research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a copper–mefenamate complex solvated with diglyme and water

crossmark logo

aEPSRC Future Continuous Manufacturing and Advanced Crystallisation Research Hub, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, United Kingdom, bWestCHEM, Department of Pure and Applied Chemistry and Centre for Process Analytics and Control Technology (CPACT), University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, United Kingdom, cDepartment of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, United Kingdom, and dStrathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow, United Kingdom
*Correspondence e-mail: magdalene.chong@strath.ac.uk, martin.ward@strath.ac.uk

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 29 August 2022; accepted 4 November 2022; online 10 November 2022)

In the copper–mefenamate complex tetra­kis­[μ-2-(2,3-di­methyl­anilino)benzoato-κ2O:O′]bis­[aqua­copper(II)]–1-meth­oxy-2-(2-meth­oxy­eth­oxy)ethane (1/2), [Cu2(C15H14NO2)4(H2O)2]·2C6H14O3, the asymmetric unit comprises a CuII cation coordinated to two mefenamate ligands solvated with a water mol­ecule and a diglyme mol­ecule. The complex adopts a paddlewheel motif and is compared to structural analogues crystallized with di­methyl­formamide and dimethyl sulfoxide.

1. Chemical context

Mefenamic acid is a non-steroidal anti-inflammatory drug (NSAID) that is synthesized through reaction of 2-chloro­benzoic acid and 2,3-di­methyl­aniline in the presence of a copper catalyst (Trinus et al., 1977[Trinus, F. P., Mokhort, N. A., Yagupol'skii, L. M., Fadeicheva, A. G., Danilenko, V. S., Ryabukha, T. K., Fialkov, Yu. A., Kirichek, L. M., Endel'man, É. S. & Get'man, G. A. (1977). Pharm. Chem. J. 11, 1706-1711.]). Subsequently, pharmacopoeia specifications for mefenamic acid specify a maximum limit of 10 ppm for the qu­antity of copper present in the final drug product (British Pharmacopoeia, 2017[British Pharmacopoeia (2017). Part III. London: Medicines and Healthcare products Regulatory Agency; mefenamic acid (Ph. Eur. Monograph 1240).]). In exploring strategies to ensure removal of copper from the crude reaction mixture, a new copper–mefenamate complex was isolated. The crystal structure of a copper–mefenamate complex solvated with water and diglyme is reported.

[Scheme 1]

2. Structural commentary

The complex [Cu2(mefenamate)4(H2O)2].2(diglyme) crystallizes in the space group P21/n, with a {Cu2(RCO2)4(H2O)2} paddlewheel motif that is typical for coordination of four carboxyl­ate groups to two CuII cations (Chong et al., 2022[Chong, M. W. S., Argent, S. P., Moreau, F., Trenholme, W. J. F., Morris, C. G., Lewis, W., Easun, T. L. & Schröder, M. (2022). Chem. Eur. J. 28, e202201188. https://doi.org/10.1002/chem.202201188.]). Within the asymmetric unit (Fig. 1[link]a), the planes of the 2,3-di­methyl­phenyls from the two mefenamate mol­ecules are 42.61 (1)° apart. A water mol­ecule occupies each of the apical positions of the paddlewheel motif, which is hydrogen bonded to a diglyme mol­ecule (Fig. 1[link]a). The diglyme mol­ecule is oriented such that it fits between the 2,3-dimethyphenyl units of the two mefenamate mol­ecules in the asymmetric unit and is hydrogen bonded to the coordinated water via the diglyme outer oxygen positions (Fig. 1[link]a). A distorted square-pyramidal geometry is adopted by each CuII cation in the paddlewheel motif (Fig. 1[link]b), with equatorial Cu—O distances of 1.968 (1), 1.961 (1), 1.954 (1), and 1.969 (1) Å between CuII and the carboxyl­ate moieties. The axial Cu—O distance, between the copper(II) cation and water mol­ecule, is 2.108 (1) Å. The distance between the two CuII cations is 2.6126 (4) Å. There is an intra­molecular bond between the amine and carboxyl­ate groups of the mefenamate, with O⋯H distances of 1.86 (3) and 1.87 (2) Å for mefenamate units A and B, respectively (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10A—H10D⋯O2A 0.86 (3) 1.86 (3) 2.604 (2) 143 (2)
N10B—H10C⋯O2B 0.89 (2) 1.87 (2) 2.6065 (18) 139 (2)
[Figure 1]
Figure 1
Views of [Cu2(mefenamate)4(H2O)2]·2(diglyme) as an ORTEP representation with ellipsoids set to 50% probability: (a) asymmetric unit with hydrogen bonds highlighted (dashed blue lines), (b) a single paddlewheel unit of the complex, and (c) neighbouring units with edge-to-face inter­actions highlighted (dashed red lines).

3. Supra­molecular features

There are no obvious inter­actions, such as ππ stacking, between neighbouring paddlewheel units within the packed structure. The paddlewheel units inter­act through edge-to-face inter­actions of the phenyl groups of the mefanamate ligands (Fig. 1[link]c). In the global packing of the structure, the paddlewheel units are arranged as 2D sheets along the crystallographic ab plane, with symmetry-equivalent sheets repeating throughout the crystallographic c axis at a distance corresponding to c. A second 2D arrangement is inter­calated halfway between the symmetry-equivalent sheets.

4. Database survey

There are three other similar copper–mefenamate paddlewheel structures in the CSD (version 5.43, November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), with different solvents occupying the apical positions. Two entries, MPANCU10 (Yatsimirskii et al., 1979[Yatsimirskii, K. B., Mys'kiv, M. G., Grigor'eva, A. S., Kris, E. E. & Gladyshevskii, E. I. (1979). Dokl. Akad. Nauk, 247, 1204.]) and MPANCU20 (Mys'kiv et al., 1982[Mys'kiv, M. G., Olijnik, V. V., Kriss, E. E., Konakhovich, N. F. & Grigor'eva, A. S. (1982). Koord. Khim. (Russ.), 8, 1415.]), are with N,N-di­methyl­formamide (DMF) and one entry, SUTPIG (Facchin et al., 1998[Facchin, G., Torre, M. H., Kremer, E., Piro, O. E. & Baran, E. J. (1998). Z. Naturforsch. B, 53, 871-874.]), has dimethyl sulfoxide (DMSO) occupying the apical position. The DMF analogue also crystallizes in a monoclinic space group (Table 2[link]). The cell volume of [Cu2(mefenamate)4(H2O)2]·2(diglyme) [3538.64 (12) Å3] is larger than the DMF analogue (3026.535 Å3), to accommodate the larger diglyme mol­ecule. The axial Cu—O distance in [Cu2(mefenamate)4(H2O)2]·2(diglyme) is shorter than those in structures MPANCU20 and SUTPIG (Table 2[link]). This may be attributed to the higher polarity of water (1.000) compared to DMF and DMSO (0.386 and 0.444, respectively; Reichardt & Welton, 2011[Reichardt, C. & Welton, T. (2011). Editors. Solvents and Solvent Effects in Organic Chemistry, 4th ed., p. 550. Weinheim: Wiley-VCH.]). In the DMSO analogue, the 2,3-di­methyl­phenyls from the two mefenamate mol­ecules within the asymmetric unit are almost coplanar, the planes are 9.06° apart, and the methyl groups of the DMSO point away from the 2,3-di­methyl­phenyls. For the DMF analogue, the two 2,3-di­methyl­phenyls are oriented such that they can accommodate one of the methyl groups from the DMF, therefore the planes are 70.22° apart.

Table 2
Comparison of selected geometries (Å, °)

Coordinates are unavailable for entry MPANCU10. There are two values per structure, corresponding to the two mefenamate units in the asymmetric unit as denoted A and B in our atom-numbering scheme.

  This work   MPANCU20   SUTPIG  
Space group P21/n   P21/c   P[\overline{1}]  
O1—C3—C4—C9 171.1 (2) 179.7 (1) 170.98 179.70 153 (1) 180 (1)
C4—C9—N10—C11 174.3 (2) 171.2 (2) −166.40 171.56 171 (1) 172 (1)
C9—N10—C11—C16 144.7 (2) −124.9 (2) −155.25 −109.34 −107 (2) 135 (2)
Cu—Omefenamate 1.961 (1) 1.954 (1) 1.9737 1.9605 1.972 (7) 1.949 (7)
Cu—Osolvent 2.108 (1)   2.1561   2.17 (1)  
Cu⋯Cu 2.6126 (4)   2.6120   2.627 (3)  

Three polymorphic forms are known for mefenamic acid, with significant differences between the forms in the C9—N10—C11—C16 torsion angle τ3 (Fig. 1[link]a; SeethaLekshmi & Guru Row, 2012[SeethaLekshmi, S. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 4283-4289.]). The larger torsion angle τ3 observed with the copper complex (Table 2[link]) is more consistent with those of the form I polymorph of −119.99 ° (XYANAC; McConnell & Company, 1976[McConnell, J. F. & Company, F. Z. (1976). Cryst. Struct. Commun. 5, 861.]) and −120.1 (1) ° (XYANAC06; Mague & Ouzidan, 2017[Mague, J. & Ouzidan, Y. (2017). CSD Communication (refcode XYANAC06). CCDC, Cambridge, England.]). The increased torsional angle can be explained by the location of the di­methyl­phenyl group with respect to the diglyme group. The phenyl group needs to rotate to ensure a more planar packing arrangement with the diglyme mol­ecule. In comparison to other polymorphs, the metastable form II suffers from significant disorder around the di­methyl­phenyl ring system, however the torsion angle τ3 is 68 (2)° for XYANAC04 (SeethaLekshmi & Guru Row, 2012[SeethaLekshmi, S. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 4283-4289.]), 74.5 (3)° for XYANAC05 (Yang et al., 2012[Yang, X., Sarma, B. & Myerson, A. S. (2012). Cryst. Growth Des. 12, 5521-5528.]) and −90 (2)° for XYANAC07 (Abbas et al., 2017[Abbas, N., Oswald, I. D. H. & Pulham, C. R. (2017). Pharmaceutics, 9, 16.]). The latter of these data collections is at high pressure and the disorder is not modelled, possibly because of the lack of data present due to the diamond anvil cell. The thermal parameters indicate that some disorder may still be present even at these higher pressures. For metastable form III, the reported torsion angle τ3 is −80.8 (2)° (XYANAC03; SeethaLekshmi & Guru Row, 2012[SeethaLekshmi, S. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 4283-4289.]).

5. Synthesis and crystallization

Chemicals were purchased from commercial suppliers and used as received without further purification. Deionized water was obtained from an in-house Milli-Q (Millipore) purification system. A solution was prepared comprising mefenamic acid (25.0 g), diglyme (281.6 g), water (74.7 g) and copper (II) acetate (7.3 g). An aliquot (4 mL) of this solution was removed and mefenamic acid (0.4 g) added to generate a slurry. The mixture was filtered and the filtrate stored in the dark at room temperature for two weeks, after which large green block-shaped crystals of the complex had formed.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The diglyme moiety was found to be disordered over two positions. Initial isotropic refinement of the diglyme allowed the residual electron density to be observed. Using the functionality in OLEX2, the atoms were moved to ensure that they overlapped the electron density in a zigzag bonding pattern usually observed for alkyl chains. Distance restraints were applied to ensure the mol­ecular integrity. Using the SPLIT function, the alkyl chain was duplicated and rotated to align with the remaining electron density. This model was refined isotropically before applying EADP restraints to the atoms and refining anisotropically. This provided a stable refined structure. The water hydrogen atoms were added from the difference map and refined with ideal DFIX restraints in place. C-bound hydrogen atoms were placed geometrically and a riding model applied [C—H = 0.95–0.99 Å; Uiso(H) = 1.2–1.5Ueq(C)]. All data underpinning this publication are openly available from the University of Strathclyde KnowledgeBase at https://doi.org/10.15129/39f97ad1-8173-4999-b0b6-41c6ae923fe6.

Table 3
Experimental details

Crystal data
Chemical formula [Cu2(C15H14NO2)4(H2O)2]·2C6H14O3
Mr 1392.54
Crystal system, space group Monoclinic, P21/n
Temperature (K) 105
a, b, c (Å) 15.5420 (3), 14.0010 (3), 16.3217 (3)
β (°) 94.791 (1)
V3) 3539.25 (12)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.30
Crystal size (mm) 0.2 × 0.15 × 0.1
 
Data collection
Diffractometer Bruker Photon100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.781, 0.881
No. of measured, independent and observed [I > 2σ(I)] reflections 209288, 6424, 5989
Rint 0.039
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 1.06
No. of reflections 6424
No. of parameters 477
No. of restraints 410
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.40
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tetrakis[µ-2-(2,3-dimethylanilino)benzoato-κ2O:O']bis[aquacopper(II)]–1-methoxy-2-(2-methoxyethoxy)ethane (1/2) top
Crystal data top
[Cu2(C15H14NO2)4(H2O)2]·2C6H14O3F(000) = 1468
Mr = 1392.54Dx = 1.307 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 15.5420 (3) ÅCell parameters from 9398 reflections
b = 14.0010 (3) Åθ = 4.9–68.2°
c = 16.3217 (3) ŵ = 1.30 mm1
β = 94.791 (1)°T = 105 K
V = 3539.25 (12) Å3Block, clear green
Z = 20.2 × 0.15 × 0.1 mm
Data collection top
Bruker Photon100 CMOS
diffractometer
5989 reflections with I > 2σ(I)
Radiation source: Incoatec microfocus Cu sourceRint = 0.039
φ and ω scansθmax = 68.3°, θmin = 4.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1818
Tmin = 0.781, Tmax = 0.881k = 1616
209288 measured reflectionsl = 1919
6424 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0435P)2 + 2.0003P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6424 reflectionsΔρmax = 0.28 e Å3
477 parametersΔρmin = 0.40 e Å3
410 restraints
Special details top

Experimental. The X-ray intensities were collected on a Bruker D8 Venture diffractometer using a Photon 100 Detector. The data were reduced using APEX3 and absorption correction applied using SADABS (Bruker, 2016). The crystal structure was solved and refined using SHELXT and SHELXL via the Olex2 refinement package (Dolomanov et al., 2009). Non-hydrogen atom positions were refined anisotropically.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. RIGU restarint applied. Diglyme disorder modelled using DFIX and SADI restraints. The ADPs for both diglyme parts were constrained using EADP constraint.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.54253 (2)0.42405 (2)0.48032 (2)0.02442 (8)
O1B0.51049 (8)0.45091 (8)0.36430 (7)0.0329 (3)
O2B0.43845 (8)0.58088 (8)0.39902 (7)0.0326 (3)
O1A0.43605 (8)0.35049 (8)0.48736 (7)0.0351 (3)
O2A0.36511 (7)0.48032 (8)0.52427 (7)0.0331 (3)
O10S0.62229 (8)0.30515 (9)0.46326 (8)0.0376 (3)
N10B0.37240 (10)0.69540 (10)0.28457 (9)0.0362 (3)
O2S10.7835 (9)0.2813 (9)0.5321 (12)0.0540 (12)0.666 (3)
C3B0.46922 (10)0.52671 (11)0.34617 (9)0.0265 (3)
C9B0.41162 (10)0.63824 (11)0.22997 (9)0.0285 (3)
C3A0.37072 (10)0.39031 (11)0.51303 (9)0.0284 (3)
C4A0.29745 (11)0.32888 (12)0.53288 (10)0.0308 (3)
C4B0.45728 (10)0.55460 (11)0.25802 (9)0.0269 (3)
O5S10.73581 (16)0.15001 (18)0.40989 (17)0.0438 (6)0.666 (3)
C11B0.33426 (11)0.78619 (12)0.27016 (10)0.0312 (3)
C8B0.40932 (11)0.65984 (13)0.14555 (10)0.0345 (4)
H8B0.37940.71520.12500.041*
C5B0.49629 (11)0.49735 (13)0.20199 (10)0.0348 (4)
H5B0.52620.44140.22120.042*
C5A0.30263 (12)0.23152 (12)0.51507 (10)0.0349 (4)
H5A0.35010.20880.48750.042*
N10A0.21962 (12)0.45875 (13)0.59054 (14)0.0588 (5)
C16A0.17474 (12)0.58519 (13)0.67658 (11)0.0367 (4)
O8S10.5611 (3)0.1715 (4)0.3438 (5)0.0604 (14)0.666 (3)
C16B0.36286 (11)0.86224 (12)0.32109 (10)0.0322 (3)
C15A0.10932 (12)0.64349 (13)0.70386 (11)0.0388 (4)
C6B0.49276 (13)0.51950 (15)0.11960 (11)0.0447 (4)
H6B0.51920.47920.08210.054*
C7B0.44963 (13)0.60229 (15)0.09242 (11)0.0429 (4)
H7B0.44810.61930.03600.052*
C17A0.26827 (12)0.60465 (15)0.70369 (12)0.0441 (4)
H17A0.29480.64000.66050.066*
H17B0.29870.54400.71390.066*
H17C0.27200.64260.75430.066*
C6A0.24089 (12)0.16743 (13)0.53636 (11)0.0400 (4)
H6A0.24460.10180.52220.048*
C9A0.22586 (11)0.36315 (13)0.57261 (12)0.0395 (4)
C17B0.43678 (13)0.85116 (14)0.38602 (11)0.0418 (4)
H17D0.41450.84980.44040.063*
H17E0.47660.90510.38300.063*
H17F0.46740.79140.37700.063*
C11A0.15206 (12)0.50948 (14)0.62317 (13)0.0453 (4)
C12B0.26720 (12)0.79882 (15)0.20959 (12)0.0439 (4)
H12B0.24760.74650.17600.053*
C14A0.02351 (12)0.62150 (15)0.68039 (12)0.0447 (4)
H14A0.02100.65950.70020.054*
C18A0.13044 (14)0.72995 (17)0.75676 (13)0.0536 (5)
H18A0.15760.70960.81030.080*
H18B0.07730.76510.76470.080*
H18C0.17030.77140.72970.080*
C15B0.32210 (14)0.95162 (14)0.30921 (12)0.0453 (4)
C14B0.25653 (16)0.96269 (16)0.24775 (13)0.0561 (6)
H14B0.22991.02340.23950.067*
C7A0.17319 (12)0.20059 (14)0.57892 (11)0.0422 (4)
H7A0.13190.15670.59640.051*
C8A0.16519 (13)0.29586 (15)0.59604 (13)0.0473 (5)
H8A0.11770.31700.62430.057*
C13B0.22881 (14)0.88734 (18)0.19800 (13)0.0561 (6)
H13B0.18350.89620.15590.067*
C6S10.6846 (5)0.0737 (6)0.3762 (5)0.0517 (16)0.666 (3)
H6SA0.65300.04350.41960.062*0.666 (3)
H6SB0.72200.02470.35350.062*0.666 (3)
C13A0.00184 (13)0.54565 (16)0.62903 (15)0.0534 (5)
H13A0.05720.53130.61430.064*
C12A0.06577 (13)0.49027 (16)0.59881 (16)0.0569 (6)
H12A0.05090.43950.56170.068*
C3S10.8407 (4)0.2105 (3)0.5096 (3)0.0564 (12)0.666 (3)
H3SA0.88080.19360.55770.068*0.666 (3)
H3SB0.87530.23560.46610.068*0.666 (3)
C7S10.6224 (2)0.1110 (2)0.3099 (2)0.0487 (8)0.666 (3)
H7SA0.65380.14720.26970.058*0.666 (3)
H7SB0.59220.05700.28080.058*0.666 (3)
C18B0.3508 (2)1.03494 (17)0.36428 (18)0.0787 (8)
H18D0.34001.02000.42120.118*
H18E0.31821.09220.34630.118*
H18F0.41261.04640.36090.118*
C1S10.8212 (6)0.3611 (4)0.5730 (4)0.0698 (15)0.666 (3)
H1SA0.85720.39520.53610.105*0.666 (3)
H1SB0.85710.34000.62190.105*0.666 (3)
H1SC0.77580.40370.58960.105*0.666 (3)
C4S10.7934 (3)0.1233 (3)0.4788 (3)0.0558 (10)0.666 (3)
H4SA0.83470.07460.46230.067*0.666 (3)
H4SB0.76050.09590.52260.067*0.666 (3)
H10C0.3857 (14)0.6801 (16)0.3367 (15)0.049 (6)*
H10D0.2643 (16)0.4898 (18)0.5786 (15)0.057 (7)*
H10A0.6808 (5)0.2953 (16)0.4844 (13)0.064 (7)*
H10B0.6103 (14)0.2545 (13)0.4247 (13)0.085 (9)*
C9S20.4948 (9)0.2144 (16)0.3063 (12)0.0550 (15)0.31 (3)
H9SD0.47590.17470.25860.082*0.31 (3)
H9SE0.49220.28190.29030.082*0.31 (3)
H9SF0.45680.20330.35030.082*0.31 (3)
O2S20.795 (2)0.274 (2)0.536 (2)0.0540 (12)0.334 (3)
C3S20.8316 (8)0.1859 (8)0.5313 (7)0.0564 (12)0.334 (3)
H3SC0.81150.14450.57500.068*0.334 (3)
H3SD0.89510.19220.54100.068*0.334 (3)
C1S20.8244 (13)0.3376 (10)0.5961 (9)0.0698 (15)0.334 (3)
H1SD0.79600.39950.58620.105*0.334 (3)
H1SE0.88700.34540.59490.105*0.334 (3)
H1SF0.81160.31320.65000.105*0.334 (3)
C4S20.8103 (7)0.1404 (7)0.4509 (6)0.0558 (10)0.334 (3)
H4SC0.82810.18270.40680.067*0.334 (3)
H4SD0.84260.07960.44830.067*0.334 (3)
O5S20.7218 (4)0.1224 (4)0.4386 (3)0.0438 (6)0.334 (3)
C6S20.6944 (11)0.0843 (14)0.3610 (11)0.0517 (16)0.334 (3)
H6SC0.71200.01650.35890.062*0.334 (3)
H6SD0.72300.11930.31800.062*0.334 (3)
C7S20.6002 (5)0.0912 (5)0.3437 (5)0.0487 (8)0.334 (3)
H7SC0.58130.05600.29270.058*0.334 (3)
H7SD0.57050.06370.38960.058*0.334 (3)
O8S20.5806 (7)0.1903 (9)0.3344 (11)0.0604 (14)0.334 (3)
C9S10.5085 (5)0.2183 (6)0.2840 (7)0.0550 (15)0.69 (3)
H9SA0.54420.25500.24860.082*0.69 (3)
H9SB0.46970.26170.31030.082*0.69 (3)
H9SC0.47430.17130.25080.082*0.69 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03002 (14)0.02114 (13)0.02236 (13)0.00405 (8)0.00367 (9)0.00087 (8)
O1B0.0443 (6)0.0296 (6)0.0245 (5)0.0110 (5)0.0006 (5)0.0010 (4)
O2B0.0447 (7)0.0288 (6)0.0245 (5)0.0108 (5)0.0040 (5)0.0000 (4)
O1A0.0371 (6)0.0271 (6)0.0420 (6)0.0001 (5)0.0089 (5)0.0062 (5)
O2A0.0346 (6)0.0259 (6)0.0394 (6)0.0001 (5)0.0078 (5)0.0027 (5)
O10S0.0403 (7)0.0311 (6)0.0403 (7)0.0141 (5)0.0020 (5)0.0086 (5)
N10B0.0532 (9)0.0289 (7)0.0262 (7)0.0110 (6)0.0012 (6)0.0013 (6)
O2S10.045 (4)0.046 (2)0.066 (2)0.0094 (16)0.020 (2)0.0047 (19)
C3B0.0281 (7)0.0246 (7)0.0268 (7)0.0014 (6)0.0016 (6)0.0018 (6)
C9B0.0307 (8)0.0270 (8)0.0273 (7)0.0023 (6)0.0005 (6)0.0005 (6)
C3A0.0351 (8)0.0281 (8)0.0213 (7)0.0004 (6)0.0015 (6)0.0016 (6)
C4A0.0350 (8)0.0298 (8)0.0272 (8)0.0032 (6)0.0004 (6)0.0011 (6)
C4B0.0295 (7)0.0265 (7)0.0243 (7)0.0008 (6)0.0000 (6)0.0008 (6)
O5S10.0477 (11)0.0355 (14)0.0483 (16)0.0125 (10)0.0050 (10)0.0008 (10)
C11B0.0338 (8)0.0309 (8)0.0296 (8)0.0056 (6)0.0063 (6)0.0038 (6)
C8B0.0415 (9)0.0342 (9)0.0269 (8)0.0021 (7)0.0024 (7)0.0022 (7)
C5B0.0409 (9)0.0349 (9)0.0281 (8)0.0064 (7)0.0003 (7)0.0022 (7)
C5A0.0436 (9)0.0321 (8)0.0284 (8)0.0026 (7)0.0001 (7)0.0021 (7)
N10A0.0418 (9)0.0365 (9)0.1029 (16)0.0080 (7)0.0353 (10)0.0175 (9)
C16A0.0372 (9)0.0356 (9)0.0390 (9)0.0052 (7)0.0128 (7)0.0097 (7)
O8S10.057 (2)0.045 (2)0.075 (2)0.0121 (18)0.018 (2)0.0332 (19)
C16B0.0368 (8)0.0312 (8)0.0297 (8)0.0053 (7)0.0099 (7)0.0026 (6)
C15A0.0424 (9)0.0416 (10)0.0337 (9)0.0107 (8)0.0103 (7)0.0103 (7)
C6B0.0567 (11)0.0521 (11)0.0254 (8)0.0160 (9)0.0036 (8)0.0046 (8)
C7B0.0528 (11)0.0512 (11)0.0243 (8)0.0080 (9)0.0001 (7)0.0024 (7)
C17A0.0387 (9)0.0484 (11)0.0462 (11)0.0061 (8)0.0093 (8)0.0007 (9)
C6A0.0521 (10)0.0306 (9)0.0364 (9)0.0079 (8)0.0010 (8)0.0018 (7)
C9A0.0370 (9)0.0341 (9)0.0478 (10)0.0039 (7)0.0062 (8)0.0050 (8)
C17B0.0481 (10)0.0396 (10)0.0371 (9)0.0009 (8)0.0005 (8)0.0044 (8)
C11A0.0384 (9)0.0359 (9)0.0645 (12)0.0005 (8)0.0205 (9)0.0007 (9)
C12B0.0419 (10)0.0491 (11)0.0396 (10)0.0082 (8)0.0038 (8)0.0009 (8)
C14A0.0396 (10)0.0490 (11)0.0474 (10)0.0120 (8)0.0141 (8)0.0103 (9)
C18A0.0523 (12)0.0632 (13)0.0456 (11)0.0199 (10)0.0059 (9)0.0103 (10)
C15B0.0596 (12)0.0338 (9)0.0444 (10)0.0148 (8)0.0160 (9)0.0014 (8)
C14B0.0713 (14)0.0515 (12)0.0467 (11)0.0362 (11)0.0115 (10)0.0074 (9)
C7A0.0441 (10)0.0414 (10)0.0403 (10)0.0143 (8)0.0004 (8)0.0007 (8)
C8A0.0400 (10)0.0432 (10)0.0604 (12)0.0096 (8)0.0142 (9)0.0069 (9)
C13B0.0518 (12)0.0723 (14)0.0433 (11)0.0313 (11)0.0020 (9)0.0054 (10)
C6S10.071 (2)0.033 (2)0.051 (3)0.0145 (16)0.006 (2)0.009 (2)
C13A0.0347 (10)0.0564 (13)0.0707 (14)0.0004 (9)0.0128 (9)0.0044 (11)
C12A0.0415 (10)0.0480 (12)0.0837 (16)0.0075 (9)0.0195 (10)0.0120 (11)
C3S10.0391 (17)0.053 (3)0.075 (3)0.0136 (18)0.0069 (19)0.0068 (19)
C7S10.067 (2)0.0370 (16)0.042 (2)0.0056 (13)0.0058 (14)0.0119 (14)
C18B0.123 (2)0.0385 (12)0.0743 (17)0.0224 (14)0.0046 (16)0.0143 (11)
C1S10.0702 (18)0.057 (3)0.076 (4)0.001 (3)0.032 (3)0.005 (2)
C4S10.058 (2)0.041 (2)0.067 (3)0.0176 (15)0.0042 (19)0.0105 (18)
C9S20.057 (2)0.0484 (16)0.059 (4)0.0007 (19)0.001 (2)0.009 (3)
O2S20.045 (4)0.046 (2)0.066 (2)0.0094 (16)0.020 (2)0.0047 (19)
C3S20.0391 (17)0.053 (3)0.075 (3)0.0136 (18)0.0069 (19)0.0068 (19)
C1S20.0702 (18)0.057 (3)0.076 (4)0.001 (3)0.032 (3)0.005 (2)
C4S20.058 (2)0.041 (2)0.067 (3)0.0176 (15)0.0042 (19)0.0105 (18)
O5S20.0477 (11)0.0355 (14)0.0483 (16)0.0125 (10)0.0050 (10)0.0008 (10)
C6S20.071 (2)0.033 (2)0.051 (3)0.0145 (16)0.006 (2)0.009 (2)
C7S20.067 (2)0.0370 (16)0.042 (2)0.0056 (13)0.0058 (14)0.0119 (14)
O8S20.057 (2)0.045 (2)0.075 (2)0.0121 (18)0.018 (2)0.0332 (19)
C9S10.057 (2)0.0484 (16)0.059 (4)0.0007 (19)0.001 (2)0.009 (3)
Geometric parameters (Å, º) top
Cu1—Cu1i2.6126 (4)C11A—C12A1.393 (3)
Cu1—O1B1.9539 (11)C12B—H12B0.9500
Cu1—O2Bi1.9682 (11)C12B—C13B1.382 (3)
Cu1—O1A1.9608 (12)C14A—H14A0.9500
Cu1—O2Ai1.9689 (11)C14A—C13A1.377 (3)
Cu1—O10S2.1078 (11)C18A—H18A0.9800
O1B—C3B1.2624 (19)C18A—H18B0.9800
O2B—Cu1i1.9682 (11)C18A—H18C0.9800
O2B—C3B1.2715 (19)C15B—C14B1.378 (3)
O1A—C3A1.260 (2)C15B—C18B1.517 (3)
O2A—Cu1i1.9690 (11)C14B—H14B0.9500
O2A—C3A1.278 (2)C14B—C13B1.378 (3)
O10S—H10A0.956 (3)C7A—H7A0.9500
O10S—H10B0.956 (3)C7A—C8A1.371 (3)
N10B—C9B1.377 (2)C8A—H8A0.9500
N10B—C11B1.414 (2)C13B—H13B0.9500
N10B—H10C0.88 (2)C6S1—H6SA0.9900
O2S1—C3S11.401 (10)C6S1—H6SB0.9900
O2S1—C1S11.404 (10)C6S1—C7S11.484 (8)
C3B—C4B1.487 (2)C13A—H13A0.9500
C9B—C4B1.425 (2)C13A—C12A1.383 (3)
C9B—C8B1.408 (2)C12A—H12A0.9500
C3A—C4A1.484 (2)C3S1—H3SA0.9900
C4A—C5A1.397 (2)C3S1—H3SB0.9900
C4A—C9A1.418 (2)C3S1—C4S11.490 (7)
C4B—C5B1.392 (2)C7S1—H7SA0.9900
O5S1—C6S11.416 (8)C7S1—H7SB0.9900
O5S1—C4S11.428 (5)C18B—H18D0.9800
C11B—C16B1.400 (2)C18B—H18E0.9800
C11B—C12B1.387 (2)C18B—H18F0.9800
C8B—H8B0.9500C1S1—H1SA0.9800
C8B—C7B1.373 (3)C1S1—H1SB0.9800
C5B—H5B0.9500C1S1—H1SC0.9800
C5B—C6B1.377 (2)C4S1—H4SA0.9900
C5A—H5A0.9500C4S1—H4SB0.9900
C5A—C6A1.379 (3)C9S2—H9SD0.9800
N10A—C9A1.375 (2)C9S2—H9SE0.9800
N10A—C11A1.409 (2)C9S2—H9SF0.9800
N10A—H10D0.86 (2)C9S2—O8S21.414 (14)
C16A—C15A1.405 (2)O2S2—C3S21.369 (19)
C16A—C17A1.509 (3)O2S2—C1S21.37 (2)
C16A—C11A1.399 (3)C3S2—H3SC0.9900
O8S1—C7S11.421 (7)C3S2—H3SD0.9900
O8S1—C9S11.383 (8)C3S2—C4S21.471 (15)
C16B—C17B1.505 (2)C1S2—H1SD0.9800
C16B—C15B1.409 (2)C1S2—H1SE0.9800
C15A—C14A1.391 (3)C1S2—H1SF0.9800
C15A—C18A1.507 (3)C4S2—H4SC0.9900
C6B—H6B0.9500C4S2—H4SD0.9900
C6B—C7B1.393 (3)C4S2—O5S21.397 (12)
C7B—H7B0.9500O5S2—C6S21.407 (17)
C17A—H17A0.9800C6S2—H6SC0.9900
C17A—H17B0.9800C6S2—H6SD0.9900
C17A—H17C0.9800C6S2—C7S21.471 (17)
C6A—H6A0.9500C7S2—H7SC0.9900
C6A—C7A1.388 (3)C7S2—H7SD0.9900
C9A—C8A1.408 (3)C7S2—O8S21.426 (14)
C17B—H17D0.9800C9S1—H9SA0.9800
C17B—H17E0.9800C9S1—H9SB0.9800
C17B—H17F0.9800C9S1—H9SC0.9800
O1B—Cu1—Cu1i89.34 (3)H18A—C18A—H18C109.5
O1B—Cu1—O2Bi168.92 (5)H18B—C18A—H18C109.5
O1B—Cu1—O1A90.57 (5)C16B—C15B—C18B119.69 (19)
O1B—Cu1—O2Ai87.70 (5)C14B—C15B—C16B119.80 (19)
O1B—Cu1—O10S97.42 (5)C14B—C15B—C18B120.51 (19)
O2Bi—Cu1—Cu1i79.58 (3)C15B—C14B—H14B119.4
O2Bi—Cu1—O2Ai90.74 (5)C15B—C14B—C13B121.24 (18)
O2Bi—Cu1—O10S93.65 (5)C13B—C14B—H14B119.4
O1A—Cu1—Cu1i88.07 (3)C6A—C7A—H7A119.6
O1A—Cu1—O2Bi88.85 (5)C8A—C7A—C6A120.85 (17)
O1A—Cu1—O2Ai168.82 (5)C8A—C7A—H7A119.6
O1A—Cu1—O10S95.82 (5)C9A—C8A—H8A119.3
O2Ai—Cu1—Cu1i80.87 (3)C7A—C8A—C9A121.44 (18)
O2Ai—Cu1—O10S95.36 (5)C7A—C8A—H8A119.3
O10S—Cu1—Cu1i172.15 (4)C12B—C13B—H13B120.1
C3B—O1B—Cu1118.18 (10)C14B—C13B—C12B119.72 (19)
C3B—O2B—Cu1i128.64 (10)C14B—C13B—H13B120.1
C3A—O1A—Cu1119.63 (10)O5S1—C6S1—H6SA109.8
C3A—O2A—Cu1i127.34 (10)O5S1—C6S1—H6SB109.8
Cu1—O10S—H10A128.2 (12)O5S1—C6S1—C7S1109.2 (6)
Cu1—O10S—H10B126.1 (13)H6SA—C6S1—H6SB108.3
H10A—O10S—H10B104.9 (7)C7S1—C6S1—H6SA109.8
C9B—N10B—C11B128.08 (14)C7S1—C6S1—H6SB109.8
C9B—N10B—H10C113.6 (14)C14A—C13A—H13A119.9
C11B—N10B—H10C116.1 (15)C14A—C13A—C12A120.19 (19)
C3S1—O2S1—C1S1116.0 (10)C12A—C13A—H13A119.9
O1B—C3B—O2B123.71 (14)C11A—C12A—H12A120.2
O1B—C3B—C4B117.85 (13)C13A—C12A—C11A119.6 (2)
O2B—C3B—C4B118.43 (13)C13A—C12A—H12A120.2
N10B—C9B—C4B120.34 (14)O2S1—C3S1—H3SA109.4
N10B—C9B—C8B122.13 (15)O2S1—C3S1—H3SB109.4
C8B—C9B—C4B117.53 (15)O2S1—C3S1—C4S1111.3 (7)
O1A—C3A—O2A123.41 (15)H3SA—C3S1—H3SB108.0
O1A—C3A—C4A118.05 (14)C4S1—C3S1—H3SA109.4
O2A—C3A—C4A118.53 (14)C4S1—C3S1—H3SB109.4
C5A—C4A—C3A117.47 (15)O8S1—C7S1—C6S1110.1 (5)
C5A—C4A—C9A119.10 (16)O8S1—C7S1—H7SA109.6
C9A—C4A—C3A123.33 (15)O8S1—C7S1—H7SB109.6
C9B—C4B—C3B123.03 (14)C6S1—C7S1—H7SA109.6
C5B—C4B—C3B117.28 (14)C6S1—C7S1—H7SB109.6
C5B—C4B—C9B119.64 (14)H7SA—C7S1—H7SB108.1
C6S1—O5S1—C4S1113.8 (4)C15B—C18B—H18D109.5
C16B—C11B—N10B118.49 (15)C15B—C18B—H18E109.5
C12B—C11B—N10B120.86 (16)C15B—C18B—H18F109.5
C12B—C11B—C16B120.58 (16)H18D—C18B—H18E109.5
C9B—C8B—H8B119.5H18D—C18B—H18F109.5
C7B—C8B—C9B121.08 (16)H18E—C18B—H18F109.5
C7B—C8B—H8B119.5O2S1—C1S1—H1SA109.5
C4B—C5B—H5B119.1O2S1—C1S1—H1SB109.5
C6B—C5B—C4B121.86 (16)O2S1—C1S1—H1SC109.5
C6B—C5B—H5B119.1H1SA—C1S1—H1SB109.5
C4A—C5A—H5A119.0H1SA—C1S1—H1SC109.5
C6A—C5A—C4A121.92 (17)H1SB—C1S1—H1SC109.5
C6A—C5A—H5A119.0O5S1—C4S1—C3S1108.0 (4)
C9A—N10A—C11A129.73 (17)O5S1—C4S1—H4SA110.1
C9A—N10A—H10D111.9 (16)O5S1—C4S1—H4SB110.1
C11A—N10A—H10D118.3 (16)C3S1—C4S1—H4SA110.1
C15A—C16A—C17A120.49 (17)C3S1—C4S1—H4SB110.1
C11A—C16A—C15A119.10 (17)H4SA—C4S1—H4SB108.4
C11A—C16A—C17A120.41 (16)H9SD—C9S2—H9SE109.5
C9S1—O8S1—C7S1112.6 (8)H9SD—C9S2—H9SF109.5
C11B—C16B—C17B121.71 (15)H9SE—C9S2—H9SF109.5
C11B—C16B—C15B118.49 (16)O8S2—C9S2—H9SD109.5
C15B—C16B—C17B119.78 (17)O8S2—C9S2—H9SE109.5
C16A—C15A—C18A121.28 (17)O8S2—C9S2—H9SF109.5
C14A—C15A—C16A119.14 (18)C3S2—O2S2—C1S2121 (2)
C14A—C15A—C18A119.57 (17)O2S2—C3S2—H3SC109.1
C5B—C6B—H6B120.7O2S2—C3S2—H3SD109.1
C5B—C6B—C7B118.52 (17)O2S2—C3S2—C4S2112.4 (15)
C7B—C6B—H6B120.7H3SC—C3S2—H3SD107.9
C8B—C7B—C6B121.35 (16)C4S2—C3S2—H3SC109.1
C8B—C7B—H7B119.3C4S2—C3S2—H3SD109.1
C6B—C7B—H7B119.3O2S2—C1S2—H1SD109.5
C16A—C17A—H17A109.5O2S2—C1S2—H1SE109.5
C16A—C17A—H17B109.5O2S2—C1S2—H1SF109.5
C16A—C17A—H17C109.5H1SD—C1S2—H1SE109.5
H17A—C17A—H17B109.5H1SD—C1S2—H1SF109.5
H17A—C17A—H17C109.5H1SE—C1S2—H1SF109.5
H17B—C17A—H17C109.5C3S2—C4S2—H4SC109.5
C5A—C6A—H6A120.6C3S2—C4S2—H4SD109.5
C5A—C6A—C7A118.74 (17)H4SC—C4S2—H4SD108.1
C7A—C6A—H6A120.6O5S2—C4S2—C3S2110.6 (9)
N10A—C9A—C4A119.92 (16)O5S2—C4S2—H4SC109.5
N10A—C9A—C8A122.18 (17)O5S2—C4S2—H4SD109.5
C8A—C9A—C4A117.82 (17)C4S2—O5S2—C6S2114.8 (10)
C16B—C17B—H17D109.5O5S2—C6S2—H6SC109.3
C16B—C17B—H17E109.5O5S2—C6S2—H6SD109.3
C16B—C17B—H17F109.5O5S2—C6S2—C7S2111.7 (14)
H17D—C17B—H17E109.5H6SC—C6S2—H6SD107.9
H17D—C17B—H17F109.5C7S2—C6S2—H6SC109.3
H17E—C17B—H17F109.5C7S2—C6S2—H6SD109.3
C16A—C11A—N10A117.43 (17)C6S2—C7S2—H7SC110.4
C12A—C11A—N10A121.68 (19)C6S2—C7S2—H7SD110.4
C12A—C11A—C16A120.71 (18)H7SC—C7S2—H7SD108.6
C11B—C12B—H12B119.9O8S2—C7S2—C6S2106.5 (10)
C13B—C12B—C11B120.15 (19)O8S2—C7S2—H7SC110.4
C13B—C12B—H12B119.9O8S2—C7S2—H7SD110.4
C15A—C14A—H14A119.4C9S2—O8S2—C7S2117.0 (13)
C13A—C14A—C15A121.22 (18)O8S1—C9S1—H9SA109.5
C13A—C14A—H14A119.4O8S1—C9S1—H9SB109.5
C15A—C18A—H18A109.5O8S1—C9S1—H9SC109.5
C15A—C18A—H18B109.5H9SA—C9S1—H9SB109.5
C15A—C18A—H18C109.5H9SA—C9S1—H9SC109.5
H18A—C18A—H18B109.5H9SB—C9S1—H9SC109.5
Cu1—O1B—C3B—O2B8.6 (2)C5B—C6B—C7B—C8B1.7 (3)
Cu1—O1B—C3B—C4B170.41 (10)C5A—C4A—C9A—N10A179.92 (18)
Cu1i—O2B—C3B—O1B9.2 (2)C5A—C4A—C9A—C8A3.2 (3)
Cu1i—O2B—C3B—C4B169.80 (10)C5A—C6A—C7A—C8A3.2 (3)
Cu1—O1A—C3A—O2A10.2 (2)N10A—C9A—C8A—C7A178.9 (2)
Cu1—O1A—C3A—C4A168.37 (10)N10A—C11A—C12A—C13A176.3 (2)
Cu1i—O2A—C3A—O1A8.7 (2)C16A—C15A—C14A—C13A2.0 (3)
Cu1i—O2A—C3A—C4A169.93 (10)C16A—C11A—C12A—C13A1.2 (3)
O1B—C3B—C4B—C9B179.72 (14)C16B—C11B—C12B—C13B1.1 (3)
O1B—C3B—C4B—C5B3.1 (2)C16B—C15B—C14B—C13B1.0 (3)
O2B—C3B—C4B—C9B1.2 (2)C15A—C16A—C11A—N10A173.66 (18)
O2B—C3B—C4B—C5B176.01 (15)C15A—C16A—C11A—C12A1.6 (3)
O1A—C3A—C4A—C5A5.4 (2)C15A—C14A—C13A—C12A0.8 (3)
O1A—C3A—C4A—C9A171.06 (16)C17A—C16A—C15A—C14A177.50 (17)
O2A—C3A—C4A—C5A175.93 (14)C17A—C16A—C15A—C18A3.5 (3)
O2A—C3A—C4A—C9A7.6 (2)C17A—C16A—C11A—N10A5.6 (3)
N10B—C9B—C4B—C3B3.1 (2)C17A—C16A—C11A—C12A179.1 (2)
N10B—C9B—C4B—C5B179.74 (15)C6A—C7A—C8A—C9A1.2 (3)
N10B—C9B—C8B—C7B179.34 (17)C9A—C4A—C5A—C6A1.2 (3)
N10B—C11B—C16B—C17B4.4 (2)C9A—N10A—C11A—C16A144.7 (2)
N10B—C11B—C16B—C15B177.08 (16)C9A—N10A—C11A—C12A40.0 (4)
N10B—C11B—C12B—C13B177.97 (18)C17B—C16B—C15B—C14B177.61 (19)
O2S1—C3S1—C4S1—O5S158.7 (11)C17B—C16B—C15B—C18B2.4 (3)
C3B—C4B—C5B—C6B176.76 (17)C11A—N10A—C9A—C4A174.3 (2)
C9B—N10B—C11B—C16B124.92 (18)C11A—N10A—C9A—C8A8.9 (4)
C9B—N10B—C11B—C12B58.1 (3)C11A—C16A—C15A—C14A3.2 (3)
C9B—C4B—C5B—C6B0.5 (3)C11A—C16A—C15A—C18A175.80 (18)
C9B—C8B—C7B—C6B1.3 (3)C12B—C11B—C16B—C17B178.61 (17)
C3A—C4A—C5A—C6A175.39 (15)C12B—C11B—C16B—C15B0.1 (3)
C3A—C4A—C9A—N10A3.7 (3)C14A—C13A—C12A—C11A2.4 (4)
C3A—C4A—C9A—C8A173.24 (17)C18A—C15A—C14A—C13A177.00 (19)
C4A—C5A—C6A—C7A2.0 (3)C15B—C14B—C13B—C12B0.0 (4)
C4A—C9A—C8A—C7A2.0 (3)C6S1—O5S1—C4S1—C3S1178.1 (5)
C4B—C9B—C8B—C7B0.0 (3)C18B—C15B—C14B—C13B179.0 (2)
C4B—C5B—C6B—C7B0.8 (3)C1S1—O2S1—C3S1—C4S1171.1 (12)
O5S1—C6S1—C7S1—O8S167.3 (7)C4S1—O5S1—C6S1—C7S1175.2 (4)
C11B—N10B—C9B—C4B171.23 (16)O2S2—C3S2—C4S2—O5S264 (2)
C11B—N10B—C9B—C8B8.1 (3)C3S2—C4S2—O5S2—C6S2176.1 (11)
C11B—C16B—C15B—C14B0.9 (3)C1S2—O2S2—C3S2—C4S2163 (3)
C11B—C16B—C15B—C18B179.1 (2)C4S2—O5S2—C6S2—C7S2164.7 (10)
C11B—C12B—C13B—C14B1.0 (3)O5S2—C6S2—C7S2—O8S268.1 (17)
C8B—C9B—C4B—C3B176.22 (15)C6S2—C7S2—O8S2—C9S2171.6 (16)
C8B—C9B—C4B—C5B0.9 (2)C9S1—O8S1—C7S1—C6S1172.0 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10A—H10D···O2A0.86 (3)1.86 (3)2.604 (2)143 (2)
N10B—H10C···O2B0.89 (2)1.87 (2)2.6065 (18)139 (2)
Comparison of selected geometries (Å, °) top
Coordinates are unavailable for entry MPANCU10. There are two values per structure, corresponding to the two mefenamate units in the asymmetric unit as denoted A and B in our atom-numbering scheme.
This workMPANCU20SUTPIG
Space groupP21/nP21/cP1
O1—C3—C4—C9171.1 (2)179.7 (1)170.98179.70153 (1)180 (1)
C4—C9—N10—C11174.3 (2)171.2 (2)-166.40171.56171 (1)172 (1)
C9—N10—C11—C16144.7 (2)-124.9 (2)-155.25-109.34-107 (2)135 (2)
Cu—Omefenamate1.961 (1)1.954 (1)1.97371.96051.972 (7)1.949 (7)
Cu—Osolvent2.108 (1)2.15612.17 (1)
Cu···Cu2.6126 (4)2.61202.627 (3)
 

Acknowledgements

The authors acknowledge that the experimental work presented was carried out in the CMAC National Facility, housed within the University of Strathclyde's Technology and Innovation Centre.

Funding information

Funding for this work was provided by: Engineering and Physical Sciences Research Council (EPSRC) Future Continuous Manufacturing and Advanced Crystallization Research Hub (Grant Ref: EP/P006965/1 for MWSC, SO, ARGM, DB, CJP and AN); EPSRC Early Career Fellowship (Grant Ref: EP/N015401/1 for IDHO and MRW); UK Research Partnership Institute Fund (UKRPIF) capital award (Scottish Funding Council ref. H13054, from the Higher Education Funding Council for England).

References

First citationAbbas, N., Oswald, I. D. H. & Pulham, C. R. (2017). Pharmaceutics, 9, 16.  Web of Science CSD CrossRef PubMed Google Scholar
First citationBritish Pharmacopoeia (2017). Part III. London: Medicines and Healthcare products Regulatory Agency; mefenamic acid (Ph. Eur. Monograph 1240).  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChong, M. W. S., Argent, S. P., Moreau, F., Trenholme, W. J. F., Morris, C. G., Lewis, W., Easun, T. L. & Schröder, M. (2022). Chem. Eur. J. 28, e202201188. https://doi.org/10.1002/chem.202201188.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFacchin, G., Torre, M. H., Kremer, E., Piro, O. E. & Baran, E. J. (1998). Z. Naturforsch. B, 53, 871–874.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMague, J. & Ouzidan, Y. (2017). CSD Communication (refcode XYANAC06). CCDC, Cambridge, England.  Google Scholar
First citationMcConnell, J. F. & Company, F. Z. (1976). Cryst. Struct. Commun. 5, 861.  Google Scholar
First citationMys'kiv, M. G., Olijnik, V. V., Kriss, E. E., Konakhovich, N. F. & Grigor'eva, A. S. (1982). Koord. Khim. (Russ.), 8, 1415.  Google Scholar
First citationReichardt, C. & Welton, T. (2011). Editors. Solvents and Solvent Effects in Organic Chemistry, 4th ed., p. 550. Weinheim: Wiley-VCH.  Google Scholar
First citationSeethaLekshmi, S. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 4283–4289.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrinus, F. P., Mokhort, N. A., Yagupol'skii, L. M., Fadeicheva, A. G., Danilenko, V. S., Ryabukha, T. K., Fialkov, Yu. A., Kirichek, L. M., Endel'man, É. S. & Get'man, G. A. (1977). Pharm. Chem. J. 11, 1706–1711.  CrossRef Google Scholar
First citationYang, X., Sarma, B. & Myerson, A. S. (2012). Cryst. Growth Des. 12, 5521–5528.  Web of Science CSD CrossRef CAS Google Scholar
First citationYatsimirskii, K. B., Mys'kiv, M. G., Grigor'eva, A. S., Kris, E. E. & Gladyshevskii, E. I. (1979). Dokl. Akad. Nauk, 247, 1204.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds