research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and thermal properties of tetra­kis­(3-methyl­pyridine-κN)bis­­(thio­cyanato-κN)nickel(II)

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 7 October 2022; accepted 25 November 2022; online 1 January 2023)

Reaction of Ni(NCS)2 with 3-methyl­pyridine in water leads to the formation of crystals of the title compound, [Ni(NCS)2(C6H7N)4]. All of them are of poor quality and non-merohedrally twinned but a refinement using data in HKLF-5 format leads to a reasonable structure model and reliability factors. The crystal structure of the title compound consists of discrete complexes, in which the nickel cations are sixfold coordinated by two terminal N-bonded thio­cyanate anions and four 3-methyl­pyridine ligands within slightly distorted octa­hedra. One of the 3-methyl­pyridine ligands is disordered and was refined using a split model. The discrete complexes are arranged into layers. X-ray powder diffraction proves that pure samples have been obtained, and in the IR spectrum, the CN stretching vibration is observed at 2072 cm−1, in agreement with the presence of only terminally coordinated thio­cyanate anions. Comparing the calculated powder pattern with those of the residues obtained by solvent removal from several solvates already reported in the literature proves that, in each case, this crystalline phase is formed. Assessing the crystal structures of the solvates in comparison with that of the ansolvate reveals some similarities.

1. Chemical context

Thio­cyanate anions are versatile ligands that can coordinate in many different ways to metal cations. The most common coordination is the terminal mode, in which these anionic ligands are only connected via the N or S atom, while the latter is only rarely observed. For several reasons, the μ-1,3 bridging coordination is more inter­esting and can lead to the formation of chains or layers (Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]). There are also a few compounds with more condensed thio­cyanate networks that can form if these anionic ligands take up, for example, the μ-1,3,3 (N,S,S) bridging mode (Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]).

We have been inter­ested in this class of compounds for several years targeting, for example, compounds that show inter­esting magnetic properties (Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]; Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.], 2015a[Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015a). Eur. J. Inorg. Chem. 2015, 3236-3245.],b[Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149-14158.]). In most cases, the neutral coligands used by us and others comprise pyridine derivatives and many such compounds have been reported in the literature (Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]; Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]). If less chalcophilic metal cations such as MnII, FeII, CoII or NiII are used, compounds with the composition M(NCS)2(L)4 (M = Mn, Fe, Co, Ni and L = pyridine derivative) are frequently obtained, in which the metal cations are octa­hedrally coordinated by two terminal N-bonded thio­cyanate anions and four coligands. Many of them have already been reported in the literature. If such compounds are heated, in several cases two of the coligands are removed, leading to a transformation to coligand-deficient compounds, in which the metal cations are linked by the anionic ligands and this is the reason why we are also inter­ested in such discrete complexes (Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]).

Throughout these investigations, we became inter­ested in Ni compounds with 3-methyl­pyridine as coligand for which some complexes have already been reported in the literature. However, all of these compounds consist of octa­hedral discrete complexes and the majority forms solvates with the composition Ni(NCS)2(3-methyl­pyridine)4·X with X = bis­(tri­chloro­methane) (LAYLOM; Pang et al., 1992[Pang, L., Lucken, E. A. C. & Bernardinelli, G. (1992). J. Incl Phenom. Macrocycl Chem. 13, 63-76.]), which crystallizes in space group P[\overline{1}], bis­(di­chloro­methane) (LAYLIG; Pang et al., 1992[Pang, L., Lucken, E. A. C. & Bernardinelli, G. (1992). J. Incl Phenom. Macrocycl Chem. 13, 63-76.]), which crystallizes in space group C2/c, mono-tetra­chloro­methane, mono-di­bromo-di­chloro­methane, mono-di­chloro­methane and mono-2,2-di­chloro­propane clathrates (JICMIR, LAYLAY, LAYLUS and LAYLEC; Pang et al., 1990[Pang, L., Lucken, E. A. C. & Bernardinelli, G. (1990). J. Am. Chem. Soc. 112, 8754-8764.], 1992[Pang, L., Lucken, E. A. C. & Bernardinelli, G. (1992). J. Incl Phenom. Macrocycl Chem. 13, 63-76.]) as well as mono-tri­chloro­methane (CIVJEW and CIFJEW01; Nassimbeni et al., 1984[Nassimbeni, L. R., Bond, D. R., Moore, M. & Papanicolaou, S. (1984). Acta Cryst. A40, C111.], 1986[Nassimbeni, L. R., Papanicolaou, S. & Moore, M. H. (1986). J. Inclusion Phenom. 4, 31-42.]), all of which crystallize in the ortho­rhom­bic space group Fddd. Surprisingly, for unknown reasons, the crystal structure of the ansolvate is unknown. What is common to all of the solvates mentioned above is the fact that they contain non-polar solvents, which cannot coordinate to metal cations. We used solvents with donor atoms able to coordinate when attempting to prepare compounds with the composition Ni(NCS)2(3-methyl­pyridine)2(solvent)2. Upon heating, these should lose their two solvent mol­ecules, transforming into compounds with a bridging coordination. Surprisingly, even in this case, octa­hedral complexes with the composition Ni(NCS)2(3-methyl­pyridine)4·X (X = aceto­nitrile, ethanol, diethyl ether) were obtained (Krebs et al., 2022[Krebs, C., Jess, I. & Näther, C. (2022). Acta Cryst. E78, 993-998.]). We have found that these solvates are unstable and have lost their solvents already at room temperature. X-ray powder diffraction (XRPD) proves that, independent of the crystal structure of the precursor, the same crystalline phase is always obtained (Fig. 1[link]) which, according to IR spectroscopic data, bears only terminal N-bonded anionic ligands. Unfortunately no single crystals were obtained by this procedure, which means that the crystal structure of the ansolvate remained unknown. Starting from these observations, we tried to prepare crystals of the ansolvate using a variety of solvents and we eventually obtained crystals with the desired composition from H2O. The CN stretching vibration of the anions in the crystals is observed at 2072 cm−1, indicating the presence of terminal thio­cyanate anions (Fig. S1). Single crystal X-ray diffraction proves that the hitherto missing ansolvate has formed and XRPD investigations reveal the formation of a phase-pure sample (Fig. S2). Comparison of the experimental powder pattern obtained by solvent removal from the aceto­nitrile, ethanol and diethyl ether solvates with that calculated for the ansolvate proves that all of these crystalline phases are identical (Fig. 1[link]). TG-DTA measurements show that the title compound decomposes in three steps, which are all accompanied by an endothermic event in the DTA curve (Fig. S3). The calculated mass loss per coligand amounts to 17.0%, which means that the first step (33.3%) is in reasonable agreement with the loss of two ligands and the second (15.7%) and third (14.9%) step with the loss of one ligand each, indicating the formation of additional compounds.

[Scheme 1]
[Figure 1]
Figure 1
Experimental X-ray powder patterns of (a) [Ni(NCS)2(3-methyl­pyridine)4]·2aceto­nitrile, (b) [Ni(NCS)2(3-methyl­pyridine)4]·2ethanol, (c) [Ni(NCS)2(3-methyl­pyridine)4]·diethyl ether, each after 2 h in air, and (d) the calculated pattern of the title compound.

2. Structural commentary

The asymmetric unit of the title compound, Ni(NCS)2(3-methyl­pyridine)4, consists of one NiII cation, two thio­cyanate anions and four 3-methyl­pyridine coligands that occupy general positions. One of the 3-methyl­pyridine coligands is disordered and was refined using a split model (Fig. 2[link]). In the crystal structure of the title compound, the nickel cations are sixfold coordinated by two terminal N-bonded thio­cyanate anions and four 3-methyl­pyridine coligands and from the bond lengths and angles it is obvious that the octa­hedra are slightly distorted (Table 1[link]). This can also be seen from the octa­hedral angle variance (with a value of 11.2355°2) and the mean octa­hedral quadratic elongation (with a value of 1.0042) determined by the method of Robinson et al. (1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]).

Table 1
Selected geometric parameters (Å, °)

Ni1—N1 2.064 (4) Ni1—N31 2.126 (3)
Ni1—N2 2.037 (4) Ni1—N41 2.193 (10)
Ni1—N11 2.124 (3) Ni1—N41A 2.075 (11)
Ni1—N21 2.118 (3)    
       
N1—Ni1—N11 90.23 (15) N2—Ni1—N41A 82.0 (3)
N1—Ni1—N21 90.76 (14) N11—Ni1—N31 177.86 (12)
N1—Ni1—N31 90.57 (14) N11—Ni1—N41 87.7 (3)
N1—Ni1—N41 83.7 (3) N21—Ni1—N11 87.12 (12)
N1—Ni1—N41A 98.2 (3) N21—Ni1—N31 90.89 (12)
N2—Ni1—N1 178.73 (15) N21—Ni1—N41 172.4 (3)
N2—Ni1—N11 91.01 (14) N31—Ni1—N41 94.4 (3)
N2—Ni1—N21 89.04 (14) N41A—Ni1—N11 95.6 (3)
N2—Ni1—N31 88.17 (14) N41A—Ni1—N21 170.6 (3)
N2—Ni1—N41 96.6 (3) N41A—Ni1—N31 86.2 (3)
[Figure 2]
Figure 2
Crystal structure of the title compound with atom labeling and displacement ellipsoids drawn at the 50% probability level using XP in SHELX-PC (Sheldrick, 1996[Sheldrick, G. M. (1996). XP. Program for drawing crystal structures. University of Göttingen, Germany.]). The disorder of one of the 3-methyl­pyridine ligands is shown as full and open bonds.

3. Supra­molecular features

In the crystal structure of the title compound, the discrete complexes are arranged into layers that are located in the ab plane (Fig. 3[link]: top). These layers are separated from neighbouring layers by pairs of 3-methyl­pyridine ligands that show a butterfly-like arrangement. There are no indications for ππ stacking or inter­molecular hydrogen bonding. There are only C—H⋯N and C—H⋯S contacts, but from the distances and angles it is obvious that these are not significant inter­actions. The arrangement of the complexes in the title compound is similar to that in the solvates Ni(NCS)2(3-methyl­pyridine)4·ethanol and the isotypic compound Ni(NCS)2(3-methyl­pyridine)4·aceto­nitrile (Krebs et al., 2022[Krebs, C., Jess, I. & Näther, C. (2022). Acta Cryst. E78, 993-998.]), indicating some structural relationship (Fig. 3[link]). However, the third solvate, Ni(NCS)2(3-methyl­pyridine)4·diethyl ether (Krebs et al., 2022[Krebs, C., Jess, I. & Näther, C. (2022). Acta Cryst. E78, 993-998.]) is not isotypic to the ethanol and aceto­nitrile solvates, yet also transforms into the title compound upon solvent removal. Even in this compound, a similar arrangement of the complexes is formed, which strongly suggests that the same crystalline ansolvate phase is particularly stable.

[Figure 3]
Figure 3
Crystal structure of the title compound drawn with DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) with a view along the crystallographic a-axis (top) and of the compounds Ni(NCS)2(3-methyl­pyridine)4·2ethanol (mid) and Ni(NCS)2(3-methyl­pyridine)4·diethyl ether (bottom) retrieved from the literature (Krebs et al., 2022[Krebs, C., Jess, I. & Näther, C. (2022). Acta Cryst. E78, 993-998.]).

4. Database survey

Some compounds with 3-methyl­pyridine as coligand and transition-metal thio­cyanates other than Ni(NCS)2 (see Chemical context) were found in the CSD (version 5.43, last update November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). They include discrete complexes with Co(NCS)2 with an octa­hedral coordination around the metal center such as Co(NCS)2(3-methyl­pyridine)4 (EYAROM and EYAROM01; Boeckmann et al., 2011[Boeckmann, J., Reimer, B. & Näther, C. (2011). Z. Naturforsch. Teil B, 66, 819-827.] and Małecki et al., 2012[Małecki, J. G., Bałanda, M., Groń, T. & Kruszyński, R. (2012). Struct. Chem. 23, 1219-1232.]) and Co(NCS)2(3-methyl­pyridine)2(H2O)2 (EYAREC; Boeck­mann et al., 2011[Boeckmann, J., Reimer, B. & Näther, C. (2011). Z. Naturforsch. Teil B, 66, 819-827.]) and a tedrahedral coordination as in Co(NCS)2(3-methyl­pyridine)2 (EYARIG; Boeckmann et al., 2011[Boeckmann, J., Reimer, B. & Näther, C. (2011). Z. Naturforsch. Teil B, 66, 819-827.]). Some Cu(NCS)2 compounds are also known from the literature. These are the tetra­hedrally coordinated compound Cu(NCS)(3-methyl­pyridine)2 where thio­cyanate anions link the copper cations into chains (CUHBEM; Healy et al., 1984[Healy, P. C., Pakawatchai, C., Papasergio, R. I., Patrick, V. A. & White, A. H. (1984). Inorg. Chem. 23, 3769-3776.]), Cu(NCS)2(3-methyl­pyridine)3 with a fivefold trigonal–bipyramidal-like coordination (VEPBAT; Kabešová & Kožíšková, 1989[Kabešová, M. & Kožíšková, Z. (1989). Collect. Czech. Chem. Commun. 54, 1800-1807.]), and Cu(NCS)2(3-methyl­pyridine)2 where the metal center is square planar and coordinated by two thio­cyanate anions and two 3-methyl­pyridine coligands (ABOTET; Handy et al., 2017[Handy, J. V., Ayala, G. & Pike, R. D. (2017). Inorg. Chim. Acta, 456, 64-75.]). Additionally, two isotypic iron and manganese complexes with the composition M(NCS)2(3-methyl­pyridine)4 (M = Fe, Mn) are reported (Ceglarska et al., 2022[Ceglarska, M., Krebs, C. & Näther, C. (2022). Acta Cryst. E78, 755-760.]). With Cd(NCS)2, only the octa­hedral complex Cd(NCS)2(3-methyl­pyridine)2 is known, in which the cadmium cations are bridged into chains by thio­cyanate anions (FIYGUP; Taniguchi et al., 1987[Taniguchi, M., Sugita, Y. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 1321-1326.]). There is also one zinc complex with the composition Zn(NCS)2(3-methyl­pyridine)2 (ETUSAO; Boeckmann & Näther, 2011[Boeckmann, J. & Näther, C. (2011). Acta Cryst. E67, m994.]), where the metal centers are tetra­hedrally coordinated. Finally, the two non-heterometallic complexes catena-[tetra­kis­(thio­cyanato)­bis­(3-methyl­pyridine)­mangan­ese­mercury] (NAQYOW; Małecki, 2017a[Małecki, J. G. (2017a). CSD Communication (refcode NAQYOW). CCDC, Cambridge, England.]) and catena-[tetra­kis­(μ-thio­cyanato)­bis­(3-methyl­pyridine)­mercuryzinc (QAM­SIJ; Małecki, 2017b[Małecki, J. G. (2017b). CSD Communication (refcode QAMSIJ). CCDC, Cambridge, England.]) are also known.

5. Synthesis and crystallization

Synthesis

Ni(NCS)2 was purchased from Santa Cruz Biotechnology. 3-Methyl­pyridine (also known as 3-picoline) was purchased from Alfa Aesar.

Ni(NCS)2(3-methyl­pyridine)4: 0.25mmol Ni(SCN)2 (43.7 mg) and 2.5 mmol 3-methyl­pyridine (243 µl) where added to 1.5 mL deionized H2O and stored under hydro­thermal conditions for 2 d at 403 K. As a result, light-blue single crystals were obtained.

Experimental details

The data collection for single crystal structure analysis was performed using an XtaLAB Synergy, Dualflex, HyPix diffractometer from Rigaku with Cu Kα radiation.

The XRPD measurements were performed with a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator using Cu Kα1 radiation (λ = 1.540598 Å).

The IR spectra were measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: WINFIRST, from ATI Mattson.

Thermogravimetry and differential thermoanalysis (TG-DTA) measurements were performed in a dynamic nitro­gen atmosphere in Al2O3 crucibles using a STA-PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

6. Refinement

All crystals are of poor quality and merohedrally twinned with at least two componenents that are difficult to separate as is obvious from a view along the b* direction (Fig. S4). Therefore, a twin refinement using data in HKLF-5 format was performed, leading to a BASF parameter of 0.457 (5). Refinement using anisotropic displacement parameters leads to relatively large components of the anisotropic displacement parameters, indicating static or dynamic disordering. For one of the four crystallographically independent 3-methyl­pyridine coligands, the disorder was resolved and this ligand was refined using a split model with restraints. The C-bound H atoms were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropically with Uiso(H) = 1.5Ueq(C) for methyl H atoms and with Uiso(H) = 1.2 Ueq(C) for all other H atoms using a riding model. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ni(NCS)2(C6H7N)4]
Mr 547.37
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 14.2012 (4), 15.2704 (4), 26.1738 (6)
V3) 5676.0 (3)
Z 8
Radiation type Cu Kα
μ (mm−1) 2.55
Crystal size (mm) 0.15 × 0.1 × 0.1
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.])
Tmin, Tmax 0.814, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6767, 6767, 5975
Rint ?
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.203, 1.08
No. of reflections 6767
No. of parameters 386
No. of restraints 15
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.74, −0.61
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetrakis(3-methylpyridine-κN)bis(thiocyanato-κN)nickel(II) top
Crystal data top
[Ni(NCS)2(C6H7N)4]Dx = 1.281 Mg m3
Mr = 547.37Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 11586 reflections
a = 14.2012 (4) Åθ = 3.4–77.9°
b = 15.2704 (4) ŵ = 2.55 mm1
c = 26.1738 (6) ÅT = 100 K
V = 5676.0 (3) Å3Block, light blue
Z = 80.15 × 0.1 × 0.1 mm
F(000) = 2288
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
6767 measured reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source6767 independent reflections
Mirror monochromator5975 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1θmax = 68.3°, θmin = 3.4°
ω scansh = 1517
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1718
Tmin = 0.814, Tmax = 1.000l = 3131
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.203 w = 1/[σ2(Fo2) + (0.0864P)2 + 8.6753P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
6767 reflectionsΔρmax = 0.74 e Å3
386 parametersΔρmin = 0.61 e Å3
15 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.51000 (5)0.76369 (4)0.61618 (2)0.0493 (2)
N10.4176 (3)0.8666 (3)0.62644 (15)0.0654 (9)
C10.3581 (3)0.9147 (3)0.63485 (14)0.0595 (10)
S10.27254 (11)0.98387 (12)0.64613 (6)0.0992 (6)
N20.6035 (3)0.6638 (2)0.60680 (13)0.0647 (10)
C20.6745 (4)0.6257 (3)0.60497 (15)0.0683 (14)
S20.77540 (12)0.57472 (10)0.60158 (6)0.0984 (6)
N110.4125 (2)0.7018 (2)0.56639 (11)0.0510 (8)
C110.4102 (3)0.6152 (3)0.56289 (14)0.0546 (10)
H110.4379530.5822510.5897250.065*
C120.3696 (3)0.5693 (3)0.52235 (15)0.0575 (10)
C130.3294 (3)0.6190 (3)0.48387 (15)0.0623 (11)
H130.3025330.5910380.4549030.075*
C140.3283 (3)0.7090 (3)0.48761 (15)0.0627 (11)
H140.2996100.7434640.4617340.075*
C150.3698 (3)0.7485 (3)0.52963 (15)0.0550 (9)
H150.3678990.8104850.5325130.066*
C160.3721 (4)0.4712 (3)0.52121 (19)0.0778 (14)
H16A0.4228080.4501200.5434290.117*
H16B0.3833740.4512120.4861560.117*
H16C0.3116980.4480370.5333000.117*
N210.5673 (2)0.8250 (2)0.55058 (12)0.0503 (7)
C210.5828 (3)0.7784 (3)0.50761 (15)0.0570 (10)
H210.5776350.7164220.5093510.068*
C220.6058 (3)0.8161 (4)0.46099 (17)0.0750 (15)
C230.6157 (4)0.9059 (5)0.4605 (3)0.098 (2)
H230.6311900.9348970.4294890.117*
C240.6034 (4)0.9536 (4)0.5041 (3)0.0869 (17)
H240.6117591.0152830.5035880.104*
C250.5787 (3)0.9119 (3)0.5489 (2)0.0654 (12)
H250.5696780.9454590.5790520.079*
C260.6213 (4)0.7585 (5)0.41446 (19)0.102 (2)
H26A0.6731400.7177320.4211480.153*
H26B0.6369600.7952170.3849620.153*
H26C0.5637070.7253370.4072450.153*
N310.6110 (3)0.8264 (2)0.66364 (12)0.0526 (8)
C310.7026 (3)0.8279 (3)0.65102 (15)0.0560 (9)
H310.7201950.8032200.6191000.067*
C320.7734 (3)0.8631 (3)0.68143 (17)0.0636 (11)
C330.7455 (4)0.8989 (3)0.72751 (18)0.0705 (12)
H330.7909710.9236520.7498670.085*
C340.6519 (4)0.8988 (3)0.74102 (17)0.0686 (12)
H340.6324890.9232370.7726910.082*
C350.5854 (3)0.8623 (3)0.70773 (16)0.0602 (10)
H350.5206620.8633370.7168550.072*
C360.8747 (4)0.8623 (5)0.6636 (2)0.0935 (18)
H36A0.8848080.8122500.6408520.140*
H36B0.9165060.8573660.6932910.140*
H36C0.8883830.9167230.6452670.140*
N410.4324 (8)0.7054 (7)0.6801 (3)0.038 (2)0.508 (9)
C410.4817 (8)0.6676 (6)0.7171 (3)0.047 (2)0.508 (9)
H410.5481780.6636500.7136650.056*0.508 (9)
C420.4391 (10)0.6336 (8)0.7607 (5)0.060 (4)0.508 (9)
C430.3410 (8)0.6417 (6)0.7648 (4)0.058 (3)0.508 (9)
H430.3095050.6191280.7940120.070*0.508 (9)
C440.2899 (8)0.6821 (6)0.7267 (3)0.055 (2)0.508 (9)
H440.2234780.6881280.7290710.066*0.508 (9)
C450.3393 (8)0.7135 (6)0.6849 (3)0.044 (2)0.508 (9)
H450.3053160.7420560.6584960.053*0.508 (9)
C460.4967 (7)0.5905 (8)0.8022 (4)0.077 (3)0.508 (9)
H46A0.5538910.5653810.7873010.115*0.508 (9)
H46B0.4595170.5440010.8182990.115*0.508 (9)
H46C0.5139380.6342630.8279640.115*0.508 (9)
N41A0.4738 (7)0.6913 (7)0.6803 (4)0.045 (3)0.492 (9)
C41A0.3824 (10)0.6897 (7)0.6936 (4)0.044 (2)0.492 (9)
H41A0.3392040.7177900.6712480.053*0.492 (9)
C42A0.3452 (8)0.6500 (6)0.7378 (4)0.052 (3)0.492 (9)
C43A0.4107 (10)0.6097 (8)0.7696 (5)0.060 (4)0.492 (9)
H43A0.3902130.5832240.8005410.072*0.492 (9)
C44A0.5050 (8)0.6076 (7)0.7569 (3)0.061 (2)0.492 (9)
H44A0.5495380.5793520.7783940.073*0.492 (9)
C45A0.5335 (8)0.6479 (6)0.7114 (3)0.048 (2)0.492 (9)
H45A0.5980070.6446400.7020420.058*0.492 (9)
C46A0.2399 (7)0.6515 (7)0.7488 (4)0.067 (3)0.492 (9)
H46D0.2116140.7032040.7328510.101*0.492 (9)
H46E0.2296320.6536560.7858330.101*0.492 (9)
H46F0.2106600.5984660.7348850.101*0.492 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0694 (5)0.0412 (4)0.0372 (4)0.0156 (3)0.0019 (3)0.0012 (2)
N10.060 (2)0.070 (2)0.066 (2)0.0123 (19)0.0107 (17)0.0036 (19)
C10.066 (3)0.071 (3)0.0416 (19)0.008 (2)0.0102 (17)0.0098 (18)
S10.1028 (10)0.1118 (12)0.0831 (9)0.0356 (9)0.0467 (8)0.0492 (8)
N20.098 (3)0.0470 (19)0.0487 (18)0.003 (2)0.0278 (18)0.0025 (15)
C20.119 (4)0.041 (2)0.045 (2)0.004 (3)0.040 (2)0.0070 (17)
S20.1265 (12)0.0774 (9)0.0913 (9)0.0348 (8)0.0594 (9)0.0317 (7)
N110.0614 (19)0.0553 (19)0.0365 (14)0.0197 (15)0.0011 (12)0.0000 (13)
C110.069 (2)0.058 (2)0.0371 (17)0.0218 (19)0.0012 (16)0.0019 (16)
C120.059 (2)0.066 (3)0.0469 (19)0.019 (2)0.0017 (16)0.0111 (18)
C130.058 (2)0.082 (3)0.047 (2)0.022 (2)0.0059 (17)0.010 (2)
C140.054 (2)0.084 (3)0.049 (2)0.015 (2)0.0061 (17)0.005 (2)
C150.052 (2)0.064 (2)0.049 (2)0.0147 (19)0.0028 (16)0.0041 (18)
C160.090 (3)0.075 (3)0.069 (3)0.020 (3)0.012 (2)0.024 (2)
N210.0485 (16)0.0506 (18)0.0518 (17)0.0086 (14)0.0036 (13)0.0102 (14)
C210.053 (2)0.072 (3)0.046 (2)0.0062 (19)0.0031 (16)0.0132 (19)
C220.052 (2)0.118 (5)0.055 (2)0.007 (3)0.0010 (18)0.031 (3)
C230.063 (3)0.132 (6)0.098 (4)0.004 (3)0.008 (3)0.073 (4)
C240.065 (3)0.076 (3)0.121 (5)0.005 (3)0.002 (3)0.048 (3)
C250.050 (2)0.058 (3)0.088 (3)0.0111 (19)0.003 (2)0.025 (2)
C260.090 (4)0.169 (7)0.047 (3)0.003 (4)0.008 (2)0.021 (3)
N310.074 (2)0.0369 (16)0.0472 (16)0.0094 (15)0.0043 (15)0.0048 (13)
C310.074 (3)0.045 (2)0.049 (2)0.0072 (19)0.0067 (18)0.0036 (16)
C320.068 (3)0.058 (3)0.065 (2)0.004 (2)0.017 (2)0.003 (2)
C330.083 (3)0.060 (3)0.068 (3)0.011 (2)0.021 (2)0.016 (2)
C340.092 (3)0.054 (2)0.060 (2)0.007 (2)0.012 (2)0.020 (2)
C350.080 (3)0.047 (2)0.054 (2)0.010 (2)0.0031 (19)0.0122 (17)
C360.075 (3)0.118 (5)0.087 (4)0.002 (3)0.018 (3)0.014 (4)
N410.031 (6)0.052 (5)0.032 (3)0.015 (5)0.006 (4)0.004 (3)
C410.059 (6)0.039 (4)0.042 (5)0.001 (4)0.008 (4)0.001 (3)
C420.086 (10)0.044 (6)0.050 (7)0.016 (6)0.015 (6)0.014 (4)
C430.087 (8)0.044 (5)0.044 (5)0.013 (5)0.006 (5)0.000 (4)
C440.052 (5)0.053 (5)0.060 (5)0.008 (4)0.008 (4)0.001 (4)
C450.056 (6)0.040 (5)0.037 (4)0.010 (4)0.002 (4)0.005 (3)
C460.083 (7)0.086 (7)0.062 (6)0.008 (5)0.012 (4)0.026 (5)
N41A0.033 (5)0.050 (5)0.051 (5)0.017 (4)0.007 (5)0.016 (4)
C41A0.049 (8)0.044 (5)0.039 (5)0.002 (5)0.001 (5)0.008 (4)
C42A0.074 (7)0.041 (5)0.042 (5)0.012 (5)0.019 (6)0.012 (4)
C43A0.092 (10)0.044 (7)0.043 (5)0.005 (6)0.021 (5)0.001 (5)
C44A0.079 (7)0.057 (6)0.047 (5)0.001 (5)0.002 (4)0.005 (4)
C45A0.055 (6)0.050 (5)0.040 (4)0.003 (4)0.002 (4)0.004 (3)
C46A0.069 (6)0.065 (6)0.067 (5)0.005 (5)0.031 (5)0.000 (5)
Geometric parameters (Å, º) top
Ni1—N12.064 (4)C31—H310.9500
Ni1—N22.037 (4)C31—C321.391 (6)
Ni1—N112.124 (3)C32—C331.383 (7)
Ni1—N212.118 (3)C32—C361.511 (7)
Ni1—N312.126 (3)C33—H330.9500
Ni1—N412.193 (10)C33—C341.375 (7)
Ni1—N41A2.075 (11)C34—H340.9500
N1—C11.142 (6)C34—C351.400 (6)
C1—S11.637 (5)C35—H350.9500
N2—C21.165 (6)C36—H36A0.9800
C2—S21.633 (6)C36—H36B0.9800
N11—C111.326 (5)C36—H36C0.9800
N11—C151.342 (5)N41—C411.326 (12)
C11—H110.9500N41—C451.333 (11)
C11—C121.396 (5)C41—H410.9500
C12—C131.384 (6)C41—C421.394 (14)
C12—C161.499 (7)C42—C431.403 (14)
C13—H130.9500C42—C461.510 (13)
C13—C141.378 (7)C43—H430.9500
C14—H140.9500C43—C441.378 (13)
C14—C151.386 (6)C44—H440.9500
C15—H150.9500C44—C451.385 (12)
C16—H16A0.9800C45—H450.9500
C16—H16B0.9800C46—H46A0.9800
C16—H16C0.9800C46—H46B0.9800
N21—C211.349 (5)C46—H46C0.9800
N21—C251.337 (6)N41A—C41A1.343 (12)
C21—H210.9500N41A—C45A1.349 (13)
C21—C221.388 (6)C41A—H41A0.9500
C22—C231.379 (9)C41A—C42A1.410 (14)
C22—C261.518 (9)C42A—C43A1.392 (15)
C23—H230.9500C42A—C46A1.524 (13)
C23—C241.365 (10)C43A—H43A0.9500
C24—H240.9500C43A—C44A1.381 (14)
C24—C251.380 (7)C44A—H44A0.9500
C25—H250.9500C44A—C45A1.398 (11)
C26—H26A0.9800C45A—H45A0.9500
C26—H26B0.9800C46A—H46D0.9800
C26—H26C0.9800C46A—H46E0.9800
N31—C311.342 (6)C46A—H46F0.9800
N31—C351.329 (5)
N1—Ni1—N1190.23 (15)C31—N31—Ni1121.2 (3)
N1—Ni1—N2190.76 (14)C35—N31—Ni1120.6 (3)
N1—Ni1—N3190.57 (14)C35—N31—C31118.2 (4)
N1—Ni1—N4183.7 (3)N31—C31—H31117.7
N1—Ni1—N41A98.2 (3)N31—C31—C32124.5 (4)
N2—Ni1—N1178.73 (15)C32—C31—H31117.7
N2—Ni1—N1191.01 (14)C31—C32—C36120.6 (4)
N2—Ni1—N2189.04 (14)C33—C32—C31116.4 (4)
N2—Ni1—N3188.17 (14)C33—C32—C36123.0 (4)
N2—Ni1—N4196.6 (3)C32—C33—H33120.0
N2—Ni1—N41A82.0 (3)C34—C33—C32120.1 (4)
N11—Ni1—N31177.86 (12)C34—C33—H33120.0
N11—Ni1—N4187.7 (3)C33—C34—H34120.3
N21—Ni1—N1187.12 (12)C33—C34—C35119.5 (4)
N21—Ni1—N3190.89 (12)C35—C34—H34120.3
N21—Ni1—N41172.4 (3)N31—C35—C34121.3 (5)
N31—Ni1—N4194.4 (3)N31—C35—H35119.3
N41A—Ni1—N1195.6 (3)C34—C35—H35119.3
N41A—Ni1—N21170.6 (3)C32—C36—H36A109.5
N41A—Ni1—N3186.2 (3)C32—C36—H36B109.5
C1—N1—Ni1170.3 (4)C32—C36—H36C109.5
N1—C1—S1179.3 (4)H36A—C36—H36B109.5
C2—N2—Ni1160.5 (3)H36A—C36—H36C109.5
N2—C2—S2178.4 (5)H36B—C36—H36C109.5
C11—N11—Ni1120.2 (3)C41—N41—Ni1117.8 (7)
C11—N11—C15118.0 (3)C41—N41—C45119.7 (9)
C15—N11—Ni1119.9 (3)C45—N41—Ni1122.2 (6)
N11—C11—H11117.8N41—C41—H41119.0
N11—C11—C12124.3 (4)N41—C41—C42122.0 (10)
C12—C11—H11117.8C42—C41—H41119.0
C11—C12—C16120.5 (4)C41—C42—C43117.4 (9)
C13—C12—C11116.6 (4)C41—C42—C46121.1 (11)
C13—C12—C16122.9 (4)C43—C42—C46121.4 (10)
C12—C13—H13120.0C42—C43—H43119.8
C14—C13—C12120.0 (4)C44—C43—C42120.5 (10)
C14—C13—H13120.0C44—C43—H43119.8
C13—C14—H14120.5C43—C44—H44121.3
C13—C14—C15119.1 (4)C43—C44—C45117.4 (11)
C15—C14—H14120.5C45—C44—H44121.3
N11—C15—C14122.0 (4)N41—C45—C44123.0 (10)
N11—C15—H15119.0N41—C45—H45118.5
C14—C15—H15119.0C44—C45—H45118.5
C12—C16—H16A109.5C42—C46—H46A109.5
C12—C16—H16B109.5C42—C46—H46B109.5
C12—C16—H16C109.5C42—C46—H46C109.5
H16A—C16—H16B109.5H46A—C46—H46B109.5
H16A—C16—H16C109.5H46A—C46—H46C109.5
H16B—C16—H16C109.5H46B—C46—H46C109.5
C21—N21—Ni1120.3 (3)C41A—N41A—Ni1117.3 (7)
C25—N21—Ni1120.8 (3)C41A—N41A—C45A116.2 (10)
C25—N21—C21118.4 (4)C45A—N41A—Ni1126.5 (7)
N21—C21—H21118.2N41A—C41A—H41A117.2
N21—C21—C22123.5 (5)N41A—C41A—C42A125.6 (11)
C22—C21—H21118.2C42A—C41A—H41A117.2
C21—C22—C26119.9 (5)C41A—C42A—C46A121.1 (12)
C23—C22—C21116.4 (5)C43A—C42A—C41A115.6 (10)
C23—C22—C26123.6 (5)C43A—C42A—C46A123.3 (10)
C22—C23—H23119.7C42A—C43A—H43A119.6
C24—C23—C22120.6 (5)C44A—C43A—C42A120.9 (10)
C24—C23—H23119.7C44A—C43A—H43A119.6
C23—C24—H24120.1C43A—C44A—H44A120.8
C23—C24—C25119.8 (5)C43A—C44A—C45A118.4 (10)
C25—C24—H24120.1C45A—C44A—H44A120.8
N21—C25—C24121.1 (5)N41A—C45A—C44A123.2 (10)
N21—C25—H25119.4N41A—C45A—H45A118.4
C24—C25—H25119.4C44A—C45A—H45A118.4
C22—C26—H26A109.5C42A—C46A—H46D109.5
C22—C26—H26B109.5C42A—C46A—H46E109.5
C22—C26—H26C109.5C42A—C46A—H46F109.5
H26A—C26—H26B109.5H46D—C46A—H46E109.5
H26A—C26—H26C109.5H46D—C46A—H46F109.5
H26B—C26—H26C109.5H46E—C46A—H46F109.5
 

Acknowledgements

This work was supported by the state of Schleswig-Holstein.

References

First citationBoeckmann, J. & Näther, C. (2011). Acta Cryst. E67, m994.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoeckmann, J., Reimer, B. & Näther, C. (2011). Z. Naturforsch. Teil B, 66, 819–827.  CrossRef CAS Google Scholar
First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCeglarska, M., Krebs, C. & Näther, C. (2022). Acta Cryst. E78, 755–760.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHandy, J. V., Ayala, G. & Pike, R. D. (2017). Inorg. Chim. Acta, 456, 64–75.  Web of Science CSD CrossRef CAS Google Scholar
First citationHealy, P. C., Pakawatchai, C., Papasergio, R. I., Patrick, V. A. & White, A. H. (1984). Inorg. Chem. 23, 3769–3776.  CSD CrossRef CAS Web of Science Google Scholar
First citationKabešová, M. & Kožíšková, Z. (1989). Collect. Czech. Chem. Commun. 54, 1800–1807.  Google Scholar
First citationKrebs, C., Jess, I. & Näther, C. (2022). Acta Cryst. E78, 993–998.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMałecki, J. G. (2017a). CSD Communication (refcode NAQYOW). CCDC, Cambridge, England.  Google Scholar
First citationMałecki, J. G. (2017b). CSD Communication (refcode QAMSIJ). CCDC, Cambridge, England.  Google Scholar
First citationMałecki, J. G., Bałanda, M., Groń, T. & Kruszyński, R. (2012). Struct. Chem. 23, 1219–1232.  Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationNassimbeni, L. R., Bond, D. R., Moore, M. & Papanicolaou, S. (1984). Acta Cryst. A40, C111.  CrossRef Web of Science IUCr Journals Google Scholar
First citationNassimbeni, L. R., Papanicolaou, S. & Moore, M. H. (1986). J. Inclusion Phenom. 4, 31–42.  CSD CrossRef CAS Web of Science Google Scholar
First citationNäther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.  Google Scholar
First citationPang, L., Lucken, E. A. C. & Bernardinelli, G. (1990). J. Am. Chem. Soc. 112, 8754–8764.  CSD CrossRef CAS Web of Science Google Scholar
First citationPang, L., Lucken, E. A. C. & Bernardinelli, G. (1992). J. Incl Phenom. Macrocycl Chem. 13, 63–76.  CSD CrossRef CAS Web of Science Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.  Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). XP. Program for drawing crystal structures. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTaniguchi, M., Sugita, Y. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 1321–1326.  CSD CrossRef CAS Web of Science Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015a). Eur. J. Inorg. Chem. 2015, 3236–3245.  Web of Science CSD CrossRef CAS Google Scholar
First citationWerner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149–14158.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds