research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and structures of ammonium transition-metal dialuminium tris­­(phosphate) dihydrates (NH4)MAl4(PO4)3·2H2O (M = Mn and Ni)

crossmark logo

aInstitute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
*Correspondence e-mail: makoto.tokuda.b7@tohoku.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 20 July 2022; accepted 23 January 2023; online 26 January 2023)

The structures of ammonium manganese(II) dialuminium tris­(phosphate) dihydrate, (NH4)MnAl2(PO4)3·2H2O, and ammonium nickel(II) dialuminium tris­(phosphate) dihydrate, (NH4)NiAl2(PO4)3·2H2O, were determined using single-crystal diffraction data. The structures of title compounds are isotypic to cobalt aluminophosphate, (NH4)CoAl2(PO4)3·2H2O (LMU-3) [Panz et al. (1998[Panz, C., Polborn, K. & Behrens, P. (1998). Inorg. Chim. Acta, 269, 73-82.]). Inorg. Chim. Acta, 269, 73–82], in which a three-dimensional network of vertex-sharing AlO5 and PO4 moieties delineate twelve-membered channels in which ammonium, NH4+, and transition-metal cations (M = Mn2+ and Ni2+) reside as charge compensators for the anionic [Al2(PO4)3]3– aluminophosphate framework. In both structures, the N atom of the ammonium cation, the transition-metal ion and one of the P atoms lie on crystallographic twofold axes.

1. Chemical context

The mixed-metal phosphate composed of tetra­hedral, bipyramidal and octa­hedral building units with chemical formula KNiAl2(PO4)3·2H2O was firstly reported by Meyer & Haushalter (1994[Meyer, L. M. & Haushalter, R. C. (1994). Chem. Mater. 6, 349-350.]). Isotypic structures were found in the alumino-, ferri- and gallophosphates; (NH4)CoAl2(PO4)3·2H2O (Panz et al. 1998[Panz, C., Polborn, K. & Behrens, P. (1998). Inorg. Chim. Acta, 269, 73-82.]), KMnAl2(PO4)3·2H2O (Kiriukhina et al. 2020[Kiriukhina, G. V., Yakubovich, O. V., Shvanskaya, L. V., Kochetkova, E. M., Dimitrova, O. V., Volkov, A. S. & Simonov, S. V. (2020). Acta Cryst. C76, 302-310.]), CsFe3(PO4)3·2H2O (Lii & Huang 1995[Lii, K.-H. & Huang, C.-Y. (1995). J. Chem. Soc. Dalton Trans. pp. 571-574.]), (NH4)CoGa2(PO4)3·2H2O (Chippindale et al. 1996[Chippindale, A. M., Cowley, A. R. & Walton, R. I. (1996). J. Mater. Chem. 6, 611-614.]), (NH4)MnGa2(PO4)3·2H2O (Chippindale et al. 1998[Chippindale, A. M., Cowley, A. R. & Bond, A. D. (1998). Acta Cryst. C54, IUC9800061.]), (NH4)NiGa2(PO4)3·2H2O (Bieniok et al. 2008[Bieniok, A., Brendel, U., Lottermoser, W. & Amthauer, G. (2008). Z. Kristallogr. 223, 186-194.]) and KNiGa2(PO4)3·2H2O (Chippindale et al. 2009[Chippindale, A. M., Sharma, A. V. & Hibble, S. J. (2009). Acta Cryst. E65, i38-i39.]).

Herein, we report the syntheses and structures of (NH4)MAl2(PO4)3·2H2O [M = Mn in (I) and Ni in (II)] using a hydro­thermal technique and structural analysis by single-crystal X-ray diffraction. These compounds are isotypic to (NH4)CoAl2 (PO4)3·2H2O (LMU-3), crystallizing from a hydro­thermal synthesis (Panz et al., 1998[Panz, C., Polborn, K. & Behrens, P. (1998). Inorg. Chim. Acta, 269, 73-82.]).

2. Structural commentary

The aluminophosphate framework of the title compounds with the chemical formula (NH4)MAl2(PO4)3·2H2O (M = Mn and Ni) is composed of [PO4] tetra­hedra and [AlO5] trigonal-bipyramids. Fig. 1[link](a) shows the [Al2(PO4)3] layers, which are built up from four- and eight-membered rings connected via Al—O—P bonds. These layers stack along the a-axis direction, with the [P2O4] tetra­hedra (atom P2 lies on a crystallographic twofold axis) bridging between them, leading to the formation of a three-dimensional network encapsulating twelve-membered channels propagating in the [001] direction. The ammonium and transition-metal cations are respectively located in and on these channels, compensating the negative charge of the aluminophosphate framework [Fig. 1[link](b)].

[Figure 1]
Figure 1
(a) Two-dimensional layer formed by four- and eight-membered rings in the bc plane and (b) the three-dimensional channels formed by twelve-membered rings in the aluminophosphate framework of Al2M(NH4)(PO4)3·2H2O (M = Mn and Ni) illustrated using VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]).

There are two axial and three equatorial Al—O bonds within the [AlO5] trigonal bipyramids (Table 1[link]). The axial Al—O bond distances for M = Mn are 1.8886 (19) and 1.9320 (18) Å and those for Ni are 1.8818 (14) and 1.9271 (14) Å, and the equatorial ones are in the ranges 1.7847 (19)–1.8080 (18) Å (Mn) and 1.7731 (14)–1.7979 (14) Å (Ni), thus the average axial Al—O bond distances are larger than the equatorial ones. Previous studies on [AlO5] trigonal bipyramids in LMU-3, KNiAl2(PO4)3·2H2O, KMnAl2(PO4)3·2H2O and (NH4)3Al2(PO4)3 (Panz et al., 1998[Panz, C., Polborn, K. & Behrens, P. (1998). Inorg. Chim. Acta, 269, 73-82.]; Meyer & Haushalter 1994[Meyer, L. M. & Haushalter, R. C. (1994). Chem. Mater. 6, 349-350.]; Kiriukhina et al., 2020[Kiriukhina, G. V., Yakubovich, O. V., Shvanskaya, L. V., Kochetkova, E. M., Dimitrova, O. V., Volkov, A. S. & Simonov, S. V. (2020). Acta Cryst. C76, 302-310.]; Medina et al. 2004[Medina, M. E., Iglesias, M., Gutiérrez-Puebla, E. & Monge, M. A. (2004). J. Mater. Chem. 14, 845-850.]) showed similar geometrical features with longer axial Al—O bonds distances.

Table 1
Selected bond lengths (Å) in (NH4)MAl2(PO4)3·2H2O [M = Mn (I) and Ni (II)]

  (I) (II)
PO4 tetra­hedra    
P1—O6iv 1.5152 (19) 1.5180 (14)
P1—O2 1.5342 (19) 1.5361 (14)
P1—O3 1.5350 (18) 1.5371 (13)
P1—O1 1.5493 (18) 1.5502 (13)
P2—O5 1.5294 (18) 1.5253 (13)
P2—O4 1.5420 (18) 1.5444 (13)
     
AlO5 trigonal bipyramid    
Al—O2ii 1.7847 (19) 1.7731 (14)
Al—O1 1.8013 (19) 1.7908 (14)
Al—O5iv 1.8080 (18) 1.7979 (14)
Al—O3iv 1.8886 (19) 1.8818 (14)
Al—O4 1.9320 (18) 1.9271 (14)
     
MnO6 octa­hedra    
M—O6 2.0799 (19) 2.0052 (13)
M—O7 2.1990 (20) 2.0799 (15)
M—O4 2.2805 (18) 2.1512 (13)
O4⋯O4i 2.407 (5) 2.387 (4)
O6⋯O7 2.950 (3) 2.785 (2)
O6⋯O7i 2.962 (4) 2.844 (3)
O4⋯O6 3.192 (3) 3.065 (2)
O4⋯O7 3.254 (3) 3.089 (2)
O4⋯O7i 3.291 (3) 3.094 (3)
O6⋯O6i 3.372 (5) 3.132 (4)
Symmetry codes: (i) −x, y, −z + [{1\over 2}]; (ii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (iv) x, −y + 1, z − [{1\over 2}]; (vi) −x + [{1\over 2}], y + [{1\over 2}], −z + 1.

The transition-metal cations, which lie on crystallographic twofold axes, are octa­hedrally coordinated by two oxygen atoms of water mol­ecules and four oxygen atoms of the framework (Fig. 2[link]). The mean M—O bond distances for the Mn and Ni compounds are 2.186 Å and 2.079 Å, respectively, which are consistent with the ionic radii of VIMn2+ (0.83 Å) and VINi2+ (0.69 Å; Shannon 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). The MO6 octa­hedron shares an edge O4⋯O4 with the adjacent [P2O4] tetra­hedron. The length of the shared-edge O4⋯O4 is the shortest among the twelve edges of octa­hedrally coordinated transition-metal cations in accordance with the P5+M2+ cation repulsion (Pauling, 1929[Pauling, L. (1929). J. Am. Chem. Soc. 51, 1010-1026.], 1960[Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 93. Ithaca: Cornell University Press.]).

[Figure 2]
Figure 2
Positions of the MO6 [M = Mn (I) and Ni (II)] octa­hedra in the twelve-membered-ring channel of the aluminophosphate framework. Displacement ellipsoids are presented at the 80% probability level. [Symmetry codes: (i) −x, y, −z + [{1\over 2}]; (ii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (iii) x − [{1\over 2}], y − [{1\over 2}], z; (iv) x, −y + 1, z − [{1\over 2}]; (v) −x, −y + 1, −z + 1.]

The positions of the hydrogen atoms in the water mol­ecule, H71 and H72, could be determined by analysing the residual peaks in the difference-Fourier maps. The oxygen atom O7 of the water mol­ecule is coordinated to the transition-metal ions, and hydrogen atoms of H71 and H72 form O—H⋯O hydrogen bonds with the oxygen atoms O1 and O3 of the [Al2(PO4)3] layer, respectively (Tables 2[link] and 3[link]). Thus, the H71⋯O1 and H72⋯O3 hydrogen bonds contribute to the accumulation of the layers.

Table 2
Hydrogen-bond geometry (Å, °) for (I)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H71⋯O1i 0.89 1.95 2.831 (3) 178
O7—H72⋯O3ii 0.87 2.04 2.897 (3) 166
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Table 3
Hydrogen-bond geometry (Å, °) for (II)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H71⋯O1i 0.81 1.99 2.790 (2) 167
O7—H72⋯O3ii 0.86 2.11 2.961 (2) 170
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

As for the hydrogen-bonding inter­actions of the ammonium cation (N atom site symmetry 2) within the title compounds, not all the H atoms could be definitively located from difference maps but some structural information could be obtained from the observed distances N1⋯O5 = 3.085 (5) and 3.103 (4) Å and N1⋯O6 = 2.906 (4) and 2.862 (3) Å for (NH4)MAl2(PO4)3·2H2O (M = Mn and Ni), respectively. The longer N1⋯O5 distance and the large isotropic atomic displacement parameters, Uiso, of the N1 atom clearly indicate the relatively weaker hydrogen bonding for the presumed N1—H⋯O5 cases. This structural feature did not allow us to definitively located the positions of hydrogen atoms within the N1—H⋯O5 cases. Nevertheless, some of the hydrogen-atom positions around the ammonium cations could be located in the difference-Fourier maps and coordinates are (0.5382, 0.3998, 0.2391) and (0.5357, 0.4204, 0.2296) for (NH4)MAl2(PO4)3·2H2O (M = Mn and Ni), respectively. These possible hydrogen-atom positions correspond to those for the N1—H⋯O6 cases. Weak hydrogen bonds between NH4+ and the framework suggests that NH4+ and a monovalent cation (e.g., alkali cation or H3O+) are exchangeable akin to zeolitic cations in this unique framework structure (Meyer & Haushalter 1994[Meyer, L. M. & Haushalter, R. C. (1994). Chem. Mater. 6, 349-350.]; Kiriukhina et al., 2020[Kiriukhina, G. V., Yakubovich, O. V., Shvanskaya, L. V., Kochetkova, E. M., Dimitrova, O. V., Volkov, A. S. & Simonov, S. V. (2020). Acta Cryst. C76, 302-310.]). The chemical formula for the group of compounds reported in this study can be denoted by A+M2+Al2(PO4)3·2H2O (A = monovalent cation, M = divalent transition-metal cation).

3. Synthesis and crystallization

Single crystals of (NH4)MAl2(PO4)3·2H2O (M = Mn and Ni) were obtained as by-products of the laumontite-type zeolite imidazole-templated hydro­thermal technique. The precursor solution was prepared by dissolving the chemical agents of imidazole, aluminium-isopropoxide and H3PO4 (85% solution): the transition-metal component (Ni or Mn) was added to the solution. For the insertion of nickel in the system, (CH3COO)2Ni·4H2O was used and for corresponding manganese analogue (CH3COO)2Mn·4H2O was added to the as-prepared precursor solution. In each case, the resultant gel mixture was then sealed in a Teflon-lined tube and heated at 453 K for three days.

A few colorless, transparent crystals of (NH4)MnAl2(PO4)3·2H2O with a plate-like form were separated from the microcrystalline material together with the laumontite-type aluminophosphate, Mn-hureaulite Mn5[PO3(OH)]2(PO4)2·4H2O. In the case of Ni, the product comprises NH4NiAl2(PO4)3·2H2O, which forms colorless, transparent plate-like crystals and organic compounds.

The chemical analyses of the synthesized products were performed using energy-dispersive X-ray spectroscopy (EDS). The EDS profile clearly showed the presence of nitro­gen. This supports the idea that NH4+, a decomposition product of imidazole, was incorporated within the framework as a charge-compensating cation.

4. Refinement details

The crystal data, data collection methods, and structure refinement details are summarized in Table 4[link]. The positions of the hydrogen atoms bonded to O7 were estimated using the residual peaks in the difference Fourier maps and refined using a riding model. The Uiso parameters for hydrogen atoms were fixed at 1.5 × the Uiso of O7.

Table 4
Experimental details

  (NH4)MnAl2(PO4)3·2H2O (NH4)NiAl2(PO4)3·2H2O
Crystal data
Mr 447.88 451.65
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c
Temperature (K) 298 298
a, b, c (Å) 13.3577 (7), 10.2279 (5), 8.7922 (5) 13.0711 (3), 10.1772 (2), 8.74476 (19)
β (°) 108.885 (6) 108.527 (3)
V3) 1136.53 (11) 1103.00 (4)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.85 2.44
Crystal size (mm) 0.05 × 0.04 × 0.02 0.11 × 0.04 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Single source at offset/far, HyPix XtaLAB Synergy, Single source at offset/far, HyPix
Absorption correction Numerical (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Numerical (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.938, 0.968 0.853, 0.962
No. of measured, independent and observed [I > 2σ(I)] reflections 5256, 1316, 1178 9320, 1328, 1281
Rint 0.027 0.021
(sin θ/λ)max−1) 0.653 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.077, 1.11 0.018, 0.056, 1.14
No. of reflections 1316 1328
No. of parameters 97 97
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.90, −0.51 0.42, −0.36
Computer programs: CrysAlis PRO 1.171.40.43a (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO 1.171.40.43a (Rigaku OD, 2021); cell refinement: CrysAlis PRO 1.171.40.43a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.40.43a (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b).

Ammonium manganese(II) dialuminium tris(phosphate) dihydrate (I) top
Crystal data top
(NH4)MnAl2(PO4)3·2H2OF(000) = 956.0
Mr = 447.88Dx = 2.618 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.3577 (7) ÅCell parameters from 3620 reflections
b = 10.2279 (5) Åθ = 3.9–27.6°
c = 8.7922 (5) ŵ = 1.85 mm1
β = 108.885 (6)°T = 298 K
V = 1136.53 (11) Å3Plate, colourless
Z = 40.05 × 0.04 × 0.02 mm
Data collection top
XtaLAB Synergy, Single source at offset/far, HyPix
diffractometer
1316 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source1178 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.0000 pixels mm-1θmax = 27.6°, θmin = 3.2°
ω scansh = 1717
Absorption correction: numerical
(CrysAlisPro; Rigaku OD, 2021)
k = 1311
Tmin = 0.938, Tmax = 0.968l = 1111
5256 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0358P)2 + 3.6714P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1316 reflectionsΔρmax = 0.90 e Å3
97 parametersΔρmin = 0.51 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.0000000.21386 (5)0.2500000.01325 (16)
Al0.16968 (5)0.42298 (7)0.07597 (8)0.00506 (17)
P10.29135 (5)0.62403 (6)0.33188 (7)0.00855 (16)
P20.0000000.49748 (8)0.2500000.00678 (19)
N10.5000000.3634 (4)0.2500000.0357 (10)
O10.20881 (14)0.57892 (18)0.1720 (2)0.0129 (4)
O20.27155 (14)0.77104 (18)0.3420 (2)0.0130 (4)
O30.27207 (14)0.55150 (18)0.4727 (2)0.0132 (4)
O40.07105 (14)0.40324 (18)0.1938 (2)0.0118 (4)
O50.06242 (14)0.58669 (18)0.3876 (2)0.0116 (4)
O60.09702 (14)0.09481 (19)0.1661 (2)0.0179 (4)
O70.11844 (17)0.1969 (2)0.4904 (3)0.0262 (5)
H710.1482030.2669540.5462320.039*
H720.1606360.1300570.4991390.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0131 (3)0.0113 (3)0.0168 (3)0.0000.0069 (2)0.000
Al0.0059 (3)0.0047 (3)0.0043 (3)0.0007 (2)0.0013 (3)0.0007 (2)
P10.0090 (3)0.0086 (3)0.0088 (3)0.0016 (2)0.0039 (2)0.0006 (2)
P20.0071 (4)0.0071 (4)0.0063 (4)0.0000.0024 (3)0.000
N10.041 (2)0.0174 (19)0.048 (3)0.0000.013 (2)0.000
O10.0152 (9)0.0132 (9)0.0101 (8)0.0029 (7)0.0039 (7)0.0037 (7)
O20.0168 (9)0.0095 (9)0.0137 (9)0.0030 (7)0.0063 (7)0.0024 (7)
O30.0165 (9)0.0124 (9)0.0126 (9)0.0010 (7)0.0071 (7)0.0029 (7)
O40.0125 (9)0.0099 (8)0.0153 (9)0.0006 (7)0.0078 (7)0.0000 (7)
O50.0114 (8)0.0123 (9)0.0095 (8)0.0013 (7)0.0010 (7)0.0036 (7)
O60.0107 (9)0.0185 (10)0.0265 (10)0.0019 (7)0.0089 (8)0.0045 (8)
O70.0275 (12)0.0201 (11)0.0223 (10)0.0016 (9)0.0040 (9)0.0044 (8)
Geometric parameters (Å, º) top
Mn—O62.0799 (19)Al—O41.9320 (18)
Mn—O6i2.0799 (19)P1—O6iv1.5152 (19)
Mn—O72.199 (2)P1—O21.5342 (19)
Mn—O7i2.199 (2)P1—O31.5350 (18)
Mn—O42.2805 (18)P1—O11.5493 (18)
Mn—O4i2.2805 (18)P2—O51.5294 (18)
Mn—P22.9008 (10)P2—O5i1.5294 (18)
Al—O2ii1.7847 (19)P2—O41.5420 (18)
Al—O11.8013 (19)P2—O4i1.5420 (18)
Al—O5iii1.8080 (18)O7—H710.8867
Al—O3iii1.8886 (19)O7—H720.8736
O6—Mn—O6i108.33 (11)O5iii—Al—O490.54 (8)
O6—Mn—O787.58 (8)O3iii—Al—O4176.17 (8)
O6i—Mn—O787.13 (8)O6iv—P1—O2112.34 (11)
O6—Mn—O7i87.13 (8)O6iv—P1—O3108.44 (11)
O6i—Mn—O7i87.58 (8)O2—P1—O3110.49 (10)
O7—Mn—O7i170.96 (12)O6iv—P1—O1111.15 (11)
O6—Mn—O493.99 (7)O2—P1—O1105.01 (10)
O6i—Mn—O4157.67 (7)O3—P1—O1109.38 (10)
O7—Mn—O493.15 (7)O5—P2—O5i106.74 (14)
O7i—Mn—O494.53 (7)O5—P2—O4113.09 (9)
O6—Mn—O4i157.67 (7)O5i—P2—O4110.71 (9)
O6i—Mn—O4i93.99 (7)O5—P2—O4i110.71 (9)
O7—Mn—O4i94.53 (7)O5i—P2—O4i113.09 (9)
O7i—Mn—O4i93.15 (7)O4—P2—O4i102.63 (14)
O4—Mn—O4i63.72 (9)O5—P2—Mn126.63 (7)
O6—Mn—P2125.84 (6)O5i—P2—Mn126.63 (7)
O6i—Mn—P2125.84 (6)O4—P2—Mn51.31 (7)
O7—Mn—P294.52 (6)O4i—P2—Mn51.31 (7)
O7i—Mn—P294.52 (6)P1—O1—Al134.62 (12)
O4—Mn—P231.86 (4)P1—O2—Aliv144.61 (13)
O4i—Mn—P231.86 (4)P1—O3—Alv131.12 (11)
O2ii—Al—O1123.95 (9)P2—O4—Al134.74 (11)
O2ii—Al—O5iii115.92 (9)P2—O4—Mn96.83 (9)
O1—Al—O5iii120.10 (9)Al—O4—Mn127.51 (9)
O2ii—Al—O3iii91.29 (8)P2—O5—Alv139.42 (12)
O1—Al—O3iii87.58 (8)P1ii—O6—Mn127.16 (12)
O5iii—Al—O3iii92.86 (8)Mn—O7—H71121.5
O2ii—Al—O488.81 (8)Mn—O7—H72112.9
O1—Al—O489.19 (8)H71—O7—H72115.0
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H71···O1v0.891.952.831 (3)178
O7—H72···O3vi0.872.042.897 (3)166
Symmetry codes: (v) x, y+1, z+1/2; (vi) x+1/2, y+1/2, z+1.
Ammonium nickel(II) dialuminium tris(phosphate) dihydrate (II) top
Crystal data top
(NH4)NiAl2(PO4)3·2H2OF(000) = 904
Mr = 451.65Dx = 2.720 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.0711 (3) ÅCell parameters from 14220 reflections
b = 10.1772 (2) Åθ = 2.6–44.8°
c = 8.74476 (19) ŵ = 2.44 mm1
β = 108.527 (3)°T = 298 K
V = 1103.00 (4) Å3Plate, colourless
Z = 40.11 × 0.04 × 0.03 mm
Data collection top
XtaLAB Synergy, Single source at offset/far, HyPix
diffractometer
1328 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source1281 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.0000 pixels mm-1θmax = 28.0°, θmin = 2.6°
ω scansh = 1717
Absorption correction: numerical
(CrysAlisPro; Rigaku OD, 2021)
k = 1313
Tmin = 0.853, Tmax = 0.962l = 1111
9320 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0245P)2 + 3.4224P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
1328 reflectionsΔρmax = 0.42 e Å3
97 parametersΔρmin = 0.36 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.0000000.22315 (3)0.2500000.00786 (10)
Al0.17218 (4)0.42251 (5)0.07491 (6)0.00453 (12)
P10.29302 (4)0.62530 (5)0.32906 (5)0.00592 (11)
P20.0000000.49528 (6)0.2500000.00488 (13)
N10.5000000.3647 (3)0.2500000.0282 (7)
O10.20866 (11)0.57928 (13)0.16956 (15)0.0093 (3)
O20.26781 (11)0.77156 (13)0.34168 (16)0.0091 (3)
O30.27630 (11)0.54936 (13)0.47120 (15)0.0092 (3)
O40.07228 (11)0.39900 (13)0.19411 (16)0.0085 (3)
O50.06302 (11)0.58454 (13)0.38790 (15)0.0088 (3)
O60.09292 (11)0.10007 (14)0.17281 (17)0.0119 (3)
O70.11014 (13)0.20652 (15)0.48072 (18)0.0185 (3)
H710.1477180.2622820.5385350.028*
H720.1503180.1379820.4978360.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.00760 (16)0.00725 (17)0.00974 (17)0.0000.00416 (12)0.000
Al0.0051 (2)0.0041 (2)0.0044 (2)0.00028 (18)0.00137 (19)0.00000 (17)
P10.0066 (2)0.0055 (2)0.0065 (2)0.00124 (15)0.00321 (16)0.00082 (15)
P20.0047 (3)0.0056 (3)0.0045 (3)0.0000.0017 (2)0.000
N10.0316 (16)0.0160 (13)0.0391 (17)0.0000.0143 (14)0.000
O10.0120 (6)0.0080 (6)0.0078 (6)0.0016 (5)0.0028 (5)0.0024 (5)
O20.0106 (6)0.0065 (6)0.0110 (6)0.0018 (5)0.0044 (5)0.0021 (5)
O30.0111 (6)0.0091 (6)0.0090 (6)0.0006 (5)0.0056 (5)0.0019 (5)
O40.0093 (6)0.0073 (6)0.0114 (6)0.0005 (5)0.0069 (5)0.0001 (5)
O50.0087 (6)0.0097 (6)0.0064 (6)0.0007 (5)0.0002 (5)0.0020 (5)
O60.0085 (6)0.0111 (6)0.0183 (7)0.0002 (5)0.0075 (5)0.0026 (5)
O70.0192 (8)0.0153 (7)0.0149 (7)0.0010 (6)0.0032 (6)0.0033 (6)
Geometric parameters (Å, º) top
Ni—O62.0052 (13)Al—O41.9271 (14)
Ni—O6i2.0052 (13)P1—O6iv1.5180 (14)
Ni—O7i2.0799 (15)P1—O21.5361 (14)
Ni—O72.0799 (15)P1—O31.5371 (13)
Ni—O42.1512 (13)P1—O11.5502 (13)
Ni—O4i2.1513 (13)P2—O5i1.5253 (13)
Ni—P22.7695 (7)P2—O51.5253 (13)
Al—O2ii1.7731 (14)P2—O41.5444 (13)
Al—O11.7908 (14)P2—O4i1.5444 (13)
Al—O5iii1.7979 (14)O7—H710.8131
Al—O3iii1.8818 (14)O7—H720.8572
O6—Ni—O6i102.68 (8)O5iii—Al—O490.50 (6)
O6—Ni—O7i85.94 (6)O3iii—Al—O4176.10 (6)
O6i—Ni—O7i88.23 (6)O6iv—P1—O2113.48 (8)
O6—Ni—O788.23 (6)O6iv—P1—O3108.43 (8)
O6i—Ni—O785.94 (6)O2—P1—O3109.89 (8)
O7i—Ni—O7170.66 (9)O6iv—P1—O1111.07 (8)
O6—Ni—O494.96 (5)O2—P1—O1104.47 (8)
O6i—Ni—O4162.34 (5)O3—P1—O1109.41 (8)
O7i—Ni—O493.78 (6)O5i—P2—O5106.90 (11)
O7—Ni—O493.98 (6)O5i—P2—O4111.02 (7)
O6—Ni—O4i162.34 (5)O5—P2—O4113.39 (7)
O6i—Ni—O4i94.96 (5)O5i—P2—O4i113.39 (7)
O7i—Ni—O4i93.98 (6)O5—P2—O4i111.02 (7)
O7—Ni—O4i93.78 (6)O4—P2—O4i101.24 (10)
O4—Ni—O4i67.41 (7)O5i—P2—Ni126.55 (5)
O6—Ni—P2128.66 (4)O5—P2—Ni126.55 (5)
O6i—Ni—P2128.66 (4)O4—P2—Ni50.62 (5)
O7i—Ni—P294.67 (4)O4i—P2—Ni50.62 (5)
O7—Ni—P294.67 (4)P1—O1—Al133.93 (9)
O4—Ni—P233.70 (3)P1—O2—Aliv142.39 (9)
O4i—Ni—P233.71 (3)P1—O3—Alv128.58 (8)
O2ii—Al—O1124.32 (7)P2—O4—Al132.86 (8)
O2ii—Al—O5iii117.33 (7)P2—O4—Ni95.68 (6)
O1—Al—O5iii118.28 (7)Al—O4—Ni130.40 (7)
O2ii—Al—O3iii92.12 (6)P2—O5—Alv140.21 (9)
O1—Al—O3iii87.71 (6)P1ii—O6—Ni126.87 (8)
O5iii—Al—O3iii93.10 (6)Ni—O7—H71129.9
O2ii—Al—O487.54 (6)Ni—O7—H72115.6
O1—Al—O489.27 (6)H71—O7—H72104.1
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H71···O1v0.811.992.790 (2)167
O7—H72···O3vi0.862.112.961 (2)170
Symmetry codes: (v) x, y+1, z+1/2; (vi) x+1/2, y+1/2, z+1.
Selected bond lengths (Å) in (NH4)MAl2(PO4)3·2H2O [M = Mn (I) and Ni (II)] top
(I)(II)
PO4 tetrahedra
P1—O6iv1.5152 (19)1.5180 (14)
P1—O21.5342 (19)1.5361 (14)
P1—O31.5350 (18)1.5371 (13)
P1—O11.5493 (18)1.5502 (13)
P2—O51.5294 (18)1.5253 (13)
P2—O41.5420 (18)1.5444 (13)
AlO5 trigonal bipyramid
Al—O2ii1.7847 (19)1.7731 (14)
Al—O11.8013 (19)1.7908 (14)
Al—O5iv1.8080 (18)1.7979 (14)
Al—O3iv1.8886 (19)1.8818 (14)
Al—O41.9320 (18)1.9271 (14)
MnO6 octahedra
M—O62.0799 (19)2.0052 (13)
M—O72.1990 (20)2.0799 (15)
M—O42.2805 (18)2.1512 (13)
O4···O4i2.407 (5)2.387 (4)
O6···O72.950 (3)2.785 (2)
O6···O7i2.962 (4)2.844 (3)
O4···O63.192 (3)3.065 (2)
O4···O73.254 (3)3.089 (2)
O4···O7i3.291 (3)3.094 (3)
O6···O6i3.372 (5)3.132 (4)
Symmetry codes: (i) -x, y, -z + 1/2; (ii) -x + 1/2, y - 1/2, -z + 1/2; (iv) x, -y + 1, z - 1/2; (vi) -x + 1/2, y + 1/2, -z + 1.
 

Funding information

This work was supported financially by Grant-in-Aid for Scientific Research on Innovative Areas No. 18H05456.

References

First citationBieniok, A., Brendel, U., Lottermoser, W. & Amthauer, G. (2008). Z. Kristallogr. 223, 186–194.  Web of Science CrossRef CAS Google Scholar
First citationChippindale, A. M., Cowley, A. R. & Bond, A. D. (1998). Acta Cryst. C54, IUC9800061.  CrossRef IUCr Journals Google Scholar
First citationChippindale, A. M., Cowley, A. R. & Walton, R. I. (1996). J. Mater. Chem. 6, 611–614.  CrossRef ICSD CAS Web of Science Google Scholar
First citationChippindale, A. M., Sharma, A. V. & Hibble, S. J. (2009). Acta Cryst. E65, i38–i39.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationKiriukhina, G. V., Yakubovich, O. V., Shvanskaya, L. V., Kochetkova, E. M., Dimitrova, O. V., Volkov, A. S. & Simonov, S. V. (2020). Acta Cryst. C76, 302–310.  CrossRef ICSD IUCr Journals Google Scholar
First citationLii, K.-H. & Huang, C.-Y. (1995). J. Chem. Soc. Dalton Trans. pp. 571–574.  CrossRef ICSD Web of Science Google Scholar
First citationMedina, M. E., Iglesias, M., Gutiérrez-Puebla, E. & Monge, M. A. (2004). J. Mater. Chem. 14, 845–850.  Web of Science CrossRef CAS Google Scholar
First citationMeyer, L. M. & Haushalter, R. C. (1994). Chem. Mater. 6, 349–350.  CrossRef ICSD CAS Web of Science Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPanz, C., Polborn, K. & Behrens, P. (1998). Inorg. Chim. Acta, 269, 73–82.  Web of Science CrossRef ICSD CAS Google Scholar
First citationPauling, L. (1929). J. Am. Chem. Soc. 51, 1010–1026.  CrossRef CAS Google Scholar
First citationPauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 93. Ithaca: Cornell University Press.  Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds