research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and thermal properties of bis­­(aceto­nitrile-κN)bis­­(3-bromo­pyridine-κN)bis­­(thio­cyanato-κN)cobalt(II)

crossmark logo

aInstitute of Inorganic Chemistry, University of Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 4 November 2022; accepted 25 November 2022; online 1 January 2023)

Single crystals of the title compound, [Co(NCS)2(C5H4BrN)2(C2H3N)2], were obtained by the reaction of Co(NCS)2 with 3-bromo­pyridine in aceto­nitrile. The CoII cations lie on crystallographic inversion centers and are coordinated by two N-bonded thio­cyanate anions, two 3-bromo­pyridine and two aceto­nitrile ligands thereby forming slightly distorted CoN6 octa­hedra. In the crystal, these complexes are linked by C—H⋯S and C—H⋯N hydrogen bonds into a three-dimensional network. In the direction of the crystallographic b-axis, the complexes are arranged into columns with neighboring 3-bromo­pyridine ligands stacked onto each other, indicating ππ inter­actions. The CN stretching vibration of the thio­cyanate anions is observed at 2066 cm−1, in agreement with the presence of only N-bonded anionic ligands. TG-DTA measurements reveal that in the first mass loss the aceto­nitrile ligands are removed and that in the second step, half of a 3-bromo­pyridine ligand is lost, leading to the formation of a polymeric compound with the composition [(Co(NCS)2)2(C5H4BrN)3]n already reported in the literature.

1. Chemical context

Coordination compounds based on thio­cyanate anions show a large structural variability, which to some extend can be traced back to the versatile coordination behavior of this ligand and this is surely one reason why, for example, many isomeric compounds are known (Jochim et al., 2020a[Jochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020a). Inorg. Chem. 59, 8971-8982.]; Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]; Neumann et al., 2018[Neumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018). Inorg. Chem. 57, 3305-3314.]; Werner et al., 2015a[Werner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015a). Eur. J. Inorg. Chem. pp. 3236-3245.]). Moreover, in bridging thio­cyanate anions a reasonable magnetic exchange is present, which can lead to compounds with a variety of magnetic properties (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Mekuimemba et al., 2018[Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184-2192.]). In this context, compounds based on CoII cations are of special inter­est, not only because they can show anti­ferromagnetic or ferromagnetic ordering but as also for the strong magnetic anisotropy and slow relaxation of the magnetization indicative of single-chain-magnet behavior that can be observed (Böhme et al., 2019[Böhme, M. & Plass, W. (2019). Chem. Sci. 10, 9189-9202.]; Switlicka et al., 2020[Świtlicka, A., Machura, B., Kruszynski, R., Moliner, N., Carbonell, J. M., Cano, J., Lloret, F. & Julve, C. (2020). Inorg. Chem. Front. 7, 4535-4552.]; Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.]; Shurdha et al., 2013[Shurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583-10594.]; Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]). The latter is observable in linear chain compounds, in which the CoII cations are octa­hedrally coord­inated in an all trans-configuration and linked by pairs of thio­cyanate anions (Werner et al., 2015b[Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149-14158.]; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]). This is the most common structural motif for such compounds, although corrugated chains or layers are also known (Chen et al., 2002[Chen, H. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]; Wang et al., 2005[Wang, X. Y., Li, B. L., Zhu, X. & Gao, S. (2005). Eur. J. Inorg. Chem. pp. 3277-3286.]; Jin et al., 2007[Jin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067-2074.]; Shi et al., 2007[Shi, J. M., Chen, J. N., Wu, C. J. & Ma, J. P. (2007). J. Coord. Chem. 60, 2009-2013.]; Yang et al., 2007[Yang, G., Zhang, Q., Zhang, X. P., Zhu, Y. & Ng, S. W. (2007). J. Chem. Res. pp. 384-386.]; Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]). All of these are reasons why we became inter­ested in this class of compounds in order to study the influence of a chemical and a structural modification on their magnetic properties (Wöhlert et al., 2014[Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014). Inorg. Chem. 53, 8298-8310.]; Neumann et al., 2019[Neumann, C., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652-2655.]; Rams et al., 2017a[Rams, M., Tomkowicz, Z. A., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 3232-3243.],b[Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 24534-24544.], 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]; Jochim et al., 2020b[Jochim, A., Rams, M., Böhme, M., Ceglarska, M., Plass, W. & Näther, C. (2020b). Dalton Trans. 49, 15310-15322.]; Ceglarska et al., 2021[Ceglarska, M., Böhme, M., Neumann, T., Plass, W., Näther, C. & Rams, M. (2021). Phys. Chem. Chem. Phys. 23, 10281-10289.]).

In this context we have reported on the synthesis, crystal structures and magnetic properties of coordination compounds based on Co(NCS)2 and 3-bromo­pyridine (C5H4BrN) as a ligand (Böhme et al., 2022[Böhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. & Näther, C. (2022). Inorg. Chem. 61, 16841-16855.]). During these investigations, we obtained discrete complexes with the composition Co(NCS)2(3-bromo­pyridine)4, Co(NCS)2(3-bromo­pyridine)2(H2O)2 and Co(NCS)2(3-bromo­pyri­dine)2(MeOH)2 that lose the ligands stepwise upon heating, leading to the formation of compounds with the composition [(Co(NCS)2)2(3-bromo­pyridine)3]n and [Co(NCS)2(3-bromo­pyridine)2]n, in which the Co cations are linked into chains by pairs of μ-1,3 bridging thio­cyanate anions. In the latter compound, each of the CoII cations is octa­hedrally coordinated, whereas in the former an alternating octa­hedral and square-planar coordination is observed, which is very rare for thio­cyanate compounds and had never been observed previously with Co(NCS)2. Later it was found that the compound with the mixed coordination can also be obtained from solution, which is impossible for the other compound with only an octa­hedral coordination. Unfortunately, the synthesis of the latter is difficult to achieve because all thermogravimetric curves are not well resolved and thermal annealing of the discrete complexes can lead to pure samples, but sometimes this is not the case. Therefore, we looked for other precursors that might show a similar reactivity and that might lead more easily to pure samples. In the course of these investigations, we obtained crystals of the title compound by the reaction of Co(NCS)2, 3-bromo­pyridine and aceto­nitrile. The CN stretching vibration of the thio­cyanate anions is observed at 2066 cm−1 in the IR spectrum, which points to the presence of terminal N-bonded thio­cyanate anions (Fig. S1). Single-crystal structure analysis proved that the structure consists of discrete complexes with the composition Co(NCS)2(3-bromo­pyridine)2(aceto­nitrile)2 and a comparison of the experimental XRPD pattern with that calculated from single-crystal data reveals that a pure phase has been obtained (Fig. S2). Therefore, this compound might be a suitable precursor for the synthesis of compounds, in which the CoII cations are linked by μ-1,3 bridging thio­cyanate anions into chains.

[Scheme 1]

Investigations using thermogravimetry and differential thermoanalysis (TG-DTA) show several mass losses, that are each accompanied with endothermic events in the DTA curve (Fig. S3). The experimental mass loss is in excellent agreement with that, calculated for the removal of two aceto­nitrile ligands (Δm = 14.3%), whereas the values for the second and third mass loss roughly correspond to the emission of half a 3-bromo­pyridine ligand in each step (Δm = 13.8%). Therefore, one can assume that in the first TG step a compound with the composition Co(NCS)2(3-bromo­pyridine)2 will form, which transforms into (Co(NCS)2)2(3-bromo­pyridine)3 upon further heating. XRPD investigations of the residue obtained after the first mass loss reveal the formation of a compound of poor crystallinity that cannot be identified. In contrast, a comparison of the powder pattern of the residue formed after the second TG step with that calculated for [(Co(NCS)2)2(3-bromo­pyridine)3]n (Böhme et al., 2022[Böhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. & Näther, C. (2022). Inorg. Chem. 61, 16841-16855.]) retrieved from the literature proves that this chain compound has formed (Fig. S4).

2. Structural commentary

The asymmetric unit of the title compound consists of one crystallographically independent Co cation that is located on a center of inversion, as well as one thio­cyanate anion, one 3-bromo­pyridine and one aceto­nitrile ligand in general positions (Fig. 1[link]). The methyl H atoms of the aceto­nitrile ligands are disordered over two orientations rotated by about 120° and were refined using a split model. The CoII cations are octa­hedrally coordinated by two symmetry-related 3-bromo­pyridine and two aceto­nitrile ligands as well as two terminal N-bonded thio­cyanate anions into discrete complexes (Fig. 1[link]). Bond lengths and angles correspond to literature values and from the bonding angles it is obvious that the octa­hedra are moderately distorted (Fig. 1[link] and Table 1[link]). This is in agreement with the values for the octa­hedral angle variance of 10.02°2 and the mean octa­hedral quadratic elongation of 1.0037, calculated using the method of Robinson et al. (1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]). The six-membered rings of the 3-bromo­pyridine ligands coordinating to the CoII cations are coplanar by symmetry.

Table 1
Selected geometric parameters (Å, °)

Co1—N1 2.0736 (19) Co1—N21 2.161 (2)
Co1—N11 2.1759 (19)    
       
N1i—Co1—N11 90.27 (7) N21i—Co1—N11 90.59 (7)
N1—Co1—N11 89.73 (7) N21—Co1—N11 89.41 (7)
N1i—Co1—N21 84.79 (7) Co1—N1—C1 154.96 (18)
N1—Co1—N21 95.21 (7) Co1—N21—C21 160.05 (18)
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
Crystal structure of the title compound with atom labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) −x + 1, −y + 1, −z + 1. The disorder of the methyl H atoms is shown as full and open bonds.

3. Supra­molecular features

In the extended structure of the title compound, the discrete complexes are linked by C—H⋯S and C—H⋯Br inter­actions into a three-dimensional network (Fig. 2[link] and Table 2[link]). One C—H⋯S angle is close to linear, whereas the other C—H⋯S and C—H⋯Br angles are much less than 180°, indicating only weak inter­actions (Table 2[link]). There are additional C—H⋯N contacts but their bonding angles are very far from linear (Table 2[link]). The discrete complexes are arranged in stacks that propagate along the crystallographic b-axis direction (Fig. 2[link]). Within these stacks, neighboring pyridine rings are nearly coplanar with an angle between their mean planes of 10.8 (1)° and a distance between the centroids of the rings of 4.037 (1) Å, indicating very weak ππ stacking inter­actions (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N1i 0.95 2.60 3.109 (3) 114
C15—H15⋯N1 0.95 2.63 3.121 (3) 113
C22—H22A⋯S1ii 0.98 2.98 3.947 (3) 168
C22—H22B⋯S1iii 0.98 2.76 3.625 (3) 147
C22—H22C⋯Br11iv 0.98 2.97 3.840 (3) 148
C22—H22F⋯Br11v 0.98 2.92 3.681 (3) 135
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, -y, -z+1]; (iv) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal structure of the title compound with view along the crystallographic b-axis and inter­molecular C—H⋯S and C—H⋯Br hydrogen bonding shown as dashed lines. Please note that the methyl H atoms of the aceto­nitrile ligand are disordered.
[Figure 3]
Figure 3
Crystal structure of the title compound showing the orientation of neighboring 3-bromo­pyridine rings. The distance between the centroids of the six-membered rings and the angles between the ring planes are shown. Please note that the methyl H atoms of the aceto­nitrile ligand are disordered.

4. Database survey

Some crystal structures with thio­cyanate anions and 3-bromo­pyridine as a coligand have already been reported in the Cambridge Structural Database (CSD version 5.42, last update November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). They include [Cu(NCS)2(3-bromo­pyridine)2]2, which consists of dimers, in which each CuII cation is coordinated by two 3-bromo­pyridine coligands as well as one terminal and two μ-1,3 bridging thio­cyanate anions (Handy et al., 2017[Handy, J. V., Ayala, G. & Pike, R. D. (2017). Inorg. Chim. Acta, 456, 64-75.]). In CuNCS(3-bromo­pyridine), the copper(I) cations are tetra­hedrally coordinated and linked into layers by μ-1,3 bridging thio­cyanate anions (Miller et al., 2011[Miller, K. M., McCullough, S. M., Lepekhina, E. A., Thibau, I. J., Pike, R. D., Li, X., Killarney, J. P. & Patterson, H. H. (2011). Inorg. Chem. 50, 7239-7249.]). In the second CuII compound (CuNCS)2(3-bromo­pyridine)4, the copper cations are also tetra­hedrally coordinated but linked into chains by μ-1,3 bridging thio­cyanate anions (Nicholas, et al., 2017[Nicholas, A. D., Otten, B. M., Ayala, G., Hutchinson, J., Wojtas, L., Omary, M. A., Pike, R. D. & Patterson, H. H. (2017). J. Phys. Chem. C121, 25430-25439.]).

With Ni(NCS)2 and 3-bromo­pyridine several compounds are reported, including the discrete complexes with octa­hedrally coordinated NiII cations Ni(NCS)2(3-bromo­pyridine)4, Ni(NCS)2(3-bromo­pyridine)2(H2O)2 and Ni(NCS)2(3-bromo­pyridine)2(CH3OH)2 (Krebs et al., 2021[Krebs, C., Ceglarska, M. & Näther, C. (2021). Z. Anorg. Allg. Chem. 647, 552-559.]). Also included is a compound with aceto­nitrile with the composition Ni(NCS)2(3-bromo­pyridine)2·CH3CN, but in this structure the NiII cations are linked into corrugated chains by μ-1,3 bridging thio­cyanate anions that are connected via inter­molecular hydrogen bonding into a three-dimensional network that contains channels in which aceto­nitrile solvate mol­ecules are embedded (Krebs et al., 2021[Krebs, C., Ceglarska, M. & Näther, C. (2021). Z. Anorg. Allg. Chem. 647, 552-559.]). Finally, when the discrete complexes are heated, a transformation into Ni(NCS)2(3-bromo­pyridine)2 is observed, in which the NiII cations are octa­hedrally coordinated and linked into chains by pairs of μ-1,3 bridging thio­cyanate anions (Krebs et al., 2021[Krebs, C., Ceglarska, M. & Näther, C. (2021). Z. Anorg. Allg. Chem. 647, 552-559.]). The latter compound is isotypic to its CoII analog reported recently (Böhme et al., 2022[Böhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. & Näther, C. (2022). Inorg. Chem. 61, 16841-16855.]).

With diamagnetic cations, four structures are reported. The compounds M(NCS)2(3-bromo­pyridine)4 (M = Zn, Cd) are isotypic and consist of discrete complexes in which the metal cations are octa­hedrally coordinated by four 3-bromo­pyridine ligands and two terminal N-bonded thio­cyanate anions (Wöhlert et al., 2013[Wöhlert, S., Jess, I. & Näther, C. (2013). Inorg. Chim. Acta, 407, 243-251.]). Upon heating, half of the 3-bromo­pyridine ligands are removed and a transformation into compounds of the composition M(NCS)2(3-bromo­pyridine)2 (M = Zn, Cd) is observed (Wöhlert et al., 2013[Wöhlert, S., Jess, I. & Näther, C. (2013). Inorg. Chim. Acta, 407, 243-251.]). The Zn compounds consist of tetra­hedral complexes, whereas in the Cd compound the cations are linked by pairs of anionic ligands into chains.

5. Synthesis and crystallization

Co(NCS)2 and 3-bromo­pyridine were purchased from Merck. All chemicals were used without further purification. After storing 0.5 mmol of Co(NCS)2 (87.5 mg) and 0.5 mmol of 3-bromo­pyridine (48.8 µl) in 2.0 ml of aceto­nitrile for 3 d at room temperature, light-red single crystals of the title compound suitable for single-crystal X-ray analysis were obtained. The IR spectrum was measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software WINFIRST, from ATI Mattson. The XRPD measurement was performed with Cu Kα1 radiation (λ = 1.540598 Å) using a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator. Thermogravimetry and differential thermoanalysis (TG–DTA) measurements were performed in a dynamic nitrogen atmosphere in Al2O3 crucibles using a STA-PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

6. Refinement

The C-bound H atoms were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropically with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model. The H atoms of the methyl group of the aceto­nitrile ligand are disordered in two orientations and were refined in ratio 50:50 using a split model. Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Co(NCS)2(C5H4BrN)2(C2H3N)2]
Mr 573.20
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 13.1206 (2), 8.0606 (2), 20.4520 (4)
V3) 2163.00 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 12.47
Crystal size (mm) 0.16 × 0.08 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.])
Tmin, Tmax 0.689, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10492, 2289, 2142
Rint 0.023
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.084, 1.10
No. of reflections 2289
No. of parameters 126
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.53
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(acetonitrile-κN)bis(3-bromopyridine-κN)bis(thiocyanato-κN)cobalt(II) top
Crystal data top
[Co(NCS)2(C5H4BrN)2(C2H3N)2]Dx = 1.760 Mg m3
Mr = 573.20Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 8002 reflections
a = 13.1206 (2) Åθ = 4.3–77.9°
b = 8.0606 (2) ŵ = 12.47 mm1
c = 20.4520 (4) ÅT = 100 K
V = 2163.00 (8) Å3Block, light red
Z = 40.16 × 0.08 × 0.02 mm
F(000) = 1124
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2289 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2142 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.0000 pixels mm-1θmax = 77.9°, θmin = 4.3°
ω scansh = 1613
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2021)
k = 910
Tmin = 0.689, Tmax = 1.000l = 2524
10492 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.8249P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.38 e Å3
2289 reflectionsΔρmin = 0.53 e Å3
126 parametersExtinction correction: SHELXL2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00076 (10)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.5000000.5000000.5000000.02317 (15)
N10.46546 (15)0.2934 (2)0.55618 (9)0.0277 (4)
C10.42663 (16)0.2229 (3)0.59925 (10)0.0261 (4)
S10.37115 (5)0.12261 (8)0.65871 (3)0.03667 (17)
N110.34175 (14)0.5136 (2)0.46864 (9)0.0243 (4)
C110.31849 (16)0.5744 (3)0.40943 (11)0.0258 (4)
H110.3718560.6121440.3817750.031*
C120.21868 (18)0.5837 (3)0.38751 (10)0.0252 (4)
C130.13924 (17)0.5257 (3)0.42614 (11)0.0265 (4)
H130.0707170.5285180.4111770.032*
C140.16372 (18)0.4638 (3)0.48723 (12)0.0271 (4)
H140.1117420.4238190.5154680.033*
C150.26519 (17)0.4606 (3)0.50692 (10)0.0256 (4)
H150.2809960.4192480.5492110.031*
Br110.19160 (2)0.67390 (3)0.30387 (2)0.02899 (12)
N210.53585 (15)0.3613 (2)0.41254 (10)0.0289 (4)
C210.55714 (17)0.3339 (3)0.35970 (12)0.0275 (5)
C220.5843 (2)0.3030 (3)0.29171 (13)0.0364 (5)
H22A0.5236620.3154820.2641450.055*0.5
H22B0.6109630.1899590.2873540.055*0.5
H22C0.6364200.3826400.2779100.055*0.5
H22D0.5504070.3846470.2636460.055*0.5
H22E0.5623520.1910930.2792930.055*0.5
H22F0.6582860.3123410.2864710.055*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0217 (3)0.0256 (3)0.0222 (3)0.00087 (18)0.00012 (17)0.00064 (18)
N10.0256 (9)0.0280 (9)0.0294 (9)0.0008 (7)0.0015 (7)0.0028 (7)
C10.0233 (9)0.0283 (10)0.0268 (10)0.0033 (8)0.0026 (8)0.0037 (9)
S10.0440 (3)0.0407 (3)0.0253 (3)0.0020 (3)0.0058 (2)0.0034 (2)
N110.0224 (8)0.0268 (8)0.0237 (9)0.0009 (7)0.0001 (7)0.0009 (7)
C110.0243 (10)0.0285 (10)0.0247 (10)0.0022 (8)0.0002 (8)0.0002 (9)
C120.0285 (10)0.0244 (9)0.0225 (9)0.0006 (8)0.0011 (8)0.0001 (8)
C130.0235 (10)0.0271 (10)0.0289 (11)0.0004 (8)0.0001 (8)0.0000 (8)
C140.0235 (10)0.0285 (10)0.0293 (10)0.0004 (9)0.0048 (9)0.0028 (9)
C150.0261 (11)0.0273 (10)0.0233 (10)0.0018 (9)0.0009 (8)0.0001 (8)
Br110.02896 (17)0.03464 (17)0.02338 (17)0.00212 (9)0.00260 (7)0.00317 (8)
N210.0259 (9)0.0313 (9)0.0293 (9)0.0008 (7)0.0006 (8)0.0004 (8)
C210.0251 (10)0.0270 (10)0.0305 (12)0.0004 (8)0.0011 (9)0.0025 (8)
C220.0416 (14)0.0391 (12)0.0283 (11)0.0008 (11)0.0092 (10)0.0035 (10)
Geometric parameters (Å, º) top
Co1—N1i2.0736 (19)C13—H130.9500
Co1—N12.0736 (19)C13—C141.383 (3)
Co1—N112.1759 (19)C14—H140.9500
Co1—N11i2.1758 (19)C14—C151.391 (3)
Co1—N21i2.161 (2)C15—H150.9500
Co1—N212.161 (2)N21—C211.138 (3)
N1—C11.165 (3)C21—C221.457 (3)
C1—S11.632 (2)C22—H22A0.9800
N11—C111.342 (3)C22—H22B0.9800
N11—C151.343 (3)C22—H22C0.9800
C11—H110.9500C22—H22D0.9800
C11—C121.386 (3)C22—H22E0.9800
C12—C131.389 (3)C22—H22F0.9800
C12—Br111.892 (2)
N1i—Co1—N1180.0C13—C12—Br11120.17 (17)
N1i—Co1—N1190.27 (7)C12—C13—H13121.3
N1—Co1—N1189.73 (7)C14—C13—C12117.5 (2)
N1—Co1—N11i90.27 (7)C14—C13—H13121.3
N1i—Co1—N11i89.73 (7)C13—C14—H14120.3
N1i—Co1—N2184.79 (7)C13—C14—C15119.4 (2)
N1—Co1—N2195.21 (7)C15—C14—H14120.3
N1—Co1—N21i84.79 (7)N11—C15—C14122.8 (2)
N1i—Co1—N21i95.21 (7)N11—C15—H15118.6
N11i—Co1—N11180.0C14—C15—H15118.6
N21i—Co1—N11i89.42 (7)Co1—N21—C21160.05 (18)
N21i—Co1—N1190.59 (7)N21—C21—C22178.7 (2)
N21—Co1—N1189.41 (7)C21—C22—H22A109.5
N21—Co1—N11i90.58 (7)C21—C22—H22B109.5
N21—Co1—N21i180.00 (6)C21—C22—H22C109.5
Co1—N1—C1154.96 (18)C21—C22—H22D109.5
N1—C1—S1179.1 (2)C21—C22—H22E109.5
C11—N11—Co1120.11 (14)C21—C22—H22F109.5
C11—N11—C15118.17 (19)H22A—C22—H22B109.5
C15—N11—Co1121.72 (15)H22A—C22—H22C109.5
N11—C11—H11119.1H22B—C22—H22C109.5
N11—C11—C12121.8 (2)H22D—C22—H22E109.5
C12—C11—H11119.1H22D—C22—H22F109.5
C11—C12—C13120.5 (2)H22E—C22—H22F109.5
C11—C12—Br11119.37 (17)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N1i0.952.603.109 (3)114
C15—H15···N10.952.633.121 (3)113
C22—H22A···S1ii0.982.983.947 (3)168
C22—H22B···S1iii0.982.763.625 (3)147
C22—H22C···Br11iv0.982.973.840 (3)148
C22—H22F···Br11v0.982.923.681 (3)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x+1, y, z+1; (iv) x+1/2, y, z+1/2; (v) x+1, y1/2, z+1/2.
 

Acknowledgements

Financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. NA 720/5-2).

References

First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBöhme, M. & Plass, W. (2019). Chem. Sci. 10, 9189–9202.  Web of Science PubMed Google Scholar
First citationBöhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. & Näther, C. (2022). Inorg. Chem. 61, 16841–16855.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCeglarska, M., Böhme, M., Neumann, T., Plass, W., Näther, C. & Rams, M. (2021). Phys. Chem. Chem. Phys. 23, 10281–10289.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChen, H. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHandy, J. V., Ayala, G. & Pike, R. D. (2017). Inorg. Chim. Acta, 456, 64–75.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067–2074.  Web of Science CSD CrossRef CAS Google Scholar
First citationJochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020a). Inorg. Chem. 59, 8971–8982.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJochim, A., Rams, M., Böhme, M., Ceglarska, M., Plass, W. & Näther, C. (2020b). Dalton Trans. 49, 15310–15322.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrebs, C., Ceglarska, M. & Näther, C. (2021). Z. Anorg. Allg. Chem. 647, 552–559.  Web of Science CSD CrossRef CAS Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationMekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184–2192.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMiller, K. M., McCullough, S. M., Lepekhina, E. A., Thibau, I. J., Pike, R. D., Li, X., Killarney, J. P. & Patterson, H. H. (2011). Inorg. Chem. 50, 7239–7249.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNeumann, C., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652–2655.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018). Inorg. Chem. 57, 3305–3314.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNicholas, A. D., Otten, B. M., Ayala, G., Hutchinson, J., Wojtas, L., Omary, M. A., Pike, R. D. & Patterson, H. H. (2017). J. Phys. Chem. C121, 25430–25439.  Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationPrananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.  Web of Science CSD CrossRef CAS Google Scholar
First citationRams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 24534–24544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRams, M., Tomkowicz, Z. A., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 3232–3243.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.  Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J. M., Chen, J. N., Wu, C. J. & Ma, J. P. (2007). J. Coord. Chem. 60, 2009–2013.  Web of Science CSD CrossRef CAS Google Scholar
First citationShurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583–10594.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationŚwitlicka, A., Machura, B., Kruszynski, R., Moliner, N., Carbonell, J. M., Cano, J., Lloret, F. & Julve, C. (2020). Inorg. Chem. Front. 7, 4535–4552.  Google Scholar
First citationWang, X. Y., Li, B. L., Zhu, X. & Gao, S. (2005). Eur. J. Inorg. Chem. pp. 3277–3286.  Web of Science CSD CrossRef Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015a). Eur. J. Inorg. Chem. pp. 3236–3245.  Web of Science CSD CrossRef Google Scholar
First citationWerner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149–14158.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Jess, I. & Näther, C. (2013). Inorg. Chim. Acta, 407, 243–251.  Google Scholar
First citationWöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014). Inorg. Chem. 53, 8298–8310.  Web of Science PubMed Google Scholar
First citationYang, G., Zhang, Q., Zhang, X. P., Zhu, Y. & Ng, S. W. (2007). J. Chem. Res. pp. 384–386.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds