research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses, crystal structures and Hirshfeld surface analysis of 4-(4-nitro­phen­yl)piperazin-1-ium tri­fluoro­acetate and 4-(4-nitro­phen­yl)piperazin-1-ium tri­chloro­acetate

crossmark logo

aDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570 005, India, bDepartment of Microbiology, Yuvaraja's College, University of Mysore, Mysore 570 005, India, cFaculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Łódź, Poland, dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, and eInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany
*Correspondence e-mail: Passion49432005@gmail.com, yathirajan@hotmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 22 November 2022; accepted 30 November 2022; online 1 January 2023)

The synthesis and crystal structures of the mol­ecular salts of 4-(4-nitro­phen­yl)piperazine with tri­fluoro­acetate, namely, 4-(4-nitro­phen­yl)piperazin-1-ium tri­fluoro­acetate, C10H14N3O2+·C2F3O2 (I), and with tri­chloro­acetate, namely, 4-(4-nitro­phen­yl)piperazin-1-ium tri­chloro­acetate, C10H14N3O2+·C2Cl3O2, (II), are reported and compared. A partial positional disorder of the anions was found. In both structures, the piperazine rings adopt a chair conformation, whereas the positions of the nitro­phenyl group on the piperazine ring differ from bis­ectional in (I) to equatorial in (II). In both structures, the supra­molecular assemblies are mono-periodic on the basis of the chain-of-rings motifs supported by aromatic ππ inter­actions. Hirshfeld surface analysis was used to explore the inter­molecular close contacts in both crystals. The most dominant contacts of the Hirshfeld surface of the cation–anion pairs of the asymmetric units are O⋯H/H⋯O, and those with a contribution of halogen atoms: F⋯H/H⋯F in (I) and Cl⋯H/H⋯Cl in (II), respectively.

1. Chemical context

Piperazines and their derivatives have attracted growing attention for years (Berkheij et al., 2005[Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369-2371.]; Elliott, 2011[Elliott, S. (2011). Drug Test. Anal. 3, 430-438.]; Asif, 2015[Asif, M. (2015). Int. J. Adv. Sci. Res. 1, 05.]; Brito et al., 2019[Brito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13-24.]), mainly because of their multivalent biological profiles in a number of different therapeutic areas (Upadhayaya et al., 2004[Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225-2238.]; Chaudhary et al., 2006[Chaudhary, P., Kumar, R., Verma, A. K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819-1826.]; Kharb et al., 2012[Kharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470-2488.]). The pharmacological significance of piperazines is also manifested in the application of its framework in the assemblies of inclusion, hybrid and other functional materials (Brockunier et al., 2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]; Bogatcheva et al., 2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]; Jin et al., 2020[Jin, Y., Huang, T., Zhao, W., Yang, X., Meng, Y. & Ma, P. (2020). RSC Adv. 10, 37369-37373.]; Gharbi et al., 2022[Gharbi, C., Toumi, B., Soudani, S., Lefebvre, F., Kaminsky, W., Jelsch, C., Nasr, C. B. & Khedhiri, L. (2022). J. Mol. Struct. 1257, 132620.]). Among them, a potential application for 4-nitro­phenyl­piperazine (NPP) can be indicated (König et al., 1997[König, O., Bürgi, H.-B., Armbruster, T., Hulliger, J. & Weber, T. (1997). J. Am. Chem. Soc. 119, 10632-10640.]; Lu, 2007[Lu, Y.-X. (2007). Acta Cryst. E63, o3611.]; Wang et al., 2014[Wang, X.-Y., Wang, M.-Z., Guo, F.-J., Sun, J., Qian, S.-Y., Wang, M.-Z., Guo, F.-J., Sun, J. & Qian, S.-S. (2014). Z. Kristallogr. Cryst. Mat. 229, 97-98.]). We have recently reported the crystal structures of eight salts of 4-nitro­phenyl­piperazine (Mahesha et al., 2022[Mahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022). Acta Cryst. E78, 510-518.]; Shankara Prasad et al., 2022[Shankara Prasad, H. J., Devaraju, Vinaya, Yathirajan, H. S., Parkin, S. R. & Glidewell, C. (2022). Acta Cryst. E78, 840-845.]). In view of the importance of piperazines in general and the use of 4-nitro­phenyl­piperazine in particular, the present article reports the synthesis, crystal structure and Hirshfeld surface analysis of two salts of 4-nitro­phenyl­piperazine with organic acids, namely, 4-(4-nitro­phen­yl)piperazin-1-ium tri­fluoroacetate, C12H14F3N3O4, (I)[link] and 4-(4-nitro­pheny)piperazin-1-ium tri­chloro­acetate, C12H14Cl3N3O4, (II)[link].

[Scheme 1]

2. Structural commentary

The title compounds are shown in Figs. 1[link] and 2[link]. The piperazine rings adopt a chair conformation with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) in (I)[link] of Q = 0.576 (2) Å, θ = 177.8 (2)°, φ = 182 (4)°, and in (II)[link] of Q = 0.571 (2) Å, θ = 177.1 (2)°, φ = 189 (4)°, respectively. The position of the nitro­phenyl group on the piperazine ring differs in the two structures, from bis­ectional in (I)[link] to occupying an equatorial site in (II)[link] (Fig. 3[link]). The angle between the N1—C1 bond and the normal to the Cremer & Pople mean plane is 39.57 (11)° in (I)[link] and 60.87 (14)° in (II)[link] (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]; see Database survey section for further comparisons). In addition, the delocalization effect within the benzene ring is slightly disturbed due to the presence of the electron-donating piperazinyl [–C4H8N2; for the structurally similar piperidino substituent the Hammett σp constant is −0.12 (Perrin et al., 1981[Perrin, D. D., Dempsey, B. & Serjeant, E. P. (1981). pKa Prediction for organic acids and bases, Appendix: p. 119. Chapman & Hall, London.])] and the electron-withdrawing nitro [–NO2, σp = 0.78 (Hansch et al., 1991[Hansch, C., Leo, A. & Taft, R. W. (1991). Chem. Rev. 91, 2, 165-195.])] groups located in the para- position: the lengthening of the C1—C2 and C1—C6 bonds is accompanied by the shortening of the remaining C—C bonds within the ring and C—N distances to the substituents.

[Figure 1]
Figure 1
Independent components of compound (I)[link] showing the atom-labelling scheme and the hydrogen bond (drawn as dashed line) within the selected asymmetric unit. The major disorder component is drawn using unbroken lines (A) and the minor disorder component is drawn using dashed lines (B). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Independent components of compound (II)[link] showing the atom-labelling scheme and the hydrogen bonds (drawn as dashed lines) within the selected asymmetric unit. The disorder components A and B of chlorine atoms have equal site-occupancies (1/2) within s.u. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
Superposition of the 4-(4-nitro­phen­yl)piperazin-1-ium cations in (I)[link] (red) and (II)[link] (green).

In the anions, the C—O bond lengths in the carboxyl­ate group are more similar in compound (II)[link] than in compound (I)[link], although in both cases these distances are shorter than the mean value for its type (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). The geometries of the COO groups can be affected by the positional disorder of the CF3 group in (I)[link] and the chlorine atoms in (II)[link]. In (I)[link], the CF3 group is found to be disordered over two orientations, with a refined occupancy ratio of 0.779 (4):0.221 (4), while in (II)[link], the disordered chlorine atoms in the CCl3 group show an almost equivalent contribution of components A and B [0.494 (15) and 0.506 (15)] (Figs. 1[link] and 2[link]).

3. Supra­molecular features

In (I)[link], the 4-(4-nitro­phen­yl)piperazin-1-ium cation inter­acts with two tri­fluoro­acetate anions, which are related by translation, by two N—H⋯O hydrogen bonds: N2—H21⋯O3 and N2—H21⋯O4(x + 1, y, z). Additionally, if one considers the C7—H7A⋯O3(x + 1, y, z) inter­action the hydrogen-bonded motif can be described as a C(6)C(6)[ R22(8)] chain of rings (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running parallel to the [100] direction (Fig. 4[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O3 0.90 (2) 1.98 (2) 2.844 (2) 161 (2)
N2—H22⋯O4i 0.87 (2) 1.93 (2) 2.786 (2) 165 (2)
C7—H7A⋯O3i 0.97 2.53 3.492 (2) 169
Symmetry code: (i) x+1, y, z.
[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link] showing the formation of a chain of rings parallel to the [100] direction. Hydrogen bonds are drawn as dashed lines, and for the sake of clarity, the H atoms bonded to C atoms have been omitted. Symmetry code: (i) x + 1, y, z.

In (II)[link], the ionic components of the asymmetric unit are linked by two N2—H21⋯O3 and N2—H21⋯Cl1A hydrogen bonds, forming an R12(5) ring motif. This ring system is further propagated along the [010] direction through the N2—H22⋯O3(x, y + 1, z) hydrogen bond; and a C(6)C(7)[ R12(5)] chain of rings is created (Fig. 5[link], Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O3 0.87 (2) 2.01 (2) 2.795 (2) 151 (2)
N2—H21⋯Cl1A 0.87 (2) 2.82 (2) 3.510 (5) 138 (2)
N2—H22⋯O4i 0.87 (2) 1.89 (2) 2.738 (2) 167 (2)
Symmetry code: (i) x, y+1, z.
[Figure 5]
Figure 5
Part of the crystal structure of compound (II)[link] showing the formation of a chain of rings parallel to the [010] direction. Hydrogen bonds are drawn as dashed lines, and for the sake of clarity, the H atoms bonded to C atoms have been omitted. Symmetry code: (i) x, y + 1, z.

Close inspection of the crystal packings of both structures reveals the aromatic ππ inter­actions between adjacent chains of rings (Figs. 6[link] and 7[link]). The centroid–centroid distances (Cg1⋯Cg1) between the phenyl rings are 3.788 (1) and 4.268 (1) Å in (I)[link] and 3.800 (1) Å in (II)[link]; the perpendicular distances from the centroid to the plane of the opposite ring are 3.333 (1) and 3.253 (1) Å in (I)[link] and 3.303 (1) Å in (II)[link]. Although in (I)[link] the slippage distance (2.764 Å) between the centroids spaced by 4.27 Å is markedly far from a value of 1.8 Å (suggesting an overlap of rings), one can still consider mol­ecular stacks along the [100] direction to be comparable to those undoubtedly observed in structure (II)[link] in the [010] direction.

[Figure 6]
Figure 6
A part of the crystal structure of compound (I)[link] showing the aromatic ππ inter­actions between adjacent chains of rings. Red balls represent the centroids of the phenyl rings (Cg1).
[Figure 7]
Figure 7
A part of the crystal structure of compound (II)[link] showing the aromatic ππ inter­actions between adjacent chains of rings. Red balls represent the centroids of the phenyl rings (Cg1).

Finally, both supra­molecular structures can be described as mono-periodic; no other specific close contacts or inter­actions can be found in addition to those mentioned above. Despite the similarities in the formation of 1D-chains of rings and their stacking assemblies, the packing of these motifs in the analysed crystals is fundamentally different. In (I)[link], the packing fashion can be described as herringbone-type (Fig. 8[link]), whereas in (II)[link] a linear mode is seen (Fig. 9[link]). It seems that the halogen atoms [F in (I)[link] and Cl in (II)] in the anions influence the crystal-packing modes because of the difference in their van der Waals radii.

[Figure 8]
Figure 8
Crystal packing of (I)[link] in a view along the crystallographic a axis (herring-bone type).
[Figure 9]
Figure 9
Crystal packing of (II)[link] in a view along the crystallographic b axis (linear type).

4. Hirshfeld surface analysis

The Hirshfeld surface analysis is a valuable tool for understanding crystal packing. It offers both identification and visualization of inter­molecular inter­actions, as well as reflecting the inter­play between atoms in the structure. The Hirshfeld surfaces of ionic pairs in the asymmetric units of (I)[link] and (II)[link], are shown in Fig. 10[link]. In addition, in Fig. 10[link], the corresponding 2D fingerprint plots of the most dominant contacts are also presented and combined with the information about their percentage contributions to the Hirshfeld surface. For both structures, the most significant contacts percentages are attributed to O⋯H/H⋯O inter­actions, 34.3% in (I)[link] and 31.7% in (II)[link]. The closest contacts of this type appear as two sharp symmetric spikes in the 2D maps, and the inter­molecular contacts as representatives are visualized between the Hirshfeld surface of the ionic components and neighbouring mol­ecules. Competing close contacts are those with halogen atom, Cl⋯H/H⋯Cl type in (I)[link] (32.1%) and F⋯H/H⋯F in (II)[link] (28.8%). The former contacts in the fingerprint plot of (II)[link] can be seen as wings, whereas the latter contacts dominate in the structure of (I)[link] are spread over the central part of plot; their distances are essentially comparable or longer than the sum of the van der Waals radii of the atoms involved. The much lower contributions of the H⋯H contacts are consistent with the moderate number of H atoms per two mol­ecules in the asymmetric units. The contributions of the remaining contact types constitute about 20%, among which 6–8% of the Hirshfeld surface area of (I)[link] and (II)[link] is covered by C⋯H/H⋯C contacts.

[Figure 10]
Figure 10
Views of the Hirshfeld surfaces of the ionic components of (I)[link] (upper) and (II)[link] (lower) mapped over dnorm showing inter­molecular hydrogen bonds as dashed lines. Hirshfeld surface analysis were carried out using CrystalExplorer (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.]).

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.43, September 2022; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 4-nitro­phenyl­piperazines in organic compounds revealed 45 structures, most of which contain a substituent at the N2 atom. Only a few compounds are directly comparable to title compounds (I)[link] and (II)[link]: eight structures of 4-nitro­phenyl­piperazin-1-ium salts with different benzoate anions (NEBVOJ; NEBVUP; NEBWAW; NEBWEA; NEBWIE; NEBWOK; Mahesha et al., 2022[Mahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022). Acta Cryst. E78, 510-518.]; BEFGIG; BEFGOM, Shankara Prasad et al., 2022[Shankara Prasad, H. J., Devaraju, Vinaya, Yathirajan, H. S., Parkin, S. R. & Glidewell, C. (2022). Acta Cryst. E78, 840-845.]) and one with chloride (LIJNAU; Lu, 2007[Lu, Y.-X. (2007). Acta Cryst. E63, o3611.]). In addition, two neutral NPP mol­ecules have been reported in an inclusion material (König et al., 1997[König, O., Bürgi, H.-B., Armbruster, T., Hulliger, J. & Weber, T. (1997). J. Am. Chem. Soc. 119, 10632-10640.]) or co-crystal (Wang et al., 2014[Wang, X.-Y., Wang, M.-Z., Guo, F.-J., Sun, J., Qian, S.-Y., Wang, M.-Z., Guo, F.-J., Sun, J. & Qian, S.-S. (2014). Z. Kristallogr. Cryst. Mat. 229, 97-98.]). We have compared the mol­ecular conformation of thirteen independent 4-(4-nitro­phen­yl)piperazin-1-ium cations: nine published structures (2 with Z′ > 1) and the two reported in this article. As shown in Fig. 11[link], the mol­ecular structures of the NPP cations differ from each other with respect to the position of the nitro­phenyl group on the piperazine ring: the equatorial site is preferred (9/13), whereas the axial position (3/13) is rare, and bis­ectional is uncommon (1/13). All compared piperazine rings adopt a chair conformation.

[Figure 11]
Figure 11
An overlay of thirteen 4-(4-nitro­phen­yl)piperazin-1-ium cations, showing the best fit for the piperazine ring: the colour code is red = (I)[link], green = (II[link]), orange = BEFGIG, blue = BEFGOM, black = NEBVOJ, light green = NEBVUP, purple = NEBWAW, cyan = NEBWEA, light grey = NEBWIE (mol­ecule 1), grey = NEBWIE (mol­ecule 2), violet = NEBWOK (mol­ecule 1), magenta = NEBWOK (mol­ecule 2) and yellow = LIJNAU.

6. Synthesis and crystallization

A solution of commercially available (from Sigma-Aldrich) 4-nitro­phenyl­piperazine (100 mg, 0.483 mol) in methanol (10 ml) was mixed with equimolar solutions of the appropriate acids in methanol (10 ml) viz., tri­fluoro­acetic acid (55 mg, 0.483 mol) for (I)[link] and tri­chloro­acetic acid (79 mg, 0.483 mol) for (II)[link]. The corresponding solutions were stirred for 30 minutes at 323 K and allowed to stand at room temperature. X-ray quality crystals were formed on slow evaporation for a week for both of the compounds, where ethanol ethyl acetate (1:1) was used for crystallization. The corresponding melting points were 425–427 K (I)[link] and 388–390 K (II)[link].

7. Refinement

Crystal data, data collection and structure refinement details for both compounds are summarized in Table 3[link]. In both structures, an extinction parameter was refined.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C10H14N3O2+·C2F3O2 C10H14N3O2+·C2Cl3O2
Mr 321.26 370.61
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 293 293
a, b, c (Å) 6.6889 (4), 18.376 (1), 11.2600 (7) 11.7825 (5), 6.6142 (3), 20.3271 (9)
β (°) 91.131 (6) 104.173 (4)
V3) 1383.76 (14) 1535.91 (12)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.14 0.62
Crystal size (mm) 0.50 × 0.44 × 0.44 0.48 × 0.44 × 0.40
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibu with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction (2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction (2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.784, 1.000 0.840, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4855, 2515, 1908 5078, 2802, 2068
Rint 0.020 0.013
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.106, 1.02 0.036, 0.104, 1.09
No. of reflections 2515 2802
No. of parameters 239 236
No. of restraints 84 35
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.28 0.25, −0.28
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The CF3 group of (I)[link] was found to be disordered over two orientations, with a refined occupancy ratio of 0.779 (4):0.221 (4). The disorder was restrained using SIMU, ISOR and DELU commands in SHELXL for the six resulting fluorine atoms. Anisotropic displacement parameters for pairs of the disordered carbon atom (C12A and C12B) were constrained to be the same. The three C—F bonds of the minor disorder component (B) and two C11—C12 bonds were restrained to be similar in length.

In (II)[link], the refined occupancies of disordered chlorine atoms in the CCl3 group of 0.494 (15) and 0.506 (15), show the equivalent contribution of the components A and B. The ellipsoids of three chlorine atoms of the B disorder component were modelled using SIMU, ISOR and DELU commands in SHELXL. All six C—Cl distances were restrained to be similar in length.

In both structures, the H atoms bound to C atoms were positioned geometrically with C—H distances of 0.93 Å (aromatic) and 0.97 Å (CH2), and with Uiso(H) = 1.2Ueq(C). The positions of the NH2 hydrogen atoms were refined. N—H distances within the NH2 group were restrained to 0.87 (2) Å.

Supporting information


Computing details top

For both structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

4-(4-Nitrophenyl)piperazin-1-ium trifluoroacetate (I) top
Crystal data top
C10H14N3O2+·C2F3O2F(000) = 664
Mr = 321.26Dx = 1.542 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.6889 (4) ÅCell parameters from 2766 reflections
b = 18.376 (1) Åθ = 2.9–27.8°
c = 11.2600 (7) ŵ = 0.14 mm1
β = 91.131 (6)°T = 293 K
V = 1383.76 (14) Å3Prism, yellow
Z = 40.50 × 0.44 × 0.44 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
1908 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.020
Rotation method data acquisition using ω scans.θmax = 25.3°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction (2009)
h = 87
Tmin = 0.784, Tmax = 1.000k = 1722
4855 measured reflectionsl = 1113
2515 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.5034P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.28 e Å3
2515 reflectionsΔρmin = 0.28 e Å3
239 parametersExtinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
84 restraintsExtinction coefficient: 0.053 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.6694 (3)0.05792 (11)0.27331 (14)0.0805 (6)
O20.6790 (2)0.05336 (10)0.21928 (14)0.0636 (5)
N10.8545 (2)0.10090 (8)0.26900 (12)0.0356 (4)
N20.6570 (2)0.12077 (8)0.48752 (13)0.0312 (4)
N30.6925 (2)0.01145 (11)0.19696 (15)0.0476 (5)
C10.8114 (2)0.07873 (10)0.15542 (15)0.0312 (4)
C20.8000 (3)0.12928 (11)0.06160 (16)0.0419 (5)
H20.8188590.1785010.0774330.050*
C30.7615 (3)0.10711 (12)0.05228 (17)0.0447 (5)
H30.7539870.1411710.1132940.054*
C40.7339 (3)0.03448 (11)0.07686 (15)0.0365 (4)
C50.7466 (2)0.01673 (11)0.01221 (16)0.0377 (4)
H50.7299930.0658480.0052340.045*
C60.7840 (3)0.00528 (10)0.12678 (16)0.0355 (4)
H60.7913710.0294000.1868600.043*
C70.8875 (3)0.05084 (10)0.36718 (15)0.0341 (4)
H7A1.0015620.0669790.4147940.041*
H7B0.9174670.0028450.3363920.041*
C80.7060 (3)0.04672 (9)0.44371 (15)0.0320 (4)
H8A0.5937790.0273240.3979460.038*
H8B0.7322010.0145040.5104610.038*
C90.6318 (3)0.17363 (10)0.38863 (16)0.0373 (4)
H9A0.6102170.2219630.4205500.045*
H9B0.5157210.1605350.3402490.045*
C100.8162 (3)0.17372 (10)0.31302 (16)0.0401 (5)
H10A0.7967620.2067850.2466410.048*
H10B0.9303520.1905040.3598620.048*
C110.1577 (3)0.17011 (10)0.61221 (17)0.0386 (5)
C12A0.2811 (6)0.2193 (2)0.6965 (3)0.0574 (11)0.779 (4)
C12B0.295 (2)0.2305 (8)0.6565 (13)0.0574 (11)0.221 (4)
O30.2518 (2)0.12351 (8)0.55930 (14)0.0522 (4)
O40.0240 (2)0.18168 (9)0.61548 (14)0.0593 (5)
F1A0.4768 (4)0.22180 (19)0.6652 (3)0.0873 (11)0.779 (4)
F2A0.2265 (4)0.28753 (13)0.6917 (4)0.0974 (13)0.779 (4)
F3A0.2611 (5)0.2012 (2)0.8079 (2)0.1261 (13)0.779 (4)
F1B0.2251 (14)0.2549 (8)0.7591 (12)0.089 (3)0.221 (4)
F2B0.4517 (17)0.1991 (8)0.7164 (11)0.090 (3)0.221 (4)
F3B0.2926 (17)0.2875 (5)0.5852 (13)0.129 (3)0.221 (4)
H210.541 (3)0.1200 (11)0.5272 (17)0.047 (6)*
H220.752 (2)0.1340 (10)0.5372 (15)0.038 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1184 (16)0.0917 (14)0.0310 (8)0.0055 (11)0.0098 (9)0.0050 (9)
O20.0640 (10)0.0726 (12)0.0539 (10)0.0033 (8)0.0089 (8)0.0253 (8)
N10.0441 (9)0.0359 (8)0.0268 (8)0.0041 (7)0.0012 (6)0.0023 (7)
N20.0272 (8)0.0362 (8)0.0301 (8)0.0006 (7)0.0020 (6)0.0032 (7)
N30.0359 (9)0.0719 (13)0.0349 (9)0.0018 (9)0.0004 (7)0.0080 (9)
C10.0234 (8)0.0406 (10)0.0298 (9)0.0020 (7)0.0030 (7)0.0014 (8)
C20.0518 (12)0.0397 (11)0.0341 (10)0.0012 (9)0.0002 (8)0.0025 (9)
C30.0508 (12)0.0527 (13)0.0306 (10)0.0033 (10)0.0012 (8)0.0079 (9)
C40.0277 (9)0.0528 (12)0.0289 (9)0.0020 (8)0.0003 (7)0.0037 (9)
C50.0269 (9)0.0433 (11)0.0429 (11)0.0001 (8)0.0005 (8)0.0064 (9)
C60.0317 (9)0.0404 (11)0.0344 (10)0.0005 (8)0.0001 (7)0.0038 (8)
C70.0342 (9)0.0388 (10)0.0291 (9)0.0075 (8)0.0028 (7)0.0002 (8)
C80.0358 (9)0.0312 (9)0.0288 (9)0.0000 (8)0.0048 (7)0.0006 (7)
C90.0438 (11)0.0314 (10)0.0363 (10)0.0062 (8)0.0056 (8)0.0005 (8)
C100.0523 (11)0.0346 (10)0.0335 (10)0.0058 (9)0.0005 (8)0.0011 (8)
C110.0313 (10)0.0398 (11)0.0446 (11)0.0015 (8)0.0029 (8)0.0100 (9)
C12A0.0369 (14)0.068 (2)0.067 (3)0.0037 (13)0.0025 (19)0.036 (2)
C12B0.0369 (14)0.068 (2)0.067 (3)0.0037 (13)0.0025 (19)0.036 (2)
O30.0386 (8)0.0484 (8)0.0695 (10)0.0011 (7)0.0020 (7)0.0248 (8)
O40.0308 (8)0.0745 (11)0.0724 (11)0.0014 (7)0.0055 (7)0.0315 (8)
F1A0.0316 (11)0.103 (2)0.128 (3)0.0196 (12)0.0112 (14)0.0703 (18)
F2A0.0739 (15)0.0495 (14)0.168 (4)0.0015 (12)0.012 (2)0.0513 (17)
F3A0.146 (3)0.168 (3)0.0625 (16)0.035 (2)0.0317 (15)0.0260 (18)
F1B0.055 (4)0.112 (6)0.100 (5)0.010 (5)0.006 (4)0.068 (4)
F2B0.036 (4)0.120 (5)0.111 (5)0.015 (4)0.032 (4)0.057 (4)
F3B0.126 (5)0.083 (5)0.178 (6)0.035 (4)0.003 (5)0.029 (5)
Geometric parameters (Å, º) top
O1—N31.219 (2)C7—C81.505 (2)
O2—N31.220 (2)C7—H7A0.9700
N1—C11.368 (2)C7—H7B0.9700
N1—C101.452 (2)C8—H8A0.9700
N1—C71.452 (2)C8—H8B0.9700
N2—C91.485 (2)C9—C101.512 (3)
N2—C81.486 (2)C9—H9A0.9700
N2—H210.901 (15)C9—H9B0.9700
N2—H220.873 (15)C10—H10A0.9700
N3—C41.439 (2)C10—H10B0.9700
C1—C61.399 (3)C11—O31.224 (2)
C1—C21.408 (2)C11—O41.235 (2)
C2—C31.365 (3)C11—C12B1.518 (15)
C2—H20.9300C11—C12A1.539 (4)
C3—C41.375 (3)C12A—F2A1.306 (5)
C3—H30.9300C12A—F3A1.307 (5)
C4—C51.377 (3)C12A—F1A1.364 (5)
C5—C61.370 (3)C12B—F3B1.319 (13)
C5—H50.9300C12B—F1B1.332 (14)
C6—H60.9300C12B—F2B1.365 (14)
C1—N1—C10123.95 (15)N2—C8—C7109.25 (14)
C1—N1—C7123.34 (15)N2—C8—H8A109.8
C10—N1—C7110.45 (13)C7—C8—H8A109.8
C9—N2—C8111.88 (13)N2—C8—H8B109.8
C9—N2—H21107.2 (13)C7—C8—H8B109.8
C8—N2—H21110.4 (13)H8A—C8—H8B108.3
C9—N2—H22111.7 (13)N2—C9—C10109.95 (15)
C8—N2—H22107.8 (12)N2—C9—H9A109.7
H21—N2—H22107.9 (18)C10—C9—H9A109.7
O1—N3—O2122.05 (18)N2—C9—H9B109.7
O1—N3—C4118.42 (19)C10—C9—H9B109.7
O2—N3—C4119.53 (19)H9A—C9—H9B108.2
N1—C1—C6121.82 (16)N1—C10—C9110.05 (15)
N1—C1—C2120.84 (17)N1—C10—H10A109.7
C6—C1—C2117.31 (16)C9—C10—H10A109.7
C3—C2—C1120.96 (18)N1—C10—H10B109.7
C3—C2—H2119.5C9—C10—H10B109.7
C1—C2—H2119.5H10A—C10—H10B108.2
C2—C3—C4120.06 (18)O3—C11—O4130.58 (17)
C2—C3—H3120.0O3—C11—C12B111.0 (6)
C4—C3—H3120.0O4—C11—C12B116.9 (6)
C3—C4—C5120.72 (17)O3—C11—C12A115.9 (2)
C3—C4—N3119.83 (18)O4—C11—C12A113.3 (2)
C5—C4—N3119.45 (18)F2A—C12A—F3A104.5 (4)
C6—C5—C4119.45 (18)F2A—C12A—F1A103.1 (4)
C6—C5—H5120.3F3A—C12A—F1A112.0 (4)
C4—C5—H5120.3F2A—C12A—C11113.1 (3)
C5—C6—C1121.49 (17)F3A—C12A—C11112.2 (3)
C5—C6—H6119.3F1A—C12A—C11111.5 (3)
C1—C6—H6119.3F3B—C12B—F1B105.1 (13)
N1—C7—C8110.83 (14)F3B—C12B—F2B129.5 (15)
N1—C7—H7A109.5F1B—C12B—F2B89.6 (11)
C8—C7—H7A109.5F3B—C12B—C11112.5 (10)
N1—C7—H7B109.5F1B—C12B—C11108.2 (11)
C8—C7—H7B109.5F2B—C12B—C11107.8 (11)
H7A—C7—H7B108.1
C10—N1—C1—C6157.34 (17)C10—N1—C7—C861.08 (19)
C7—N1—C1—C63.9 (3)C9—N2—C8—C754.85 (18)
C10—N1—C1—C224.9 (2)N1—C7—C8—N257.36 (18)
C7—N1—C1—C2173.79 (16)C8—N2—C9—C1054.97 (19)
N1—C1—C2—C3178.48 (17)C1—N1—C10—C9103.02 (19)
C6—C1—C2—C30.7 (3)C7—N1—C10—C960.34 (19)
C1—C2—C3—C40.2 (3)N2—C9—C10—N156.90 (19)
C2—C3—C4—C50.7 (3)O3—C11—C12A—F2A139.1 (3)
C2—C3—C4—N3179.71 (17)O4—C11—C12A—F2A45.3 (4)
O1—N3—C4—C34.9 (3)O3—C11—C12A—F3A103.0 (3)
O2—N3—C4—C3175.97 (18)O4—C11—C12A—F3A72.6 (4)
O1—N3—C4—C5175.49 (18)O3—C11—C12A—F1A23.5 (5)
O2—N3—C4—C53.6 (3)O4—C11—C12A—F1A160.9 (3)
C3—C4—C5—C61.1 (3)O3—C11—C12B—F3B98.1 (11)
N3—C4—C5—C6179.33 (15)O4—C11—C12B—F3B69.4 (12)
C4—C5—C6—C10.6 (3)O3—C11—C12B—F1B146.3 (10)
N1—C1—C6—C5178.08 (16)O4—C11—C12B—F1B46.2 (12)
C2—C1—C6—C50.3 (3)O3—C11—C12B—F2B50.7 (12)
C1—N1—C7—C8102.40 (18)O4—C11—C12B—F2B141.8 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O30.90 (2)1.98 (2)2.844 (2)161 (2)
N2—H22···O4i0.87 (2)1.93 (2)2.786 (2)165 (2)
C7—H7A···O3i0.972.533.492 (2)169
Symmetry code: (i) x+1, y, z.
4-(4-Nitrophenyl)piperazin-1-ium trichloroacetate (II) top
Crystal data top
C10H14N3O2+·C2Cl3O2F(000) = 760
Mr = 370.61Dx = 1.603 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7825 (5) ÅCell parameters from 2813 reflections
b = 6.6142 (3) Åθ = 3.0–27.8°
c = 20.3271 (9) ŵ = 0.62 mm1
β = 104.173 (4)°T = 293 K
V = 1535.91 (12) Å3Prism, brown
Z = 40.48 × 0.44 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibu with Sapphire CCD
diffractometer
2068 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.013
Rotation method data acquisition using ω scans.θmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction (2009)
h = 1413
Tmin = 0.840, Tmax = 1.000k = 76
5078 measured reflectionsl = 2414
2802 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.1937P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.104(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.25 e Å3
2802 reflectionsΔρmin = 0.28 e Å3
236 parametersExtinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
35 restraintsExtinction coefficient: 0.0084 (12)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.25261 (14)0.5140 (3)0.20561 (10)0.0741 (5)
O21.24364 (14)0.5039 (2)0.30936 (10)0.0669 (5)
N10.70718 (14)0.5089 (3)0.16441 (8)0.0449 (4)
N20.47368 (15)0.3654 (3)0.13414 (9)0.0428 (4)
N31.19635 (15)0.5092 (2)0.24883 (10)0.0477 (5)
C10.82694 (16)0.5103 (2)0.18508 (9)0.0332 (4)
C20.89695 (17)0.5088 (3)0.13812 (10)0.0410 (5)
H20.8613450.5085800.0919220.049*
C31.01632 (18)0.5077 (3)0.15913 (11)0.0432 (5)
H31.0611590.5065640.1273130.052*
C41.07033 (16)0.5084 (3)0.22736 (10)0.0369 (4)
C51.00483 (17)0.5083 (3)0.27476 (10)0.0379 (5)
H51.0417170.5077040.3207780.046*
C60.88472 (17)0.5091 (3)0.25404 (9)0.0370 (4)
H60.8409850.5088720.2864200.044*
C70.63004 (17)0.5611 (3)0.20782 (11)0.0452 (5)
H7A0.5908600.6880090.1928890.054*
H7B0.6757410.5782460.2541380.054*
C80.54056 (16)0.3977 (3)0.20527 (10)0.0425 (5)
H8A0.5792930.2731100.2234400.051*
H8B0.4875200.4361250.2328400.051*
C90.55236 (18)0.3230 (3)0.08906 (10)0.0466 (5)
H9A0.5065150.3127580.0425280.056*
H9B0.5914560.1945560.1015610.056*
C100.64214 (18)0.4869 (3)0.09421 (10)0.0489 (5)
H10A0.6953240.4531100.0662210.059*
H10B0.6037910.6134580.0779350.059*
O30.39831 (14)0.0360 (2)0.13071 (8)0.0613 (5)
O40.35547 (15)0.3109 (2)0.06595 (8)0.0619 (5)
C110.33900 (17)0.1382 (3)0.08446 (10)0.0412 (5)
C120.22438 (17)0.0367 (3)0.04153 (9)0.0394 (5)
Cl1A0.1882 (4)0.1717 (9)0.0837 (2)0.0708 (9)0.494 (15)
Cl2A0.2502 (7)0.0289 (11)0.0355 (3)0.0911 (17)0.494 (15)
Cl3A0.1076 (4)0.2089 (7)0.0240 (3)0.0746 (11)0.494 (15)
Cl1B0.2023 (4)0.2189 (9)0.0640 (4)0.0790 (16)0.506 (15)
Cl2B0.2284 (6)0.0136 (10)0.0438 (2)0.0839 (13)0.506 (15)
Cl3B0.1049 (4)0.1756 (13)0.0517 (5)0.100 (2)0.506 (15)
H210.4277 (18)0.263 (3)0.1340 (11)0.047 (6)*
H220.4300 (19)0.468 (3)0.1176 (11)0.061 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0405 (9)0.0979 (15)0.0875 (13)0.0003 (9)0.0227 (9)0.0052 (10)
O20.0443 (9)0.0759 (12)0.0697 (11)0.0015 (8)0.0068 (8)0.0106 (9)
N10.0330 (9)0.0664 (12)0.0364 (9)0.0058 (8)0.0106 (7)0.0123 (8)
N20.0334 (9)0.0375 (10)0.0536 (11)0.0019 (8)0.0033 (8)0.0032 (8)
N30.0357 (9)0.0363 (10)0.0689 (13)0.0012 (7)0.0087 (9)0.0069 (8)
C10.0344 (10)0.0273 (9)0.0388 (10)0.0020 (8)0.0106 (8)0.0025 (8)
C20.0406 (11)0.0483 (12)0.0350 (10)0.0030 (9)0.0108 (8)0.0016 (9)
C30.0405 (11)0.0439 (12)0.0491 (12)0.0042 (9)0.0181 (9)0.0022 (9)
C40.0333 (10)0.0252 (9)0.0506 (12)0.0004 (8)0.0076 (8)0.0017 (8)
C50.0429 (11)0.0286 (10)0.0395 (10)0.0014 (8)0.0046 (9)0.0032 (8)
C60.0423 (11)0.0349 (10)0.0359 (10)0.0026 (8)0.0136 (8)0.0024 (8)
C70.0348 (10)0.0567 (12)0.0464 (12)0.0050 (9)0.0144 (9)0.0130 (10)
C80.0368 (10)0.0466 (12)0.0442 (11)0.0020 (9)0.0104 (8)0.0017 (9)
C90.0449 (12)0.0509 (12)0.0388 (11)0.0026 (10)0.0001 (9)0.0060 (9)
C100.0391 (11)0.0675 (15)0.0386 (11)0.0004 (10)0.0066 (8)0.0006 (10)
O30.0579 (10)0.0507 (9)0.0598 (10)0.0039 (8)0.0152 (8)0.0023 (7)
O40.0640 (10)0.0505 (9)0.0616 (10)0.0210 (8)0.0030 (8)0.0044 (8)
C110.0383 (11)0.0456 (12)0.0375 (11)0.0031 (9)0.0054 (8)0.0057 (9)
C120.0386 (11)0.0401 (10)0.0378 (11)0.0010 (9)0.0062 (8)0.0024 (8)
Cl1A0.0801 (15)0.0735 (19)0.0577 (13)0.0376 (13)0.0150 (12)0.0120 (11)
Cl2A0.121 (3)0.099 (3)0.067 (3)0.040 (2)0.050 (2)0.053 (2)
Cl3A0.0501 (11)0.0651 (12)0.095 (2)0.0146 (8)0.0082 (13)0.0026 (15)
Cl1B0.0603 (14)0.0597 (17)0.095 (3)0.0272 (12)0.0224 (15)0.0358 (18)
Cl2B0.100 (2)0.107 (3)0.0388 (11)0.060 (2)0.0071 (13)0.0062 (15)
Cl3B0.0427 (9)0.115 (3)0.137 (4)0.0141 (15)0.0102 (19)0.063 (3)
Geometric parameters (Å, º) top
O1—N31.224 (3)C7—C81.502 (3)
O2—N31.221 (2)C7—H7A0.9700
N1—C11.370 (2)C7—H7B0.9700
N1—C101.452 (2)C8—H8A0.9700
N1—C71.455 (2)C8—H8B0.9700
N2—C91.481 (3)C9—C101.501 (3)
N2—C81.483 (2)C9—H9A0.9700
N2—H210.867 (16)C9—H9B0.9700
N2—H220.870 (16)C10—H10A0.9700
N3—C41.442 (2)C10—H10B0.9700
C1—C61.400 (3)O3—C111.228 (2)
C1—C21.406 (3)O4—C111.233 (2)
C2—C31.366 (3)C11—C121.568 (3)
C2—H20.9300C12—Cl2A1.722 (4)
C3—C41.377 (3)C12—Cl1A1.730 (5)
C3—H30.9300C12—Cl3B1.736 (4)
C4—C51.374 (3)C12—Cl2B1.753 (5)
C5—C61.374 (3)C12—Cl3A1.754 (5)
C5—H50.9300C12—Cl1B1.787 (4)
C6—H60.9300
C1—N1—C10123.91 (16)H7A—C7—H7B108.1
C1—N1—C7124.18 (17)N2—C8—C7109.76 (16)
C10—N1—C7111.23 (17)N2—C8—H8A109.7
C9—N2—C8111.52 (15)C7—C8—H8A109.7
C9—N2—H21109.6 (14)N2—C8—H8B109.7
C8—N2—H21107.4 (14)C7—C8—H8B109.7
C9—N2—H22108.0 (16)H8A—C8—H8B108.2
C8—N2—H22112.8 (16)N2—C9—C10110.93 (16)
H21—N2—H22107 (2)N2—C9—H9A109.5
O2—N3—O1122.05 (19)C10—C9—H9A109.5
O2—N3—C4119.16 (19)N2—C9—H9B109.5
O1—N3—C4118.79 (19)C10—C9—H9B109.5
N1—C1—C6121.24 (17)H9A—C9—H9B108.0
N1—C1—C2121.54 (17)N1—C10—C9109.53 (17)
C6—C1—C2117.21 (18)N1—C10—H10A109.8
C3—C2—C1121.20 (18)C9—C10—H10A109.8
C3—C2—H2119.4N1—C10—H10B109.8
C1—C2—H2119.4C9—C10—H10B109.8
C2—C3—C4120.09 (19)H10A—C10—H10B108.2
C2—C3—H3120.0O3—C11—O4129.89 (19)
C4—C3—H3120.0O3—C11—C12116.20 (18)
C5—C4—C3120.39 (18)O4—C11—C12113.91 (17)
C5—C4—N3120.10 (18)C11—C12—Cl2A107.1 (3)
C3—C4—N3119.52 (18)C11—C12—Cl1A110.38 (19)
C4—C5—C6119.88 (18)Cl2A—C12—Cl1A111.7 (2)
C4—C5—H5120.1C11—C12—Cl3B108.7 (2)
C6—C5—H5120.1C11—C12—Cl2B111.1 (2)
C5—C6—C1121.24 (18)Cl3B—C12—Cl2B112.5 (3)
C5—C6—H6119.4C11—C12—Cl3A111.2 (2)
C1—C6—H6119.4Cl2A—C12—Cl3A106.4 (3)
N1—C7—C8110.22 (17)Cl1A—C12—Cl3A110.0 (2)
N1—C7—H7A109.6C11—C12—Cl1B114.97 (18)
C8—C7—H7A109.6Cl3B—C12—Cl1B107.3 (2)
N1—C7—H7B109.6Cl2B—C12—Cl1B102.2 (3)
C8—C7—H7B109.6
C10—N1—C1—C6172.70 (18)C10—N1—C7—C860.7 (2)
C7—N1—C1—C617.6 (3)C9—N2—C8—C754.7 (2)
C10—N1—C1—C26.0 (3)N1—C7—C8—N257.0 (2)
C7—N1—C1—C2163.77 (18)C8—N2—C9—C1054.9 (2)
N1—C1—C2—C3179.19 (18)C1—N1—C10—C9129.3 (2)
C6—C1—C2—C30.5 (3)C7—N1—C10—C959.8 (2)
C1—C2—C3—C40.1 (3)N2—C9—C10—N156.4 (2)
C2—C3—C4—C50.6 (3)O3—C11—C12—Cl2A105.8 (4)
C2—C3—C4—N3179.41 (18)O4—C11—C12—Cl2A74.1 (4)
O2—N3—C4—C52.1 (3)O3—C11—C12—Cl1A16.0 (3)
O1—N3—C4—C5178.32 (17)O4—C11—C12—Cl1A164.1 (3)
O2—N3—C4—C3177.92 (18)O3—C11—C12—Cl3B117.0 (5)
O1—N3—C4—C31.7 (3)O4—C11—C12—Cl3B63.2 (5)
C3—C4—C5—C60.5 (3)O3—C11—C12—Cl2B118.7 (3)
N3—C4—C5—C6179.50 (16)O4—C11—C12—Cl2B61.1 (3)
C4—C5—C6—C10.1 (3)O3—C11—C12—Cl3A138.3 (3)
N1—C1—C6—C5179.29 (17)O4—C11—C12—Cl3A41.8 (3)
C2—C1—C6—C50.6 (3)O3—C11—C12—Cl1B3.3 (5)
C1—N1—C7—C8128.4 (2)O4—C11—C12—Cl1B176.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O30.87 (2)2.01 (2)2.795 (2)151 (2)
N2—H21···Cl1A0.87 (2)2.82 (2)3.510 (5)138 (2)
N2—H22···O4i0.87 (2)1.89 (2)2.738 (2)167 (2)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

HJS is grateful to the University of Mysore for research facilities. HSY thanks the UGC for a BSR Faculty fellowship for three years.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAsif, M. (2015). Int. J. Adv. Sci. Res. 1, 05.  CrossRef Google Scholar
First citationBerkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369–2371.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13–24.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChaudhary, P., Kumar, R., Verma, A. K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819–1826.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationElliott, S. (2011). Drug Test. Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGharbi, C., Toumi, B., Soudani, S., Lefebvre, F., Kaminsky, W., Jelsch, C., Nasr, C. B. & Khedhiri, L. (2022). J. Mol. Struct. 1257, 132620.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHansch, C., Leo, A. & Taft, R. W. (1991). Chem. Rev. 91, 2, 165–195.  Google Scholar
First citationJin, Y., Huang, T., Zhao, W., Yang, X., Meng, Y. & Ma, P. (2020). RSC Adv. 10, 37369–37373.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470–2488.  CAS Google Scholar
First citationKönig, O., Bürgi, H.-B., Armbruster, T., Hulliger, J. & Weber, T. (1997). J. Am. Chem. Soc. 119, 10632–10640.  Google Scholar
First citationLu, Y.-X. (2007). Acta Cryst. E63, o3611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022). Acta Cryst. E78, 510–518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPerrin, D. D., Dempsey, B. & Serjeant, E. P. (1981). pKa Prediction for organic acids and bases, Appendix: p. 119. Chapman & Hall, London.  Google Scholar
First citationShankara Prasad, H. J., Devaraju, Vinaya, Yathirajan, H. S., Parkin, S. R. & Glidewell, C. (2022). Acta Cryst. E78, 840–845.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.  Google Scholar
First citationUpadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, X.-Y., Wang, M.-Z., Guo, F.-J., Sun, J., Qian, S.-Y., Wang, M.-Z., Guo, F.-J., Sun, J. & Qian, S.-S. (2014). Z. Kristallogr. Cryst. Mat. 229, 97–98.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds