research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, structure and Hirshfeld surface analysis of di­aqua­dinitratobis(4-nitro­aniline)copper(II)

crossmark logo

aNational University of Uzbekistan named after Mirzo Ulugbek, Tashkent, 100174, University str. 4., Uzbekistan, bInstitute of General and Inorganic Chemistry of Uzbekistan Academy of Sciences, Tashkent, 100125, M.Ulugbek Str., 77a, Uzbekistan, and cInstitute of Bioorganic Chemistry of Uzbekistan Academy of Sciences, Tashkent, 100140, M.Ulugbek Str., 83, Uzbekistan
*Correspondence e-mail: atom.uz@mail.ru

Edited by C. Schulzke, Universität Greifswald, Germany (Received 13 September 2022; accepted 28 October 2022; online 4 November 2022)

A new metal complex, [Cu(NO3)2(C6H6N2O2)2(H2O)2], was synthesized from water–ethanol solutions of Cu(NO3)2 and 4-nitro­aniline (PNA). The complex mol­ecules are located on inversion centers in monoclinic crystals with space group P21/c. The copper(II) ions are monodentately coordinated by two neutral PNA mol­ecules through the nitro­gen atom of the amino group, two NO3 anions and two water mol­ecules. The coordination polyhedron of the central ion is a distorted octa­hedron as a result of the Jahn–Teller effect. There is a weak intra­molecular hydrogen bond between the N—H group and the oxygen atom of one nitrate anion. Six relatively weak inter­molecular hydrogen bonds associate the complex mol­ecules into a three-dimensional network. The Hirshfeld surface analysis indicates that 55.8% of the inter­molecular inter­actions are from O⋯H/H⋯O contacts, 13.3% are from H⋯H contacts while other contributions are from C⋯O/O⋯C, C⋯H/H⋯C, O⋯O and other contacts.

1. Chemical context

p-Nitro­aniline (PNA) or 1-amino-4-nitro­benzene is an organic compound with the formula C6H6N2O2. It is a yellow solid and one of three isomers of nitro­aniline. PNA is an inter­mediate in the production of dyes, anti­oxidants, pharmaceuticals, gasoline, gum inhibitors, poultry medicines, and serves as a corrosion inhibitor. In particular, it is mainly used industrially as a precursor to p-phenyl­enedi­amine, an important dye component (Booth, 2000[Booth, G. (2000). Editor. Nitro Compounds, Aromatic. In Ullmann's Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a17_411]). The compound is toxic by way of inhalation, ingestion and absorption and can cause long-term damage to the environment if released as a pollutant. Its LD50 is 750.0 mg kg−1 when administered orally and therefore it should be handled with great care. It is well known that the biopharmaceutical properties (water solubility, bioavailability and bioactivity) of active pharmaceutical ingredients (API) may be improved by metal complex formation (Khudoyberganov et al., 2022[Khudoyberganov, O. I., Ruzmetov, A., Ibragimov, A. B., Ashurov, J. M., Khasanov, S. B., Eshchanov, E. U. & Ibragimov, B. T. (2022). Chem. Data Collect. 37, 100802.]; Ruzmetov et al., 2022a[Ruzmetov, A. Kh., Ibragimov, A. B., Myachina, O. V., Kim, R. N., Mamasalieva, L. E., Ashurov, J. M. & Ibragimov, B. T. (2022a). Chem. Data Collect, 38, 100845.],b[Ruzmetov, A., Ibragimov, A., Ashurov, J., Boltaeva, Z., Ibragimov, B. & Usmanov, S. (2022b). Acta Cryst. E78, 660-664.]). Moreover, metal complex formation may be responsible for the reduction of the toxicity of metals, especially in chelation therapy applications and respective investigations (Egorova & Ananikov, 2017[Egorova, K. S. & Ananikov, V. P. (2017). Organometallics, 36, 4071-4090.]; Flora & Pachauri, 2010[Flora, S. J. S. & Pachauri, V. (2010). Int. J. Environ. Res. Public Health, 7, 2745-2788.]; Ahmed et al., 2020[Ahmed, S. A., Hasan, M. N., Bagchi, D., Altass, H. M., Morad, M., Jassas, R. S., Hameed, A. M., Patwari, J., Alessa, H., Alharbi, A. & Pal, S. K. (2020). ACS Omega, 5, 15666-15672.]). At the same time, this technique may similarly lead to a reduction in the toxicity of haza­rdous organic substances when they are part of coordination compounds. In order to test this hypothesis for specific mol­ecules, we synthesized metal complexes of various toxic organic substances. This article describes the synthesis, mol­ecular and crystal structure and Hirshfeld surface analysis of the p-nitro­aniline copper(II) complex.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title complex is shown in Fig. 1[link]. The central copper(II) ion is located on a crystallographic inversion center. Each of the two PNA mol­ecules coordinates the metal ion through their NH2 nitro­gen atom. Two NO3 groups are attached to the Cu2+ ion via one of their oxygen atoms (O3) in a monodentate fashion. The other two positions of the octa­hedral coordination sphere are occupied by water mol­ecules. The formula of the obtained complex is [Cu(NO3)2(H2O)2(PNA)2]. The coordination polyhedron of the central atom is an octa­hedron with a distortion due to the Jahn–Teller effect. The Cu1—O1W and Cu1—N1 bond lengths are 1.996 (2) and 2.055 (3) Å while the Cu1—O3 distance is elongated to 2.367 (2) Å based on this effect. Orthogonal bond angles are in the range of 84.01 (11)–95.99 (11)°, i.e. their maximum deviation from an ideal value is about 6°. Compensation of the positive charge of the copper ion takes place with the inclusion of the two NO3 ions into the inner coordination sphere. The intra­molecular N1—H⋯O4 hydrogen bond in the mol­ecule forms a six-membered ring with S11(6) graph-set notation (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). The NO2 group of PNA is nearly coplanar with the aromatic ring – the corresponding dihedral angle is only 5.8 (6)°.

[Figure 1]
Figure 1
The mol­ecular structure of the PNA copper(II) title complex generated with Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Displacement ellipsoids are plotted at the 50% probability level. Intra­molecular hydrogen bonds between the amine and nitrate groups are shown as dashed lines.

3. Supra­molecular features

There are five proton-acceptor and two proton-donor hydrogen-bonding functional groups in the asymmetric unit of the mol­ecule. All these groups realize their hydrogen-bonding capabilities (Table 1[link]). The respective seven inter­molecular hydrogen bonds are relatively weak. A notable feature of the hydrogen-bonding pattern is that a considerable proportion of them are of a bifurcated nature – atoms H1A, H1B and H1WA are simultaneously hydrogen-bonded to two acceptors. The hydrogen bonds form different rings of various dimensions, i.e. rings with graph-set notations R22(4), R12(6) and R22(8). The hydrogen bonds summarized in Table 1[link] connect the complex mol­ecules into a three-dimensional network (Fig. 2[link]). The aromatic moieties are co-planar throughout the crystal lattice but do not engage in ππ stacking inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.82 (4) 2.30 (4) 3.021 (4) 147 (4)
O1W—H1WA⋯O3i 0.81 (5) 2.07 (5) 2.828 (4) 156 (5)
O1W—H1WA⋯O5i 0.81 (5) 2.28 (5) 2.979 (5) 145 (5)
N1—H1A⋯O4ii 0.82 (4) 2.42 (4) 3.057 (4) 135 (3)
N1—H1B⋯O3i 0.86 (4) 2.34 (4) 3.103 (4) 148 (4)
N1—H1B⋯O3iii 0.86 (4) 2.60 (5) 2.968 (4) 107 (3)
O1W—H1WB⋯O1iv 0.76 (6) 2.64 (5) 3.085 (5) 120 (5)
O1W—H1WB⋯O2iv 0.77 (6) 2.26 (6) 3.022 (5) 171 (5)
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, -y+1, -z]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The unit cell of the crystal structure of the title compound with completed mol­ecules viewed along the crystallographic a axis of the crystal packing. Hydrogen bonds are shown as dashed lines..

The Hirshfeld surfaces were calculated and the two-dimensional fingerprint plots generated using CrystalExplorer2021 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 3[link] shows the three-dimensional Hirshfeld surface of the PNA copper complex with dnorm (normalized contact distance) plotted over the range of −0.5385 to 1.2851 a.u. The inter­actions given in Table 1[link] play a key role in the mol­ecular packing of the complex. The overall 2D fingerprint plot and those delineated into the individual contributions are shown in Fig. 4[link]. The percentage contributions to the Hirshfeld surfaces from the various inter­atomic contacts are as follows: O⋯H/H⋯O 55.8%, H⋯H 13.3%, C⋯O/O⋯C 9.3%, C⋯H/H⋯C 7.7% and O⋯O 6.1%. Other minor contributions to the Hirshfeld surface are from N⋯H/H⋯N (3.1%), O⋯N/N⋯O (2.2%) and C⋯N/N⋯C (1.5%) contacts.

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the PNA copper title complex plotted over dnorm.
[Figure 4]
Figure 4
The full two-dimensional fingerprint plots for the PNA copper title complex showing all inter­actions and delineated into O⋯H/H⋯O, H⋯H, C⋯O/O⋯C, C⋯H/H⋯C and O⋯O inter­actions. The di and de values are the closest inter­nal and external distances (Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, update of November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for PNA metal complexes gave only five hits. In all entries, neutral PNA mol­ecules are coordinated through their amine nitro­gen atoms. In all cases, two chloride ions are coordinated in order to compensate for the twofold positive charge of the central ion. In the structures with refcodes BEMZAW (Feng, 2012[Feng, T.-J. (2012). Acta Cryst. E68, m1351.]), LUKLEK (Nguyen et al., 2015[Nguyen Thi Thanh, C., Hoang Van, T., Pham Van, T., Nguyen Bich, N. & Van Meervelt, L. (2015). Acta Cryst. E71, 644-646.]) and MEFWAY (Chen et al., 2017[Chen, A.-L., Huang, F., Hu, M.-L., Jin, Z.-M., Miao, Q. & Tian, B. (2017). Z. Anorg. Allg. Chem. 643, 1045-1048.]), the coordination polyhedron is tetra­hedral while in case of compounds with refcodes HEXBUJ (Ip et al., 2012[Ip, H.-F., So, Y.-M., Sung, H. H. Y., Williams, I. D. & Leung, W.-H. (2012). Organometallics, 31, 7020-7023.]) and WOJKIR (Belghith et al., 2014[Belghith, Y., Mansour, A. & Nasri, H. (2014). Acta Cryst. E70, m312-m313.]), the central ion is sixfold coordinated and the complexes are octa­hedral. There is no precedent for structures with the coordination of water mol­ecules or NO3 anions.

5. Synthesis and crystallization

The salt Cu(NO3)2 (0.187 g, 1.0 mmol) was dissolved in 2 ml of water and 4-nitro­aniline (0.276 g, 2 mmol) was dissolved in 2 ml of absolute alcohol at 333 K. The solutions were mixed, filtered and left at room temperature for evaporation. After two weeks, green crystals had formed.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound hydrogen atoms were placed in calculated positions (C—H = 0.93) and refined in the riding-model approximation with Uiso(H) = 1.2Ueq(C). Hydrogen atoms of the water mol­ecule and the amino group were freely refined.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(NO3)2(C6H6N2O2)2(H2O)2]
Mr 499.86
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 5.4741 (2), 22.5679 (6), 7.6478 (2)
β (°) 92.286 (3)
V3) 944.05 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.38
Crystal size (mm) 0.18 × 0.15 × 0.14
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.829, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8364, 1832, 1457
Rint 0.062
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.04
No. of reflections 1832
No. of parameters 159
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.52, −0.87
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Diaquadinitratobis(4-nitroaniline)copper(II) top
Crystal data top
[Cu(NO3)2(C6H6N2O2)2(H2O)2]F(000) = 510
Mr = 499.86Dx = 1.758 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 5.4741 (2) ÅCell parameters from 2724 reflections
b = 22.5679 (6) Åθ = 3.9–70.2°
c = 7.6478 (2) ŵ = 2.38 mm1
β = 92.286 (3)°T = 293 K
V = 944.05 (5) Å3Needle, metallic greenish green
Z = 20.18 × 0.15 × 0.14 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
1832 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1457 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.062
Detector resolution: 10.0000 pixels mm-1θmax = 71.5°, θmin = 3.9°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 2719
Tmin = 0.829, Tmax = 1.000l = 99
8364 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.7131P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1832 reflectionsΔρmax = 0.52 e Å3
159 parametersΔρmin = 0.87 e Å3
0 restraintsExtinction correction: SHELXL-2019/2 (Sheldrick 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0033 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.5000000.5000000.5000000.0261 (2)
O1W0.6912 (5)0.57083 (11)0.4300 (4)0.0379 (6)
N10.6669 (6)0.45393 (11)0.3061 (4)0.0294 (6)
O30.1479 (4)0.52675 (14)0.3283 (3)0.0495 (7)
O40.3458 (5)0.53819 (13)0.0932 (4)0.0554 (7)
N30.1596 (5)0.54597 (13)0.1725 (4)0.0370 (6)
C10.6119 (6)0.39265 (13)0.2771 (4)0.0282 (6)
O20.5581 (9)0.17631 (14)0.2427 (5)0.0967 (14)
O50.0187 (6)0.57134 (19)0.1086 (5)0.0865 (12)
C60.4005 (6)0.37830 (15)0.1797 (5)0.0379 (8)
H60.3009830.4081670.1326320.046*
N20.4156 (10)0.21426 (17)0.1934 (6)0.0727 (13)
C20.7614 (7)0.34918 (15)0.3474 (5)0.0400 (8)
H20.9017660.3589920.4135890.048*
C40.4876 (8)0.27703 (16)0.2229 (5)0.0490 (10)
C50.3390 (8)0.32017 (17)0.1532 (5)0.0488 (9)
H50.1975570.3101810.0884520.059*
C30.6984 (9)0.28969 (16)0.3173 (6)0.0532 (11)
H30.7984300.2593610.3608990.064*
O10.2167 (10)0.20459 (17)0.1186 (7)0.1147 (17)
H1A0.628 (7)0.4740 (17)0.220 (5)0.032 (9)*
H1B0.818 (8)0.4609 (19)0.334 (6)0.053 (13)*
H1WA0.813 (10)0.565 (2)0.376 (7)0.075 (17)*
H1WB0.621 (10)0.595 (3)0.379 (7)0.071 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0308 (4)0.0154 (3)0.0324 (4)0.0018 (2)0.0046 (2)0.0005 (2)
O1W0.0446 (15)0.0204 (11)0.0499 (15)0.0021 (10)0.0169 (12)0.0013 (10)
N10.0377 (15)0.0218 (12)0.0287 (14)0.0019 (11)0.0008 (12)0.0001 (11)
O30.0377 (13)0.0797 (19)0.0313 (13)0.0009 (13)0.0027 (10)0.0111 (12)
O40.0581 (16)0.0696 (19)0.0397 (15)0.0147 (14)0.0168 (12)0.0132 (13)
N30.0356 (15)0.0397 (15)0.0352 (15)0.0028 (12)0.0034 (12)0.0006 (12)
C10.0340 (16)0.0215 (14)0.0294 (15)0.0018 (12)0.0060 (12)0.0035 (12)
O20.176 (4)0.0286 (16)0.088 (3)0.001 (2)0.034 (3)0.0019 (17)
O50.0543 (19)0.124 (3)0.079 (2)0.039 (2)0.0156 (17)0.020 (2)
C60.0439 (19)0.0309 (17)0.0389 (18)0.0031 (15)0.0005 (15)0.0043 (14)
N20.121 (4)0.038 (2)0.061 (3)0.017 (2)0.036 (3)0.0115 (18)
C20.0434 (19)0.0308 (17)0.046 (2)0.0057 (15)0.0022 (16)0.0030 (15)
C40.074 (3)0.0274 (18)0.047 (2)0.0150 (18)0.019 (2)0.0110 (15)
C50.056 (2)0.041 (2)0.049 (2)0.0184 (18)0.0041 (18)0.0133 (17)
C30.078 (3)0.0278 (18)0.055 (2)0.0184 (18)0.018 (2)0.0068 (16)
O10.138 (4)0.059 (2)0.146 (4)0.045 (3)0.002 (4)0.036 (2)
Geometric parameters (Å, º) top
Cu1—O1W1.996 (2)C1—C61.389 (5)
Cu1—O1Wi1.996 (2)C1—C21.373 (5)
Cu1—N12.055 (3)O2—N21.209 (6)
Cu1—N1i2.055 (3)C6—H60.9300
Cu1—O3i2.367 (2)C6—C51.368 (5)
Cu1—O32.367 (2)N2—C41.485 (5)
O1W—H1WA0.81 (6)N2—O11.229 (6)
O1W—H1WB0.76 (6)C2—H20.9300
N1—C11.431 (4)C2—C31.403 (5)
N1—H1A0.82 (4)C4—C51.363 (6)
N1—H1B0.86 (4)C4—C31.367 (6)
O3—N31.272 (4)C5—H50.9300
O4—N31.219 (4)C3—H30.9300
N3—O51.217 (4)
O1W—Cu1—O1Wi180.0O4—N3—O3119.4 (3)
O1Wi—Cu1—N1i87.62 (11)O5—N3—O3117.8 (3)
O1Wi—Cu1—N192.38 (11)O5—N3—O4122.8 (3)
O1W—Cu1—N1i92.38 (11)C6—C1—N1118.3 (3)
O1W—Cu1—N187.62 (11)C2—C1—N1120.8 (3)
O1W—Cu1—O3i85.93 (12)C2—C1—C6120.9 (3)
O1W—Cu1—O394.07 (12)C1—C6—H6120.1
O1Wi—Cu1—O3i94.07 (12)C5—C6—C1119.9 (3)
O1Wi—Cu1—O385.93 (12)C5—C6—H6120.1
N1i—Cu1—N1180.0O2—N2—C4117.7 (5)
N1i—Cu1—O3i95.99 (11)O2—N2—O1124.6 (4)
N1—Cu1—O3i84.01 (11)O1—N2—C4117.7 (5)
N1i—Cu1—O384.01 (11)C1—C2—H2120.6
N1—Cu1—O395.99 (11)C1—C2—C3118.7 (4)
O3i—Cu1—O3180.0C3—C2—H2120.6
Cu1—O1W—H1WA117 (4)C5—C4—N2118.1 (4)
Cu1—O1W—H1WB116 (4)C5—C4—C3122.4 (3)
H1WA—O1W—H1WB105 (5)C3—C4—N2119.5 (4)
Cu1—N1—H1A101 (3)C6—C5—H5120.4
Cu1—N1—H1B100 (3)C4—C5—C6119.2 (4)
C1—N1—Cu1120.2 (2)C4—C5—H5120.4
C1—N1—H1A111 (3)C2—C3—H3120.5
C1—N1—H1B114 (3)C4—C3—C2118.9 (4)
H1A—N1—H1B109 (4)C4—C3—H3120.5
N3—O3—Cu1122.4 (2)
Cu1—N1—C1—C681.0 (3)O2—N2—C4—C35.9 (6)
Cu1—N1—C1—C297.5 (3)C6—C1—C2—C30.7 (5)
Cu1—O3—N3—O417.1 (4)N2—C4—C5—C6179.5 (4)
Cu1—O3—N3—O5163.2 (3)N2—C4—C3—C2178.6 (4)
N1—C1—C6—C5178.4 (3)C2—C1—C6—C50.2 (5)
N1—C1—C2—C3179.2 (3)C5—C4—C3—C21.6 (6)
C1—C6—C5—C40.2 (6)C3—C4—C5—C60.7 (6)
C1—C2—C3—C41.6 (6)O1—N2—C4—C55.2 (6)
O2—N2—C4—C5173.9 (4)O1—N2—C4—C3175.0 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.82 (4)2.30 (4)3.021 (4)147 (4)
O1W—H1WA···O3ii0.81 (5)2.07 (5)2.828 (4)156 (5)
O1W—H1WA···O5ii0.81 (5)2.28 (5)2.979 (5)145 (5)
N1—H1A···O4iii0.82 (4)2.42 (4)3.057 (4)135 (3)
N1—H1B···O3ii0.86 (4)2.34 (4)3.103 (4)148 (4)
N1—H1B···O3i0.86 (4)2.60 (5)2.968 (4)107 (3)
O1W—H1WB···O1iv0.76 (6)2.64 (5)3.085 (5)120 (5)
O1W—H1WB···O2iv0.77 (6)2.26 (6)3.022 (5)171 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1/2, z+1/2.
 

Funding information

The authors would like to thank the Uzbekistan government for direct financial support of the research.

References

First citationAhmed, S. A., Hasan, M. N., Bagchi, D., Altass, H. M., Morad, M., Jassas, R. S., Hameed, A. M., Patwari, J., Alessa, H., Alharbi, A. & Pal, S. K. (2020). ACS Omega, 5, 15666–15672.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBelghith, Y., Mansour, A. & Nasri, H. (2014). Acta Cryst. E70, m312–m313.  CSD CrossRef IUCr Journals Google Scholar
First citationBooth, G. (2000). Editor. Nitro Compounds, Aromatic. In Ullmann's Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a17_411  Google Scholar
First citationChen, A.-L., Huang, F., Hu, M.-L., Jin, Z.-M., Miao, Q. & Tian, B. (2017). Z. Anorg. Allg. Chem. 643, 1045–1048.  Web of Science CSD CrossRef CAS Google Scholar
First citationEgorova, K. S. & Ananikov, V. P. (2017). Organometallics, 36, 4071–4090.  Web of Science CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFeng, T.-J. (2012). Acta Cryst. E68, m1351.  CSD CrossRef IUCr Journals Google Scholar
First citationFlora, S. J. S. & Pachauri, V. (2010). Int. J. Environ. Res. Public Health, 7, 2745–2788.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIp, H.-F., So, Y.-M., Sung, H. H. Y., Williams, I. D. & Leung, W.-H. (2012). Organometallics, 31, 7020–7023.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhudoyberganov, O. I., Ruzmetov, A., Ibragimov, A. B., Ashurov, J. M., Khasanov, S. B., Eshchanov, E. U. & Ibragimov, B. T. (2022). Chem. Data Collect. 37, 100802.  CSD CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNguyen Thi Thanh, C., Hoang Van, T., Pham Van, T., Nguyen Bich, N. & Van Meervelt, L. (2015). Acta Cryst. E71, 644–646.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRuzmetov, A., Ibragimov, A., Ashurov, J., Boltaeva, Z., Ibragimov, B. & Usmanov, S. (2022b). Acta Cryst. E78, 660–664.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRuzmetov, A. Kh., Ibragimov, A. B., Myachina, O. V., Kim, R. N., Mamasalieva, L. E., Ashurov, J. M. & Ibragimov, B. T. (2022a). Chem. Data Collect, 38, 100845.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds