research communications
H-pyrazole-κN2)nickel(II) acetonitrile disolvate
and Hirshfeld surface analysis of dichloridotetrakis(4-methyl-1aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, b"Poni Petru" Institute of Macromolecular Chemistry, Aleea Gr. Ghica, Voda 41A, 700487 Iasi, Romania, and cEnamine Ltd, Oleksandra Matrosova Str. 23, Kyiv 01103, Ukraine
*Correspondence e-mail: osvynohradov@ukr.net
The title compound, [NiCl2(C4H6N2)4]·2CH3CN, is a mononuclear octahedral NiII pyrazole-based complex. Two acetonitrile molecules are linked to the NiII complex by N—H⋯N hydrogen bonds. The NiII atom is octahedrally coordinated by four N atoms of four 4-methyl-1H-pyrazole ligands, forming the equatorial plane. The axial positions are occupied by two Cl atoms. [NiCl2(C4H6N2)4]·2CH3CN was synthesized by the reaction of 4-methyl-1H-pyrazole with nickel(II) chloride hexahydrate in acetonitrile solution under ambient conditions and characterized by single-crystal X-ray A Hirshfeld surface analysis was performed, which suggests that the most important contributions to the surface contacts are from H⋯H (62.1%), H⋯N/N⋯H (13.7%), H⋯C/C⋯H (13.4%) and H⋯Cl/Cl⋯H (10.1%) interactions.
Keywords: nickel; nickel(II) complex; crystal structure; pyrazole; Hirshfeld surface analysis.
CCDC reference: 2215549
1. Chemical context
Pyrazoles as ligands are widely used for the synthesis of coordination compounds because of their rich coordinative flexibility (Trofimenko, 1972; Mukherjee, 2000; Monica & Ardizzoia, 2007; Halcrow, 2009; Viciano-Chumillas et al., 2010; Klingele et al., 2009). Numerous studies of the synthesis and structure of transition-metal complexes such as Cu, Fe, Co, Ni, and Zn with pyrazole ligands indicate such compounds exhibit promising properties (Evans et al., 2004; Kirthan et al., 2020; Govor et al., 2012; Kulkarni et al., 2011; Dias et al., 2020; Naik et al., 2016; Malinkin et al., 2012). For example, CuII pyrazole-based complexes are very promising as antioxidants (Kupcewicz, Sobiesiak et al., 2013; Chkirate et al., 2019) and anticancer agents because of their cytotoxic activity (Kupcewicz, Ciolkowski et al., 2013; Aljuhani et al., 2021; Santini et al., 2014). Iron pyrazole-containing complexes have extraordinary electronic properties (Kulmaczewski et al., 2021; Olguín & Brooker, 2011) and in the hydrosilylation of organocarbonyl substrates (Lin et al., 2018). Cobalt complexes with pyrazole ligands are used as catalyst precursors for the peroxidative oxidation of cyclohexane (Silva et al., 2014) and have useful optical and properties (Direm et al., 2021). Zinc complexes with pyrazoles also exhibit antioxidative activity (Barta Holló et al., 2022) and have useful luminescent properties (Li et al., 2004; Singh et al., 2009). The study of the synthesis, structure and properties of nickel complexes with pyrazoles is also important. Nickel(II) pyrazolate complexes can be synthesized by the reaction between nickel(II) salts and pyrazoles in water or organic solvents (Nicholls & Warburton, 1970; Sun et al., 2002; Małecka et al., 2001; Chen et al., 2009). Nickel complexes incorporating pyrazole-based ligands are used for ethylene dimerization (Wang et al., 2015) or polymerization (Nelana et al., 2004; Moreno-Lara et al., 2015). Mononuclear nickel(II) coordination compounds with pyrazoles show anticancer activity. The cytotoxic and apoptotic effects of such compounds suggested that they could be good candidates for further pharmacological research in the field of the development of effective anticancer agents (Gogoi et al., 2019; Sobiesiak et al., 2011). There is also a report on the activation of some organonitriles by transition-metal centers, such as Ni, toward nucleophilic addition of pyrazole (Hsieh et al., 2009). NiII complexes can activate the pyrazole-nitrile coupling reaction. As part of our continuing interest in multifunctional transition-metal complexes with pyrazole ligands, we report herein the synthesis and of a new mononuclear octahedral nickel(II) coordination compound based on 4-methyl-1H-pyrazole.
2. Structural commentary
The title compound has a molecular 2(4-MeHpz)4] units (Fig. 1) and acetonitrile as interstitial molecules in a 1:2 ratio. All the components of the structure are associated via intermolecular N—H⋯N and C—H⋯N hydrogen bonds. Intramolecular N—H⋯N hydrogen bonding is also observed. The NiII ion displays a distorted octahedral coordination environment formed by four pyridine-like nitrogen atoms of 4-MeHpz ligands in the equatorial positions with Ni1—N1 = 2.112 (2) Å and Ni1—N3 = 2.092 (2) Å bond distances and two Cl− anions in axial positions with an Ni1—Cl1 distance of 2.4581 (6) Å. Selected bond lengths and bond angles are given in Table 1. The orientation of the pyrazole ligands around the metal ion is different, as indicated by the plane-to-plane angles of pyrazole rings. Two pyrazole ring planes are almost perpendicular to the NiN4 equatorial plane [86.6 (1)°] whereas two other pyrazole rings are less tilted [43.9 (1)°]. The complex has an NiCl2L4 structure with a trans arrangement of the ligands and crystallographically imposed centrosymmetry.
which is built-up from neutral monomeric [NiCl3. Supramolecular features
The a-axis direction with an Ni⋯Ni separation of 6.9625 (4) Å. A perspective view of a chain is depicted in Fig. 2. Within the chain, the complex molecules interact through N—H⋯Cl hydrogen bonds, while the association with the interstitial acetonitrile molecules occurs via N—H⋯N hydrogen bonds. The geometric parameters of the hydrogen bonds are given in Table 2.
is built up from the parallel packing of discrete supramolecular chains running along the4. Hirshfeld surface analysis
The Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer 17.5 software (Spackman et al., 2021), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed color scale of −0.3714 (red) to 2.0459 (blue) a.u. There are six red spots on the dnorm surface (Fig. 3). The dark-red spots arise from interatomic contacts less than the sum of the corresponding van der Waals radii and represent negative dnorm values on the surface, while the other weaker intermolecular interactions appear as light-red spots. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯N/N⋯H, H⋯C/C⋯H, and H⋯Cl/Cl⋯H contacts. The Hirshfeld surface representations with the function dnorm, which were plotted onto the surface for interactions mentioned above, the overall two-dimensional fingerprint plot, and the decomposed two-dimensional fingerprint plots for the several interactions are given in Fig. 4. The most significant contributions to the overall crystal packing are from H⋯H (62.1%), H⋯N/N⋯H (13.7%), H⋯C/C⋯H (13.4%), and H⋯Cl/Cl⋯H (10.1%). There is also a small contribution from weak Cl⋯C/C⋯Cl (0.2%) and C⋯C (0.4%) intermolecular contacts. These contacts are not visible as red spots on the Hirshfeld surface. The H⋯H contacts are located in the middle region of the two-dimensional fingerprint plot, while H⋯Cl/Cl⋯H contacts form sharp wings on the sides of the corresponding two-dimensional plot.
5. Database survey
A search of the Cambridge Structural Database (CSD version 5.43,November 2021; Groom et al., 2016) for the Ni(C3HN2)4 moiety (C3HN2 is the skeleton of pyrazole ring which is coordinated in a monodentate way) gave 60 hits while the fragment Ni(C3HN2)4X2, where X is any halogen, gave 20 hits (complexes with Cl and Br were found). Most similar to the title compound are the mononuclear nickel(II) pyrazole-based complexes AZEREC (Nelana et al., 2004) and BOGFIN (Tao et al., 2008). These complexes also crystallized in the triclinic P and have similar crystal packings. Other pyrazole-containing complexes are BRTPNI (Mighell et al., 1969), MUWFER (Serpas et al., 2016), NIPYRA (Reimann et al., 1967), NIPYRA01 (Helmholdt et al., 1987), SAGBAH (Akkurt et al., 2020) and SANSUW (Michaud et al., 2005), which crystallized in the monoclinic and, accordingly, have different crystal structures. In addition, all of the above pyrazole-based complexes with terminal chlorine ligands have similar geometric parameters. Finally, the central nickel atom has an octahedral geometric environment in all cases.
6. Synthesis and crystallization
The title compound was obtained by the reaction of 4-MeHpz (1.7 mmol, 0.14g) with NiCl2·6H2O (0.84mmol, 0.2 g) in acetonitrile (10 ml). The mixture of solid starting materials was stirred for 8 h at room temperature and the resultant green–blue solution was then filtered. Light-blue crystals of [NiCl2(C4H6N2)4]·2CH3CN were obtained upon slow evaporation of the solvent over two weeks. CHN elemental analysis: calculated for NiCl2(C4H6N2)4: C 41.95, H 5.28, N 24.46%; found: C 41.79, H 5.07, N 24.78%. The IR spectra of the starting 4-methyl-1H-pyrazole and clear, light-blue crystals of the title coordination compound are given in the supporting information for this article. The synthesis can be described by the following reaction: NiCl2·6H2O + 4C4H6N2 + 2CH3CN = [NiCl2(C4H6N2)4]·2CH3CN + 6H2O.
7. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions [C—N = 0.86 Å, C—H = 0.93 Å (0.96 Å for C-methyl)] and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(C-methyl). Reflections with (ΔF2/esd) > 10 were omitted from the refinement.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2215549
https://doi.org/10.1107/S2056989022010362/mw2191sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022010362/mw2191Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022010362/mw2191Isup3.cdx
IR spectrum of 4-methyl-1H-pyrazole. DOI: https://doi.org/10.1107/S2056989022010362/mw2191sup4.txt
IR spectrum of the title compound. DOI: https://doi.org/10.1107/S2056989022010362/mw2191sup5.txt
Photos of crystals of the title compound (1). DOI: https://doi.org/10.1107/S2056989022010362/mw2191sup6.jpg
Photos of crystals of the title compound (2). DOI: https://doi.org/10.1107/S2056989022010362/mw2191sup7.jpg
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[NiCl2(C4H6N2)4]·2C2H3N | Z = 1 |
Mr = 540.15 | F(000) = 282 |
Triclinic, P1 | Dx = 1.296 Mg m−3 |
a = 6.9625 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.8482 (8) Å | Cell parameters from 1586 reflections |
c = 11.0920 (12) Å | θ = 2.3–29.1° |
α = 74.417 (8)° | µ = 0.92 mm−1 |
β = 81.495 (6)° | T = 293 K |
γ = 71.191 (6)° | Plate, clear light blue |
V = 691.92 (10) Å3 | 0.2 × 0.15 × 0.03 mm |
Xcalibur, Eos diffractometer | 3161 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 2500 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 16.1593 pixels mm-1 | θmax = 29.4°, θmin = 1.9° |
ω scans | h = −8→9 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | k = −13→12 |
Tmin = 0.795, Tmax = 1.000 | l = −14→15 |
5491 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.130 | w = 1/[σ2(Fo2) + (0.0597P)2 + 0.1286P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3161 reflections | Δρmax = 0.57 e Å−3 |
154 parameters | Δρmin = −0.45 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.500000 | 0.500000 | 1.000000 | 0.03038 (17) | |
C3 | 0.7595 (4) | 0.6698 (3) | 0.7894 (3) | 0.0418 (7) | |
H3 | 0.885178 | 0.600521 | 0.807503 | 0.050* | |
N2 | 0.4458 (4) | 0.7836 (3) | 0.7985 (2) | 0.0433 (6) | |
H2 | 0.318650 | 0.807118 | 0.822630 | 0.052* | |
N3 | 0.4456 (3) | 0.4131 (2) | 0.8602 (2) | 0.0357 (5) | |
C5 | 0.2833 (5) | 0.3210 (4) | 0.7604 (3) | 0.0509 (8) | |
H5 | 0.184629 | 0.285430 | 0.742681 | 0.061* | |
C2 | 0.7297 (5) | 0.7927 (4) | 0.6882 (3) | 0.0451 (7) | |
C7 | 0.5519 (4) | 0.3886 (3) | 0.7546 (3) | 0.0423 (7) | |
H7 | 0.676277 | 0.406895 | 0.728729 | 0.051* | |
C6 | 0.4560 (5) | 0.3325 (3) | 0.6874 (3) | 0.0464 (7) | |
C1 | 0.5283 (5) | 0.8623 (4) | 0.6981 (3) | 0.0522 (8) | |
H1 | 0.458925 | 0.949441 | 0.644659 | 0.063* | |
C8 | 0.5300 (7) | 0.2883 (5) | 0.5643 (4) | 0.0789 (12) | |
H8A | 0.602413 | 0.184814 | 0.580475 | 0.118* | |
H8B | 0.618933 | 0.343879 | 0.517855 | 0.118* | |
H8C | 0.415733 | 0.308009 | 0.516557 | 0.118* | |
N1 | 0.5870 (3) | 0.6636 (2) | 0.8565 (2) | 0.0354 (5) | |
Cl1 | 0.14603 (9) | 0.65951 (7) | 0.99696 (7) | 0.0397 (2) | |
N4 | 0.2819 (3) | 0.3701 (3) | 0.8618 (3) | 0.0433 (6) | |
H4 | 0.186829 | 0.373560 | 0.921075 | 0.052* | |
C4 | 0.8908 (6) | 0.8343 (5) | 0.5915 (4) | 0.0752 (12) | |
H4A | 1.021370 | 0.791110 | 0.626254 | 0.113* | |
H4B | 0.861116 | 0.939785 | 0.568022 | 0.113* | |
H4C | 0.892391 | 0.798492 | 0.518891 | 0.113* | |
C9 | 0.9065 (6) | 0.0384 (4) | 0.8290 (4) | 0.0599 (9) | |
N5 | 1.0344 (5) | 0.0551 (4) | 0.7595 (4) | 0.0803 (11) | |
C10 | 0.7409 (5) | 0.0148 (4) | 0.9202 (4) | 0.0674 (11) | |
H10A | 0.620906 | 0.035123 | 0.877485 | 0.101* | |
H10B | 0.714797 | 0.079430 | 0.975807 | 0.101* | |
H10C | 0.777646 | −0.085902 | 0.967767 | 0.101* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0233 (2) | 0.0330 (3) | 0.0342 (3) | −0.01078 (19) | 0.00342 (19) | −0.0069 (2) |
C3 | 0.0322 (14) | 0.0492 (18) | 0.0462 (18) | −0.0196 (13) | 0.0066 (13) | −0.0110 (15) |
N2 | 0.0338 (12) | 0.0407 (15) | 0.0471 (15) | −0.0084 (11) | 0.0012 (11) | −0.0019 (12) |
N3 | 0.0285 (11) | 0.0391 (13) | 0.0412 (14) | −0.0139 (10) | 0.0028 (10) | −0.0105 (11) |
C5 | 0.0442 (17) | 0.057 (2) | 0.061 (2) | −0.0219 (15) | −0.0078 (16) | −0.0199 (17) |
C2 | 0.0520 (18) | 0.056 (2) | 0.0330 (16) | −0.0293 (16) | 0.0077 (14) | −0.0092 (14) |
C7 | 0.0400 (15) | 0.0505 (18) | 0.0417 (17) | −0.0208 (13) | 0.0078 (13) | −0.0160 (14) |
C6 | 0.0565 (19) | 0.0449 (19) | 0.0390 (17) | −0.0168 (15) | −0.0018 (14) | −0.0104 (14) |
C1 | 0.057 (2) | 0.052 (2) | 0.0391 (18) | −0.0174 (16) | −0.0001 (15) | 0.0031 (15) |
C8 | 0.109 (3) | 0.085 (3) | 0.056 (3) | −0.038 (3) | 0.008 (2) | −0.034 (2) |
N1 | 0.0320 (11) | 0.0358 (13) | 0.0383 (13) | −0.0136 (10) | 0.0027 (10) | −0.0072 (11) |
Cl1 | 0.0231 (3) | 0.0415 (4) | 0.0513 (5) | −0.0089 (3) | 0.0037 (3) | −0.0101 (3) |
N4 | 0.0299 (12) | 0.0513 (15) | 0.0537 (16) | −0.0178 (11) | 0.0060 (11) | −0.0181 (13) |
C4 | 0.079 (3) | 0.092 (3) | 0.056 (2) | −0.047 (2) | 0.023 (2) | −0.007 (2) |
C9 | 0.057 (2) | 0.052 (2) | 0.067 (3) | −0.0080 (17) | −0.011 (2) | −0.0142 (19) |
N5 | 0.066 (2) | 0.081 (3) | 0.091 (3) | −0.0224 (18) | 0.009 (2) | −0.022 (2) |
C10 | 0.059 (2) | 0.065 (3) | 0.071 (3) | −0.0125 (19) | −0.002 (2) | −0.014 (2) |
Ni1—N3 | 2.091 (2) | C2—C4 | 1.511 (4) |
Ni1—N3i | 2.092 (2) | C7—H7 | 0.9300 |
Ni1—N1 | 2.112 (2) | C7—C6 | 1.383 (4) |
Ni1—N1i | 2.112 (2) | C6—C8 | 1.512 (5) |
Ni1—Cl1i | 2.4581 (6) | C1—H1 | 0.9300 |
Ni1—Cl1 | 2.4581 (6) | C8—H8A | 0.9600 |
C3—H3 | 0.9300 | C8—H8B | 0.9600 |
C3—C2 | 1.394 (4) | C8—H8C | 0.9600 |
C3—N1 | 1.326 (3) | N4—H4 | 0.8600 |
N2—H2 | 0.8600 | C4—H4A | 0.9600 |
N2—C1 | 1.344 (4) | C4—H4B | 0.9600 |
N2—N1 | 1.345 (3) | C4—H4C | 0.9600 |
N3—C7 | 1.327 (4) | C9—N5 | 1.113 (5) |
N3—N4 | 1.334 (3) | C9—C10 | 1.452 (5) |
C5—H5 | 0.9300 | C10—H10A | 0.9600 |
C5—C6 | 1.365 (4) | C10—H10B | 0.9600 |
C5—N4 | 1.337 (4) | C10—H10C | 0.9600 |
C2—C1 | 1.350 (5) | ||
N3—Ni1—N3i | 180.0 | C6—C7—H7 | 124.0 |
N3i—Ni1—N1i | 88.18 (9) | C5—C6—C7 | 104.0 (3) |
N3i—Ni1—N1 | 91.82 (9) | C5—C6—C8 | 128.1 (3) |
N3—Ni1—N1i | 91.83 (9) | C7—C6—C8 | 127.9 (3) |
N3—Ni1—N1 | 88.17 (9) | N2—C1—C2 | 108.0 (3) |
N3i—Ni1—Cl1i | 89.43 (6) | N2—C1—H1 | 126.0 |
N3i—Ni1—Cl1 | 90.57 (6) | C2—C1—H1 | 126.0 |
N3—Ni1—Cl1 | 89.43 (6) | C6—C8—H8A | 109.5 |
N3—Ni1—Cl1i | 90.57 (6) | C6—C8—H8B | 109.5 |
N1i—Ni1—N1 | 180.0 | C6—C8—H8C | 109.5 |
N1—Ni1—Cl1 | 89.91 (6) | H8A—C8—H8B | 109.5 |
N1i—Ni1—Cl1 | 90.09 (6) | H8A—C8—H8C | 109.5 |
N1—Ni1—Cl1i | 90.09 (6) | H8B—C8—H8C | 109.5 |
N1i—Ni1—Cl1i | 89.91 (6) | C3—N1—Ni1 | 134.1 (2) |
Cl1i—Ni1—Cl1 | 180.0 | C3—N1—N2 | 104.4 (2) |
C2—C3—H3 | 124.1 | N2—N1—Ni1 | 120.53 (17) |
N1—C3—H3 | 124.1 | N3—N4—C5 | 111.9 (3) |
N1—C3—C2 | 111.8 (3) | N3—N4—H4 | 124.0 |
C1—N2—H2 | 124.3 | C5—N4—H4 | 124.0 |
C1—N2—N1 | 111.4 (2) | C2—C4—H4A | 109.5 |
N1—N2—H2 | 124.3 | C2—C4—H4B | 109.5 |
C7—N3—Ni1 | 131.41 (19) | C2—C4—H4C | 109.5 |
C7—N3—N4 | 104.5 (2) | H4A—C4—H4B | 109.5 |
N4—N3—Ni1 | 124.12 (18) | H4A—C4—H4C | 109.5 |
C6—C5—H5 | 126.2 | H4B—C4—H4C | 109.5 |
N4—C5—H5 | 126.2 | N5—C9—C10 | 179.3 (5) |
N4—C5—C6 | 107.6 (3) | C9—C10—H10A | 109.5 |
C3—C2—C4 | 126.4 (3) | C9—C10—H10B | 109.5 |
C1—C2—C3 | 104.3 (3) | C9—C10—H10C | 109.5 |
C1—C2—C4 | 129.3 (3) | H10A—C10—H10B | 109.5 |
N3—C7—H7 | 124.0 | H10A—C10—H10C | 109.5 |
N3—C7—C6 | 112.1 (3) | H10B—C10—H10C | 109.5 |
Ni1—N3—C7—C6 | −178.4 (2) | C1—N2—N1—Ni1 | −170.4 (2) |
Ni1—N3—N4—C5 | 179.1 (2) | C1—N2—N1—C3 | 0.0 (3) |
C3—C2—C1—N2 | −0.5 (4) | N1—C3—C2—C1 | 0.5 (4) |
N3—C7—C6—C5 | −1.2 (4) | N1—C3—C2—C4 | −179.4 (3) |
N3—C7—C6—C8 | −178.9 (3) | N1—N2—C1—C2 | 0.3 (4) |
C2—C3—N1—Ni1 | 168.1 (2) | N4—N3—C7—C6 | 1.0 (3) |
C2—C3—N1—N2 | −0.3 (3) | N4—C5—C6—C7 | 0.8 (4) |
C7—N3—N4—C5 | −0.5 (3) | N4—C5—C6—C8 | 178.5 (3) |
C6—C5—N4—N3 | −0.3 (4) | C4—C2—C1—N2 | 179.4 (3) |
Symmetry code: (i) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···N5ii | 0.86 | 2.60 | 3.217 (4) | 130 |
C10ii—H10Cii···Cl1 | 0.96 | 2.94 | 3.697 (3) | 137 |
N2—H2···Cl1 | 0.86 | 2.50 | 3.088 (3) | 127 |
N4—H4···Cl1iii | 0.86 | 2.45 | 3.217 (2) | 149 |
C10i—H10Bi···Cl1 | 0.96 | 3.12 | 3.8958 (3) | 139 |
C5—H5···N5iv | 0.93 | 2.74 | 3.5785 (2) | 150 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x−1, y+1, z; (iii) −x, −y+1, −z+2; (iv) x−1, y, z. |
Funding information
Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 22BF037-09).
References
Akkurt, M. (2020). CSD Communication (CCDC 2040441). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc26h7pn Google Scholar
Aljuhani, E., Aljohani, M. M., Alsoliemy, A., Shah, R., Abumelha, H. M., Saad, F. A., Hossan, A., Al-Ahmed, Z. A., Alharbi, A. & El-Metwaly, N. M. (2021). Heliyon, 7, e08485. Web of Science CrossRef PubMed Google Scholar
Barta Holló, B., Radanović, M. M., Rodić, M. V., Krstić, S., Jaćimović, Ž. K. & Vojinović Ješić, L. S. (2022). Inorganics, 10, 20. Google Scholar
Chen, C.-H., Hsieh, C.-C., Lee, H. M. & Horng, Y.-C. (2009). Acta Cryst. E65, m1680. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N. & Garcia, Y. (2019). J. Inorg. Biochem. 191, 21–28. Web of Science CSD CrossRef CAS PubMed Google Scholar
Dias, I. M., Junior, H. C. S., Costa, S. C., Cardoso, C. M., Cruz, A. G. B., Santos, C. E. R., Candela, D. R. S., Soriano, S., Marques, M. M., Ferreira, G. B. & Guedes, G. P. (2020). J. Mol. Struct. 1205, 127564. Web of Science CSD CrossRef Google Scholar
Direm, A., El Bali, B., Sayin, K., Abdelbaky, M. S. M. & García-Granda, S. (2021). J. Mol. Struct. 1235, 130266. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Evans, I. R., Howard, J. A. K., Howard, L. E. M., Evans, J. S. O., Jaćimović, Ž. K., Jevtović, V. S. & Leovac, V. M. (2004). Inorg. Chim. Acta, 357, 4528–4536. Web of Science CSD CrossRef CAS Google Scholar
Gogoi, A., Dutta, D., Verma, A. K., Nath, H., Frontera, A., Guha, A. K. & Bhattacharyya, M. K. (2019). Polyhedron, 168, 113–126. Web of Science CSD CrossRef CAS Google Scholar
Govor, E. V., Chakraborty, I., Piñero, D. M., Baran, P., Sanakis, Y. & Raptis, R. G. (2012). Polyhedron, 45, 55–60. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Halcrow, M. A. (2009). Dalton Trans. pp. 2059–2073. Web of Science CrossRef Google Scholar
Helmholdt, R. B., Hinrichs, W. & Reedijk, J. (1987). Acta Cryst. C43, 226–229. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Hsieh, C.-C., Lee, C.-J. & Horng, Y.-C. (2009). Organometallics, 28, 4923–4928. Web of Science CSD CrossRef CAS Google Scholar
Kirthan, B. R., Prabhakara, M. C., Naik, H. S. B., Nayak, P. H. A. & Naik, E. I. (2020). Chem. Data Collect. 29, 100506. CrossRef Google Scholar
Klingele, J., Dechert, S. & Meyer, F. (2009). Coord. Chem. Rev. 253, 2698–2741. Web of Science CrossRef CAS Google Scholar
Kulkarni, N. V., Kamath, A., Budagumpi, S. & Revankar, V. K. (2011). J. Mol. Struct. 1006, 580–588. Web of Science CrossRef CAS Google Scholar
Kulmaczewski, R., Bamiduro, F., Shahid, N., Cespedes, O. & Halcrow, M. A. (2021). Chem. Eur. J. 27, 2082–2092. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kupcewicz, B., Ciolkowski, M., Karwowski, B. T., Rozalski, M., Krajewska, U., Lorenz, I.-P., Mayer, P. & Budzisz, E. (2013). J. Mol. Struct. 1052, 32–37. Web of Science CSD CrossRef CAS Google Scholar
Kupcewicz, B., Sobiesiak, K., Malinowska, K., Koprowska, K., Czyz, M., Keppler, B. & Budzisz, E. (2013). Med. Chem. Res. 22, 2395–2402. Web of Science CrossRef CAS PubMed Google Scholar
Li, J., Zhou, J.-H., Li, Y.-Z., Weng, L.-H., Chen, X.-T., Yu, Z. & Xue, Z. (2004). Inorg. Chem. Commun. 7, 538–541. Web of Science CSD CrossRef CAS Google Scholar
Lin, H.-J., Lutz, S., O'Kane, C., Zeller, M., Chen, C.-H., Al Assil, T. & Lee, W.-T. (2018). Dalton Trans. 47, 3243–3247. Web of Science CSD CrossRef CAS PubMed Google Scholar
Małecka, M., Rybarczyk-Pirek, A., Olszak, T. A., Malinowska, K. & Ochocki, J. (2001). Acta Cryst. C57, 513–514. Web of Science CSD CrossRef IUCr Journals Google Scholar
Malinkin, S. O., Penkova, L., Moroz, Y. S., Haukka, M., Maciag, A., Gumienna–Kontecka, E., Pavlenko, V. A., Pavlova, S., Nordlander, E. & Fritsky, I. O. (2012). Eur. J. Inorg. Chem. 2012, 1639–1649. Web of Science CSD CrossRef CAS Google Scholar
Michaud, A., Fontaine, F.-G. & Zargarian, D. (2005). Acta Cryst. E61, m846–m848. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mighell, A. D., Reimann, C. W. & Santoro, A. (1969). Acta Cryst. B25, 595–599. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Monica, G. L. & Ardizzoia, G. A. (2007). Prog. Inorg. Chem. 46, 151–238. Google Scholar
Moreno-Lara, B., Carabineiro, S. A., Krishnamoorthy, P., Rodríguez, A. M., Mano, J. F., Manzano, B. R., Jalón, F. A. & Gomes, P. T. (2015). J. Organomet. Chem. 799–800, 90–98. CAS Google Scholar
Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218. Web of Science CrossRef CAS Google Scholar
Naik, K., Nevrekar, A., Kokare, D. G., Kotian, A., Kamat, V. & Revankar, V. K. (2016). J. Mol. Struct. 1125, 671–679. Web of Science CrossRef CAS Google Scholar
Nelana, S. M., Darkwa, J., Guzei, I. A. & Mapolie, S. F. (2004). J. Organomet. Chem. 689, 1835–1842. Web of Science CSD CrossRef CAS Google Scholar
Nicholls, D. & Warburton, B. A. (1970). J. Inorg. Nucl. Chem. 32, 3871–3874. CrossRef CAS Web of Science Google Scholar
Olguín, J. & Brooker, S. (2011). Coord. Chem. Rev. 255, 203–240. Google Scholar
Reimann, C. W., Mighell, A. D. & Mauer, F. A. (1967). Acta Cryst. 23, 135–141. CSD CrossRef IUCr Journals Web of Science Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. & Marzano, C. (2014). Chem. Rev. 114, 815–862. Web of Science CrossRef CAS PubMed Google Scholar
Serpas, L., Baum, R. R., McGhee, A., Nieto, I., Jernigan, K. L., Zeller, M., Ferrence, G. M., Tierney, D. L. & Papish, E. T. (2016). Polyhedron, 114, 62–71. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silva, F. S. T., Martins, M. D. R. S., Guedes da Silva, m. F. C., Kuznetsov, M. L., Fernandes, A. R., Silva, A., Pan, C.-J., Lee, J.-F., & Pombeiro, A. J. L. (2014). Chem. Asian J. 9, 1132–1143. Web of Science CAS PubMed Google Scholar
Singh, U. P., Tyagi, P. & Pal, S. (2009). Inorg. Chim. Acta, 362, 4403–4408. Web of Science CSD CrossRef CAS Google Scholar
Sobiesiak, M., Lorenz, I.-P., Mayer, P., Woźniczka, M., Kufelnicki, A., Krajewska, U., Rozalski, M. & Budzisz, E. (2011). Eur. J. Med. Chem. 46, 5917–5926. Web of Science CSD CrossRef CAS PubMed Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y.-J., Chen, X.-Y., Cheng, P., Yan, S.-P., Liao, D.-Z., Jiang, Z.-H. & Shen, P.-W. (2002). J. Mol. Struct. 613, 167–173. Web of Science CSD CrossRef CAS Google Scholar
Tao, T. L., Riordan, C. G. & Yap, G. P. A. (2008). CSD Communication (CCDC 669874). CCDC, Cambridge, England. https://doi.org/10.5517/ccqh1v2 Google Scholar
Trofimenko, S. (1972). Chem. Rev. 72, 497–509. CrossRef CAS Web of Science Google Scholar
Viciano–Chumillas, M., Tanase, S., de Jongh, L. J. & Reedijk, J. (2010). Eur. J. Inorg. Chem. pp. 3403–3418. Google Scholar
Wang, T., Dong, B., Chen, Y.-H., Mao, G.-L. & Jiang, T. (2015). J. Organomet. Chem. 798, 388–392. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.