B—C11B—C12B—C13B | 177.97 (18) | C17B—C16B—C15B—C14B | 177.61 (19) |
O2S1—C3S1—C4S1—O5S1 | 58.7 (11) | C17B—C16B—C15B—C18B | −2.4 (3) |
C3B—C4B—C5B—C6B | −176.76 (17) | C11A—N10A—C9A—C4A | 174.3 (2) |
C9B—N10B—C11B—C16B | −124.92 (18) | C11A—N10A—C9A—C8A | −8.9 (4) |
C9B—N10B—C11B—C12B | 58.1 (3) | C11A—C16A—C15A—C14A | 3.2 (3) |
C9B—C4B—C5B—C6B | 0.5 (3) | C11A—C16A—C15A—C18A | −175.80 (18) |
C9B—C8B—C7B—C6B | 1.3 (3) | C12B—C11B—C16B—C17B | −178.61 (17) |
C3A—C4A—C5A—C6A | 175.39 (15) | C12B—C11B—C16B—C15B | −0.1 (3) |
C3A—C4A—C9A—N10A | 3.7 (3) | C14A—C13A—C12A—C11A | 2.4 (4) |
C3A—C4A—C9A—C8A | −173.24 (17) | C18A—C15A—C14A—C13A | 177.00 (19) |
C4A—C5A—C6A—C7A | −2.0 (3) | C15B—C14B—C13B—C12B | 0.0 (4) |
C4A—C9A—C8A—C7A | −2.0 (3) | C6S1—O5S1—C4S1—C3S1 | −178.1 (5) |
C4B—C9B—C8B—C7B | 0.0 (3) | C18B—C15B—C14B—C13B | −179.0 (2) |
C4B—C5B—C6B—C7B | 0.8 (3) | C1S1—O2S1—C3S1—C4S1 | 171.1 (12) |
O5S1—C6S1—C7S1—O8S1 | −67.3 (7) | C4S1—O5S1—C6S1—C7S1 | 175.2 (4) |
C11B—N10B—C9B—C4B | 171.23 (16) | O2S2—C3S2—C4S2—O5S2 | −64 (2) |
C11B—N10B—C9B—C8B | −8.1 (3) | C3S2—C4S2—O5S2—C6S2 | 176.1 (11) |
C11B—C16B—C15B—C14B | −0.9 (3) | C1S2—O2S2—C3S2—C4S2 | −163 (3) |
C11B—C16B—C15B—C18B | 179.1 (2) | C4S2—O5S2—C6S2—C7S2 | −164.7 (10) |
C11B—C12B—C13B—C14B | −1.0 (3) | O5S2—C6S2—C7S2—O8S2 | 68.1 (17) |
C8B—C9B—C4B—C3B | 176.22 (15) | C6S2—C7S2—O8S2—C9S2 | 171.6 (16) |
C8B—C9B—C4B—C5B | −0.9 (2) | C9S1—O8S1—C7S1—C6S1 | 172.0 (6) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N10A—H10D···O2A | 0.86 (3) | 1.86 (3) | 2.604 (2) | 143 (2) |
N10B—H10C···O2B | 0.89 (2) | 1.87 (2) | 2.6065 (18) | 139 (2) |
Coordinates are unavailable for entry MPANCU10. There are two values per structure, corresponding to the two mefenamate units in the asymmetric unit as denoted A and B in our atom-numbering scheme. |
This work | MPANCU20 | SUTPIG | ||||
Space group | P21/n | P21/c | P1 | |||
O1—C3—C4—C9 | 171.1 (2) | 179.7 (1) | 170.98 | 179.70 | 153 (1) | 180 (1) |
C4—C9—N10—C11 | 174.3 (2) | 171.2 (2) | -166.40 | 171.56 | 171 (1) | 172 (1) |
C9—N10—C11—C16 | 144.7 (2) | -124.9 (2) | -155.25 | -109.34 | -107 (2) | 135 (2) |
Cu—Omefenamate | 1.961 (1) | 1.954 (1) | 1.9737 | 1.9605 | 1.972 (7) | 1.949 (7) |
Cu—Osolvent | 2.108 (1) | 2.1561 | 2.17 (1) | |||
Cu···Cu | 2.6126 (4) | 2.6120 | 2.627 (3) |
Acknowledgements
The authors acknowledge that the experimental work presented was carried out in the CMAC National Facility, housed within the University of Strathclyde's Technology and Innovation Centre.
Funding information
Funding for this work was provided by: Engineering and Physical Sciences Research Council (EPSRC) Future Continuous Manufacturing and Advanced Crystallization Research Hub (Grant Ref: EP/P006965/1 for MWSC, SO, ARGM, DB, CJP and AN); EPSRC Early Career Fellowship (Grant Ref: EP/N015401/1 for IDHO and MRW); UK Research Partnership Institute Fund (UKRPIF) capital award (Scottish Funding Council ref. H13054, from the Higher Education Funding Council for England).
References
Abbas, N., Oswald, I. D. H. & Pulham, C. R. (2017). Pharmaceutics, 9, 16. Web of Science CSD CrossRef PubMed Google Scholar
British Pharmacopoeia (2017). Part III. London: Medicines and Healthcare products Regulatory Agency; mefenamic acid (Ph. Eur. Monograph 1240). Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chong, M. W. S., Argent, S. P., Moreau, F., Trenholme, W. J. F., Morris, C. G., Lewis, W., Easun, T. L. & Schröder, M. (2022). Chem. Eur. J. 28, e202201188. https://doi.org/10.1002/chem.202201188. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Facchin, G., Torre, M. H., Kremer, E., Piro, O. E. & Baran, E. J. (1998). Z. Naturforsch. B, 53, 871–874. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Mague, J. & Ouzidan, Y. (2017). CSD Communication (refcode XYANAC06). CCDC, Cambridge, England. Google Scholar
McConnell, J. F. & Company, F. Z. (1976). Cryst. Struct. Commun. 5, 861. Google Scholar
Mys'kiv, M. G., Olijnik, V. V., Kriss, E. E., Konakhovich, N. F. & Grigor'eva, A. S. (1982). Koord. Khim. (Russ.), 8, 1415. Google Scholar
Reichardt, C. & Welton, T. (2011). Editors. Solvents and Solvent Effects in Organic Chemistry, 4th ed., p. 550. Weinheim: Wiley-VCH. Google Scholar
SeethaLekshmi, S. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 4283–4289. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Trinus, F. P., Mokhort, N. A., Yagupol'skii, L. M., Fadeicheva, A. G., Danilenko, V. S., Ryabukha, T. K., Fialkov, Yu. A., Kirichek, L. M., Endel'man, É. S. & Get'man, G. A. (1977). Pharm. Chem. J. 11, 1706–1711. CrossRef Google Scholar
Yang, X., Sarma, B. & Myerson, A. S. (2012). Cryst. Growth Des. 12, 5521–5528. Web of Science CSD CrossRef CAS Google Scholar
Yatsimirskii, K. B., Mys'kiv, M. G., Grigor'eva, A. S., Kris, E. E. & Gladyshevskii, E. I. (1979). Dokl. Akad. Nauk, 247, 1204. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.