research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structures of dinuclear palladium complexes with 1,3-benzimidazolidine-2-thione and 1,3-imidazoline-2-thione

crossmark logo

aDepartment of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, cDepartment of Chemistry X-ray Crystallography, Purdue University, Wetherill 101B 560 Oval Drive, West Lafayette, IN 47907-2084, USA, and dDepartment of Chemistry, Keene State College, Keene NH 03435-2001, USA
*Correspondence e-mail: tarlokslobana@yahoo.co.in

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 26 October 2022; accepted 5 January 2023; online 10 January 2023)

The synthesis and structures of dinuclear palladium complexes with 1,3-benz­imidazolidine-2-thione (bzimtH) and 1,3-imidazoline-2-thione (imtH) are reported, namely, bis­(μ-1H-benzimidazole-2-thiol­ato)-κ2N3:S;κ2S:N3-bis­[cyanido(tri­phenyl­phosphine-κP)palladium(II)], [Pd2(C7H5N2S)2(CN)2(C18H15P)2] or [Pd2(μ-N,S-bzimtH)2(CN)2(PPh3)2] (1), and bis­(μ-1H-imidazole-2-thiol­ato)-κ2N3:S;κ2S:N3-bis­[cyanido(tri­phenyl­phosphine-κP)palladium(II)] aceto­nitrile 0.58-solvate, [Pd2(C3H3N2S)2(CN)2(C18H15P)2]·0.58C2H3N or [Pd2(μ-N,S-imtH)2(CN)2(PPh3)2]·0.58C2H3N (2). The compound [Pd2(μ-N,S-bzimtH)2(CN)2(PPh3)2] is located on a crystallographic twofold axis while [Pd2(μ-N,S-imtH)2(CN)2(PPh3)2]. 0.58(C2H3N) contains two partially occupied aceto­nitrile solvent mol­ecules with occupancies of 0.25 and 0.33. In both of these compounds, the anionic bzimtH and imtH ligands coordinate through N,S-donor atoms in a bridging mode, covering four coordination sites of two metal centers and other two sites are occupied by two PPh3 ligand mol­ecules. Finally, the remaining two sites of two metal centers are occupied by cyano groups, abstracted by the metals from the solvent during reaction. In the packing of the 1,3-benzimidazolidine- 2-thione and 1,3-imidazoline-2-thione complexes, there are intra­molecular ππ inter­actions involving the thione moiety as well as an N—H⋯N hydrogen bond linking the thione and cyano ligands. In addition, in 2, as well as the ππ inter­action involving the thione moieties, there is an additional ππ inter­action involving one of the thione moieties and an adjacent phenyl ring from the tri­phenyl­phosphine ligand. There are also C—H⋯N inter­actions between the imidazoline rings and the aceto­nitrile N atoms.

1. Chemical context

The coordination chemistry of N,S-donor heterocyclic-2-thione ligands has been in focus for the past four decades, describing synthetic methods, bonding and structures of metal complexes (Raper, 1985[Raper, E. S. (1985). Coord. Chem. Rev. 61, 115-184.], 1994[Raper, E. S. (1994). Coord. Chem. Rev. 129, 91-156.], 1996[Raper, E. S. (1996). Coord. Chem. Rev. 153, 199-255.], 1997[Raper, E. S. (1997). Coord. Chem. Rev. 165, 475-567.]; García-Vázquez et al., 1999[García-Vázquez, J. A., Romero, J. & Sousa, A. (1999). Coord. Chem. Rev. 193-195, 691-745.]; Akrivos, 2001[Akrivos, P. D. (2001). Coord. Chem. Rev. 213, 181-210.]), analytical chemistry (Koch, 2001[Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.]), charge-transfer complexes (Serpe et al., 2008[Serpe, A., Artizzu, F., Mercuri, M. L., Pilia, L. & Deplano, P. (2008). Coord. Chem. Rev. 252, 1200-1212.]) and anion receptors (Bondy & Loeb, 2003[Bondy, C. R. & Loeb, S. J. (2003). Coord. Chem. Rev. 240, 77-99.]). A recent survey revealed that the reactions of heterocyclic-2-thio­nes with group 10–12 metals (Ni–Pt, Cu–Au, Zn–Hg; Lobana, 2021[Lobana, T. S. (2021). Coord. Chem. Rev. 441, 213884.]) have led not only to the formation of a variety coordination compounds, but have also displayed other aspects of chemical reactivity. For instance, some reactions of heterocyclic thio­nes involved copper-mediated activation, and rupture of C—S (thione) bonds followed by their transformations to other forms of thio-ligands, bonded to the copper metal. Further, there has been an upsurge in explorations of the bio-activity and bio-safe potential of coordination compounds, as anti­microbial and anti­cancer agents (Lobana, 2021[Lobana, T. S. (2021). Coord. Chem. Rev. 441, 213884.]).

[Scheme 1]

The chemistry of palladium is inter­esting because of the coordination flexibility and catalytic role of this metal in several reactions (Kostas & Steele, 2020[Kostas, I. D. & Steele, B. R. (2020). Catalysts 10, 1107; doi: 10.3390/catal10101107.]; Lobana, 2021[Lobana, T. S. (2021). Coord. Chem. Rev. 441, 213884.]). In the literature, pyridine-2-thione (pytH) with palladium(II) has been reported to form dinuclear complexes, namely, [Pd2(μ-N,S-pyt)4] (Umakoshi et al., 1990[Umakoshi, K., Ichimura, A., Kinoshita, I. & Ooi, S. (1990). Inorg. Chem. 29, 4005-4010.]), [Pd2(μ-N,S-pyt)(μ-S-pyt)(κ1:S-pyt)2(μ-P,P-dppm)] and [Pd2(μ-κ2:N,S-pyt)3(κ2:P,P-dppm)]Cl (Mendía et al., 2006[Mendía, A., Cerrada, E., Arnáiz, F. J. & Laguna, M. (2006). Dalton Trans. pp. 609-616.]), [Pd2Cl2(μ-N,S-pyt)2(PMe3)2] (Yamamoto et al., 1991[Yamamoto, J. H., Yoshida, W. & Jensen, C. M. (1991). Inorg. Chem. 30, 1353-1357.]), [Pd2Cl2(μ-N,S-pymt)2(PMe3)2] (Yap & Jensen, 1992[Yap, G. P. A. & Jensen, C. M. (1992). Inorg. Chem. 31, 4823-4828.]). Benz-1,3-imidazoline-2-thioe (bzimtH2) has formed one dimer, [PdII2(μ-κ2:N,S-bzimt)2(κ1-S-bzimt)(PPh3)3]Cl·2H2O (Lobana et al. 2017[Lobana, T. S., Sandhu, A. K., Mahajan, R. K., Hundal, G., Gupta, S. K., Butcher, R. J. & Castineiras, A. (2017). Polyhedron, 127, 25-35.]). In this manuscript, some reactions of this metal with a few heterocyclic-2-thione ligands (bzimtH2 and imtH2) are described.

2. Structural commentary

The reaction of PdCl2(PPh3)2 with bzimtH2 in a 1:2 molar ratio in the presence of Et3N base was designed to form [Pd(κ1S-bzimtH)2(PPh3)2] after removal of both halogens as [Et3NH]+Cl. However, the X-ray crystal structure of the product revealed the formation of the unexpected dinuclear compound [Pd2(μ-N,S-bzimtH)2(CN)2(PPh3)2] (1). Another thio-ligand, imtH2 yielded a similar dinuclear compound, [Pd2(μ-N,S-imtH)2-(CN)2(PPh3)2] (2). In both these compounds, the anionic bzimtH and imtH ligands coordinate through N,S donor atoms in a bridging mode, covering four coordination sites of two metal centers, and other two sites are occupied by two PPh3 ligand mol­ecules. Finally, the remaining two sites of two metal centers are occupied by cyano groups, abstracted by the metals from the solvent during reaction.

Compound 1 crystallizes in the monoclinic space group C2/c, and compound 2 in the monoclinic space group, P21/c. Selected bond distances and bond angles are given in Tables 1[link] and 2[link], respectively. The mol­ecular structure of compound 1 is shown in Fig. 1[link], while that of compound 2 is shown in Fig. 2[link] (leaving out the aceto­nitrile solvent mol­ecules). Considering first the structure of compound 1, here only half of the mol­ecule is unique as the mol­ecule lies on a crystallographic twofold axis. In 1, the Pd metal atom is bonded to one P, one S, one N and one C atoms with the respective bond distances as follows: Pd—P = 2.2861 (6), Pd—S = 2.3547 (6), Pd—N = 2.0545 (17), and Pd—C = 1.959 (2) Å. The trans bond angles, P—Pd—S and N—Pd—C, of 172.26 (2) and 178.31 (8)°, as well as the cis bond angles in the range 84.93 (6)–94.24 (5)°, reveal the distorted square-planar geometry of each metal center. One of the major factors in the conformation adopted by the mol­ecule is the strong ππ inter­action between the thione moieties [CgCg, 3.1905 (12) Å], as seen in Fig. 1[link]. In addition, there is also a ππ inter­action between the thione moieties and an adjacent phenyl ring from the tri­phenyl­phosphine ligand [CgCg = 3.3560 (9) Å with a slippage of 1.408 Å].

Table 1
Selected geometric parameters (Å, °) for 1[link]

C1—S1 1.728 (2) N1—Pd1 2.0545 (17)
N3—C8 1.127 (3) P1—Pd1 2.2861 (6)
C8—Pd1 1.959 (2) Pd1—S1i 2.3547 (6)
       
C8—Pd1—N1 178.31 (8) C8—Pd1—S1i 84.93 (6)
C8—Pd1—P1 87.53 (6) N1—Pd1—S1i 94.24 (5)
N1—Pd1—P1 93.34 (5) P1—Pd1—S1i 172.26 (2)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Selected geometric parameters (Å, °) for 2[link]

Pd1—C1 1.957 (2) Pd2—P2 2.2984 (5)
Pd1—N11 2.0346 (17) Pd2—S1 2.3542 (5)
Pd1—P1 2.2914 (5) S1—C11 1.734 (2)
Pd1—S2 2.3541 (5) S2—C21 1.733 (2)
Pd2—C2 1.943 (2) N1—C1 1.143 (3)
Pd2—N21 2.0345 (17) N2—C2 1.148 (3)
       
C1—Pd1—N11 179.31 (8) C2—Pd2—N21 178.38 (8)
C1—Pd1—P1 87.19 (6) C2—Pd2—P2 89.18 (7)
N11—Pd1—P1 92.80 (4) N21—Pd2—P2 92.44 (5)
C1—Pd1—S2 87.99 (6) C2—Pd2—S1 86.54 (7)
N11—Pd1—S2 92.06 (5) N21—Pd2—S1 91.84 (5)
P1—Pd1—S2 173.855 (19) P2—Pd2—S1 174.489 (19)
[Figure 1]
Figure 1
Diagram of 1 showing the atom labeling for unique atoms (the mol­ecule lies of a twofold axis; symmetry operation to generate the rest of the mol­ecule is −x, y, [{1\over 2}] − z) and the strong intra­molecular ππ inter­actions involving both the thione rings and adjacent phenyl rings from the tri­phenyl­phosphine ligand. Atomic displacement parameters are at the 30% probability level.
[Figure 2]
Figure 2
Diagram of 2 showing the atom labeling and the strong intra­molecular ππ inter­actions involving both the thione rings and adjacent phenyl rings from the tri­phenyl­phosphine ligand. Atomic displacement parameters are at the 30% probability level.

The coordination pattern of compound 2 is similar to that of 1. Nevertheless, there are minor differences in the bond distances and angles pertaining to the two metal centers of compound 2 (Fig. 2[link]). Thus, the respective Pd—P, Pd—S, Pd—N and Pd—C bond distances of 2 are 2.2914 (5), 2.3541 (5), 2.0345 (17) and 1.957 (2) Å (Pd1 metal center), and 2.2984 (5), 2.3542 (5), 2.0345 (17) and 1.943 (2) Å (Pd2 metal center). For both metal centers, the trans bond angles [P—Pd—S and N—Pd—C = 173.86 (2)–179.31 (8)°] and the adjacent bond angles [86.54 (7)– 92.80 (4)°] are similar to those of compound 1. These bond angles again reveal the distorted square-planar geometry of each metal center of compound 2. The various bond distances described above are normal and none unusual. Compound 1 has carbon–sulfur (C—S) bond distance of 1.728 (2), while in compound 2 it is 1.734 (2) Å. These distances are in between single (1.81 Å) and double-bond (1.68 Å) C—S distances (Huheey et al., 1993[Huheey, J. E., Keiter, E. A. & Keiter, R. L. (1993). Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed. New York: Harper Collins College Publishers.]). It shows a weakening of the C—S bond as a result of S to Pd coordination. The C≡N distance of the coordinated cyano group is 1.127 (3) in compound 1 and 1.143 (3) /1.148 (3) Å in compound 2. These distances are less than the expected C=N double bond (1.28 Å) and are close to the C≡N triple bond distance (1.15 Å; Huheey et al., 1993[Huheey, J. E., Keiter, E. A. & Keiter, R. L. (1993). Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed. New York: Harper Collins College Publishers.]). The structure of 2 contains partially occupied aceto­nitrile solvent mol­ecules with occupancies of 0.33 and 0.25. As in the case of 1, in 2 one of the major factors in the conformation adopted by the mol­ecule is the strong ππ inter­action between the thione moieties [CgCg = 3.3559 (12) Å], as seen in Fig. 2[link]. In addition, there is also a ππ inter­action between each of the thione moieties and an adjacent phenyl ring from the tri­phenyl­phosphine ligand [CgCg distances of 3.3065 (8) Å and 3.3218 (8), respectively, with a slippage for the latter of 1.154 Å].

The IR spectrum of the bzimtH2 ligand showed a ν(N—H) band at 3113 (m), and in compound 1, this band appeared at a lower energy, 3055 (m) cm−1. The ligand showed a diagnostic ν(C=S) band at 1179 cm−1, which shifted to ν(C=S), 1033(s) cm−1, owing to the change of neutral bzimtH2 ligand to the bzimtH anionic form, coordinating through N,S donor atoms. The PPh3 ligand showed its characteristic ν(P—CPh) band at 1097(s) cm−1 in compound 1. A band at 1734 cm−1 was assigned to the coordinated cyano group. The IR spectroscopic bands of compound 2 are similarly assigned: ν(N—H), 3050 (m), ν(C=S), 1020 (m), ν(P—CPh), 1105 (s) and ν(C≡N), 1740(s) cm−1.

In conclusion, the chemistry of heterocyclic-2-thio­nes remains enigmatic, probably due to the angular flexibility at sulfur, and also due to the short bite angle of the N,S-donor set in case it chelates with the formation of four-membered rings. This leads to a greater tendency of these thio-ligands in anionic forms to adopt bridging modes, noted as for example in dinuclear complexes (Raper, 1997[Raper, E. S. (1997). Coord. Chem. Rev. 165, 475-567.]; Lobana, 2021[Lobana, T. S. (2021). Coord. Chem. Rev. 441, 213884.]). Benz-1,3-imidazoline-2-thione (bzimtH2) has formed an N,S-bonded symmetrically bridged dinuclear compound, and so is the case with 1,3-imidazolidine-2-thione, and these are analogous to literature reports (Yamamoto et al., 1991[Yamamoto, J. H., Yoshida, W. & Jensen, C. M. (1991). Inorg. Chem. 30, 1353-1357.]; Yap & Jensen, 1992[Yap, G. P. A. & Jensen, C. M. (1992). Inorg. Chem. 31, 4823-4828.]).

3. Supra­molecular features

In the packing of 1 and 2 there are similar trends in both hydrogen-bond patterns and intra­molecular inter­actions. In both structures, there are strong intra­molecular ππ inter­actions involving the thione moiety and adjacent phenyl rings from the tri­phenyl­phosphine ligand as discussed above. Both 1 and 2 have a similar hydrogen-bonding pattern (numerical details in Tables 3[link] and 4[link]), as shown in Figs. 3[link] and 4[link]. In each, the N—H group of the thione moiety forms an inter­molecular hydrogen bond with an adjacent N atom from the coordinated cyanide anion and these form C11(7) chains (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) in the [110] and [[\overline{1}]10] directions. In addition, in 2 there are also C—H⋯N inter­actions between the imidazoline rings and the partially occupied aceto­nitrile N atoms and this is shown in Fig. 5[link].

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N3ii 0.80 (3) 2.00 (3) 2.796 (3) 177 (3)
Symmetry code: (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12A⋯N2i 0.88 1.90 2.770 (3) 169
N22—H22A⋯N1ii 0.88 1.92 2.760 (3) 160
C12—H13A⋯N1S 0.95 2.35 3.261 (7) 161
C22—H23A⋯N1T 0.95 2.29 3.081 (12) 141
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Diagram showing the packing for 1 showing the two inter­molecular C11(7) N—H⋯N hydrogen-bonded chains in the [110] and [[\overline{1}]10] directions. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Symmetry operation to generate the rest of the mol­ecule is −x, y, [{1\over 2}] − z.
[Figure 4]
Figure 4
Diagram showing the packing for 2 showing the two inter­molecular C11(7) N—H⋯N hydrogen bonding chains in the [110] and [[\overline{1}]10] directions. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
[Figure 5]
Figure 5
Diagram for 2 showing the packing viewed along the a-axis direction. N—H⋯N hydrogen bonds and C—H⋯N inter­actions involving the aceto­nitrile mol­ecules are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database for complexes of palladium with either 1, 3-benzimidazolidine- 2-thione or 1,3-imidazoline-2-thione returned nine hits for the former (BEYRUV and BEYWAG, Sandhu et al., 2018[Sandhu, A. K., Lobana, T. S., Sran, B. S., Hundal, G. & Jasinski, J. P. (2018). J. Organomet. Chem. 861, 112-124.]; PONKOT, PONKUZ, PONLAG, PONLEK and PONLIO, Talismanova et al., 2008[Talismanova, M. O., Sidorov, A. A., Aleksandrov, G. G., Charushin, V. N., Kotovskaya, S. K., Ananikov, V. P., Eremenko, I. L. & Moiseeva, I. I. (2008). Russ. Chem. Bull. 57, 47-55.]; SANMOK, Talismanova et al., 2004[Talismanova, M. O., Sidorov, A. A., Aleksandrov, G. G., Oprunenko, Y. F., Eremenko, I. L. & Moiseev, I. I. (2004). Russ. Chem. Bull. 53, 1507-1510.]; SAQPEI, Lobana et al., 2017[Lobana, T. S., Sandhu, A. K., Mahajan, R. K., Hundal, G., Gupta, S. K., Butcher, R. J. & Castineiras, A. (2017). Polyhedron, 127, 25-35.]) and three hits for the latter (APIYII, Ahmad et al., 2010[Ahmad, S., Rüffer, T., Lang, H., Nadeem, S., Tirmizi, S. A., Saleem, M. & Anwar, A. (2010). Russ. J. Coord. Chem. 36, 520-524.]; BEYVUZ, Sandhu et al., 2018[Sandhu, A. K., Lobana, T. S., Sran, B. S., Hundal, G. & Jasinski, J. P. (2018). J. Organomet. Chem. 861, 112-124.]; HAWYEJ, Kahn et al., 1993[Kahn, E. S., Rheingold, A. L. & Shupack, S. I. (1993). J. Crystallogr. Spectrosc. Res. 23, 697-710.], SAQPIM, Lobana et al., 2017[Lobana, T. S., Sandhu, A. K., Mahajan, R. K., Hundal, G., Gupta, S. K., Butcher, R. J. & Castineiras, A. (2017). Polyhedron, 127, 25-35.]).

5. Synthesis and crystallization

The starting materials, namely palladium(II) chloride, tri­phenyl­phosphine (PPh3), 1,3-benzimidazoline-2-thione (bzimtH2), 1,3-imidazoline-2-thione (imtH2), and tri­ethyl­amine were procured from Aldrich. The solvents (aceto­nitrile, ethanol, methanol and di­chloro­methane) were of HPLC grade and were stored over mol­ecular sieves. The precursor, PdCl2(PPh3)2, was prepared by a literature procedure (Steffen & Palenik, 1976[Steffen, W. L. & Palenik, G. J. (1976). Inorg. Chem. 15, 2432-2439.]). The melting points were determined with a Gallenkamp electrically heated apparatus using the dried samples in capillary tubes. The analysis for carbon, hydrogen and nitro­gen were performed by using CHNS-O analyzer Flash- EA-1112 series. The IR spectra of the compounds were recorded on FTIR–SHIMADZU 8400 Fourier transform spectrophotometer in the range of 4000–400 cm−1 using KBr pellets.

Preparation of the precursor, [PdCl2(PPh3)2]

Palladium(II) chloride (0.050 g, 0.282 mmol) was dissolved in hot aceto­nitrile (25 mL) in a 50 mL round-bottom flask, and to it was added tri­phenyl­phosphine (0.148 g, 0.564 mol). The contents were refluxed for 1 h and the yellow complex formed was filtered and dried in vacuo, m.p. 551-553 K

Preparation of 1

To a solution of PdCl2(PPh3)2 (0.030 g, 0.043 mmol) in 10 mL of CH3CN, was added solid bzimtH2 (0.013 g, 0.086 mmol) followed by the addition of Et3N base (0.5 mL). The solution became yellowish orange and was refluxed for 6 h. The orange compound was formed on refluxing. It was separated and dissolved in a solution of methanol (4 mL) and di­chloro­methane (1 mL) in a culture tube. A slow evaporation of the reaction mixture over a period of one month, resulted in the formation of orange crystals of compound 1. Yield: 0.015 g; 65%; m.p. 511–513 K. Analysis found: C, 57.71; H, 3.84; N, 7.50; C52H40N6P2Pd2S2 (1087.8) requires: C, 57.40; H, 3.70; N, 7.72%. IR Data (KBr, cm−1): ν(N—H), 3055 (m); ν(C–H), 2950 (m), 2920 (s), 2852 (m); ν(C≡N), 1734 (s), ν(C—C) + δ(N—H) + δ(C—H), 1635 (m), 1440 (s), 1380 (m); ν(P—CPh), 1097 (s); ν(C=S), 1033 (s). Ligand IR Data: ν(N—H), 3113 (m), ν(C—H), 3078 (m); 2981 (s); ν(C≡N) 1513 (s), δ(N—H), 1467 (s), 1381 (m); ν(C=S), 1179 (s). The compound is partially soluble in di­chloro­methane, but soluble in methanol and chloro­form.

Preparation of 2

To the solution of PdCl2(PPh3)2 (0.040 g, 0.060 mmol) in 10 mL of CH3CN, was added solid imtH2 (0.012 g, 0.120 mmol) followed by the addition of Et3N base (0.5 mL). The solution became yellowish orange and was refluxed for 6 h. The orange compound was formed on refluxing and was separated. It was dissolved in a solution of methanol (4 mL) and di­chloro­methane (1 mL) in a culture tube. Slow evaporation of the reaction mixture over a period of one month formed yellowish-orange crystals of compound 2. Yield: 0.020 g; 69%; m.p. 485–488 K. Analysis found: C, 53.21; H, 3.92; N, 8.48; C44H36N6P2Pd2S2·0.58(CH3CN) (1011.5) requires: C, 53.58; H, 3.73; N, 8.36%. IR bands (KBr, cm-1): ν(N—H), 3050 (m); ν(C—H), 3081 (s), 3005 (m), 2968 (m), 2938 (m); ν(C≡N), 1740 (s), d(N—H) + ν(C≡N) + δ(C—H), 1581 (s), 1479 (s), 1401(s); ν(C=S), 1020 (m); ν(P—CPh), 1105 (s); Ligand IR data: ν(N—H), 3130 (s), ν(C—H), 2983 (m); 2876 (s); ν(C≡N) 1586 (s), δ(N—H), 1478 (s), 1266 (m); ν(C=S), 1120 (m). The compound is soluble in methanol, chloro­form and partially in di­chloro­methane.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Hydrogen atoms were fixed geometrically (C—H = 0.93–0.98 Å) with their Uiso(H) = 1.2Ueq(C). The structure of 2 contains partially occupied aceto­nitrile solvent mol­ecules with occupancies of 0.33 and 0.25.

Table 5
Experimental details

  1 2
Crystal data
Chemical formula [Pd2(C7H5N2S)2(CN)2(C18H15P)2] [Pd2(C3H3N2S)2(CN)2(C18H15P)2]·0.58C2H3N
Mr 1087.76 1011.46
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/c
Temperature (K) 100 110
a, b, c (Å) 13.6026 (12), 13.9719 (12), 25.097 (2) 12.7916 (2), 14.6718 (3), 25.3760 (4)
β (°) 97.417 (1) 101.3491 (15)
V3) 4729.8 (7) 4669.34 (14)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.96 0.97
Crystal size (mm) 0.26 × 0.15 × 0.09 0.44 × 0.38 × 0.18
 
Data collection
Diffractometer Bruker SMART APEX CCD Oxford Diffraction Gemini R (Mo)
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD, and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.811, 0.917 0.962, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23706, 5857, 5308 15546, 15546, 10002
Rint 0.024 0.031
(sin θ/λ)max−1) 0.667 0.761
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.065, 1.12 0.035, 0.078, 0.95
No. of reflections 5857 15546
No. of parameters 294 561
No. of restraints 0 39
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.57, −0.89 0.98, −1.20
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), CrysAlis RED and CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD, and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

Data collection: Apex2 (Bruker, 2007) for (1); CrysAlis CCD (Oxford Diffraction, 2009) for (2). Cell refinement: SAINT (Bruker, 2007) for (1); CrysAlis RED, CrysAlis CCD (Oxford Diffraction, 2009) for (2). Data reduction: SAINT (Bruker, 2007) for (1); CrysAlis RED, CrysAlis CCD (Oxford Diffraction, 2009) for (2). Program(s) used to solve structure: SHELXS (Sheldrick, 2008) for (1); SHELXT (Sheldrick, 2015a) for (2). Program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b), ShelXle (Hübschle et al., 2011) for (1); SHELXL2018/3 (Sheldrick, 2015b) for (2). For both structures, molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(µ-1H-benzimidazole-2-thiolato)-κ2N3:S;κ2S:N3-bis[cyanido(triphenylphosphine-κP)palladium(II)] (1) top
Crystal data top
[Pd2(C7H5N2S)2(CN)2(C18H15P)2]F(000) = 2192
Mr = 1087.76Dx = 1.528 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.6026 (12) ÅCell parameters from 9977 reflections
b = 13.9719 (12) Åθ = 2.2–31.8°
c = 25.097 (2) ŵ = 0.96 mm1
β = 97.417 (1)°T = 100 K
V = 4729.8 (7) Å3Block, orange
Z = 40.26 × 0.15 × 0.09 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5857 independent reflections
Radiation source: fine-focus sealed tube5308 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1818
Tmin = 0.811, Tmax = 0.917k = 1818
23706 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: mixed
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0241P)2 + 9.9394P]
where P = (Fo2 + 2Fc2)/3
5857 reflections(Δ/σ)max < 0.001
294 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.89 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.07279 (15)0.26650 (15)0.30035 (8)0.0167 (4)
C20.02067 (16)0.41441 (16)0.31826 (8)0.0204 (4)
N30.20989 (15)0.05673 (15)0.29010 (8)0.0296 (4)
C30.00951 (19)0.51282 (17)0.32406 (10)0.0285 (5)
H30.0652190.5540270.3233590.034*
C40.0864 (2)0.54824 (18)0.33093 (10)0.0333 (6)
H40.0969070.6152080.3349940.040*
C50.16821 (19)0.48698 (18)0.33198 (9)0.0290 (5)
H50.2330000.5136450.3362200.035*
C60.15735 (17)0.38872 (16)0.32701 (8)0.0223 (4)
H60.2132170.3475640.3284140.027*
C70.06114 (16)0.35283 (15)0.31987 (8)0.0184 (4)
C80.17115 (16)0.01314 (17)0.29575 (9)0.0224 (4)
C90.02560 (16)0.14880 (15)0.41389 (8)0.0192 (4)
C100.12021 (17)0.11322 (17)0.41677 (9)0.0245 (5)
H100.1352470.0484730.4074660.029*
C110.19289 (18)0.1723 (2)0.43325 (10)0.0319 (5)
H110.2573520.1475660.4353470.038*
C120.1718 (2)0.26638 (19)0.44654 (10)0.0323 (6)
H120.2222460.3070080.4566940.039*
C130.0770 (2)0.30173 (18)0.44508 (10)0.0303 (5)
H130.0619020.3660390.4553930.036*
C140.00422 (18)0.24371 (17)0.42866 (9)0.0244 (5)
H140.0604990.2684350.4274210.029*
C150.17398 (16)0.07885 (16)0.43693 (9)0.0221 (4)
C160.26896 (17)0.06387 (18)0.42373 (10)0.0289 (5)
H160.2790170.0566850.3871840.035*
C170.34938 (19)0.05938 (19)0.46410 (12)0.0361 (6)
H170.4141240.0486360.4549780.043*
C180.3355 (2)0.07046 (19)0.51719 (11)0.0373 (6)
H180.3903780.0656930.5446190.045*
C190.2424 (2)0.0884 (2)0.53042 (10)0.0374 (6)
H190.2333040.0981400.5669240.045*
C200.16164 (19)0.0923 (2)0.49069 (9)0.0318 (5)
H200.0973690.1042360.5001790.038*
C210.02075 (16)0.04251 (15)0.38040 (9)0.0205 (4)
C220.04218 (19)0.10869 (17)0.42181 (9)0.0274 (5)
H220.0833560.0911350.4538030.033*
C230.0030 (2)0.20054 (18)0.41604 (11)0.0367 (6)
H230.0175640.2458170.4441940.044*
C240.0571 (2)0.22642 (18)0.36955 (11)0.0351 (6)
H240.0844380.2890390.3661940.042*
C250.07770 (18)0.16150 (18)0.32787 (10)0.0293 (5)
H250.1182260.1797350.2957930.035*
C260.03879 (16)0.06974 (16)0.33325 (9)0.0239 (5)
H260.0526900.0251170.3047100.029*
N10.02621 (12)0.26021 (12)0.30959 (7)0.0160 (3)
N20.10313 (14)0.35712 (13)0.30663 (7)0.0200 (4)
H20.157 (2)0.3796 (18)0.3021 (11)0.024*
P10.06743 (4)0.07947 (4)0.38495 (2)0.01712 (11)
Pd10.10174 (2)0.13416 (2)0.30350 (2)0.01536 (5)
S10.15249 (4)0.17333 (4)0.28003 (2)0.01886 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0176 (10)0.0189 (10)0.0133 (9)0.0014 (8)0.0016 (7)0.0006 (7)
C20.0239 (11)0.0209 (11)0.0158 (10)0.0007 (8)0.0009 (8)0.0011 (8)
N30.0284 (10)0.0308 (11)0.0294 (11)0.0092 (9)0.0022 (8)0.0032 (9)
C30.0346 (13)0.0214 (11)0.0289 (12)0.0029 (10)0.0026 (10)0.0027 (9)
C40.0457 (15)0.0225 (12)0.0308 (13)0.0079 (11)0.0011 (11)0.0064 (10)
C50.0305 (13)0.0318 (13)0.0236 (11)0.0118 (10)0.0005 (9)0.0013 (10)
C60.0215 (10)0.0272 (11)0.0175 (10)0.0029 (9)0.0006 (8)0.0007 (8)
C70.0213 (10)0.0207 (10)0.0128 (9)0.0013 (8)0.0011 (7)0.0001 (7)
C80.0187 (10)0.0307 (12)0.0179 (10)0.0036 (9)0.0026 (8)0.0011 (9)
C90.0214 (10)0.0225 (11)0.0140 (9)0.0036 (8)0.0032 (8)0.0004 (8)
C100.0246 (11)0.0285 (12)0.0208 (10)0.0005 (9)0.0053 (8)0.0025 (9)
C110.0218 (11)0.0448 (15)0.0302 (13)0.0023 (11)0.0076 (9)0.0033 (11)
C120.0343 (14)0.0378 (14)0.0264 (12)0.0136 (11)0.0103 (10)0.0011 (10)
C130.0422 (14)0.0262 (12)0.0246 (12)0.0047 (11)0.0117 (10)0.0031 (9)
C140.0277 (12)0.0257 (11)0.0208 (11)0.0007 (9)0.0074 (9)0.0006 (9)
C150.0217 (10)0.0221 (11)0.0213 (11)0.0006 (8)0.0016 (8)0.0029 (8)
C160.0231 (11)0.0321 (13)0.0304 (12)0.0034 (10)0.0012 (9)0.0043 (10)
C170.0240 (12)0.0332 (14)0.0480 (16)0.0037 (10)0.0075 (11)0.0064 (12)
C180.0366 (14)0.0310 (13)0.0385 (15)0.0026 (11)0.0174 (11)0.0020 (11)
C190.0425 (15)0.0458 (16)0.0214 (12)0.0073 (13)0.0058 (11)0.0062 (11)
C200.0277 (12)0.0449 (15)0.0217 (11)0.0019 (11)0.0003 (9)0.0048 (11)
C210.0207 (10)0.0186 (10)0.0231 (11)0.0032 (8)0.0062 (8)0.0013 (8)
C220.0370 (13)0.0237 (11)0.0220 (11)0.0045 (10)0.0062 (10)0.0021 (9)
C230.0587 (18)0.0229 (12)0.0297 (13)0.0036 (12)0.0106 (12)0.0055 (10)
C240.0473 (16)0.0206 (12)0.0399 (15)0.0035 (11)0.0154 (12)0.0047 (10)
C250.0275 (12)0.0268 (12)0.0338 (13)0.0018 (10)0.0049 (10)0.0062 (10)
C260.0230 (11)0.0229 (11)0.0252 (11)0.0015 (9)0.0009 (9)0.0001 (9)
N10.0154 (8)0.0176 (8)0.0150 (8)0.0001 (6)0.0018 (6)0.0001 (6)
N20.0181 (9)0.0213 (9)0.0204 (9)0.0049 (7)0.0020 (7)0.0011 (7)
P10.0167 (2)0.0192 (3)0.0156 (2)0.0018 (2)0.00211 (19)0.00103 (19)
Pd10.01371 (8)0.01746 (8)0.01506 (8)0.00304 (6)0.00240 (5)0.00079 (6)
S10.0167 (2)0.0223 (3)0.0181 (2)0.00317 (19)0.00424 (18)0.00229 (19)
Geometric parameters (Å, º) top
C1—N11.339 (3)C15—C161.390 (3)
C1—N21.347 (3)C15—C201.394 (3)
C1—S11.728 (2)C15—P11.820 (2)
C2—N21.378 (3)C16—C171.393 (3)
C2—C31.389 (3)C16—H160.9500
C2—C71.403 (3)C17—C181.378 (4)
N3—C81.127 (3)C17—H170.9500
C3—C41.385 (4)C18—C191.374 (4)
C3—H30.9500C18—H180.9500
C4—C51.401 (4)C19—C201.386 (3)
C4—H40.9500C19—H190.9500
C5—C61.385 (3)C20—H200.9500
C5—H50.9500C21—C221.394 (3)
C6—C71.391 (3)C21—C261.398 (3)
C6—H60.9500C21—P11.817 (2)
C7—N11.391 (3)C22—C231.390 (4)
C8—Pd11.959 (2)C22—H220.9500
C9—C101.390 (3)C23—C241.384 (4)
C9—C141.397 (3)C23—H230.9500
C9—P11.818 (2)C24—C251.386 (4)
C10—C111.391 (3)C24—H240.9500
C10—H100.9500C25—C261.387 (3)
C11—C121.378 (4)C25—H250.9500
C11—H110.9500C26—H260.9500
C12—C131.387 (4)N1—Pd12.0545 (17)
C12—H120.9500N2—H20.80 (3)
C13—C141.382 (3)P1—Pd12.2861 (6)
C13—H130.9500Pd1—S1i2.3547 (6)
C14—H140.9500
N1—C1—N2110.96 (18)C16—C17—H17119.8
N1—C1—S1125.44 (16)C19—C18—C17120.0 (2)
N2—C1—S1123.53 (16)C19—C18—H18120.0
N2—C2—C3132.2 (2)C17—C18—H18120.0
N2—C2—C7105.70 (19)C18—C19—C20120.2 (3)
C3—C2—C7121.9 (2)C18—C19—H19119.9
C4—C3—C2117.1 (2)C20—C19—H19119.9
C4—C3—H3121.5C19—C20—C15120.5 (2)
C2—C3—H3121.5C19—C20—H20119.7
C3—C4—C5121.1 (2)C15—C20—H20119.7
C3—C4—H4119.4C22—C21—C26119.6 (2)
C5—C4—H4119.4C22—C21—P1122.52 (18)
C6—C5—C4121.9 (2)C26—C21—P1117.92 (16)
C6—C5—H5119.0C23—C22—C21119.6 (2)
C4—C5—H5119.0C23—C22—H22120.2
C5—C6—C7117.2 (2)C21—C22—H22120.2
C5—C6—H6121.4C24—C23—C22120.4 (2)
C7—C6—H6121.4C24—C23—H23119.8
N1—C7—C6130.7 (2)C22—C23—H23119.8
N1—C7—C2108.33 (18)C23—C24—C25120.4 (2)
C6—C7—C2120.8 (2)C23—C24—H24119.8
N3—C8—Pd1178.4 (2)C25—C24—H24119.8
C10—C9—C14119.2 (2)C24—C25—C26119.6 (2)
C10—C9—P1121.81 (17)C24—C25—H25120.2
C14—C9—P1118.68 (17)C26—C25—H25120.2
C9—C10—C11120.1 (2)C25—C26—C21120.4 (2)
C9—C10—H10119.9C25—C26—H26119.8
C11—C10—H10119.9C21—C26—H26119.8
C12—C11—C10120.3 (2)C1—N1—C7106.42 (17)
C12—C11—H11119.8C1—N1—Pd1123.00 (14)
C10—C11—H11119.8C7—N1—Pd1130.47 (14)
C11—C12—C13119.9 (2)C1—N2—C2108.50 (18)
C11—C12—H12120.0C1—N2—H2130.2 (19)
C13—C12—H12120.0C2—N2—H2121.1 (19)
C14—C13—C12120.2 (2)C21—P1—C9105.62 (10)
C14—C13—H13119.9C21—P1—C15106.27 (10)
C12—C13—H13119.9C9—P1—C15104.31 (10)
C13—C14—C9120.2 (2)C21—P1—Pd1111.54 (7)
C13—C14—H14119.9C9—P1—Pd1114.34 (7)
C9—C14—H14119.9C15—P1—Pd1114.00 (7)
C16—C15—C20118.9 (2)C8—Pd1—N1178.31 (8)
C16—C15—P1120.56 (17)C8—Pd1—P187.53 (6)
C20—C15—P1120.58 (18)N1—Pd1—P193.34 (5)
C15—C16—C17120.0 (2)C8—Pd1—S1i84.93 (6)
C15—C16—H16120.0N1—Pd1—S1i94.24 (5)
C17—C16—H16120.0P1—Pd1—S1i172.26 (2)
C18—C17—C16120.4 (3)C1—S1—Pd1i101.12 (7)
C18—C17—H17119.8
N2—C2—C3—C4174.0 (2)P1—C21—C26—C25179.03 (18)
C7—C2—C3—C40.8 (3)N2—C1—N1—C72.9 (2)
C2—C3—C4—C50.1 (4)S1—C1—N1—C7174.31 (15)
C3—C4—C5—C60.9 (4)N2—C1—N1—Pd1179.43 (13)
C4—C5—C6—C71.2 (3)S1—C1—N1—Pd12.2 (2)
C5—C6—C7—N1174.3 (2)C6—C7—N1—C1173.3 (2)
C5—C6—C7—C20.5 (3)C2—C7—N1—C12.0 (2)
N2—C2—C7—N10.4 (2)C6—C7—N1—Pd12.9 (3)
C3—C2—C7—N1176.4 (2)C2—C7—N1—Pd1178.18 (14)
N2—C2—C7—C6175.44 (19)N1—C1—N2—C22.7 (2)
C3—C2—C7—C60.5 (3)S1—C1—N2—C2174.57 (15)
C14—C9—C10—C111.2 (3)C3—C2—N2—C1174.0 (2)
P1—C9—C10—C11172.37 (18)C7—C2—N2—C11.3 (2)
C9—C10—C11—C120.3 (4)C22—C21—P1—C990.0 (2)
C10—C11—C12—C132.0 (4)C26—C21—P1—C990.01 (18)
C11—C12—C13—C142.1 (4)C22—C21—P1—C1520.4 (2)
C12—C13—C14—C90.6 (4)C26—C21—P1—C15159.57 (17)
C10—C9—C14—C131.0 (3)C22—C21—P1—Pd1145.20 (17)
P1—C9—C14—C13172.69 (18)C26—C21—P1—Pd134.77 (19)
C20—C15—C16—C172.1 (4)C10—C9—P1—C2114.5 (2)
P1—C15—C16—C17177.2 (2)C14—C9—P1—C21171.94 (17)
C15—C16—C17—C180.5 (4)C10—C9—P1—C15126.31 (19)
C16—C17—C18—C191.6 (4)C14—C9—P1—C1560.13 (19)
C17—C18—C19—C202.1 (4)C10—C9—P1—Pd1108.52 (18)
C18—C19—C20—C150.5 (4)C14—C9—P1—Pd165.04 (18)
C16—C15—C20—C191.6 (4)C16—C15—P1—C2192.0 (2)
P1—C15—C20—C19177.7 (2)C20—C15—P1—C2187.2 (2)
C26—C21—C22—C230.9 (3)C16—C15—P1—C9156.63 (19)
P1—C21—C22—C23179.13 (19)C20—C15—P1—C924.1 (2)
C21—C22—C23—C240.1 (4)C16—C15—P1—Pd131.2 (2)
C22—C23—C24—C251.0 (4)C20—C15—P1—Pd1149.50 (18)
C23—C24—C25—C260.9 (4)N1—C1—S1—Pd1i61.89 (18)
C24—C25—C26—C210.1 (4)N2—C1—S1—Pd1i114.98 (17)
C22—C21—C26—C251.0 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3ii0.80 (3)2.00 (3)2.796 (3)177 (3)
Symmetry code: (ii) x1/2, y+1/2, z.
\ Bis(µ-1H-imidazole-2-thiolato)-κ2N3:S;\ κ2S:N3-bis[cyanido(triphenylphosphine-κP)\ palladium(II)] acetonitrile 0.58-solvate (2) top
Crystal data top
[Pd2(C3H3N2S)2(CN)2(C18H15P)2]·0.58C2H3NF(000) = 2035
Mr = 1011.46Dx = 1.439 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.7916 (2) ÅCell parameters from 15979 reflections
b = 14.6718 (3) Åθ = 4.7–32.7°
c = 25.3760 (4) ŵ = 0.97 mm1
β = 101.3491 (15)°T = 110 K
V = 4669.34 (14) Å3Plate, yellow
Z = 40.44 × 0.38 × 0.18 mm
Data collection top
Oxford Diffraction Gemini R (Mo)
diffractometer
15546 independent reflections
Graphite monochromator10002 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1Rint = 0.031
ω scansθmax = 32.8°, θmin = 4.7°
Absorption correction: multi-scan
(CrysAlisPro; Oxford Diffraction, 2009)
h = 1818
Tmin = 0.962, Tmax = 1.000k = 1722
15546 measured reflectionsl = 3436
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0359P)2]
where P = (Fo2 + 2Fc2)/3
15546 reflections(Δ/σ)max = 0.002
561 parametersΔρmax = 0.98 e Å3
39 restraintsΔρmin = 1.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.35095 (2)0.87099 (2)0.30663 (2)0.02356 (4)
Pd20.14320 (2)0.88485 (2)0.19323 (2)0.02559 (4)
S10.08912 (4)0.94151 (4)0.27044 (2)0.03170 (12)
S20.41813 (4)0.90816 (4)0.22938 (2)0.03362 (12)
P10.30170 (4)0.82559 (4)0.38464 (2)0.02500 (11)
P20.17961 (4)0.82426 (4)0.11528 (2)0.03002 (12)
N10.43502 (18)0.67452 (15)0.29819 (7)0.0548 (6)
N20.0059 (2)0.71602 (18)0.20621 (8)0.0727 (8)
N110.29215 (13)0.99892 (11)0.31143 (6)0.0272 (4)
N120.17481 (16)1.10817 (13)0.30467 (7)0.0410 (5)
H12A0.1133981.1371680.2980690.049*
N210.23236 (13)0.99792 (12)0.18750 (6)0.0284 (4)
N220.37399 (16)1.08292 (14)0.19348 (6)0.0416 (5)
H22A0.4411921.1001600.1997230.050*
C10.40581 (17)0.74749 (16)0.30153 (7)0.0363 (5)
C20.05709 (19)0.77821 (17)0.20056 (7)0.0412 (6)
C110.18880 (16)1.01847 (15)0.29650 (7)0.0291 (5)
C120.2718 (2)1.14654 (17)0.32489 (8)0.0480 (7)
H13A0.2852901.2086330.3344790.058*
C130.3447 (2)1.07915 (16)0.32859 (8)0.0385 (5)
H14A0.4193581.0857250.3408920.046*
C210.33859 (16)0.99883 (15)0.20226 (7)0.0311 (5)
C220.2886 (2)1.13701 (17)0.17333 (9)0.0484 (7)
H23A0.2904651.1994380.1636210.058*
C230.20113 (19)1.08439 (16)0.16993 (8)0.0381 (5)
H24A0.1296791.1037560.1574630.046*
C1A0.24085 (17)0.71348 (15)0.37962 (7)0.0324 (5)
C2A0.16469 (19)0.69425 (17)0.33331 (8)0.0424 (6)
H2AA0.1481490.7389270.3058290.051*
C3A0.1134 (2)0.61103 (19)0.32715 (9)0.0575 (8)
H3AA0.0607880.5990830.2958870.069*
C4A0.1386 (3)0.54504 (19)0.36657 (10)0.0654 (9)
H4AA0.1027700.4879760.3626230.079*
C5A0.2166 (2)0.56257 (18)0.41211 (9)0.0563 (8)
H5AA0.2353850.5166400.4386780.068*
C6A0.26698 (19)0.64645 (16)0.41884 (8)0.0383 (5)
H6AA0.3193360.6582880.4502100.046*
C1B0.41603 (16)0.82116 (14)0.44038 (7)0.0295 (4)
C2B0.51745 (18)0.80590 (18)0.43012 (8)0.0442 (6)
H2BA0.5272740.7982360.3942400.053*
C3B0.6042 (2)0.8019 (2)0.47257 (9)0.0557 (8)
H3BA0.6733490.7906360.4656210.067*
C4B0.5911 (2)0.81419 (18)0.52455 (9)0.0457 (6)
H4BA0.6512300.8119160.5532680.055*
C5B0.4920 (2)0.82962 (18)0.53501 (8)0.0454 (6)
H5BA0.4830940.8382790.5709560.054*
C6B0.40439 (18)0.83263 (17)0.49303 (7)0.0398 (6)
H6BA0.3354230.8427140.5005310.048*
C1C0.20732 (16)0.89953 (15)0.40931 (7)0.0286 (4)
C2C0.23993 (18)0.98632 (16)0.42808 (8)0.0363 (5)
H2CA0.3119531.0045130.4303330.044*
C3C0.1672 (2)1.04648 (18)0.44355 (8)0.0457 (6)
H3CA0.1897051.1055850.4562580.055*
C4C0.0636 (2)1.0207 (2)0.44049 (9)0.0533 (7)
H4CA0.0139521.0620390.4507040.064*
C5C0.0311 (2)0.9349 (2)0.42266 (11)0.0607 (8)
H5CA0.0405820.9165110.4213190.073*
C6C0.10260 (19)0.87539 (18)0.40664 (9)0.0446 (6)
H6CA0.0789350.8167410.3935710.054*
C1D0.28204 (18)0.88581 (15)0.08915 (7)0.0335 (5)
C2D0.25910 (19)0.97236 (17)0.06660 (8)0.0403 (6)
H2DA0.1884310.9955090.0611800.048*
C3D0.3395 (2)1.02420 (19)0.05223 (8)0.0494 (7)
H3DA0.3236561.0830750.0371800.059*
C4D0.4415 (2)0.9915 (2)0.05946 (9)0.0533 (7)
H4DA0.4964071.0277840.0498920.064*
C5D0.4644 (2)0.9055 (2)0.08075 (11)0.0566 (7)
H5DA0.5347150.8819300.0849760.068*
C6D0.3844 (2)0.85306 (18)0.09605 (9)0.0453 (6)
H6DA0.4007800.7944180.1113280.054*
C1E0.06406 (17)0.82453 (15)0.05978 (7)0.0334 (5)
C2E0.07759 (19)0.82814 (18)0.00681 (8)0.0446 (6)
H2EA0.1472390.8324300.0007920.054*
C3E0.0108 (2)0.82547 (19)0.03519 (8)0.0497 (7)
H3EA0.0012920.8282340.0713510.060*
C4E0.1110 (2)0.81890 (18)0.02460 (8)0.0459 (6)
H4EA0.1709230.8165830.0533800.055*
C5E0.12546 (19)0.81559 (18)0.02794 (8)0.0446 (6)
H5EA0.1953880.8114180.0351890.054*
C6E0.03805 (18)0.81836 (16)0.07012 (8)0.0375 (5)
H6EA0.0482860.8160090.1061700.045*
C1F0.22604 (18)0.70707 (15)0.12111 (7)0.0351 (5)
C2F0.20602 (18)0.64505 (16)0.07863 (8)0.0379 (5)
H2FA0.1624630.6626910.0454310.045*
C3F0.2487 (2)0.55839 (18)0.08427 (9)0.0477 (6)
H3FA0.2331040.5164700.0552490.057*
C4F0.3142 (2)0.53223 (18)0.13203 (10)0.0546 (7)
H4FA0.3450700.4731040.1355970.066*
C5F0.3342 (2)0.59283 (19)0.17436 (10)0.0614 (8)
H5FA0.3785260.5750780.2073210.074*
C6F0.2903 (2)0.67900 (18)0.16923 (9)0.0513 (7)
H6FA0.3039840.7197330.1988910.062*
N1S0.2657 (6)1.3556 (5)0.3677 (3)0.0700 (15)0.33
C1S0.2748 (8)1.4030 (6)0.3321 (4)0.0744 (14)0.33
C2S0.2930 (8)1.4590 (7)0.2900 (4)0.0818 (15)0.33
H2S10.3342221.5125780.3048290.123*0.33
H2S20.2245501.4786020.2683900.123*0.33
H2S30.3329391.4248610.2672230.123*0.33
N1T0.1809 (10)1.3230 (8)0.1440 (5)0.0995 (19)0.25
C1T0.1767 (12)1.3567 (10)0.1851 (5)0.0967 (18)0.25
C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25
H2T10.2689411.4108180.2483530.137*0.25
H2T20.1563591.3759990.2590020.137*0.25
H2T30.1630141.4681070.2260430.137*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02286 (7)0.03057 (9)0.01702 (7)0.00603 (6)0.00335 (5)0.00011 (6)
Pd20.02643 (8)0.03380 (9)0.01603 (7)0.00787 (7)0.00293 (5)0.00017 (6)
S10.0255 (3)0.0476 (4)0.0223 (2)0.0063 (2)0.00533 (18)0.0017 (2)
S20.0291 (3)0.0485 (4)0.0253 (2)0.0039 (3)0.01024 (19)0.0011 (2)
P10.0293 (3)0.0286 (3)0.0164 (2)0.0046 (2)0.00299 (18)0.00043 (19)
P20.0365 (3)0.0359 (3)0.0171 (2)0.0075 (3)0.00384 (19)0.0021 (2)
N10.0692 (15)0.0542 (14)0.0369 (11)0.0373 (12)0.0003 (9)0.0038 (10)
N20.0887 (18)0.0875 (19)0.0348 (11)0.0607 (16)0.0051 (11)0.0123 (11)
N110.0345 (9)0.0289 (9)0.0172 (7)0.0039 (8)0.0028 (6)0.0003 (6)
N120.0564 (13)0.0378 (11)0.0256 (9)0.0245 (10)0.0002 (8)0.0022 (8)
N210.0337 (9)0.0324 (10)0.0183 (7)0.0077 (8)0.0034 (6)0.0014 (7)
N220.0480 (12)0.0498 (13)0.0247 (9)0.0249 (10)0.0017 (8)0.0027 (8)
C10.0385 (12)0.0475 (14)0.0213 (10)0.0216 (11)0.0018 (8)0.0009 (9)
C20.0484 (14)0.0545 (16)0.0182 (9)0.0221 (12)0.0001 (9)0.0018 (9)
C110.0373 (11)0.0330 (12)0.0166 (8)0.0129 (10)0.0039 (7)0.0013 (8)
C120.0769 (19)0.0327 (13)0.0291 (11)0.0036 (13)0.0023 (11)0.0074 (10)
C130.0486 (14)0.0383 (13)0.0247 (10)0.0040 (11)0.0020 (9)0.0030 (9)
C210.0383 (12)0.0382 (12)0.0171 (9)0.0130 (10)0.0058 (8)0.0007 (8)
C220.0741 (19)0.0377 (14)0.0299 (12)0.0152 (14)0.0015 (11)0.0070 (10)
C230.0488 (14)0.0380 (13)0.0252 (10)0.0022 (11)0.0021 (9)0.0061 (9)
C1A0.0416 (12)0.0319 (12)0.0231 (9)0.0003 (10)0.0055 (8)0.0001 (8)
C2A0.0558 (15)0.0428 (14)0.0249 (10)0.0114 (12)0.0013 (9)0.0040 (9)
C3A0.077 (2)0.0572 (18)0.0314 (12)0.0266 (16)0.0046 (12)0.0011 (11)
C4A0.104 (2)0.0472 (17)0.0410 (14)0.0374 (17)0.0040 (14)0.0005 (12)
C5A0.092 (2)0.0407 (15)0.0342 (13)0.0140 (15)0.0065 (13)0.0072 (11)
C6A0.0557 (15)0.0338 (13)0.0240 (10)0.0039 (11)0.0043 (9)0.0022 (9)
C1B0.0363 (11)0.0294 (11)0.0202 (9)0.0032 (9)0.0011 (8)0.0016 (8)
C2B0.0401 (13)0.0606 (17)0.0287 (11)0.0152 (12)0.0010 (9)0.0082 (11)
C3B0.0399 (14)0.081 (2)0.0400 (13)0.0209 (14)0.0074 (10)0.0121 (13)
C4B0.0489 (15)0.0501 (16)0.0305 (12)0.0024 (13)0.0105 (10)0.0006 (10)
C5B0.0552 (15)0.0591 (17)0.0191 (10)0.0084 (13)0.0007 (9)0.0023 (10)
C6B0.0401 (13)0.0564 (16)0.0220 (10)0.0003 (12)0.0042 (8)0.0013 (10)
C1C0.0318 (10)0.0367 (12)0.0180 (9)0.0049 (9)0.0066 (7)0.0008 (8)
C2C0.0412 (12)0.0409 (14)0.0296 (10)0.0073 (11)0.0138 (9)0.0022 (9)
C3C0.0614 (17)0.0448 (15)0.0342 (12)0.0128 (13)0.0175 (11)0.0029 (10)
C4C0.0507 (16)0.071 (2)0.0425 (14)0.0266 (15)0.0195 (11)0.0012 (13)
C5C0.0335 (14)0.090 (3)0.0632 (17)0.0040 (15)0.0216 (12)0.0104 (16)
C6C0.0374 (13)0.0560 (17)0.0429 (13)0.0036 (12)0.0139 (10)0.0054 (11)
C1D0.0412 (12)0.0432 (14)0.0174 (9)0.0092 (10)0.0088 (8)0.0040 (8)
C2D0.0445 (13)0.0522 (15)0.0243 (10)0.0115 (12)0.0070 (9)0.0041 (10)
C3D0.0653 (17)0.0568 (17)0.0289 (11)0.0141 (15)0.0158 (11)0.0059 (11)
C4D0.0581 (17)0.070 (2)0.0386 (13)0.0245 (15)0.0250 (11)0.0068 (12)
C5D0.0507 (16)0.066 (2)0.0603 (17)0.0054 (15)0.0290 (13)0.0093 (15)
C6D0.0494 (15)0.0484 (16)0.0423 (13)0.0043 (13)0.0193 (11)0.0062 (11)
C1E0.0427 (12)0.0358 (13)0.0198 (9)0.0067 (10)0.0015 (8)0.0032 (8)
C2E0.0484 (14)0.0616 (17)0.0230 (10)0.0045 (13)0.0049 (9)0.0039 (10)
C3E0.0586 (16)0.0666 (19)0.0203 (10)0.0040 (15)0.0013 (10)0.0051 (10)
C4E0.0530 (15)0.0497 (16)0.0278 (11)0.0079 (13)0.0098 (10)0.0034 (10)
C5E0.0435 (13)0.0538 (16)0.0327 (12)0.0080 (12)0.0021 (10)0.0043 (11)
C6E0.0448 (13)0.0431 (14)0.0227 (10)0.0098 (11)0.0018 (9)0.0014 (9)
C1F0.0431 (13)0.0376 (13)0.0242 (10)0.0076 (10)0.0059 (8)0.0015 (9)
C2F0.0463 (13)0.0431 (14)0.0248 (10)0.0099 (11)0.0084 (9)0.0027 (9)
C3F0.0661 (17)0.0425 (15)0.0375 (13)0.0076 (13)0.0171 (11)0.0096 (11)
C4F0.078 (2)0.0376 (15)0.0483 (15)0.0073 (14)0.0135 (13)0.0001 (12)
C5F0.088 (2)0.0457 (17)0.0427 (15)0.0098 (16)0.0065 (14)0.0002 (12)
C6F0.0735 (18)0.0430 (16)0.0313 (12)0.0033 (14)0.0045 (11)0.0044 (10)
N1S0.084 (3)0.040 (3)0.098 (4)0.014 (3)0.049 (3)0.006 (2)
C1S0.089 (3)0.046 (3)0.101 (4)0.015 (3)0.051 (3)0.002 (2)
C2S0.098 (3)0.055 (3)0.105 (4)0.016 (3)0.051 (3)0.004 (2)
N1T0.113 (4)0.071 (4)0.119 (5)0.021 (4)0.033 (4)0.004 (3)
C1T0.109 (4)0.069 (4)0.118 (4)0.020 (3)0.037 (4)0.000 (3)
C2T0.104 (4)0.065 (3)0.114 (4)0.017 (3)0.044 (3)0.004 (3)
Geometric parameters (Å, º) top
Pd1—C11.957 (2)C6B—H6BA0.9500
Pd1—N112.0346 (17)C1C—C6C1.374 (3)
Pd1—P12.2914 (5)C1C—C2C1.394 (3)
Pd1—S22.3541 (5)C2C—C3C1.394 (3)
Pd2—C21.943 (2)C2C—H2CA0.9500
Pd2—N212.0345 (17)C3C—C4C1.366 (3)
Pd2—P22.2984 (5)C3C—H3CA0.9500
Pd2—S12.3542 (5)C4C—C5C1.373 (4)
S1—C111.734 (2)C4C—H4CA0.9500
S2—C211.733 (2)C5C—C6C1.383 (3)
P1—C1A1.813 (2)C5C—H5CA0.9500
P1—C1C1.823 (2)C6C—H6CA0.9500
P1—C1B1.8247 (18)C1D—C6D1.373 (3)
P2—C1F1.815 (2)C1D—C2D1.400 (3)
P2—C1D1.820 (2)C2D—C3D1.384 (3)
P2—C1E1.830 (2)C2D—H2DA0.9500
N1—C11.143 (3)C3D—C4D1.369 (4)
N2—C21.148 (3)C3D—H3DA0.9500
N11—C111.333 (2)C4D—C5D1.381 (4)
N11—C131.382 (3)C4D—H4DA0.9500
N12—C111.350 (3)C5D—C6D1.395 (3)
N12—C121.367 (3)C5D—H5DA0.9500
N12—H12A0.8800C6D—H6DA0.9500
N21—C211.337 (3)C1E—C6E1.385 (3)
N21—C231.377 (3)C1E—C2E1.390 (3)
N22—C211.348 (3)C2E—C3E1.394 (3)
N22—C221.365 (3)C2E—H2EA0.9500
N22—H22A0.8800C3E—C4E1.363 (3)
C12—C131.349 (3)C3E—H3EA0.9500
C12—H13A0.9500C4E—C5E1.383 (3)
C13—H14A0.9500C4E—H4EA0.9500
C22—C231.348 (3)C5E—C6E1.388 (3)
C22—H23A0.9500C5E—H5EA0.9500
C23—H24A0.9500C6E—H6EA0.9500
C1A—C6A1.392 (3)C1F—C6F1.393 (3)
C1A—C2A1.400 (3)C1F—C2F1.395 (3)
C2A—C3A1.381 (3)C2F—C3F1.380 (3)
C2A—H2AA0.9500C2F—H2FA0.9500
C3A—C4A1.384 (3)C3F—C4F1.385 (3)
C3A—H3AA0.9500C3F—H3FA0.9500
C4A—C5A1.395 (3)C4F—C5F1.379 (3)
C4A—H4AA0.9500C4F—H4FA0.9500
C5A—C6A1.384 (3)C5F—C6F1.379 (4)
C5A—H5AA0.9500C5F—H5FA0.9500
C6A—H6AA0.9500C6F—H6FA0.9500
C1B—C6B1.383 (3)N1S—C1S1.163 (10)
C1B—C2B1.391 (3)C1S—C2S1.405 (11)
C2B—C3B1.387 (3)C2S—H2S10.9800
C2B—H2BA0.9500C2S—H2S20.9800
C3B—C4B1.374 (3)C2S—H2S30.9800
C3B—H3BA0.9500N1T—C1T1.167 (10)
C4B—C5B1.364 (3)C1T—C2T1.405 (11)
C4B—H4BA0.9500C2T—H2T10.9800
C5B—C6B1.387 (3)C2T—H2T20.9800
C5B—H5BA0.9500C2T—H2T30.9800
C1—Pd1—N11179.31 (8)C6B—C5B—H5BA120.1
C1—Pd1—P187.19 (6)C1B—C6B—C5B120.9 (2)
N11—Pd1—P192.80 (4)C1B—C6B—H6BA119.6
C1—Pd1—S287.99 (6)C5B—C6B—H6BA119.6
N11—Pd1—S292.06 (5)C6C—C1C—C2C118.4 (2)
P1—Pd1—S2173.855 (19)C6C—C1C—P1122.32 (18)
C2—Pd2—N21178.38 (8)C2C—C1C—P1119.14 (16)
C2—Pd2—P289.18 (7)C3C—C2C—C1C120.2 (2)
N21—Pd2—P292.44 (5)C3C—C2C—H2CA119.9
C2—Pd2—S186.54 (7)C1C—C2C—H2CA119.9
N21—Pd2—S191.84 (5)C4C—C3C—C2C120.2 (2)
P2—Pd2—S1174.489 (19)C4C—C3C—H3CA119.9
C11—S1—Pd2103.47 (7)C2C—C3C—H3CA119.9
C21—S2—Pd1103.09 (7)C3C—C4C—C5C120.0 (2)
C1A—P1—C1C105.05 (10)C3C—C4C—H4CA120.0
C1A—P1—C1B106.83 (9)C5C—C4C—H4CA120.0
C1C—P1—C1B103.83 (9)C4C—C5C—C6C120.1 (3)
C1A—P1—Pd1112.97 (6)C4C—C5C—H5CA120.0
C1C—P1—Pd1115.90 (6)C6C—C5C—H5CA120.0
C1B—P1—Pd1111.44 (7)C1C—C6C—C5C121.2 (2)
C1F—P2—C1D104.60 (11)C1C—C6C—H6CA119.4
C1F—P2—C1E105.46 (10)C5C—C6C—H6CA119.4
C1D—P2—C1E104.41 (9)C6D—C1D—C2D119.2 (2)
C1F—P2—Pd2114.49 (7)C6D—C1D—P2121.09 (18)
C1D—P2—Pd2113.82 (7)C2D—C1D—P2119.39 (18)
C1E—P2—Pd2113.06 (7)C3D—C2D—C1D119.9 (2)
C11—N11—C13107.43 (18)C3D—C2D—H2DA120.0
C11—N11—Pd1122.63 (14)C1D—C2D—H2DA120.0
C13—N11—Pd1129.94 (15)C4D—C3D—C2D120.7 (3)
C11—N12—C12108.74 (19)C4D—C3D—H3DA119.7
C11—N12—H12A125.6C2D—C3D—H3DA119.7
C12—N12—H12A125.6C3D—C4D—C5D119.7 (3)
C21—N21—C23107.19 (18)C3D—C4D—H4DA120.1
C21—N21—Pd2122.77 (15)C5D—C4D—H4DA120.1
C23—N21—Pd2130.03 (15)C4D—C5D—C6D120.2 (3)
C21—N22—C22108.90 (19)C4D—C5D—H5DA119.9
C21—N22—H22A125.6C6D—C5D—H5DA119.9
C22—N22—H22A125.6C1D—C6D—C5D120.3 (3)
N1—C1—Pd1178.1 (2)C1D—C6D—H6DA119.8
N2—C2—Pd2178.2 (2)C5D—C6D—H6DA119.8
N11—C11—N12108.68 (19)C6E—C1E—C2E119.17 (18)
N11—C11—S1125.60 (16)C6E—C1E—P2120.21 (14)
N12—C11—S1125.72 (16)C2E—C1E—P2120.60 (17)
C13—C12—N12106.7 (2)C1E—C2E—C3E120.1 (2)
C13—C12—H13A126.6C1E—C2E—H2EA119.9
N12—C12—H13A126.6C3E—C2E—H2EA119.9
C12—C13—N11108.4 (2)C4E—C3E—C2E120.3 (2)
C12—C13—H14A125.8C4E—C3E—H3EA119.9
N11—C13—H14A125.8C2E—C3E—H3EA119.9
N21—C21—N22108.60 (19)C3E—C4E—C5E120.2 (2)
N21—C21—S2126.07 (16)C3E—C4E—H4EA119.9
N22—C21—S2125.32 (17)C5E—C4E—H4EA119.9
C23—C22—N22106.5 (2)C4E—C5E—C6E120.1 (2)
C23—C22—H23A126.8C4E—C5E—H5EA119.9
N22—C22—H23A126.8C6E—C5E—H5EA119.9
C22—C23—N21108.8 (2)C1E—C6E—C5E120.17 (19)
C22—C23—H24A125.6C1E—C6E—H6EA119.9
N21—C23—H24A125.6C5E—C6E—H6EA119.9
C6A—C1A—C2A119.2 (2)C6F—C1F—C2F118.1 (2)
C6A—C1A—P1123.45 (16)C6F—C1F—P2118.58 (17)
C2A—C1A—P1117.38 (16)C2F—C1F—P2123.18 (16)
C3A—C2A—C1A120.7 (2)C3F—C2F—C1F120.8 (2)
C3A—C2A—H2AA119.7C3F—C2F—H2FA119.6
C1A—C2A—H2AA119.7C1F—C2F—H2FA119.6
C2A—C3A—C4A119.9 (2)C2F—C3F—C4F120.3 (2)
C2A—C3A—H3AA120.0C2F—C3F—H3FA119.8
C4A—C3A—H3AA120.0C4F—C3F—H3FA119.8
C3A—C4A—C5A119.8 (2)C5F—C4F—C3F119.4 (3)
C3A—C4A—H4AA120.1C5F—C4F—H4FA120.3
C5A—C4A—H4AA120.1C3F—C4F—H4FA120.3
C6A—C5A—C4A120.4 (2)C4F—C5F—C6F120.5 (2)
C6A—C5A—H5AA119.8C4F—C5F—H5FA119.7
C4A—C5A—H5AA119.8C6F—C5F—H5FA119.7
C5A—C6A—C1A120.0 (2)C5F—C6F—C1F120.8 (2)
C5A—C6A—H6AA120.0C5F—C6F—H6FA119.6
C1A—C6A—H6AA120.0C1F—C6F—H6FA119.6
C6B—C1B—C2B118.82 (17)N1S—C1S—C2S176.2 (11)
C6B—C1B—P1121.48 (16)C1S—C2S—H2S1109.5
C2B—C1B—P1119.70 (14)C1S—C2S—H2S2109.5
C3B—C2B—C1B119.6 (2)H2S1—C2S—H2S2109.5
C3B—C2B—H2BA120.2C1S—C2S—H2S3109.5
C1B—C2B—H2BA120.2H2S1—C2S—H2S3109.5
C4B—C3B—C2B120.7 (2)H2S2—C2S—H2S3109.5
C4B—C3B—H3BA119.7N1T—C1T—C2T167.3 (16)
C2B—C3B—H3BA119.7C1T—C2T—H2T1109.5
C5B—C4B—C3B120.1 (2)C1T—C2T—H2T2109.5
C5B—C4B—H4BA119.9H2T1—C2T—H2T2109.5
C3B—C4B—H4BA119.9C1T—C2T—H2T3109.5
C4B—C5B—C6B119.8 (2)H2T1—C2T—H2T3109.5
C4B—C5B—H5BA120.1H2T2—C2T—H2T3109.5
C13—N11—C11—N121.0 (2)Pd1—P1—C1C—C6C107.61 (17)
Pd1—N11—C11—N12179.69 (12)C1A—P1—C1C—C2C166.82 (15)
C13—N11—C11—S1178.50 (14)C1B—P1—C1C—C2C54.80 (17)
Pd1—N11—C11—S10.8 (2)Pd1—P1—C1C—C2C67.74 (16)
C12—N12—C11—N110.5 (2)C6C—C1C—C2C—C3C0.1 (3)
C12—N12—C11—S1179.08 (15)P1—C1C—C2C—C3C175.43 (15)
Pd2—S1—C11—N1158.55 (17)C1C—C2C—C3C—C4C0.1 (3)
Pd2—S1—C11—N12120.92 (16)C2C—C3C—C4C—C5C0.7 (4)
C11—N12—C12—C130.3 (2)C3C—C4C—C5C—C6C1.5 (4)
N12—C12—C13—N111.0 (2)C2C—C1C—C6C—C5C0.7 (3)
C11—N11—C13—C121.3 (2)P1—C1C—C6C—C5C176.07 (19)
Pd1—N11—C13—C12179.55 (14)C4C—C5C—C6C—C1C1.5 (4)
C23—N21—C21—N221.0 (2)C1F—P2—C1D—C6D23.41 (19)
Pd2—N21—C21—N22179.80 (12)C1E—P2—C1D—C6D133.98 (18)
C23—N21—C21—S2177.87 (14)Pd2—P2—C1D—C6D102.27 (17)
Pd2—N21—C21—S21.3 (2)C1F—P2—C1D—C2D163.28 (16)
C22—N22—C21—N210.7 (2)C1E—P2—C1D—C2D52.72 (18)
C22—N22—C21—S2178.16 (16)Pd2—P2—C1D—C2D71.03 (17)
Pd1—S2—C21—N2157.77 (17)C6D—C1D—C2D—C3D0.8 (3)
Pd1—S2—C21—N22120.92 (16)P2—C1D—C2D—C3D172.62 (16)
C21—N22—C22—C230.1 (2)C1D—C2D—C3D—C4D0.4 (3)
N22—C22—C23—N210.5 (2)C2D—C3D—C4D—C5D0.8 (4)
C21—N21—C23—C220.9 (2)C3D—C4D—C5D—C6D1.6 (4)
Pd2—N21—C23—C22179.96 (14)C2D—C1D—C6D—C5D0.0 (3)
C1C—P1—C1A—C6A98.1 (2)P2—C1D—C6D—C5D173.35 (18)
C1B—P1—C1A—C6A11.7 (2)C4D—C5D—C6D—C1D1.2 (4)
Pd1—P1—C1A—C6A134.63 (18)C1F—P2—C1E—C6E96.5 (2)
C1C—P1—C1A—C2A82.64 (19)C1D—P2—C1E—C6E153.57 (19)
C1B—P1—C1A—C2A167.49 (17)Pd2—P2—C1E—C6E29.3 (2)
Pd1—P1—C1A—C2A44.6 (2)C1F—P2—C1E—C2E81.6 (2)
C6A—C1A—C2A—C3A2.1 (4)C1D—P2—C1E—C2E28.4 (2)
P1—C1A—C2A—C3A178.7 (2)Pd2—P2—C1E—C2E152.62 (17)
C1A—C2A—C3A—C4A1.2 (4)C6E—C1E—C2E—C3E0.1 (4)
C2A—C3A—C4A—C5A0.7 (5)P2—C1E—C2E—C3E178.0 (2)
C3A—C4A—C5A—C6A1.8 (5)C1E—C2E—C3E—C4E0.3 (4)
C4A—C5A—C6A—C1A0.9 (4)C2E—C3E—C4E—C5E0.5 (4)
C2A—C1A—C6A—C5A1.0 (4)C3E—C4E—C5E—C6E0.4 (4)
P1—C1A—C6A—C5A179.8 (2)C2E—C1E—C6E—C5E0.2 (3)
C1A—P1—C1B—C6B83.0 (2)P2—C1E—C6E—C5E177.91 (18)
C1C—P1—C1B—C6B27.7 (2)C4E—C5E—C6E—C1E0.1 (4)
Pd1—P1—C1B—C6B153.15 (17)C1D—P2—C1F—C6F90.2 (2)
C1A—P1—C1B—C2B97.0 (2)C1E—P2—C1F—C6F160.00 (19)
C1C—P1—C1B—C2B152.31 (19)Pd2—P2—C1F—C6F35.1 (2)
Pd1—P1—C1B—C2B26.9 (2)C1D—P2—C1F—C2F85.8 (2)
C6B—C1B—C2B—C3B0.4 (4)C1E—P2—C1F—C2F24.1 (2)
P1—C1B—C2B—C3B179.6 (2)Pd2—P2—C1F—C2F148.98 (17)
C1B—C2B—C3B—C4B0.9 (4)C6F—C1F—C2F—C3F0.0 (4)
C2B—C3B—C4B—C5B0.6 (4)P2—C1F—C2F—C3F175.98 (19)
C3B—C4B—C5B—C6B0.2 (4)C1F—C2F—C3F—C4F1.4 (4)
C2B—C1B—C6B—C5B0.4 (4)C2F—C3F—C4F—C5F1.6 (4)
P1—C1B—C6B—C5B179.63 (19)C3F—C4F—C5F—C6F0.5 (5)
C4B—C5B—C6B—C1B0.7 (4)C4F—C5F—C6F—C1F0.8 (5)
C1A—P1—C1C—C6C17.83 (19)C2F—C1F—C6F—C5F1.1 (4)
C1B—P1—C1C—C6C129.86 (18)P2—C1F—C6F—C5F175.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12A···N2i0.881.902.770 (3)169
N22—H22A···N1ii0.881.922.760 (3)160
C12—H13A···N1S0.952.353.261 (7)161
C22—H23A···N1T0.952.293.081 (12)141
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Footnotes

Deceased (April 13, 2021).

Acknowledgements

TSL thanks the Guru Nanak Dev University for an Honorary Professorship. General research facilities for students (BT and RA) at the university are gratefully acknowledged.

Funding information

JPJ acknowledges the NSF–MRI program (Grant No. CHE-1039027) for funds to purchase an X-ray diffractometer. MZ acknowledges the NSF Grant CHE 0087210, Ohio Board of Regents Grant CAP-491, and Youngstown State University for funds to purchase an X-ray diffractometer.

References

First citationAhmad, S., Rüffer, T., Lang, H., Nadeem, S., Tirmizi, S. A., Saleem, M. & Anwar, A. (2010). Russ. J. Coord. Chem. 36, 520–524.  Web of Science CrossRef CAS Google Scholar
First citationAkrivos, P. D. (2001). Coord. Chem. Rev. 213, 181–210.  Web of Science CrossRef CAS Google Scholar
First citationBondy, C. R. & Loeb, S. J. (2003). Coord. Chem. Rev. 240, 77–99.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGarcía-Vázquez, J. A., Romero, J. & Sousa, A. (1999). Coord. Chem. Rev. 193–195, 691–745.  Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuheey, J. E., Keiter, E. A. & Keiter, R. L. (1993). Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed. New York: Harper Collins College Publishers.  Google Scholar
First citationKahn, E. S., Rheingold, A. L. & Shupack, S. I. (1993). J. Crystallogr. Spectrosc. Res. 23, 697–710.  CSD CrossRef CAS Web of Science Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.  Web of Science CrossRef CAS Google Scholar
First citationKostas, I. D. & Steele, B. R. (2020). Catalysts 10, 1107; doi: 10.3390/catal10101107.  Web of Science CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLobana, T. S. (2021). Coord. Chem. Rev. 441, 213884.  Web of Science CrossRef Google Scholar
First citationLobana, T. S., Sandhu, A. K., Mahajan, R. K., Hundal, G., Gupta, S. K., Butcher, R. J. & Castineiras, A. (2017). Polyhedron, 127, 25–35.  Web of Science CSD CrossRef CAS Google Scholar
First citationMendía, A., Cerrada, E., Arnáiz, F. J. & Laguna, M. (2006). Dalton Trans. pp. 609–616.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD, and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRaper, E. S. (1985). Coord. Chem. Rev. 61, 115–184.  CrossRef CAS Web of Science Google Scholar
First citationRaper, E. S. (1994). Coord. Chem. Rev. 129, 91–156.  CrossRef CAS Web of Science Google Scholar
First citationRaper, E. S. (1996). Coord. Chem. Rev. 153, 199–255.  CrossRef CAS Web of Science Google Scholar
First citationRaper, E. S. (1997). Coord. Chem. Rev. 165, 475–567.  CrossRef CAS Web of Science Google Scholar
First citationSandhu, A. K., Lobana, T. S., Sran, B. S., Hundal, G. & Jasinski, J. P. (2018). J. Organomet. Chem. 861, 112–124.  Web of Science CSD CrossRef CAS Google Scholar
First citationSerpe, A., Artizzu, F., Mercuri, M. L., Pilia, L. & Deplano, P. (2008). Coord. Chem. Rev. 252, 1200–1212.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteffen, W. L. & Palenik, G. J. (1976). Inorg. Chem. 15, 2432–2439.  CSD CrossRef CAS Web of Science Google Scholar
First citationTalismanova, M. O., Sidorov, A. A., Aleksandrov, G. G., Charushin, V. N., Kotovskaya, S. K., Ananikov, V. P., Eremenko, I. L. & Moiseeva, I. I. (2008). Russ. Chem. Bull. 57, 47–55.  Web of Science CrossRef CAS Google Scholar
First citationTalismanova, M. O., Sidorov, A. A., Aleksandrov, G. G., Oprunenko, Y. F., Eremenko, I. L. & Moiseev, I. I. (2004). Russ. Chem. Bull. 53, 1507–1510.  Web of Science CrossRef CAS Google Scholar
First citationUmakoshi, K., Ichimura, A., Kinoshita, I. & Ooi, S. (1990). Inorg. Chem. 29, 4005–4010.  CSD CrossRef CAS Web of Science Google Scholar
First citationYamamoto, J. H., Yoshida, W. & Jensen, C. M. (1991). Inorg. Chem. 30, 1353–1357.  CSD CrossRef CAS Web of Science Google Scholar
First citationYap, G. P. A. & Jensen, C. M. (1992). Inorg. Chem. 31, 4823–4828.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds