research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(2,2,6,6-tetra­methyl­piperidin-4-yl)-6-[(2,2,6,6-tetra­methyl­piperidin-4-yl)amino]-1H-benz[de]iso­quinoline-1,3(2H)-dione

crossmark logo

aDepartment of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Ave, Eau Claire, WI, 54702, USA, and bRigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX, 77381, USA
*Correspondence e-mail: gerlacdl@uwec.edu

Edited by J. T. Mague, Tulane University, USA (Received 7 October 2022; accepted 26 October 2022; online 1 November 2022)

The structure of the title compound, C30H42N4O2, has ortho­rhom­bic (Pbca) symmetry. This compound comprises a 4-amino-1,8-naphthalimide core with a 2,2,6,6-tetra­methyl-4-piperidinyl substituent bonded to each nitro­gen atom. The structure displays N—H⋯O hydrogen bonding. The structure exhibits disorder of the main mol­ecule.

1. Chemical context

The 4-amino-1,8-naphthalimide [6-amino-1H-benz[de]-iso­quin­oline-1,3-(2H)-dione, 1] fluoro­phore has long been recognized as a robust scaffold on which to build fluorescent labels for a wide range of applications. The fluoro­phore has many desirable properties: (i) unless substituted by a halogen at the 3- position, it is essentially non-toxic to cells, and when substituted by bromine at the 3- position it is highly effective for photochemical inactivation of enveloped viruses such as HIV-1 (Lewis et al., 1993[Lewis, D. E., Utecht, R. E., Judy, M. M., Matthews, J. L. & Chanh, T. C. (1993). Spectrum, 6, 8-14.]; Chang et al., 1993[Chang, S.-C., Archer, B. J., Utecht, R. E., Lewis, D. E., Judy, M. M. & Matthews, J. L. (1993). Bioorg. Med. Chem. Lett. 3, 555-556.]; Chanh et al., 1993[Chanh, T. C., Lewis, D. E., Allan, J. S., Sogandares-Bernal, F., Judy, M. M., Utecht, R. E. & Matthews, J. L. (1993). AIDS Res. Hum. Retroviruses, 9, 891-896.], 1994[Chanh, T. C., Lewis, D. E., Judy, M. M., Sogandares-Bernal, F., Michalek, G. R., Utecht, R. E., Skiles, H., Chang, S.-C. & Matthews, J. L. (1994). Antivir. Res. 25, 133-146.]); (ii) it has a high quantum yield; (iii) it has a large (typically ≥100 nm) Stokes shift, which permits its use in fluorescence microscopy with minimal inter­ference from scattering of the excitation radiation (Qian et al., 2010[Qian, X., Yi, X., Xu, Y., Guo, X., Qian, J. & Zhu, W. (2010). Chem. Commun. 46, 35, 6418-6436.]; Srikun et al., 2008[Srikun, D., Miller, E. W., Domaille, D. W. & Chang, C. J. (2008). J. Am. Chem. Soc. 130, 4596-4597.]); (iv) it is resistant to quenching, including by paramagnetic metal ions such as Cu2+ (Mitchell et al., 1998[Mitchell, K. A., Brown, R. G., Yuan, D., Chang, S.-C., Utecht, R. E. & Lewis, D. E. (1998). J. Photochem. Photobiol. Chem. 115, 157-161.]; Veale et al., 2009[Veale, E. B., Tocci, G. M., Pfeffer, F. M., Kruger, P. E. & Gunnlaugsson, T. (2009). Org. Biomol. Chem. 7, 3447-3454.]; Lupo et al., 2010[Lupo, F., Gentile, S., Ballistreri, F. P., Tomaselli, G. A., Fragalà, M. E. & Gulino, A. (2010). Analyst, 135, 2273-2279.]; Wang et al., 2011[Wang, H., Wu, H., Xue, L., Shi, Y. & Li, X. (2011). Org. Biomol. Chem. 9, 5436-5444.]); (v) it is highly resistant to photochemical bleaching (Sakayori et al., 2005[Sakayori, K., Shibasaki, Y. & Ueda, M. (2005). J. Polym. Sci. A Polym. Chem. 43, 5571-5580.]; Bojinov et al., 2009[Bojinov, V. B., Georgiev, N. I. & Bosch, P. (2009). J. Fluoresc. 19, 127-139.]); (vi) its optimal excitation is in the visible, rather than the ultraviolet region; (vii) it is easy to manipulate synthetically, thus allowing a very wide range of reporter ligands to be incorporated into the fluorescent probe (Chang et al., 1999[Chang, S.-C., Utecht, R. E. & Lewis, D. E. (1999). Dyes Pigments, 43, 83-94.]; Zhu et al., 2010[Zhu, B. C., Zhang, X. L., Li, Y., Wang, P. F., Zhang, H. Y. & Zhuang, X. Q. (2010). Chem. Commun. 46, 5710-5712.]; Zheng et al., 2012[Zheng, S., Lynch, P. L. M., Rice, T. E., Moody, T. S., Gunaratne, H. Q. N. & de Silva, A. P. (2012). Photochem. Photobiol. Sci. 11, 1675-1681.]).

Typically, the groups attached to the aminona­phthalimide fluoro­phore have been small, allowing relatively easy access of the surroundings to the fluoro­phore. We have been inter­ested in the synthesis and properties of this fluoro­phore substituted by sterically hindered groups. One such mol­ecule, 2-(2,2,6,6-tetra­methyl-4-piperidin­yl)-6-[(2,2,6,6-tetra­methyl-4-piperidin­yl)amino]-1H-benz[de]iso­quinoline-1,3(2H)-dione (designa­ted herein as bis-TMP naphthalimide), was designed, and synthesized by the two-stage reaction between 4-nitro-1,8-naphthalic anhydride and 4-amino-2,2,6,6-tetra­methyl­piperidine in ethanol then DMF; it was previously reported as a photostable detector for transition-metal cation pollution in the environment through electron transfer between fluoro­phore and receptor moieties (Grabchev et al., 2004[Grabchev, I., Soumillion, J. P., Muls, B. & Ivanova, G. (2004). Photochem. Photobiol. Sci. 3, 1032-1037.]; Bojinov et al., 2009[Bojinov, V. B., Georgiev, N. I. & Bosch, P. (2009). J. Fluoresc. 19, 127-139.]). In our synthesis, the same compound was obtained by the solvent-free condensation of 4-chloro-1,8-naphthalic anhydride and 4-amino-2,2,6,6-tetra­methyl­piperidine by fusion of the reaction mixture. The crystal structure of bis-TMP naphthalimide is reported here (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
The asymmetric unit of bis-TMP naphthalamide represented with displacement ellipsoids at the 50% probability level and disordered TMP omitted for clarity.

2. Structural commentary

Evidence of two major resonance contributors to the structure of this bis-TMP naphthalimide is provided by the N2—C5 and C1—C2 bond lengths. Direct comparison of the C—N bond lengths of the amine/imide clearly highlight the shortened N2—C5 bond at 1.357 (2) Å compared to the longer N2—C1A bond at 1.460 (2) Å, consistent with greater double-bond character of the former. Likewise, direct comparison of the length of the C1—C2 bond at 1.455 (2) Å with the length of the corresponding C12—C10 bond at 1.473 (2) Å is also consistent with greater double-bond character due to resonance of the network along the O1 side of the napthalimide (see Fig. 2[link]). The sole comparison of the bond length of C1—O1 and C12—O2 at 1.233 (2) and 1.224 (2) Å, respectively, indicates a subtle variation in length that reinforces the evidence of resonance in the naphthalimide core increasing the single-bond character of C1—O1 and lengthening it. However, as seen in the discussion of supra­molecular features, O1 is also involved in inter­molecular hydrogen bonding, which may be a greater contributing factor to reducing the C1—O1 bond order.

[Figure 2]
Figure 2
Important resonance contributors to the structure of the bis-TMP naphthalimide mol­ecule.

3. Supra­molecular features

Hydrogen bonding between adjacent mol­ecules repeats in the direction of the b-axis with a typical donor-to-acceptor distance of 3.013 (2) Å for N2—H2⋯O1 and a D—H⋯A angle of 165° (Fig. 3[link], Table 1[link]). Adjacent hydrogen-bonded mol­ecules are rotated by 69.76° with respect to the plane defined by the three fused rings making up the 1H-benz[de]iso­quinoline-1,3(2H)-dione (or naphthalimide) core in each mol­ecule. While O1 forms a standard hydrogen bond with N2—H2, O2 has close contact with C9—H9 across an inversion center along the path of the c-axis such that two close contacts are in parallel with a C9—H9⋯O2 distance of 3.203 (2) Å and C9—H9⋯O2 angle of 128°. This relatively close distance and obtuse angle implies that the C9 edge of the fused-ring system carries a significant partial positive charge while O2 carries a significant partial negative charge, resulting in a van der Waals inter­action mimicking a hydrogen bond (Arunan et al., 2011[Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011). Pure Appl. Chem. 83, 1637-1641.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.17 3.0134 (18) 165
C9—H9⋯O2ii 0.93 2.54 3.203 (2) 128
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
Inter­molecular N2—H2⋯O1 hydrogen bonds linking adjacent mol­ecules are shown as magenta dashed lines (hydrogen atoms and disordered TMP moiety are omitted for clarity).

These hydrogen bonds and close dipole attractions organize the naphthalimide cores into sheets parallel to the bc plane. The packing along the a-axis direction is defined by spatial accommodation of the two bulky TMP moieties of each mol­ecule. It is the steric bulk of these groups that prevents any appreciable π-stacking of the naphthalimide cores. Some T-shaped π-stacking is observed by the C2, C3, C4, C5, C6, C11 edge of the A-ring of the naphthalimide ring system to the C7 and C8 edge of the B-ring of an adjacent naphthalimide ring system. The distances measured from the centroid of the A-ring of the first naphthalimide ring system and atoms C7 and C8 of the B-ring of the second naphthalimide system are 4.968 and 5.081 Å, respectively.

4. Database survey

The Cambridge Structural Database (CSD, version 5.42, update of 11/20; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains many unique 1,8-derivatives of 1H-benz[de]iso­quinoline-1,3(2H)-dione but no examples that contain TMP moieties. A search for C30H42N4O2 in the database provided seven hits, none of which were the same mol­ecule reported here.

5. Synthesis and crystallization

The title compound was synthesized according to the previously published procedure (Bojinov et al., 2009[Bojinov, V. B., Georgiev, N. I. & Bosch, P. (2009). J. Fluoresc. 19, 127-139.]) and clear, orange rod-like crystals were grown from slow evaporation of an acetone solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Disorder of the tetra­methyl­piperidine (TMP) moiety defined by N3 was refined in two conformations with sufficient restraints and constraints to maintain the typical geometry of the TMP moiety. The disordered components had their ratios set to 0.61 and 0.39. No standard uncertainties are reported as the occupancy ratios were fixed. The reported ratios are the fixed percentages that yielded the best structural model as judged by RI, wR2, and resolution of any residual electron density. H atoms attached to carbon and nitro­gen were positioned geometrically (N—H = 0.86 Å, C—H = 0.93–0.97 Å) and constrained to ride on their parent atoms. Uiso(H) values were set to a multiple of Ueq(C) [1.2 for CH (sp), CH2 (sp2), and NH (sp2) and 1.5 for CH3 (sp3)].

Table 2
Experimental details

Crystal data
Chemical formula C30H42N4O2
Mr 490.67
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 293
a, b, c (Å) 12.0297 (7), 14.6357 (7), 32.763 (2)
V3) 5768.4 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.56 × 0.27 × 0.18
 
Data collection
Diffractometer XtaLAB Mini II
Absorption correction Analytical [CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO . Rigaku Oxford Diffraction, Yarnton, England.]; analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.962, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 80396, 5164, 3812
Rint 0.031
(sin θ/λ)max−1) 0.598
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.142, 1.02
No. of reflections 5164
No. of parameters 428
No. of restraints 156
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.15
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO . Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-(2,2,6,6-Tetramethylpiperidin-4-yl)-6-[(2,2,6,6-tetramethylpiperidin-4-yl)amino]-1H-benz[de]isoquinoline-1,3(2H)-dione top
Crystal data top
C30H42N4O2Dx = 1.130 Mg m3
Mr = 490.67Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 6091 reflections
a = 12.0297 (7) Åθ = 2.1–23.5°
b = 14.6357 (7) ŵ = 0.07 mm1
c = 32.763 (2) ÅT = 293 K
V = 5768.4 (6) Å3Needle, orange
Z = 80.56 × 0.27 × 0.18 mm
F(000) = 2128
Data collection top
XtaLAB Mini II
diffractometer
3812 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.031
ω scansθmax = 25.2°, θmin = 2.1°
Absorption correction: analytical
[CrysAlisPro; Rigaku OD, 2022; analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
h = 1414
Tmin = 0.962, Tmax = 0.990k = 1716
80396 measured reflectionsl = 3939
5164 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0686P)2 + 1.5942P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.142(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.25 e Å3
5164 reflectionsΔρmin = 0.15 e Å3
428 parametersExtinction correction: SHELXL-2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
156 restraintsExtinction coefficient: 0.0014 (3)
Special details top

Experimental. A clear, orange rod-like crystal of C30H42N4O2 was grown from slow evaporation of acetone. The crystal of dimensions 0.178 x 0.265 x 0.563 mm was mounted on MiTeGen loop with Parabar oil and diffraction data was collected. Diffraction data was collected with a Rigaku XtaLAB Mini II benchtop X-ray diffractometer with a fine-focus sealed Mo-target X-ray tube (λ = 0.71073 Å) operated at 600 W power (50 kV, 12 mA) and a HyPix-Bantam Hybrid Photon Counting (HPC) Detector. The X-ray intensities were measured at 293 (2) K; the detector was placed at a distance 4.50 cm from the crystal. The collected frames were integrated with the CrysAlisPro 1.171.41.89a (Rigaku Oxford Diffraction, 2022) software package using a narrow-frame algorithm. Data were corrected for absorption effects using a multifaceted crystal analytical numeric absorption correction (Clark & Reid, 1995) and spherical harmonic empirical absorption correction implemented in the SCALE3 ABSPACK scaling algorithm. With the use of a Mo fine focus beam, both standard multi-scan and combined multi-scan/analytical absorption corrections yielding similar results, and the linear absorption coefficient of 0.071 it was surmised that shape anisotropy had negligible influence on absorption and the crystal analyzed showed the highest quality. The space group was assigned using the GRAL algorithm within the CrysAlisPro 1.171.41.89a software package, solved with ShelXT (Sheldrick, 2015a) and refined with ShelXL (Sheldrick, 2015b) and the graphical interface Olex2 v1.3 (Dolomanov et al., 2009). The asymmetric unit includes one unit of the C30H42N4O2 molecule. All non-hydrogen atoms were refined anisotropically.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.54190 (10)0.79035 (8)0.63165 (4)0.0600 (4)
N10.48104 (11)0.68697 (9)0.58470 (4)0.0497 (4)
O20.42262 (12)0.58100 (10)0.53855 (4)0.0785 (5)
N20.90392 (13)0.47902 (10)0.66263 (5)0.0620 (4)
H20.9083100.4260960.6513410.074*
C110.65878 (13)0.56849 (10)0.60677 (4)0.0385 (4)
C20.64762 (13)0.65558 (10)0.62532 (5)0.0419 (4)
C60.74695 (14)0.50901 (11)0.61780 (5)0.0429 (4)
N1'1.18903 (15)0.50136 (12)0.73813 (6)0.0739 (5)
C10.55558 (14)0.71571 (11)0.61494 (5)0.0450 (4)
C100.58162 (13)0.54143 (11)0.57671 (5)0.0427 (4)
C50.82443 (14)0.53746 (11)0.64913 (5)0.0484 (4)
C120.48992 (14)0.60266 (12)0.56483 (5)0.0501 (4)
C30.72623 (15)0.68194 (11)0.65358 (5)0.0512 (4)
H30.7208990.7397100.6652460.061*
C40.81258 (15)0.62551 (12)0.66515 (6)0.0562 (5)
H40.8641950.6465550.6840790.067*
C70.75413 (16)0.42440 (12)0.59757 (6)0.0559 (5)
H70.8108810.3840850.6044370.067*
C90.59299 (16)0.45839 (12)0.55745 (5)0.0555 (5)
H90.5426580.4412410.5373150.067*
C1A0.98242 (15)0.50075 (12)0.69519 (6)0.0561 (5)
H1A0.9432130.5368480.7158630.067*
C1B'0.386 (3)0.7491 (18)0.5753 (6)0.0582 (9)0.39
C80.67939 (17)0.40020 (13)0.56801 (6)0.0638 (5)
H80.6865600.3441960.5548620.077*
C5A1.02551 (18)0.41457 (13)0.71540 (7)0.0674 (6)
H5AA1.0650810.3781560.6953790.081*
H5AB0.9631280.3788040.7252310.081*
C2A1.08065 (17)0.55632 (14)0.68009 (7)0.0682 (6)
H2AA1.0535700.6106570.6663610.082*
H2AB1.1222490.5205360.6604050.082*
C4A1.10345 (18)0.43604 (13)0.75119 (7)0.0688 (6)
C3A1.15818 (17)0.58465 (14)0.71509 (7)0.0708 (6)
C6A1.1047 (2)0.65994 (15)0.74091 (8)0.0918 (8)
H6AA1.0320650.6407620.7494580.138*
H6AB1.0986440.7147630.7249820.138*
H6AC1.1500060.6714950.7644820.138*
C8A1.1671 (2)0.34944 (16)0.76296 (10)0.1126 (11)
H8AA1.2097700.3285890.7400090.169*
H8AB1.1154420.3027840.7709450.169*
H8AC1.2161850.3626310.7853160.169*
C16B0.3244 (8)0.8717 (5)0.5282 (2)0.0769 (8)0.39
C9A1.0374 (2)0.4680 (2)0.78833 (8)0.1004 (8)
H9AA1.0877140.4845400.8098350.151*
H9AB0.9897200.4195610.7974920.151*
H9AC0.9930900.5200900.7810220.151*
C7A1.2668 (2)0.6219 (2)0.69801 (10)0.1129 (10)
H7AA1.3163450.6360920.7200860.169*
H7AB1.2521500.6762290.6825040.169*
H7AC1.3004360.5768260.6806590.169*
C15B0.1852 (5)0.7834 (5)0.5713 (3)0.0908 (19)0.39
C13B0.4103 (6)0.7963 (5)0.5371 (2)0.0734 (15)0.39
H13A0.4101600.7524630.5149200.088*0.39
H13B0.4838110.8232250.5386430.088*0.39
C14B0.2731 (4)0.7072 (4)0.5771 (2)0.0772 (14)0.39
H14A0.2623010.6774890.6033060.093*0.39
H14B0.2653680.6615750.5558420.093*0.39
C17B0.1659 (9)0.8375 (7)0.6110 (3)0.120 (3)0.39
H17A0.1374500.7972480.6316450.180*0.39
H17B0.1133540.8855910.6060750.180*0.39
H17C0.2350040.8633740.6200720.180*0.39
C18B0.0732 (6)0.7362 (7)0.5625 (4)0.127 (3)0.39
H18A0.0810660.6960250.5395650.191*0.39
H18B0.0178870.7816170.5565780.191*0.39
H18C0.0507190.7016310.5860310.191*0.39
C1A'0.3888 (17)0.7484 (11)0.5710 (4)0.0582 (8)0.61
H1A'0.3521300.7163210.5484590.070*0.61
C14A0.3019 (3)0.7590 (3)0.60353 (11)0.0649 (8)0.61
H14C0.3346000.7900610.6267590.078*0.61
H14D0.2785710.6988430.6125310.078*0.61
C15A0.1991 (3)0.8127 (3)0.58943 (13)0.0769 (8)0.61
C18A0.1236 (5)0.7516 (4)0.5629 (2)0.116 (2)0.61
H18D0.1667080.7247950.5413770.174*0.61
H18E0.0650570.7879570.5513960.174*0.61
H18F0.0920890.7041750.5795080.174*0.61
C17A0.1309 (6)0.8422 (5)0.62700 (18)0.1162 (19)0.61
H17D0.1071250.7889600.6417540.174*0.61
H17E0.0669790.8762270.6182480.174*0.61
H17F0.1760170.8796880.6444070.174*0.61
N3A0.2379 (3)0.8959 (2)0.56933 (10)0.0702 (7)0.61
C19A0.3559 (5)0.9944 (3)0.5302 (2)0.151 (3)0.61
H19A0.2936171.0278950.5195940.227*0.61
H19B0.4153500.9953740.5106150.227*0.61
H19C0.3805071.0220240.5551580.227*0.61
C13A0.4234 (3)0.8408 (3)0.55399 (13)0.0711 (10)0.61
H13C0.4754350.8319700.5317380.085*0.61
H13D0.4604980.8757890.5751320.085*0.61
C20A0.2847 (6)0.8554 (5)0.49672 (15)0.153 (4)0.61
H20A0.3428690.8646100.4770880.229*0.61
H20B0.2184590.8858910.4876920.229*0.61
H20C0.2701800.7911810.4994770.229*0.61
N3B0.2136 (4)0.8350 (4)0.53552 (19)0.0963 (15)0.39
H3B0.1638990.8754340.5301330.116*0.39
C19B0.3506 (7)0.9570 (5)0.5541 (3)0.126 (3)0.39
H19D0.3753020.9383630.5806890.189*0.39
H19E0.2847700.9936210.5567050.189*0.39
H19F0.4078800.9919820.5410310.189*0.39
C20B0.3297 (13)0.8977 (11)0.4826 (3)0.176 (7)0.39
H20D0.3031230.8476070.4664220.264*0.39
H20E0.4051370.9112490.4752690.264*0.39
H20F0.2840570.9504340.4778490.264*0.39
H1'1.230 (3)0.513 (2)0.7596 (10)0.156 (13)*
H1B'0.388 (4)0.792 (2)0.5982 (8)0.049 (12)*0.39
C16A0.3210 (5)0.8948 (3)0.53838 (14)0.0769 (8)0.61
H3A0.189 (3)0.932 (3)0.5619 (12)0.088 (13)*0.61
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0614 (8)0.0420 (7)0.0765 (9)0.0064 (6)0.0148 (7)0.0154 (6)
N10.0488 (8)0.0465 (8)0.0539 (8)0.0030 (6)0.0119 (7)0.0058 (6)
O20.0732 (9)0.0864 (10)0.0759 (9)0.0147 (8)0.0352 (8)0.0298 (8)
N20.0676 (10)0.0485 (9)0.0699 (10)0.0146 (8)0.0251 (8)0.0177 (7)
C110.0439 (8)0.0363 (8)0.0354 (8)0.0046 (7)0.0012 (7)0.0020 (6)
C20.0484 (9)0.0368 (8)0.0404 (8)0.0024 (7)0.0042 (7)0.0036 (7)
C60.0479 (9)0.0378 (8)0.0429 (8)0.0026 (7)0.0020 (7)0.0046 (7)
N1'0.0624 (11)0.0655 (11)0.0938 (14)0.0067 (9)0.0289 (10)0.0072 (10)
C10.0480 (9)0.0388 (9)0.0482 (9)0.0044 (7)0.0034 (7)0.0014 (7)
C100.0447 (9)0.0440 (9)0.0394 (8)0.0058 (7)0.0012 (7)0.0042 (7)
C50.0519 (10)0.0437 (9)0.0495 (9)0.0029 (8)0.0095 (8)0.0054 (7)
C120.0496 (10)0.0556 (11)0.0450 (9)0.0036 (8)0.0068 (8)0.0067 (8)
C30.0619 (11)0.0366 (9)0.0550 (10)0.0025 (8)0.0139 (9)0.0114 (7)
C40.0609 (11)0.0471 (10)0.0604 (11)0.0038 (9)0.0230 (9)0.0145 (8)
C70.0611 (11)0.0445 (10)0.0622 (11)0.0063 (8)0.0090 (9)0.0120 (8)
C90.0588 (11)0.0535 (10)0.0543 (10)0.0052 (9)0.0117 (9)0.0155 (8)
C1A0.0568 (11)0.0509 (10)0.0607 (11)0.0090 (9)0.0184 (9)0.0078 (8)
C1B'0.0549 (12)0.0563 (13)0.064 (2)0.0103 (11)0.0130 (18)0.0010 (15)
C80.0727 (13)0.0472 (10)0.0716 (12)0.0049 (9)0.0137 (10)0.0236 (9)
C5A0.0678 (12)0.0518 (11)0.0825 (14)0.0083 (10)0.0217 (11)0.0027 (10)
C2A0.0664 (13)0.0653 (13)0.0730 (13)0.0063 (10)0.0119 (11)0.0037 (10)
C4A0.0690 (13)0.0555 (11)0.0817 (14)0.0073 (10)0.0262 (11)0.0087 (10)
C3A0.0605 (12)0.0657 (13)0.0863 (15)0.0003 (10)0.0237 (11)0.0095 (11)
C6A0.1029 (18)0.0602 (13)0.1121 (19)0.0030 (13)0.0456 (16)0.0121 (13)
C8A0.110 (2)0.0690 (15)0.159 (3)0.0135 (14)0.060 (2)0.0283 (16)
C16B0.0726 (11)0.0780 (18)0.0800 (19)0.0214 (12)0.0034 (12)0.0157 (13)
C9A0.106 (2)0.121 (2)0.0738 (16)0.0005 (17)0.0189 (15)0.0094 (15)
C7A0.0765 (17)0.112 (2)0.150 (3)0.0180 (16)0.0271 (17)0.030 (2)
C15B0.053 (2)0.098 (5)0.122 (5)0.019 (2)0.007 (3)0.023 (3)
C13B0.065 (3)0.073 (3)0.082 (4)0.008 (3)0.014 (3)0.020 (3)
C14B0.057 (2)0.076 (3)0.099 (4)0.0080 (19)0.009 (3)0.015 (3)
C17B0.100 (8)0.127 (6)0.133 (5)0.051 (5)0.005 (5)0.008 (5)
C18B0.055 (3)0.124 (6)0.202 (9)0.009 (3)0.014 (5)0.023 (5)
C1A'0.0548 (11)0.0563 (12)0.063 (2)0.0096 (10)0.0128 (17)0.0008 (15)
C14A0.0532 (16)0.064 (2)0.077 (2)0.0032 (14)0.0037 (14)0.0146 (16)
C15A0.0726 (11)0.0780 (18)0.0800 (19)0.0214 (12)0.0034 (12)0.0157 (13)
C18A0.055 (3)0.096 (3)0.197 (5)0.013 (2)0.036 (3)0.006 (3)
C17A0.085 (4)0.145 (5)0.119 (3)0.039 (3)0.034 (3)0.028 (3)
N3A0.0652 (16)0.0639 (16)0.0816 (19)0.0207 (13)0.0055 (13)0.0049 (13)
C19A0.121 (4)0.102 (3)0.232 (8)0.032 (3)0.033 (4)0.100 (4)
C13A0.069 (2)0.068 (2)0.076 (3)0.0194 (18)0.0102 (19)0.0203 (18)
C20A0.185 (8)0.215 (8)0.058 (3)0.123 (7)0.019 (4)0.017 (4)
N3B0.0698 (19)0.099 (4)0.120 (4)0.013 (2)0.030 (2)0.030 (3)
C19B0.101 (5)0.087 (4)0.191 (8)0.023 (4)0.042 (6)0.015 (4)
C20B0.192 (13)0.214 (14)0.121 (9)0.030 (10)0.032 (9)0.098 (9)
C16A0.0726 (11)0.0780 (18)0.0800 (19)0.0214 (12)0.0034 (12)0.0157 (13)
Geometric parameters (Å, º) top
O1—C11.2328 (19)C9A—H9AA0.9600
N1—C11.401 (2)C9A—H9AB0.9600
N1—C121.399 (2)C9A—H9AC0.9600
N1—C1B'1.49 (3)C7A—H7AA0.9600
N1—C1A'1.497 (19)C7A—H7AB0.9600
O2—C121.224 (2)C7A—H7AC0.9600
N2—H20.8600C15B—C14B1.549 (9)
N2—C51.357 (2)C15B—C17B1.542 (3)
N2—C1A1.460 (2)C15B—C18B1.542 (3)
C11—C21.418 (2)C15B—N3B1.434 (9)
C11—C61.419 (2)C13B—H13A0.9700
C11—C101.410 (2)C13B—H13B0.9700
C2—C11.455 (2)C14B—H14A0.9700
C2—C31.379 (2)C14B—H14B0.9700
C6—C51.448 (2)C17B—H17A0.9600
C6—C71.407 (2)C17B—H17B0.9600
N1'—C4A1.469 (3)C17B—H17C0.9600
N1'—C3A1.481 (3)C18B—H18A0.9600
N1'—H1'0.87 (3)C18B—H18B0.9600
C10—C121.473 (2)C18B—H18C0.9600
C10—C91.376 (2)C1A'—H1A'0.9800
C5—C41.399 (2)C1A'—C14A1.500 (14)
C3—H30.9300C1A'—C13A1.522 (17)
C3—C41.380 (2)C14A—H14C0.9700
C4—H40.9300C14A—H14D0.9700
C7—H70.9300C14A—C15A1.536 (5)
C7—C81.368 (3)C15A—C18A1.542 (3)
C9—H90.9300C15A—C17A1.541 (3)
C9—C81.387 (3)C15A—N3A1.462 (5)
C1A—H1A0.9800C18A—H18D0.9600
C1A—C5A1.516 (3)C18A—H18E0.9600
C1A—C2A1.517 (3)C18A—H18F0.9600
C1B'—C13B1.46 (2)C17A—H17D0.9600
C1B'—C14B1.49 (3)C17A—H17E0.9600
C1B'—H1B'0.9800 (11)C17A—H17F0.9600
C8—H80.9300N3A—C16A1.424 (6)
C5A—H5AA0.9700N3A—H3A0.83 (4)
C5A—H5AB0.9700C19A—H19A0.9600
C5A—C4A1.534 (3)C19A—H19B0.9600
C2A—H2AA0.9700C19A—H19C0.9600
C2A—H2AB0.9700C19A—C16A1.541 (3)
C2A—C3A1.535 (3)C13A—H13C0.9700
C4A—C8A1.530 (3)C13A—H13D0.9700
C4A—C9A1.527 (3)C13A—C16A1.549 (7)
C3A—C6A1.531 (3)C20A—H20A0.9600
C3A—C7A1.522 (3)C20A—H20B0.9600
C6A—H6AA0.9600C20A—H20C0.9600
C6A—H6AB0.9600C20A—C16A1.545 (3)
C6A—H6AC0.9600N3B—H3B0.8602
C8A—H8AA0.9600C19B—H19D0.9600
C8A—H8AB0.9600C19B—H19E0.9600
C8A—H8AC0.9600C19B—H19F0.9600
C16B—C13B1.539 (10)C20B—H20D0.9600
C16B—N3B1.457 (10)C20B—H20E0.9600
C16B—C19B1.542 (3)C20B—H20F0.9600
C16B—C20B1.542 (3)
C1—N1—C1B'116.9 (10)C3A—C7A—H7AB109.5
C1—N1—C1A'120.4 (7)C3A—C7A—H7AC109.5
C12—N1—C1123.02 (14)H7AA—C7A—H7AB109.5
C12—N1—C1B'120.0 (11)H7AA—C7A—H7AC109.5
C12—N1—C1A'116.5 (6)H7AB—C7A—H7AC109.5
C5—N2—H2118.1C17B—C15B—C14B111.6 (7)
C5—N2—C1A123.83 (14)C17B—C15B—C18B104.8 (8)
C1A—N2—H2118.1C18B—C15B—C14B107.3 (6)
C2—C11—C6120.85 (14)N3B—C15B—C14B108.5 (5)
C10—C11—C2119.30 (14)N3B—C15B—C17B117.1 (7)
C10—C11—C6119.85 (14)N3B—C15B—C18B107.0 (7)
C11—C2—C1121.03 (14)C1B'—C13B—C16B111.7 (12)
C3—C2—C11118.32 (15)C1B'—C13B—H13A109.3
C3—C2—C1120.65 (14)C1B'—C13B—H13B109.3
C11—C6—C5119.04 (14)C16B—C13B—H13A109.3
C7—C6—C11117.76 (14)C16B—C13B—H13B109.3
C7—C6—C5123.20 (15)H13A—C13B—H13B107.9
C4A—N1'—C3A120.58 (16)C1B'—C14B—C15B108.7 (11)
C4A—N1'—H1'107 (2)C1B'—C14B—H14A109.9
C3A—N1'—H1'113 (2)C1B'—C14B—H14B109.9
O1—C1—N1119.64 (15)C15B—C14B—H14A109.9
O1—C1—C2122.27 (15)C15B—C14B—H14B109.9
N1—C1—C2118.09 (14)H14A—C14B—H14B108.3
C11—C10—C12120.43 (14)C15B—C17B—H17A109.5
C9—C10—C11120.18 (16)C15B—C17B—H17B109.5
C9—C10—C12119.37 (15)C15B—C17B—H17C109.5
N2—C5—C6120.23 (15)H17A—C17B—H17B109.5
N2—C5—C4122.02 (15)H17A—C17B—H17C109.5
C4—C5—C6117.74 (15)H17B—C17B—H17C109.5
N1—C12—C10118.07 (14)C15B—C18B—H18A109.5
O2—C12—N1120.35 (16)C15B—C18B—H18B109.5
O2—C12—C10121.58 (16)C15B—C18B—H18C109.5
C2—C3—H3118.9H18A—C18B—H18B109.5
C2—C3—C4122.22 (15)H18A—C18B—H18C109.5
C4—C3—H3118.9H18B—C18B—H18C109.5
C5—C4—H4119.2N1—C1A'—H1A'105.8
C3—C4—C5121.67 (15)N1—C1A'—C14A111.5 (9)
C3—C4—H4119.2N1—C1A'—C13A116.1 (13)
C6—C7—H7119.3C14A—C1A'—H1A'105.8
C8—C7—C6121.40 (17)C14A—C1A'—C13A111.0 (10)
C8—C7—H7119.3C13A—C1A'—H1A'105.8
C10—C9—H9119.9C1A'—C14A—H14C108.8
C10—C9—C8120.15 (16)C1A'—C14A—H14D108.8
C8—C9—H9119.9C1A'—C14A—C15A113.6 (7)
N2—C1A—H1A108.1H14C—C14A—H14D107.7
N2—C1A—C5A111.05 (15)C15A—C14A—H14C108.8
N2—C1A—C2A112.48 (16)C15A—C14A—H14D108.8
C5A—C1A—H1A108.1C14A—C15A—C18A110.3 (4)
C5A—C1A—C2A108.79 (16)C14A—C15A—C17A109.4 (4)
C2A—C1A—H1A108.1C17A—C15A—C18A107.4 (5)
N1—C1B'—C14B116.0 (17)N3A—C15A—C14A107.7 (3)
N1—C1B'—H1B'102 (3)N3A—C15A—C18A114.7 (4)
C13B—C1B'—N1108.3 (16)N3A—C15A—C17A107.2 (4)
C13B—C1B'—C14B114.2 (19)C15A—C18A—H18D109.5
C13B—C1B'—H1B'110 (3)C15A—C18A—H18E109.5
C14B—C1B'—H1B'105 (3)C15A—C18A—H18F109.5
C7—C8—C9120.65 (16)H18D—C18A—H18E109.5
C7—C8—H8119.7H18D—C18A—H18F109.5
C9—C8—H8119.7H18E—C18A—H18F109.5
C1A—C5A—H5AA109.2C15A—C17A—H17D109.5
C1A—C5A—H5AB109.2C15A—C17A—H17E109.5
C1A—C5A—C4A111.87 (15)C15A—C17A—H17F109.5
H5AA—C5A—H5AB107.9H17D—C17A—H17E109.5
C4A—C5A—H5AA109.2H17D—C17A—H17F109.5
C4A—C5A—H5AB109.2H17E—C17A—H17F109.5
C1A—C2A—H2AA109.2C15A—N3A—H3A115 (3)
C1A—C2A—H2AB109.2C16A—N3A—C15A122.3 (3)
C1A—C2A—C3A112.00 (17)C16A—N3A—H3A108 (3)
H2AA—C2A—H2AB107.9H19A—C19A—H19B109.5
C3A—C2A—H2AA109.2H19A—C19A—H19C109.5
C3A—C2A—H2AB109.2H19B—C19A—H19C109.5
N1'—C4A—C5A109.81 (18)C16A—C19A—H19A109.5
N1'—C4A—C8A105.17 (18)C16A—C19A—H19B109.5
N1'—C4A—C9A113.4 (2)C16A—C19A—H19C109.5
C8A—C4A—C5A109.21 (18)C1A'—C13A—H13C109.5
C9A—C4A—C5A110.71 (19)C1A'—C13A—H13D109.5
C9A—C4A—C8A108.3 (2)C1A'—C13A—C16A110.9 (8)
N1'—C3A—C2A108.10 (17)H13C—C13A—H13D108.1
N1'—C3A—C6A114.6 (2)C16A—C13A—H13C109.5
N1'—C3A—C7A105.48 (18)C16A—C13A—H13D109.5
C6A—C3A—C2A110.61 (17)H20A—C20A—H20B109.5
C7A—C3A—C2A110.1 (2)H20A—C20A—H20C109.5
C7A—C3A—C6A107.8 (2)H20B—C20A—H20C109.5
C3A—C6A—H6AA109.5C16A—C20A—H20A109.5
C3A—C6A—H6AB109.5C16A—C20A—H20B109.5
C3A—C6A—H6AC109.5C16A—C20A—H20C109.5
H6AA—C6A—H6AB109.5C16B—N3B—H3B110.4
H6AA—C6A—H6AC109.5C15B—N3B—C16B123.1 (6)
H6AB—C6A—H6AC109.5C15B—N3B—H3B111.4
C4A—C8A—H8AA109.5C16B—C19B—H19D109.5
C4A—C8A—H8AB109.5C16B—C19B—H19E109.5
C4A—C8A—H8AC109.5C16B—C19B—H19F109.5
H8AA—C8A—H8AB109.5H19D—C19B—H19E109.5
H8AA—C8A—H8AC109.5H19D—C19B—H19F109.5
H8AB—C8A—H8AC109.5H19E—C19B—H19F109.5
C13B—C16B—C19B109.8 (6)C16B—C20B—H20D109.5
C13B—C16B—C20B109.5 (7)C16B—C20B—H20E109.5
N3B—C16B—C13B108.5 (6)C16B—C20B—H20F109.5
N3B—C16B—C19B113.2 (7)H20D—C20B—H20E109.5
N3B—C16B—C20B106.8 (8)H20D—C20B—H20F109.5
C20B—C16B—C19B108.9 (9)H20E—C20B—H20F109.5
C4A—C9A—H9AA109.5N3A—C16A—C19A107.7 (4)
C4A—C9A—H9AB109.5N3A—C16A—C13A109.2 (4)
C4A—C9A—H9AC109.5N3A—C16A—C20A115.8 (5)
H9AA—C9A—H9AB109.5C19A—C16A—C13A108.8 (4)
H9AA—C9A—H9AC109.5C19A—C16A—C20A106.0 (6)
H9AB—C9A—H9AC109.5C20A—C16A—C13A109.1 (4)
C3A—C7A—H7AA109.5
N1—C1B'—C13B—C16B172.0 (11)C9—C10—C12—O20.9 (3)
N1—C1B'—C14B—C15B173.9 (11)C1A—N2—C5—C6177.46 (16)
N1—C1A'—C14A—C15A173.6 (8)C1A—N2—C5—C41.3 (3)
N1—C1A'—C13A—C16A176.2 (6)C1A—C5A—C4A—N1'50.5 (2)
N2—C5—C4—C3174.82 (18)C1A—C5A—C4A—C8A165.3 (2)
N2—C1A—C5A—C4A177.00 (17)C1A—C5A—C4A—C9A75.5 (2)
N2—C1A—C2A—C3A175.87 (16)C1A—C2A—C3A—N1'53.1 (2)
C11—C2—C1—O1177.45 (16)C1A—C2A—C3A—C6A73.0 (2)
C11—C2—C1—N12.9 (2)C1A—C2A—C3A—C7A167.90 (19)
C11—C2—C3—C42.0 (3)C1B'—N1—C1—O11.6 (10)
C11—C6—C5—N2174.59 (16)C1B'—N1—C1—C2178.7 (10)
C11—C6—C5—C44.2 (2)C1B'—N1—C12—O22.9 (11)
C11—C6—C7—C80.5 (3)C1B'—N1—C12—C10176.7 (10)
C11—C10—C12—N11.1 (2)C5A—C1A—C2A—C3A60.7 (2)
C11—C10—C12—O2179.29 (17)C2A—C1A—C5A—C4A58.7 (2)
C11—C10—C9—C81.1 (3)C4A—N1'—C3A—C2A48.5 (3)
C2—C11—C6—C51.5 (2)C4A—N1'—C3A—C6A75.3 (3)
C2—C11—C6—C7178.78 (15)C4A—N1'—C3A—C7A166.3 (2)
C2—C11—C10—C120.4 (2)C3A—N1'—C4A—C5A47.5 (3)
C2—C11—C10—C9178.00 (16)C3A—N1'—C4A—C8A164.9 (2)
C2—C3—C4—C50.8 (3)C3A—N1'—C4A—C9A76.9 (3)
C6—C11—C2—C1178.24 (14)C13B—C1B'—C14B—C15B59.1 (17)
C6—C11—C2—C31.6 (2)C13B—C16B—N3B—C15B46.5 (9)
C6—C11—C10—C12179.75 (15)C14B—C1B'—C13B—C16B57.1 (18)
C6—C11—C10—C91.4 (2)C14B—C15B—N3B—C16B49.9 (9)
C6—C5—C4—C33.9 (3)C17B—C15B—C14B—C1B'79.7 (11)
C6—C7—C8—C90.8 (3)C17B—C15B—N3B—C16B77.5 (9)
C1—N1—C12—O2179.84 (17)C18B—C15B—C14B—C1B'166.1 (11)
C1—N1—C12—C100.5 (2)C18B—C15B—N3B—C16B165.3 (7)
C1—N1—C1B'—C13B103.3 (14)C1A'—N1—C1—O13.3 (7)
C1—N1—C1B'—C14B126.8 (12)C1A'—N1—C1—C2176.4 (7)
C1—N1—C1A'—C14A70.1 (13)C1A'—N1—C12—O22.0 (7)
C1—N1—C1A'—C13A58.4 (9)C1A'—N1—C12—C10178.4 (6)
C1—C2—C3—C4177.84 (17)C1A'—C14A—C15A—C18A77.3 (9)
C10—C11—C2—C12.4 (2)C1A'—C14A—C15A—C17A164.8 (9)
C10—C11—C2—C3177.74 (15)C1A'—C14A—C15A—N3A48.6 (9)
C10—C11—C6—C5179.15 (15)C1A'—C13A—C16A—N3A50.7 (7)
C10—C11—C6—C70.6 (2)C1A'—C13A—C16A—C19A168.0 (7)
C10—C9—C8—C70.0 (3)C1A'—C13A—C16A—C20A76.8 (7)
C5—N2—C1A—C5A155.91 (18)C14A—C1A'—C13A—C16A55.0 (12)
C5—N2—C1A—C2A81.9 (2)C14A—C15A—N3A—C16A49.8 (5)
C5—C6—C7—C8179.77 (18)C15A—N3A—C16A—C19A169.7 (4)
C12—N1—C1—O1178.93 (16)C15A—N3A—C16A—C13A51.6 (5)
C12—N1—C1—C21.4 (2)C15A—N3A—C16A—C20A71.9 (6)
C12—N1—C1B'—C13B79.3 (19)C18A—C15A—N3A—C16A73.5 (5)
C12—N1—C1B'—C14B50.7 (15)C17A—C15A—N3A—C16A167.4 (5)
C12—N1—C1A'—C14A112.0 (9)C13A—C1A'—C14A—C15A55.2 (13)
C12—N1—C1A'—C13A119.5 (9)N3B—C16B—C13B—C1B'45.7 (15)
C12—C10—C9—C8179.47 (17)N3B—C15B—C14B—C1B'50.8 (11)
C3—C2—C1—O12.4 (3)C19B—C16B—C13B—C1B'78.6 (15)
C3—C2—C1—N1177.21 (16)C19B—C16B—N3B—C15B75.7 (10)
C7—C6—C5—N25.1 (3)C20B—C16B—C13B—C1B'161.9 (15)
C7—C6—C5—C4176.09 (17)C20B—C16B—N3B—C15B164.5 (8)
C9—C10—C12—N1179.46 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.173.0134 (18)165
C9—H9···O2ii0.932.543.203 (2)128
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the University of Wisconsin – Eau Claire for the space provided to perform the research.

Funding information

Funding for this research was provided by: University of Wisconsin-Eau Claire Office of Research and Sponsored Programs; National Science Foundation, Major Research Instrumentation (grant No. 2018561).

References

First citationArunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011). Pure Appl. Chem. 83, 1637–1641.  Web of Science CrossRef CAS Google Scholar
First citationBojinov, V. B., Georgiev, N. I. & Bosch, P. (2009). J. Fluoresc. 19, 127–139.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChang, S.-C., Archer, B. J., Utecht, R. E., Lewis, D. E., Judy, M. M. & Matthews, J. L. (1993). Bioorg. Med. Chem. Lett. 3, 555–556.  CrossRef CAS Web of Science Google Scholar
First citationChang, S.-C., Utecht, R. E. & Lewis, D. E. (1999). Dyes Pigments, 43, 83–94.  Web of Science CrossRef CAS Google Scholar
First citationChanh, T. C., Lewis, D. E., Allan, J. S., Sogandares-Bernal, F., Judy, M. M., Utecht, R. E. & Matthews, J. L. (1993). AIDS Res. Hum. Retroviruses, 9, 891–896.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChanh, T. C., Lewis, D. E., Judy, M. M., Sogandares-Bernal, F., Michalek, G. R., Utecht, R. E., Skiles, H., Chang, S.-C. & Matthews, J. L. (1994). Antivir. Res. 25, 133–146.  CrossRef CAS PubMed Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrabchev, I., Soumillion, J. P., Muls, B. & Ivanova, G. (2004). Photochem. Photobiol. Sci. 3, 1032–1037.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLewis, D. E., Utecht, R. E., Judy, M. M., Matthews, J. L. & Chanh, T. C. (1993). Spectrum, 6, 8–14.  Google Scholar
First citationLupo, F., Gentile, S., Ballistreri, F. P., Tomaselli, G. A., Fragalà, M. E. & Gulino, A. (2010). Analyst, 135, 2273–2279.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMitchell, K. A., Brown, R. G., Yuan, D., Chang, S.-C., Utecht, R. E. & Lewis, D. E. (1998). J. Photochem. Photobiol. Chem. 115, 157–161.  Web of Science CrossRef CAS Google Scholar
First citationQian, X., Yi, X., Xu, Y., Guo, X., Qian, J. & Zhu, W. (2010). Chem. Commun. 46, 35, 6418–6436.  Google Scholar
First citationRigaku OD (2022). CrysAlis PRO . Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSakayori, K., Shibasaki, Y. & Ueda, M. (2005). J. Polym. Sci. A Polym. Chem. 43, 5571–5580.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrikun, D., Miller, E. W., Domaille, D. W. & Chang, C. J. (2008). J. Am. Chem. Soc. 130, 4596–4597.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVeale, E. B., Tocci, G. M., Pfeffer, F. M., Kruger, P. E. & Gunnlaugsson, T. (2009). Org. Biomol. Chem. 7, 3447–3454.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, H., Wu, H., Xue, L., Shi, Y. & Li, X. (2011). Org. Biomol. Chem. 9, 5436–5444.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZheng, S., Lynch, P. L. M., Rice, T. E., Moody, T. S., Gunaratne, H. Q. N. & de Silva, A. P. (2012). Photochem. Photobiol. Sci. 11, 1675–1681.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhu, B. C., Zhang, X. L., Li, Y., Wang, P. F., Zhang, H. Y. & Zhuang, X. Q. (2010). Chem. Commun. 46, 5710–5712.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds