research communications
Syntheses, crystal structures and Hirshfeld surface analysis of 4-(4-nitrophenyl)piperazin-1-ium trifluoroacetate and 4-(4-nitrophenyl)piperazin-1-ium trichloroacetate
aDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570 005, India, bDepartment of Microbiology, Yuvaraja's College, University of Mysore, Mysore 570 005, India, cFaculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Łódź, Poland, dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, and eInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany
*Correspondence e-mail: Passion49432005@gmail.com, yathirajan@hotmail.com
The synthesis and crystal structures of the molecular salts of 4-(4-nitrophenyl)piperazine with trifluoroacetate, namely, 4-(4-nitrophenyl)piperazin-1-ium trifluoroacetate, C10H14N3O2+·C2F3O2− (I), and with trichloroacetate, namely, 4-(4-nitrophenyl)piperazin-1-ium trichloroacetate, C10H14N3O2+·C2Cl3O2−, (II), are reported and compared. A partial positional disorder of the anions was found. In both structures, the piperazine rings adopt a chair conformation, whereas the positions of the nitrophenyl group on the piperazine ring differ from bisectional in (I) to equatorial in (II). In both structures, the supramolecular assemblies are mono-periodic on the basis of the chain-of-rings motifs supported by aromatic π–π interactions. Hirshfeld surface analysis was used to explore the intermolecular close contacts in both crystals. The most dominant contacts of the Hirshfeld surface of the cation–anion pairs of the asymmetric units are O⋯H/H⋯O, and those with a contribution of halogen atoms: F⋯H/H⋯F in (I) and Cl⋯H/H⋯Cl in (II), respectively.
1. Chemical context
Piperazines and their derivatives have attracted growing attention for years (Berkheij et al., 2005; Elliott, 2011; Asif, 2015; Brito et al., 2019), mainly because of their multivalent biological profiles in a number of different therapeutic areas (Upadhayaya et al., 2004; Chaudhary et al., 2006; Kharb et al., 2012). The pharmacological significance of piperazines is also manifested in the application of its framework in the assemblies of inclusion, hybrid and other functional materials (Brockunier et al., 2004; Bogatcheva et al., 2006; Jin et al., 2020; Gharbi et al., 2022). Among them, a potential application for 4-nitrophenylpiperazine (NPP) can be indicated (König et al., 1997; Lu, 2007; Wang et al., 2014). We have recently reported the crystal structures of eight salts of 4-nitrophenylpiperazine (Mahesha et al., 2022; Shankara Prasad et al., 2022). In view of the importance of piperazines in general and the use of 4-nitrophenylpiperazine in particular, the present article reports the synthesis, and Hirshfeld surface analysis of two salts of 4-nitrophenylpiperazine with organic acids, namely, 4-(4-nitrophenyl)piperazin-1-ium trifluoroacetate, C12H14F3N3O4, (I) and 4-(4-nitropheny)piperazin-1-ium trichloroacetate, C12H14Cl3N3O4, (II).
2. Structural commentary
The title compounds are shown in Figs. 1 and 2. The piperazine rings adopt a chair conformation with puckering parameters (Cremer & Pople, 1975) in (I) of Q = 0.576 (2) Å, θ = 177.8 (2)°, φ = 182 (4)°, and in (II) of Q = 0.571 (2) Å, θ = 177.1 (2)°, φ = 189 (4)°, respectively. The position of the nitrophenyl group on the piperazine ring differs in the two structures, from bisectional in (I) to occupying an equatorial site in (II) (Fig. 3). The angle between the N1—C1 bond and the normal to the Cremer & Pople mean plane is 39.57 (11)° in (I) and 60.87 (14)° in (II) (Spek, 2020; see Database survey section for further comparisons). In addition, the delocalization effect within the benzene ring is slightly disturbed due to the presence of the electron-donating piperazinyl [–C4H8N2; for the structurally similar piperidino substituent the Hammett σp constant is −0.12 (Perrin et al., 1981)] and the electron-withdrawing nitro [–NO2, σp = 0.78 (Hansch et al., 1991)] groups located in the para- position: the lengthening of the C1—C2 and C1—C6 bonds is accompanied by the shortening of the remaining C—C bonds within the ring and C—N distances to the substituents.
In the anions, the C—O bond lengths in the carboxylate group are more similar in compound (II) than in compound (I), although in both cases these distances are shorter than the mean value for its type (Allen et al., 1987). The geometries of the COO− groups can be affected by the positional disorder of the CF3 group in (I) and the chlorine atoms in (II). In (I), the CF3 group is found to be disordered over two orientations, with a refined occupancy ratio of 0.779 (4):0.221 (4), while in (II), the disordered chlorine atoms in the CCl3 group show an almost equivalent contribution of components A and B [0.494 (15) and 0.506 (15)] (Figs. 1 and 2).
3. Supramolecular features
In (I), the 4-(4-nitrophenyl)piperazin-1-ium cation interacts with two trifluoroacetate anions, which are related by translation, by two N—H⋯O hydrogen bonds: N2—H21⋯O3 and N2—H21⋯O4(x + 1, y, z). Additionally, if one considers the C7—H7A⋯O3(x + 1, y, z) interaction the hydrogen-bonded motif can be described as a C(6)C(6)[ R22(8)] chain of rings (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995) running parallel to the [100] direction (Fig. 4, Table 1).
|
In (II), the ionic components of the are linked by two N2—H21⋯O3 and N2—H21⋯Cl1A hydrogen bonds, forming an R12(5) ring motif. This ring system is further propagated along the [010] direction through the N2—H22⋯O3(x, y + 1, z) hydrogen bond; and a C(6)C(7)[ R12(5)] chain of rings is created (Fig. 5, Table 2).
|
Close inspection of the crystal packings of both structures reveals the aromatic π–π interactions between adjacent chains of rings (Figs. 6 and 7). The centroid–centroid distances (Cg1⋯Cg1) between the phenyl rings are 3.788 (1) and 4.268 (1) Å in (I) and 3.800 (1) Å in (II); the perpendicular distances from the centroid to the plane of the opposite ring are 3.333 (1) and 3.253 (1) Å in (I) and 3.303 (1) Å in (II). Although in (I) the slippage distance (2.764 Å) between the centroids spaced by 4.27 Å is markedly far from a value of 1.8 Å (suggesting an overlap of rings), one can still consider molecular stacks along the [100] direction to be comparable to those undoubtedly observed in structure (II) in the [010] direction.
Finally, both supramolecular structures can be described as mono-periodic; no other specific close contacts or interactions can be found in addition to those mentioned above. Despite the similarities in the formation of 1D-chains of rings and their stacking assemblies, the packing of these motifs in the analysed crystals is fundamentally different. In (I), the packing fashion can be described as herringbone-type (Fig. 8), whereas in (II) a linear mode is seen (Fig. 9). It seems that the halogen atoms [F in (I) and Cl in (II)] in the anions influence the crystal-packing modes because of the difference in their van der Waals radii.
4. Hirshfeld surface analysis
The Hirshfeld surface analysis is a valuable tool for understanding crystal packing. It offers both identification and visualization of intermolecular interactions, as well as reflecting the interplay between atoms in the structure. The Hirshfeld surfaces of ionic pairs in the asymmetric units of (I) and (II), are shown in Fig. 10. In addition, in Fig. 10, the corresponding 2D fingerprint plots of the most dominant contacts are also presented and combined with the information about their percentage contributions to the Hirshfeld surface. For both structures, the most significant contacts percentages are attributed to O⋯H/H⋯O interactions, 34.3% in (I) and 31.7% in (II). The closest contacts of this type appear as two sharp symmetric spikes in the 2D maps, and the intermolecular contacts as representatives are visualized between the Hirshfeld surface of the ionic components and neighbouring molecules. Competing close contacts are those with halogen atom, Cl⋯H/H⋯Cl type in (I) (32.1%) and F⋯H/H⋯F in (II) (28.8%). The former contacts in the fingerprint plot of (II) can be seen as wings, whereas the latter contacts dominate in the structure of (I) are spread over the central part of plot; their distances are essentially comparable or longer than the sum of the van der Waals radii of the atoms involved. The much lower contributions of the H⋯H contacts are consistent with the moderate number of H atoms per two molecules in the asymmetric units. The contributions of the remaining contact types constitute about 20%, among which 6–8% of the Hirshfeld surface area of (I) and (II) is covered by C⋯H/H⋯C contacts.
5. Database survey
A search of the Cambridge Structural Database (CSD version 5.43, September 2022; Groom et al. 2016) for 4-nitrophenylpiperazines in organic compounds revealed 45 structures, most of which contain a substituent at the N2 atom. Only a few compounds are directly comparable to title compounds (I) and (II): eight structures of 4-nitrophenylpiperazin-1-ium salts with different benzoate anions (NEBVOJ; NEBVUP; NEBWAW; NEBWEA; NEBWIE; NEBWOK; Mahesha et al., 2022; BEFGIG; BEFGOM, Shankara Prasad et al., 2022) and one with chloride (LIJNAU; Lu, 2007). In addition, two neutral NPP molecules have been reported in an inclusion material (König et al., 1997) or (Wang et al., 2014). We have compared the molecular conformation of thirteen independent 4-(4-nitrophenyl)piperazin-1-ium cations: nine published structures (2 with Z′ > 1) and the two reported in this article. As shown in Fig. 11, the molecular structures of the NPP cations differ from each other with respect to the position of the nitrophenyl group on the piperazine ring: the equatorial site is preferred (9/13), whereas the axial position (3/13) is rare, and bisectional is uncommon (1/13). All compared piperazine rings adopt a chair conformation.
6. Synthesis and crystallization
A solution of commercially available (from Sigma-Aldrich) 4-nitrophenylpiperazine (100 mg, 0.483 mol) in methanol (10 ml) was mixed with equimolar solutions of the appropriate acids in methanol (10 ml) viz., trifluoroacetic acid (55 mg, 0.483 mol) for (I) and trichloroacetic acid (79 mg, 0.483 mol) for (II). The corresponding solutions were stirred for 30 minutes at 323 K and allowed to stand at room temperature. X-ray quality crystals were formed on slow evaporation for a week for both of the compounds, where ethanol ethyl acetate (1:1) was used for crystallization. The corresponding melting points were 425–427 K (I) and 388–390 K (II).
7. Refinement
Crystal data, data collection and structure . In both structures, an extinction parameter was refined.
details for both compounds are summarized in Table 3The CF3 group of (I) was found to be disordered over two orientations, with a refined occupancy ratio of 0.779 (4):0.221 (4). The disorder was restrained using SIMU, ISOR and DELU commands in SHELXL for the six resulting fluorine atoms. Anisotropic displacement parameters for pairs of the disordered carbon atom (C12A and C12B) were constrained to be the same. The three C—F bonds of the minor disorder component (B) and two C11—C12 bonds were restrained to be similar in length.
In (II), the refined occupancies of disordered chlorine atoms in the CCl3 group of 0.494 (15) and 0.506 (15), show the equivalent contribution of the components A and B. The ellipsoids of three chlorine atoms of the B disorder component were modelled using SIMU, ISOR and DELU commands in SHELXL. All six C—Cl distances were restrained to be similar in length.
In both structures, the H atoms bound to C atoms were positioned geometrically with C—H distances of 0.93 Å (aromatic) and 0.97 Å (CH2), and with Uiso(H) = 1.2Ueq(C). The positions of the NH2 hydrogen atoms were refined. N—H distances within the NH2 group were restrained to 0.87 (2) Å.
Supporting information
https://doi.org/10.1107/S2056989022011501/vm2275sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022011501/vm2275Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989022011501/vm2275IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022011501/vm2275Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989022011501/vm2275IIsup5.cml
For both structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C10H14N3O2+·C2F3O2− | F(000) = 664 |
Mr = 321.26 | Dx = 1.542 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6889 (4) Å | Cell parameters from 2766 reflections |
b = 18.376 (1) Å | θ = 2.9–27.8° |
c = 11.2600 (7) Å | µ = 0.14 mm−1 |
β = 91.131 (6)° | T = 293 K |
V = 1383.76 (14) Å3 | Prism, yellow |
Z = 4 | 0.50 × 0.44 × 0.44 mm |
Oxford Diffraction Xcalibur with Sapphire CCD diffractometer | 1908 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.020 |
Rotation method data acquisition using ω scans. | θmax = 25.3°, θmin = 2.9° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction (2009) | h = −8→7 |
Tmin = 0.784, Tmax = 1.000 | k = −17→22 |
4855 measured reflections | l = −11→13 |
2515 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.041 | w = 1/[σ2(Fo2) + (0.0484P)2 + 0.5034P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.106 | (Δ/σ)max < 0.001 |
S = 1.02 | Δρmax = 0.28 e Å−3 |
2515 reflections | Δρmin = −0.28 e Å−3 |
239 parameters | Extinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
84 restraints | Extinction coefficient: 0.053 (3) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.6694 (3) | 0.05792 (11) | −0.27331 (14) | 0.0805 (6) | |
O2 | 0.6790 (2) | −0.05336 (10) | −0.21928 (14) | 0.0636 (5) | |
N1 | 0.8545 (2) | 0.10090 (8) | 0.26900 (12) | 0.0356 (4) | |
N2 | 0.6570 (2) | 0.12077 (8) | 0.48752 (13) | 0.0312 (4) | |
N3 | 0.6925 (2) | 0.01145 (11) | −0.19696 (15) | 0.0476 (5) | |
C1 | 0.8114 (2) | 0.07873 (10) | 0.15542 (15) | 0.0312 (4) | |
C2 | 0.8000 (3) | 0.12928 (11) | 0.06160 (16) | 0.0419 (5) | |
H2 | 0.818859 | 0.178501 | 0.077433 | 0.050* | |
C3 | 0.7615 (3) | 0.10711 (12) | −0.05228 (17) | 0.0447 (5) | |
H3 | 0.753987 | 0.141171 | −0.113294 | 0.054* | |
C4 | 0.7339 (3) | 0.03448 (11) | −0.07686 (15) | 0.0365 (4) | |
C5 | 0.7466 (2) | −0.01673 (11) | 0.01221 (16) | 0.0377 (4) | |
H5 | 0.729993 | −0.065848 | −0.005234 | 0.045* | |
C6 | 0.7840 (3) | 0.00528 (10) | 0.12678 (16) | 0.0355 (4) | |
H6 | 0.791371 | −0.029400 | 0.186860 | 0.043* | |
C7 | 0.8875 (3) | 0.05084 (10) | 0.36718 (15) | 0.0341 (4) | |
H7A | 1.001562 | 0.066979 | 0.414794 | 0.041* | |
H7B | 0.917467 | 0.002845 | 0.336392 | 0.041* | |
C8 | 0.7060 (3) | 0.04672 (9) | 0.44371 (15) | 0.0320 (4) | |
H8A | 0.593779 | 0.027324 | 0.397946 | 0.038* | |
H8B | 0.732201 | 0.014504 | 0.510461 | 0.038* | |
C9 | 0.6318 (3) | 0.17363 (10) | 0.38863 (16) | 0.0373 (4) | |
H9A | 0.610217 | 0.221963 | 0.420550 | 0.045* | |
H9B | 0.515721 | 0.160535 | 0.340249 | 0.045* | |
C10 | 0.8162 (3) | 0.17372 (10) | 0.31302 (16) | 0.0401 (5) | |
H10A | 0.796762 | 0.206785 | 0.246641 | 0.048* | |
H10B | 0.930352 | 0.190504 | 0.359862 | 0.048* | |
C11 | 0.1577 (3) | 0.17011 (10) | 0.61221 (17) | 0.0386 (5) | |
C12A | 0.2811 (6) | 0.2193 (2) | 0.6965 (3) | 0.0574 (11) | 0.779 (4) |
C12B | 0.295 (2) | 0.2305 (8) | 0.6565 (13) | 0.0574 (11) | 0.221 (4) |
O3 | 0.2518 (2) | 0.12351 (8) | 0.55930 (14) | 0.0522 (4) | |
O4 | −0.0240 (2) | 0.18168 (9) | 0.61548 (14) | 0.0593 (5) | |
F1A | 0.4768 (4) | 0.22180 (19) | 0.6652 (3) | 0.0873 (11) | 0.779 (4) |
F2A | 0.2265 (4) | 0.28753 (13) | 0.6917 (4) | 0.0974 (13) | 0.779 (4) |
F3A | 0.2611 (5) | 0.2012 (2) | 0.8079 (2) | 0.1261 (13) | 0.779 (4) |
F1B | 0.2251 (14) | 0.2549 (8) | 0.7591 (12) | 0.089 (3) | 0.221 (4) |
F2B | 0.4517 (17) | 0.1991 (8) | 0.7164 (11) | 0.090 (3) | 0.221 (4) |
F3B | 0.2926 (17) | 0.2875 (5) | 0.5852 (13) | 0.129 (3) | 0.221 (4) |
H21 | 0.541 (3) | 0.1200 (11) | 0.5272 (17) | 0.047 (6)* | |
H22 | 0.752 (2) | 0.1340 (10) | 0.5372 (15) | 0.038 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1184 (16) | 0.0917 (14) | 0.0310 (8) | −0.0055 (11) | −0.0098 (9) | 0.0050 (9) |
O2 | 0.0640 (10) | 0.0726 (12) | 0.0539 (10) | 0.0033 (8) | −0.0089 (8) | −0.0253 (8) |
N1 | 0.0441 (9) | 0.0359 (8) | 0.0268 (8) | 0.0041 (7) | 0.0012 (6) | 0.0023 (7) |
N2 | 0.0272 (8) | 0.0362 (8) | 0.0301 (8) | 0.0006 (7) | −0.0020 (6) | −0.0032 (7) |
N3 | 0.0359 (9) | 0.0719 (13) | 0.0349 (9) | 0.0018 (9) | −0.0004 (7) | −0.0080 (9) |
C1 | 0.0234 (8) | 0.0406 (10) | 0.0298 (9) | 0.0020 (7) | 0.0030 (7) | 0.0014 (8) |
C2 | 0.0518 (12) | 0.0397 (11) | 0.0341 (10) | 0.0012 (9) | 0.0002 (8) | 0.0025 (9) |
C3 | 0.0508 (12) | 0.0527 (13) | 0.0306 (10) | 0.0033 (10) | −0.0012 (8) | 0.0079 (9) |
C4 | 0.0277 (9) | 0.0528 (12) | 0.0289 (9) | 0.0020 (8) | −0.0003 (7) | −0.0037 (9) |
C5 | 0.0269 (9) | 0.0433 (11) | 0.0429 (11) | −0.0001 (8) | 0.0005 (8) | −0.0064 (9) |
C6 | 0.0317 (9) | 0.0404 (11) | 0.0344 (10) | 0.0005 (8) | 0.0001 (7) | 0.0038 (8) |
C7 | 0.0342 (9) | 0.0388 (10) | 0.0291 (9) | 0.0075 (8) | −0.0028 (7) | 0.0002 (8) |
C8 | 0.0358 (9) | 0.0312 (9) | 0.0288 (9) | 0.0000 (8) | −0.0048 (7) | 0.0006 (7) |
C9 | 0.0438 (11) | 0.0314 (10) | 0.0363 (10) | 0.0062 (8) | −0.0056 (8) | 0.0005 (8) |
C10 | 0.0523 (11) | 0.0346 (10) | 0.0335 (10) | −0.0058 (9) | −0.0005 (8) | 0.0011 (8) |
C11 | 0.0313 (10) | 0.0398 (11) | 0.0446 (11) | −0.0015 (8) | −0.0029 (8) | −0.0100 (9) |
C12A | 0.0369 (14) | 0.068 (2) | 0.067 (3) | 0.0037 (13) | 0.0025 (19) | −0.036 (2) |
C12B | 0.0369 (14) | 0.068 (2) | 0.067 (3) | 0.0037 (13) | 0.0025 (19) | −0.036 (2) |
O3 | 0.0386 (8) | 0.0484 (8) | 0.0695 (10) | 0.0011 (7) | −0.0020 (7) | −0.0248 (8) |
O4 | 0.0308 (8) | 0.0745 (11) | 0.0724 (11) | −0.0014 (7) | −0.0055 (7) | −0.0315 (8) |
F1A | 0.0316 (11) | 0.103 (2) | 0.128 (3) | −0.0196 (12) | 0.0112 (14) | −0.0703 (18) |
F2A | 0.0739 (15) | 0.0495 (14) | 0.168 (4) | 0.0015 (12) | −0.012 (2) | −0.0513 (17) |
F3A | 0.146 (3) | 0.168 (3) | 0.0625 (16) | −0.035 (2) | −0.0317 (15) | −0.0260 (18) |
F1B | 0.055 (4) | 0.112 (6) | 0.100 (5) | −0.010 (5) | 0.006 (4) | −0.068 (4) |
F2B | 0.036 (4) | 0.120 (5) | 0.111 (5) | 0.015 (4) | −0.032 (4) | −0.057 (4) |
F3B | 0.126 (5) | 0.083 (5) | 0.178 (6) | −0.035 (4) | 0.003 (5) | −0.029 (5) |
O1—N3 | 1.219 (2) | C7—C8 | 1.505 (2) |
O2—N3 | 1.220 (2) | C7—H7A | 0.9700 |
N1—C1 | 1.368 (2) | C7—H7B | 0.9700 |
N1—C10 | 1.452 (2) | C8—H8A | 0.9700 |
N1—C7 | 1.452 (2) | C8—H8B | 0.9700 |
N2—C9 | 1.485 (2) | C9—C10 | 1.512 (3) |
N2—C8 | 1.486 (2) | C9—H9A | 0.9700 |
N2—H21 | 0.901 (15) | C9—H9B | 0.9700 |
N2—H22 | 0.873 (15) | C10—H10A | 0.9700 |
N3—C4 | 1.439 (2) | C10—H10B | 0.9700 |
C1—C6 | 1.399 (3) | C11—O3 | 1.224 (2) |
C1—C2 | 1.408 (2) | C11—O4 | 1.235 (2) |
C2—C3 | 1.365 (3) | C11—C12B | 1.518 (15) |
C2—H2 | 0.9300 | C11—C12A | 1.539 (4) |
C3—C4 | 1.375 (3) | C12A—F2A | 1.306 (5) |
C3—H3 | 0.9300 | C12A—F3A | 1.307 (5) |
C4—C5 | 1.377 (3) | C12A—F1A | 1.364 (5) |
C5—C6 | 1.370 (3) | C12B—F3B | 1.319 (13) |
C5—H5 | 0.9300 | C12B—F1B | 1.332 (14) |
C6—H6 | 0.9300 | C12B—F2B | 1.365 (14) |
C1—N1—C10 | 123.95 (15) | N2—C8—C7 | 109.25 (14) |
C1—N1—C7 | 123.34 (15) | N2—C8—H8A | 109.8 |
C10—N1—C7 | 110.45 (13) | C7—C8—H8A | 109.8 |
C9—N2—C8 | 111.88 (13) | N2—C8—H8B | 109.8 |
C9—N2—H21 | 107.2 (13) | C7—C8—H8B | 109.8 |
C8—N2—H21 | 110.4 (13) | H8A—C8—H8B | 108.3 |
C9—N2—H22 | 111.7 (13) | N2—C9—C10 | 109.95 (15) |
C8—N2—H22 | 107.8 (12) | N2—C9—H9A | 109.7 |
H21—N2—H22 | 107.9 (18) | C10—C9—H9A | 109.7 |
O1—N3—O2 | 122.05 (18) | N2—C9—H9B | 109.7 |
O1—N3—C4 | 118.42 (19) | C10—C9—H9B | 109.7 |
O2—N3—C4 | 119.53 (19) | H9A—C9—H9B | 108.2 |
N1—C1—C6 | 121.82 (16) | N1—C10—C9 | 110.05 (15) |
N1—C1—C2 | 120.84 (17) | N1—C10—H10A | 109.7 |
C6—C1—C2 | 117.31 (16) | C9—C10—H10A | 109.7 |
C3—C2—C1 | 120.96 (18) | N1—C10—H10B | 109.7 |
C3—C2—H2 | 119.5 | C9—C10—H10B | 109.7 |
C1—C2—H2 | 119.5 | H10A—C10—H10B | 108.2 |
C2—C3—C4 | 120.06 (18) | O3—C11—O4 | 130.58 (17) |
C2—C3—H3 | 120.0 | O3—C11—C12B | 111.0 (6) |
C4—C3—H3 | 120.0 | O4—C11—C12B | 116.9 (6) |
C3—C4—C5 | 120.72 (17) | O3—C11—C12A | 115.9 (2) |
C3—C4—N3 | 119.83 (18) | O4—C11—C12A | 113.3 (2) |
C5—C4—N3 | 119.45 (18) | F2A—C12A—F3A | 104.5 (4) |
C6—C5—C4 | 119.45 (18) | F2A—C12A—F1A | 103.1 (4) |
C6—C5—H5 | 120.3 | F3A—C12A—F1A | 112.0 (4) |
C4—C5—H5 | 120.3 | F2A—C12A—C11 | 113.1 (3) |
C5—C6—C1 | 121.49 (17) | F3A—C12A—C11 | 112.2 (3) |
C5—C6—H6 | 119.3 | F1A—C12A—C11 | 111.5 (3) |
C1—C6—H6 | 119.3 | F3B—C12B—F1B | 105.1 (13) |
N1—C7—C8 | 110.83 (14) | F3B—C12B—F2B | 129.5 (15) |
N1—C7—H7A | 109.5 | F1B—C12B—F2B | 89.6 (11) |
C8—C7—H7A | 109.5 | F3B—C12B—C11 | 112.5 (10) |
N1—C7—H7B | 109.5 | F1B—C12B—C11 | 108.2 (11) |
C8—C7—H7B | 109.5 | F2B—C12B—C11 | 107.8 (11) |
H7A—C7—H7B | 108.1 | ||
C10—N1—C1—C6 | −157.34 (17) | C10—N1—C7—C8 | 61.08 (19) |
C7—N1—C1—C6 | 3.9 (3) | C9—N2—C8—C7 | 54.85 (18) |
C10—N1—C1—C2 | 24.9 (2) | N1—C7—C8—N2 | −57.36 (18) |
C7—N1—C1—C2 | −173.79 (16) | C8—N2—C9—C10 | −54.97 (19) |
N1—C1—C2—C3 | 178.48 (17) | C1—N1—C10—C9 | 103.02 (19) |
C6—C1—C2—C3 | 0.7 (3) | C7—N1—C10—C9 | −60.34 (19) |
C1—C2—C3—C4 | −0.2 (3) | N2—C9—C10—N1 | 56.90 (19) |
C2—C3—C4—C5 | −0.7 (3) | O3—C11—C12A—F2A | 139.1 (3) |
C2—C3—C4—N3 | 179.71 (17) | O4—C11—C12A—F2A | −45.3 (4) |
O1—N3—C4—C3 | −4.9 (3) | O3—C11—C12A—F3A | −103.0 (3) |
O2—N3—C4—C3 | 175.97 (18) | O4—C11—C12A—F3A | 72.6 (4) |
O1—N3—C4—C5 | 175.49 (18) | O3—C11—C12A—F1A | 23.5 (5) |
O2—N3—C4—C5 | −3.6 (3) | O4—C11—C12A—F1A | −160.9 (3) |
C3—C4—C5—C6 | 1.1 (3) | O3—C11—C12B—F3B | 98.1 (11) |
N3—C4—C5—C6 | −179.33 (15) | O4—C11—C12B—F3B | −69.4 (12) |
C4—C5—C6—C1 | −0.6 (3) | O3—C11—C12B—F1B | −146.3 (10) |
N1—C1—C6—C5 | −178.08 (16) | O4—C11—C12B—F1B | 46.2 (12) |
C2—C1—C6—C5 | −0.3 (3) | O3—C11—C12B—F2B | −50.7 (12) |
C1—N1—C7—C8 | −102.40 (18) | O4—C11—C12B—F2B | 141.8 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H21···O3 | 0.90 (2) | 1.98 (2) | 2.844 (2) | 161 (2) |
N2—H22···O4i | 0.87 (2) | 1.93 (2) | 2.786 (2) | 165 (2) |
C7—H7A···O3i | 0.97 | 2.53 | 3.492 (2) | 169 |
Symmetry code: (i) x+1, y, z. |
C10H14N3O2+·C2Cl3O2− | F(000) = 760 |
Mr = 370.61 | Dx = 1.603 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.7825 (5) Å | Cell parameters from 2813 reflections |
b = 6.6142 (3) Å | θ = 3.0–27.8° |
c = 20.3271 (9) Å | µ = 0.62 mm−1 |
β = 104.173 (4)° | T = 293 K |
V = 1535.91 (12) Å3 | Prism, brown |
Z = 4 | 0.48 × 0.44 × 0.40 mm |
Oxford Diffraction Xcalibu with Sapphire CCD diffractometer | 2068 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.013 |
Rotation method data acquisition using ω scans. | θmax = 25.4°, θmin = 3.0° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction (2009) | h = −14→13 |
Tmin = 0.840, Tmax = 1.000 | k = −7→6 |
5078 measured reflections | l = −24→14 |
2802 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0553P)2 + 0.1937P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.104 | (Δ/σ)max < 0.001 |
S = 1.09 | Δρmax = 0.25 e Å−3 |
2802 reflections | Δρmin = −0.28 e Å−3 |
236 parameters | Extinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
35 restraints | Extinction coefficient: 0.0084 (12) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 1.25261 (14) | 0.5140 (3) | 0.20561 (10) | 0.0741 (5) | |
O2 | 1.24364 (14) | 0.5039 (2) | 0.30936 (10) | 0.0669 (5) | |
N1 | 0.70718 (14) | 0.5089 (3) | 0.16441 (8) | 0.0449 (4) | |
N2 | 0.47368 (15) | 0.3654 (3) | 0.13414 (9) | 0.0428 (4) | |
N3 | 1.19635 (15) | 0.5092 (2) | 0.24883 (10) | 0.0477 (5) | |
C1 | 0.82694 (16) | 0.5103 (2) | 0.18508 (9) | 0.0332 (4) | |
C2 | 0.89695 (17) | 0.5088 (3) | 0.13812 (10) | 0.0410 (5) | |
H2 | 0.861345 | 0.508580 | 0.091922 | 0.049* | |
C3 | 1.01632 (18) | 0.5077 (3) | 0.15913 (11) | 0.0432 (5) | |
H3 | 1.061159 | 0.506564 | 0.127313 | 0.052* | |
C4 | 1.07033 (16) | 0.5084 (3) | 0.22736 (10) | 0.0369 (4) | |
C5 | 1.00483 (17) | 0.5083 (3) | 0.27476 (10) | 0.0379 (5) | |
H5 | 1.041717 | 0.507704 | 0.320778 | 0.046* | |
C6 | 0.88472 (17) | 0.5091 (3) | 0.25404 (9) | 0.0370 (4) | |
H6 | 0.840985 | 0.508872 | 0.286420 | 0.044* | |
C7 | 0.63004 (17) | 0.5611 (3) | 0.20782 (11) | 0.0452 (5) | |
H7A | 0.590860 | 0.688009 | 0.192889 | 0.054* | |
H7B | 0.675741 | 0.578246 | 0.254138 | 0.054* | |
C8 | 0.54056 (16) | 0.3977 (3) | 0.20527 (10) | 0.0425 (5) | |
H8A | 0.579293 | 0.273110 | 0.223440 | 0.051* | |
H8B | 0.487520 | 0.436125 | 0.232840 | 0.051* | |
C9 | 0.55236 (18) | 0.3230 (3) | 0.08906 (10) | 0.0466 (5) | |
H9A | 0.506515 | 0.312758 | 0.042528 | 0.056* | |
H9B | 0.591456 | 0.194556 | 0.101561 | 0.056* | |
C10 | 0.64214 (18) | 0.4869 (3) | 0.09421 (10) | 0.0489 (5) | |
H10A | 0.695324 | 0.453110 | 0.066221 | 0.059* | |
H10B | 0.603791 | 0.613458 | 0.077935 | 0.059* | |
O3 | 0.39831 (14) | −0.0360 (2) | 0.13071 (8) | 0.0613 (5) | |
O4 | 0.35547 (15) | −0.3109 (2) | 0.06595 (8) | 0.0619 (5) | |
C11 | 0.33900 (17) | −0.1382 (3) | 0.08446 (10) | 0.0412 (5) | |
C12 | 0.22438 (17) | −0.0367 (3) | 0.04153 (9) | 0.0394 (5) | |
Cl1A | 0.1882 (4) | 0.1717 (9) | 0.0837 (2) | 0.0708 (9) | 0.494 (15) |
Cl2A | 0.2502 (7) | 0.0289 (11) | −0.0355 (3) | 0.0911 (17) | 0.494 (15) |
Cl3A | 0.1076 (4) | −0.2089 (7) | 0.0240 (3) | 0.0746 (11) | 0.494 (15) |
Cl1B | 0.2023 (4) | 0.2189 (9) | 0.0640 (4) | 0.0790 (16) | 0.506 (15) |
Cl2B | 0.2284 (6) | −0.0136 (10) | −0.0438 (2) | 0.0839 (13) | 0.506 (15) |
Cl3B | 0.1049 (4) | −0.1756 (13) | 0.0517 (5) | 0.100 (2) | 0.506 (15) |
H21 | 0.4277 (18) | 0.263 (3) | 0.1340 (11) | 0.047 (6)* | |
H22 | 0.4300 (19) | 0.468 (3) | 0.1176 (11) | 0.061 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0405 (9) | 0.0979 (15) | 0.0875 (13) | 0.0003 (9) | 0.0227 (9) | −0.0052 (10) |
O2 | 0.0443 (9) | 0.0759 (12) | 0.0697 (11) | −0.0015 (8) | −0.0068 (8) | −0.0106 (9) |
N1 | 0.0330 (9) | 0.0664 (12) | 0.0364 (9) | −0.0058 (8) | 0.0106 (7) | −0.0123 (8) |
N2 | 0.0334 (9) | 0.0375 (10) | 0.0536 (11) | −0.0019 (8) | 0.0033 (8) | 0.0032 (8) |
N3 | 0.0357 (9) | 0.0363 (10) | 0.0689 (13) | 0.0012 (7) | 0.0087 (9) | −0.0069 (8) |
C1 | 0.0344 (10) | 0.0273 (9) | 0.0388 (10) | −0.0020 (8) | 0.0106 (8) | −0.0025 (8) |
C2 | 0.0406 (11) | 0.0483 (12) | 0.0350 (10) | 0.0030 (9) | 0.0108 (8) | 0.0016 (9) |
C3 | 0.0405 (11) | 0.0439 (12) | 0.0491 (12) | 0.0042 (9) | 0.0181 (9) | 0.0022 (9) |
C4 | 0.0333 (10) | 0.0252 (9) | 0.0506 (12) | −0.0004 (8) | 0.0076 (8) | −0.0017 (8) |
C5 | 0.0429 (11) | 0.0286 (10) | 0.0395 (10) | −0.0014 (8) | 0.0046 (9) | −0.0032 (8) |
C6 | 0.0423 (11) | 0.0349 (10) | 0.0359 (10) | −0.0026 (8) | 0.0136 (8) | −0.0024 (8) |
C7 | 0.0348 (10) | 0.0567 (12) | 0.0464 (12) | −0.0050 (9) | 0.0144 (9) | −0.0130 (10) |
C8 | 0.0368 (10) | 0.0466 (12) | 0.0442 (11) | 0.0020 (9) | 0.0104 (8) | 0.0017 (9) |
C9 | 0.0449 (12) | 0.0509 (12) | 0.0388 (11) | 0.0026 (10) | 0.0001 (9) | −0.0060 (9) |
C10 | 0.0391 (11) | 0.0675 (15) | 0.0386 (11) | −0.0004 (10) | 0.0066 (8) | −0.0006 (10) |
O3 | 0.0579 (10) | 0.0507 (9) | 0.0598 (10) | −0.0039 (8) | −0.0152 (8) | 0.0023 (7) |
O4 | 0.0640 (10) | 0.0505 (9) | 0.0616 (10) | 0.0210 (8) | −0.0030 (8) | −0.0044 (8) |
C11 | 0.0383 (11) | 0.0456 (12) | 0.0375 (11) | 0.0031 (9) | 0.0054 (8) | 0.0057 (9) |
C12 | 0.0386 (11) | 0.0401 (10) | 0.0378 (11) | 0.0010 (9) | 0.0062 (8) | −0.0024 (8) |
Cl1A | 0.0801 (15) | 0.0735 (19) | 0.0577 (13) | 0.0376 (13) | 0.0150 (12) | −0.0120 (11) |
Cl2A | 0.121 (3) | 0.099 (3) | 0.067 (3) | 0.040 (2) | 0.050 (2) | 0.053 (2) |
Cl3A | 0.0501 (11) | 0.0651 (12) | 0.095 (2) | −0.0146 (8) | −0.0082 (13) | 0.0026 (15) |
Cl1B | 0.0603 (14) | 0.0597 (17) | 0.095 (3) | 0.0272 (12) | −0.0224 (15) | −0.0358 (18) |
Cl2B | 0.100 (2) | 0.107 (3) | 0.0388 (11) | 0.060 (2) | 0.0071 (13) | 0.0062 (15) |
Cl3B | 0.0427 (9) | 0.115 (3) | 0.137 (4) | −0.0141 (15) | 0.0102 (19) | 0.063 (3) |
O1—N3 | 1.224 (3) | C7—C8 | 1.502 (3) |
O2—N3 | 1.221 (2) | C7—H7A | 0.9700 |
N1—C1 | 1.370 (2) | C7—H7B | 0.9700 |
N1—C10 | 1.452 (2) | C8—H8A | 0.9700 |
N1—C7 | 1.455 (2) | C8—H8B | 0.9700 |
N2—C9 | 1.481 (3) | C9—C10 | 1.501 (3) |
N2—C8 | 1.483 (2) | C9—H9A | 0.9700 |
N2—H21 | 0.867 (16) | C9—H9B | 0.9700 |
N2—H22 | 0.870 (16) | C10—H10A | 0.9700 |
N3—C4 | 1.442 (2) | C10—H10B | 0.9700 |
C1—C6 | 1.400 (3) | O3—C11 | 1.228 (2) |
C1—C2 | 1.406 (3) | O4—C11 | 1.233 (2) |
C2—C3 | 1.366 (3) | C11—C12 | 1.568 (3) |
C2—H2 | 0.9300 | C12—Cl2A | 1.722 (4) |
C3—C4 | 1.377 (3) | C12—Cl1A | 1.730 (5) |
C3—H3 | 0.9300 | C12—Cl3B | 1.736 (4) |
C4—C5 | 1.374 (3) | C12—Cl2B | 1.753 (5) |
C5—C6 | 1.374 (3) | C12—Cl3A | 1.754 (5) |
C5—H5 | 0.9300 | C12—Cl1B | 1.787 (4) |
C6—H6 | 0.9300 | ||
C1—N1—C10 | 123.91 (16) | H7A—C7—H7B | 108.1 |
C1—N1—C7 | 124.18 (17) | N2—C8—C7 | 109.76 (16) |
C10—N1—C7 | 111.23 (17) | N2—C8—H8A | 109.7 |
C9—N2—C8 | 111.52 (15) | C7—C8—H8A | 109.7 |
C9—N2—H21 | 109.6 (14) | N2—C8—H8B | 109.7 |
C8—N2—H21 | 107.4 (14) | C7—C8—H8B | 109.7 |
C9—N2—H22 | 108.0 (16) | H8A—C8—H8B | 108.2 |
C8—N2—H22 | 112.8 (16) | N2—C9—C10 | 110.93 (16) |
H21—N2—H22 | 107 (2) | N2—C9—H9A | 109.5 |
O2—N3—O1 | 122.05 (19) | C10—C9—H9A | 109.5 |
O2—N3—C4 | 119.16 (19) | N2—C9—H9B | 109.5 |
O1—N3—C4 | 118.79 (19) | C10—C9—H9B | 109.5 |
N1—C1—C6 | 121.24 (17) | H9A—C9—H9B | 108.0 |
N1—C1—C2 | 121.54 (17) | N1—C10—C9 | 109.53 (17) |
C6—C1—C2 | 117.21 (18) | N1—C10—H10A | 109.8 |
C3—C2—C1 | 121.20 (18) | C9—C10—H10A | 109.8 |
C3—C2—H2 | 119.4 | N1—C10—H10B | 109.8 |
C1—C2—H2 | 119.4 | C9—C10—H10B | 109.8 |
C2—C3—C4 | 120.09 (19) | H10A—C10—H10B | 108.2 |
C2—C3—H3 | 120.0 | O3—C11—O4 | 129.89 (19) |
C4—C3—H3 | 120.0 | O3—C11—C12 | 116.20 (18) |
C5—C4—C3 | 120.39 (18) | O4—C11—C12 | 113.91 (17) |
C5—C4—N3 | 120.10 (18) | C11—C12—Cl2A | 107.1 (3) |
C3—C4—N3 | 119.52 (18) | C11—C12—Cl1A | 110.38 (19) |
C4—C5—C6 | 119.88 (18) | Cl2A—C12—Cl1A | 111.7 (2) |
C4—C5—H5 | 120.1 | C11—C12—Cl3B | 108.7 (2) |
C6—C5—H5 | 120.1 | C11—C12—Cl2B | 111.1 (2) |
C5—C6—C1 | 121.24 (18) | Cl3B—C12—Cl2B | 112.5 (3) |
C5—C6—H6 | 119.4 | C11—C12—Cl3A | 111.2 (2) |
C1—C6—H6 | 119.4 | Cl2A—C12—Cl3A | 106.4 (3) |
N1—C7—C8 | 110.22 (17) | Cl1A—C12—Cl3A | 110.0 (2) |
N1—C7—H7A | 109.6 | C11—C12—Cl1B | 114.97 (18) |
C8—C7—H7A | 109.6 | Cl3B—C12—Cl1B | 107.3 (2) |
N1—C7—H7B | 109.6 | Cl2B—C12—Cl1B | 102.2 (3) |
C8—C7—H7B | 109.6 | ||
C10—N1—C1—C6 | −172.70 (18) | C10—N1—C7—C8 | 60.7 (2) |
C7—N1—C1—C6 | 17.6 (3) | C9—N2—C8—C7 | 54.7 (2) |
C10—N1—C1—C2 | 6.0 (3) | N1—C7—C8—N2 | −57.0 (2) |
C7—N1—C1—C2 | −163.77 (18) | C8—N2—C9—C10 | −54.9 (2) |
N1—C1—C2—C3 | −179.19 (18) | C1—N1—C10—C9 | 129.3 (2) |
C6—C1—C2—C3 | −0.5 (3) | C7—N1—C10—C9 | −59.8 (2) |
C1—C2—C3—C4 | −0.1 (3) | N2—C9—C10—N1 | 56.4 (2) |
C2—C3—C4—C5 | 0.6 (3) | O3—C11—C12—Cl2A | 105.8 (4) |
C2—C3—C4—N3 | −179.41 (18) | O4—C11—C12—Cl2A | −74.1 (4) |
O2—N3—C4—C5 | 2.1 (3) | O3—C11—C12—Cl1A | −16.0 (3) |
O1—N3—C4—C5 | −178.32 (17) | O4—C11—C12—Cl1A | 164.1 (3) |
O2—N3—C4—C3 | −177.92 (18) | O3—C11—C12—Cl3B | −117.0 (5) |
O1—N3—C4—C3 | 1.7 (3) | O4—C11—C12—Cl3B | 63.2 (5) |
C3—C4—C5—C6 | −0.5 (3) | O3—C11—C12—Cl2B | 118.7 (3) |
N3—C4—C5—C6 | 179.50 (16) | O4—C11—C12—Cl2B | −61.1 (3) |
C4—C5—C6—C1 | −0.1 (3) | O3—C11—C12—Cl3A | −138.3 (3) |
N1—C1—C6—C5 | 179.29 (17) | O4—C11—C12—Cl3A | 41.8 (3) |
C2—C1—C6—C5 | 0.6 (3) | O3—C11—C12—Cl1B | 3.3 (5) |
C1—N1—C7—C8 | −128.4 (2) | O4—C11—C12—Cl1B | −176.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H21···O3 | 0.87 (2) | 2.01 (2) | 2.795 (2) | 151 (2) |
N2—H21···Cl1A | 0.87 (2) | 2.82 (2) | 3.510 (5) | 138 (2) |
N2—H22···O4i | 0.87 (2) | 1.89 (2) | 2.738 (2) | 167 (2) |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
HJS is grateful to the University of Mysore for research facilities. HSY thanks the UGC for a BSR Faculty fellowship for three years.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Asif, M. (2015). Int. J. Adv. Sci. Res. 1, 05. CrossRef Google Scholar
Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369–2371. Web of Science CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048. Web of Science CrossRef PubMed CAS Google Scholar
Brito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13–24. Web of Science CrossRef CAS PubMed Google Scholar
Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766. Web of Science CrossRef PubMed CAS Google Scholar
Chaudhary, P., Kumar, R., Verma, A. K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819–1826. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Elliott, S. (2011). Drug Test. Anal. 3, 430–438. Web of Science CrossRef CAS PubMed Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Gharbi, C., Toumi, B., Soudani, S., Lefebvre, F., Kaminsky, W., Jelsch, C., Nasr, C. B. & Khedhiri, L. (2022). J. Mol. Struct. 1257, 132620. Web of Science CSD CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hansch, C., Leo, A. & Taft, R. W. (1991). Chem. Rev. 91, 2, 165–195. Google Scholar
Jin, Y., Huang, T., Zhao, W., Yang, X., Meng, Y. & Ma, P. (2020). RSC Adv. 10, 37369–37373. Web of Science CrossRef CAS PubMed Google Scholar
Kharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470–2488. CAS Google Scholar
König, O., Bürgi, H.-B., Armbruster, T., Hulliger, J. & Weber, T. (1997). J. Am. Chem. Soc. 119, 10632–10640. Google Scholar
Lu, Y.-X. (2007). Acta Cryst. E63, o3611. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022). Acta Cryst. E78, 510–518. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Perrin, D. D., Dempsey, B. & Serjeant, E. P. (1981). pKa Prediction for organic acids and bases, Appendix: p. 119. Chapman & Hall, London. Google Scholar
Shankara Prasad, H. J., Devaraju, Vinaya, Yathirajan, H. S., Parkin, S. R. & Glidewell, C. (2022). Acta Cryst. E78, 840–845. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. Google Scholar
Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238. Web of Science CrossRef PubMed CAS Google Scholar
Wang, X.-Y., Wang, M.-Z., Guo, F.-J., Sun, J., Qian, S.-Y., Wang, M.-Z., Guo, F.-J., Sun, J. & Qian, S.-S. (2014). Z. Kristallogr. Cryst. Mat. 229, 97–98. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.