research communications
Syntheses and structures of ammonium transition-metal dialuminium tris(phosphate) dihydrates (NH4)MAl4(PO4)3·2H2O (M = Mn and Ni)
aInstitute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
*Correspondence e-mail: makoto.tokuda.b7@tohoku.ac.jp
The structures of ammonium manganese(II) dialuminium tris(phosphate) dihydrate, (NH4)MnAl2(PO4)3·2H2O, and ammonium nickel(II) dialuminium tris(phosphate) dihydrate, (NH4)NiAl2(PO4)3·2H2O, were determined using single-crystal diffraction data. The structures of title compounds are isotypic to cobalt aluminophosphate, (NH4)CoAl2(PO4)3·2H2O (LMU-3) [Panz et al. (1998). Inorg. Chim. Acta, 269, 73–82], in which a three-dimensional network of vertex-sharing AlO5 and PO4 moieties delineate twelve-membered channels in which ammonium, NH4+, and transition-metal cations (M = Mn2+ and Ni2+) reside as charge compensators for the anionic [Al2(PO4)3]3– aluminophosphate framework. In both structures, the N atom of the ammonium cation, the transition-metal ion and one of the P atoms lie on crystallographic twofold axes.
Keywords: single-crystal diffraction; crystal structure; aluminophosphate.
1. Chemical context
The mixed-metal phosphate composed of tetrahedral, bipyramidal and octahedral building units with chemical formula KNiAl2(PO4)3·2H2O was firstly reported by Meyer & Haushalter (1994). Isotypic structures were found in the alumino-, ferri- and gallophosphates; (NH4)CoAl2(PO4)3·2H2O (Panz et al. 1998), KMnAl2(PO4)3·2H2O (Kiriukhina et al. 2020), CsFe3(PO4)3·2H2O (Lii & Huang 1995), (NH4)CoGa2(PO4)3·2H2O (Chippindale et al. 1996), (NH4)MnGa2(PO4)3·2H2O (Chippindale et al. 1998), (NH4)NiGa2(PO4)3·2H2O (Bieniok et al. 2008) and KNiGa2(PO4)3·2H2O (Chippindale et al. 2009).
Herein, we report the syntheses and structures of (NH4)MAl2(PO4)3·2H2O [M = Mn in (I) and Ni in (II)] using a hydrothermal technique and structural analysis by single-crystal X-ray diffraction. These compounds are isotypic to (NH4)CoAl2 (PO4)3·2H2O (LMU-3), crystallizing from a hydrothermal synthesis (Panz et al., 1998).
2. Structural commentary
The aluminophosphate framework of the title compounds with the chemical formula (NH4)MAl2(PO4)3·2H2O (M = Mn and Ni) is composed of [PO4] tetrahedra and [AlO5] trigonal-bipyramids. Fig. 1(a) shows the [Al2(PO4)3]∞ layers, which are built up from four- and eight-membered rings connected via Al—O—P bonds. These layers stack along the a-axis direction, with the [P2O4] tetrahedra (atom P2 lies on a crystallographic twofold axis) bridging between them, leading to the formation of a three-dimensional network encapsulating twelve-membered channels propagating in the [001] direction. The ammonium and transition-metal cations are respectively located in and on these channels, compensating the negative charge of the aluminophosphate framework [Fig. 1(b)].
There are two axial and three equatorial Al—O bonds within the [AlO5] trigonal bipyramids (Table 1). The axial Al—O bond distances for M = Mn are 1.8886 (19) and 1.9320 (18) Å and those for Ni are 1.8818 (14) and 1.9271 (14) Å, and the equatorial ones are in the ranges 1.7847 (19)–1.8080 (18) Å (Mn) and 1.7731 (14)–1.7979 (14) Å (Ni), thus the average axial Al—O bond distances are larger than the equatorial ones. Previous studies on [AlO5] trigonal bipyramids in LMU-3, KNiAl2(PO4)3·2H2O, KMnAl2(PO4)3·2H2O and (NH4)3Al2(PO4)3 (Panz et al., 1998; Meyer & Haushalter 1994; Kiriukhina et al., 2020; Medina et al. 2004) showed similar geometrical features with longer axial Al—O bonds distances.
The transition-metal cations, which lie on crystallographic twofold axes, are octahedrally coordinated by two oxygen atoms of water molecules and four oxygen atoms of the framework (Fig. 2). The mean M—O bond distances for the Mn and Ni compounds are 2.186 Å and 2.079 Å, respectively, which are consistent with the ionic radii of VIMn2+ (0.83 Å) and VINi2+ (0.69 Å; Shannon 1976). The MO6 octahedron shares an edge O4⋯O4 with the adjacent [P2O4] tetrahedron. The length of the shared-edge O4⋯O4 is the shortest among the twelve edges of octahedrally coordinated transition-metal cations in accordance with the P5+–M2+ cation repulsion (Pauling, 1929, 1960).
The positions of the hydrogen atoms in the water molecule, H71 and H72, could be determined by analysing the residual peaks in the difference-Fourier maps. The oxygen atom O7 of the water molecule is coordinated to the transition-metal ions, and hydrogen atoms of H71 and H72 form O—H⋯O hydrogen bonds with the oxygen atoms O1 and O3 of the [Al2(PO4)3]∞ layer, respectively (Tables 2 and 3). Thus, the H71⋯O1 and H72⋯O3 hydrogen bonds contribute to the accumulation of the layers.
|
|
As for the hydrogen-bonding interactions of the ammonium cation (N atom 4)MAl2(PO4)3·2H2O (M = Mn and Ni), respectively. The longer N1⋯O5 distance and the large isotropic atomic displacement parameters, Uiso, of the N1 atom clearly indicate the relatively weaker hydrogen bonding for the presumed N1—H⋯O5 cases. This structural feature did not allow us to definitively located the positions of hydrogen atoms within the N1—H⋯O5 cases. Nevertheless, some of the hydrogen-atom positions around the ammonium cations could be located in the difference-Fourier maps and coordinates are (0.5382, 0.3998, 0.2391) and (0.5357, 0.4204, 0.2296) for (NH4)MAl2(PO4)3·2H2O (M = Mn and Ni), respectively. These possible hydrogen-atom positions correspond to those for the N1—H⋯O6 cases. Weak hydrogen bonds between NH4+ and the framework suggests that NH4+ and a monovalent cation (e.g., alkali cation or H3O+) are exchangeable akin to zeolitic cations in this unique framework structure (Meyer & Haushalter 1994; Kiriukhina et al., 2020). The chemical formula for the group of compounds reported in this study can be denoted by A+M2+Al2(PO4)3·2H2O (A = monovalent cation, M = divalent transition-metal cation).
2) within the title compounds, not all the H atoms could be definitively located from difference maps but some structural information could be obtained from the observed distances N1⋯O5 = 3.085 (5) and 3.103 (4) Å and N1⋯O6 = 2.906 (4) and 2.862 (3) Å for (NH3. Synthesis and crystallization
Single crystals of (NH4)MAl2(PO4)3·2H2O (M = Mn and Ni) were obtained as by-products of the laumontite-type zeolite imidazole-templated hydrothermal technique. The precursor solution was prepared by dissolving the chemical agents of imidazole, aluminium-isopropoxide and H3PO4 (85% solution): the transition-metal component (Ni or Mn) was added to the solution. For the insertion of nickel in the system, (CH3COO)2Ni·4H2O was used and for corresponding manganese analogue (CH3COO)2Mn·4H2O was added to the as-prepared precursor solution. In each case, the resultant gel mixture was then sealed in a Teflon-lined tube and heated at 453 K for three days.
A few colorless, transparent crystals of (NH4)MnAl2(PO4)3·2H2O with a plate-like form were separated from the microcrystalline material together with the laumontite-type aluminophosphate, Mn-hureaulite Mn5[PO3(OH)]2(PO4)2·4H2O. In the case of Ni, the product comprises NH4NiAl2(PO4)3·2H2O, which forms colorless, transparent plate-like crystals and organic compounds.
The chemical analyses of the synthesized products were performed using energy-dispersive 4+, a decomposition product of imidazole, was incorporated within the framework as a charge-compensating cation.
(EDS). The EDS profile clearly showed the presence of nitrogen. This supports the idea that NH4. details
The crystal data, data collection methods, and structure . The positions of the hydrogen atoms bonded to O7 were estimated using the residual peaks in the difference Fourier maps and refined using a riding model. The Uiso parameters for hydrogen atoms were fixed at 1.5 × the Uiso of O7.
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989023000555/hb8032sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023000555/hb8032Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989023000555/hb8032IIsup3.hkl
For both structures, data collection: CrysAlis PRO 1.171.40.43a (Rigaku OD, 2021); cell
CrysAlis PRO 1.171.40.43a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.40.43a (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b).(NH4)MnAl2(PO4)3·2H2O | F(000) = 956.0 |
Mr = 447.88 | Dx = 2.618 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.3577 (7) Å | Cell parameters from 3620 reflections |
b = 10.2279 (5) Å | θ = 3.9–27.6° |
c = 8.7922 (5) Å | µ = 1.85 mm−1 |
β = 108.885 (6)° | T = 298 K |
V = 1136.53 (11) Å3 | Plate, colourless |
Z = 4 | 0.05 × 0.04 × 0.02 mm |
XtaLAB Synergy, Single source at offset/far, HyPix diffractometer | 1316 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source | 1178 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.027 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 27.6°, θmin = 3.2° |
ω scans | h = −17→17 |
Absorption correction: numerical (CrysAlisPro; Rigaku OD, 2021) | k = −13→11 |
Tmin = 0.938, Tmax = 0.968 | l = −11→11 |
5256 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.0358P)2 + 3.6714P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
1316 reflections | Δρmax = 0.90 e Å−3 |
97 parameters | Δρmin = −0.51 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Mn | 0.000000 | 0.21386 (5) | 0.250000 | 0.01325 (16) | |
Al | 0.16968 (5) | 0.42298 (7) | 0.07597 (8) | 0.00506 (17) | |
P1 | 0.29135 (5) | 0.62403 (6) | 0.33188 (7) | 0.00855 (16) | |
P2 | 0.000000 | 0.49748 (8) | 0.250000 | 0.00678 (19) | |
N1 | 0.500000 | 0.3634 (4) | 0.250000 | 0.0357 (10) | |
O1 | 0.20881 (14) | 0.57892 (18) | 0.1720 (2) | 0.0129 (4) | |
O2 | 0.27155 (14) | 0.77104 (18) | 0.3420 (2) | 0.0130 (4) | |
O3 | 0.27207 (14) | 0.55150 (18) | 0.4727 (2) | 0.0132 (4) | |
O4 | 0.07105 (14) | 0.40324 (18) | 0.1938 (2) | 0.0118 (4) | |
O5 | 0.06242 (14) | 0.58669 (18) | 0.3876 (2) | 0.0116 (4) | |
O6 | 0.09702 (14) | 0.09481 (19) | 0.1661 (2) | 0.0179 (4) | |
O7 | 0.11844 (17) | 0.1969 (2) | 0.4904 (3) | 0.0262 (5) | |
H71 | 0.148203 | 0.266954 | 0.546232 | 0.039* | |
H72 | 0.160636 | 0.130057 | 0.499139 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn | 0.0131 (3) | 0.0113 (3) | 0.0168 (3) | 0.000 | 0.0069 (2) | 0.000 |
Al | 0.0059 (3) | 0.0047 (3) | 0.0043 (3) | 0.0007 (2) | 0.0013 (3) | −0.0007 (2) |
P1 | 0.0090 (3) | 0.0086 (3) | 0.0088 (3) | −0.0016 (2) | 0.0039 (2) | −0.0006 (2) |
P2 | 0.0071 (4) | 0.0071 (4) | 0.0063 (4) | 0.000 | 0.0024 (3) | 0.000 |
N1 | 0.041 (2) | 0.0174 (19) | 0.048 (3) | 0.000 | 0.013 (2) | 0.000 |
O1 | 0.0152 (9) | 0.0132 (9) | 0.0101 (8) | −0.0029 (7) | 0.0039 (7) | −0.0037 (7) |
O2 | 0.0168 (9) | 0.0095 (9) | 0.0137 (9) | −0.0030 (7) | 0.0063 (7) | −0.0024 (7) |
O3 | 0.0165 (9) | 0.0124 (9) | 0.0126 (9) | 0.0010 (7) | 0.0071 (7) | 0.0029 (7) |
O4 | 0.0125 (9) | 0.0099 (8) | 0.0153 (9) | 0.0006 (7) | 0.0078 (7) | 0.0000 (7) |
O5 | 0.0114 (8) | 0.0123 (9) | 0.0095 (8) | −0.0013 (7) | 0.0010 (7) | −0.0036 (7) |
O6 | 0.0107 (9) | 0.0185 (10) | 0.0265 (10) | −0.0019 (7) | 0.0089 (8) | −0.0045 (8) |
O7 | 0.0275 (12) | 0.0201 (11) | 0.0223 (10) | 0.0016 (9) | −0.0040 (9) | −0.0044 (8) |
Mn—O6 | 2.0799 (19) | Al—O4 | 1.9320 (18) |
Mn—O6i | 2.0799 (19) | P1—O6iv | 1.5152 (19) |
Mn—O7 | 2.199 (2) | P1—O2 | 1.5342 (19) |
Mn—O7i | 2.199 (2) | P1—O3 | 1.5350 (18) |
Mn—O4 | 2.2805 (18) | P1—O1 | 1.5493 (18) |
Mn—O4i | 2.2805 (18) | P2—O5 | 1.5294 (18) |
Mn—P2 | 2.9008 (10) | P2—O5i | 1.5294 (18) |
Al—O2ii | 1.7847 (19) | P2—O4 | 1.5420 (18) |
Al—O1 | 1.8013 (19) | P2—O4i | 1.5420 (18) |
Al—O5iii | 1.8080 (18) | O7—H71 | 0.8867 |
Al—O3iii | 1.8886 (19) | O7—H72 | 0.8736 |
O6—Mn—O6i | 108.33 (11) | O5iii—Al—O4 | 90.54 (8) |
O6—Mn—O7 | 87.58 (8) | O3iii—Al—O4 | 176.17 (8) |
O6i—Mn—O7 | 87.13 (8) | O6iv—P1—O2 | 112.34 (11) |
O6—Mn—O7i | 87.13 (8) | O6iv—P1—O3 | 108.44 (11) |
O6i—Mn—O7i | 87.58 (8) | O2—P1—O3 | 110.49 (10) |
O7—Mn—O7i | 170.96 (12) | O6iv—P1—O1 | 111.15 (11) |
O6—Mn—O4 | 93.99 (7) | O2—P1—O1 | 105.01 (10) |
O6i—Mn—O4 | 157.67 (7) | O3—P1—O1 | 109.38 (10) |
O7—Mn—O4 | 93.15 (7) | O5—P2—O5i | 106.74 (14) |
O7i—Mn—O4 | 94.53 (7) | O5—P2—O4 | 113.09 (9) |
O6—Mn—O4i | 157.67 (7) | O5i—P2—O4 | 110.71 (9) |
O6i—Mn—O4i | 93.99 (7) | O5—P2—O4i | 110.71 (9) |
O7—Mn—O4i | 94.53 (7) | O5i—P2—O4i | 113.09 (9) |
O7i—Mn—O4i | 93.15 (7) | O4—P2—O4i | 102.63 (14) |
O4—Mn—O4i | 63.72 (9) | O5—P2—Mn | 126.63 (7) |
O6—Mn—P2 | 125.84 (6) | O5i—P2—Mn | 126.63 (7) |
O6i—Mn—P2 | 125.84 (6) | O4—P2—Mn | 51.31 (7) |
O7—Mn—P2 | 94.52 (6) | O4i—P2—Mn | 51.31 (7) |
O7i—Mn—P2 | 94.52 (6) | P1—O1—Al | 134.62 (12) |
O4—Mn—P2 | 31.86 (4) | P1—O2—Aliv | 144.61 (13) |
O4i—Mn—P2 | 31.86 (4) | P1—O3—Alv | 131.12 (11) |
O2ii—Al—O1 | 123.95 (9) | P2—O4—Al | 134.74 (11) |
O2ii—Al—O5iii | 115.92 (9) | P2—O4—Mn | 96.83 (9) |
O1—Al—O5iii | 120.10 (9) | Al—O4—Mn | 127.51 (9) |
O2ii—Al—O3iii | 91.29 (8) | P2—O5—Alv | 139.42 (12) |
O1—Al—O3iii | 87.58 (8) | P1ii—O6—Mn | 127.16 (12) |
O5iii—Al—O3iii | 92.86 (8) | Mn—O7—H71 | 121.5 |
O2ii—Al—O4 | 88.81 (8) | Mn—O7—H72 | 112.9 |
O1—Al—O4 | 89.19 (8) | H71—O7—H72 | 115.0 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, −y+1, z−1/2; (iv) −x+1/2, y+1/2, −z+1/2; (v) x, −y+1, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H71···O1v | 0.89 | 1.95 | 2.831 (3) | 178 |
O7—H72···O3vi | 0.87 | 2.04 | 2.897 (3) | 166 |
Symmetry codes: (v) x, −y+1, z+1/2; (vi) −x+1/2, −y+1/2, −z+1. |
(NH4)NiAl2(PO4)3·2H2O | F(000) = 904 |
Mr = 451.65 | Dx = 2.720 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.0711 (3) Å | Cell parameters from 14220 reflections |
b = 10.1772 (2) Å | θ = 2.6–44.8° |
c = 8.74476 (19) Å | µ = 2.44 mm−1 |
β = 108.527 (3)° | T = 298 K |
V = 1103.00 (4) Å3 | Plate, colourless |
Z = 4 | 0.11 × 0.04 × 0.03 mm |
XtaLAB Synergy, Single source at offset/far, HyPix diffractometer | 1328 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source | 1281 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.021 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 28.0°, θmin = 2.6° |
ω scans | h = −17→17 |
Absorption correction: numerical (CrysAlisPro; Rigaku OD, 2021) | k = −13→13 |
Tmin = 0.853, Tmax = 0.962 | l = −11→11 |
9320 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.018 | H-atom parameters constrained |
wR(F2) = 0.056 | w = 1/[σ2(Fo2) + (0.0245P)2 + 3.4224P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max = 0.001 |
1328 reflections | Δρmax = 0.42 e Å−3 |
97 parameters | Δρmin = −0.36 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni | 0.000000 | 0.22315 (3) | 0.250000 | 0.00786 (10) | |
Al | 0.17218 (4) | 0.42251 (5) | 0.07491 (6) | 0.00453 (12) | |
P1 | 0.29302 (4) | 0.62530 (5) | 0.32906 (5) | 0.00592 (11) | |
P2 | 0.000000 | 0.49528 (6) | 0.250000 | 0.00488 (13) | |
N1 | 0.500000 | 0.3647 (3) | 0.250000 | 0.0282 (7) | |
O1 | 0.20866 (11) | 0.57928 (13) | 0.16956 (15) | 0.0093 (3) | |
O2 | 0.26781 (11) | 0.77156 (13) | 0.34168 (16) | 0.0091 (3) | |
O3 | 0.27630 (11) | 0.54936 (13) | 0.47120 (15) | 0.0092 (3) | |
O4 | 0.07228 (11) | 0.39900 (13) | 0.19411 (16) | 0.0085 (3) | |
O5 | 0.06302 (11) | 0.58454 (13) | 0.38790 (15) | 0.0088 (3) | |
O6 | 0.09292 (11) | 0.10007 (14) | 0.17281 (17) | 0.0119 (3) | |
O7 | 0.11014 (13) | 0.20652 (15) | 0.48072 (18) | 0.0185 (3) | |
H71 | 0.147718 | 0.262282 | 0.538535 | 0.028* | |
H72 | 0.150318 | 0.137982 | 0.497836 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni | 0.00760 (16) | 0.00725 (17) | 0.00974 (17) | 0.000 | 0.00416 (12) | 0.000 |
Al | 0.0051 (2) | 0.0041 (2) | 0.0044 (2) | 0.00028 (18) | 0.00137 (19) | 0.00000 (17) |
P1 | 0.0066 (2) | 0.0055 (2) | 0.0065 (2) | −0.00124 (15) | 0.00321 (16) | −0.00082 (15) |
P2 | 0.0047 (3) | 0.0056 (3) | 0.0045 (3) | 0.000 | 0.0017 (2) | 0.000 |
N1 | 0.0316 (16) | 0.0160 (13) | 0.0391 (17) | 0.000 | 0.0143 (14) | 0.000 |
O1 | 0.0120 (6) | 0.0080 (6) | 0.0078 (6) | −0.0016 (5) | 0.0028 (5) | −0.0024 (5) |
O2 | 0.0106 (6) | 0.0065 (6) | 0.0110 (6) | −0.0018 (5) | 0.0044 (5) | −0.0021 (5) |
O3 | 0.0111 (6) | 0.0091 (6) | 0.0090 (6) | 0.0006 (5) | 0.0056 (5) | 0.0019 (5) |
O4 | 0.0093 (6) | 0.0073 (6) | 0.0114 (6) | 0.0005 (5) | 0.0069 (5) | −0.0001 (5) |
O5 | 0.0087 (6) | 0.0097 (6) | 0.0064 (6) | −0.0007 (5) | 0.0002 (5) | −0.0020 (5) |
O6 | 0.0085 (6) | 0.0111 (6) | 0.0183 (7) | −0.0002 (5) | 0.0075 (5) | −0.0026 (5) |
O7 | 0.0192 (8) | 0.0153 (7) | 0.0149 (7) | 0.0010 (6) | −0.0032 (6) | −0.0033 (6) |
Ni—O6 | 2.0052 (13) | Al—O4 | 1.9271 (14) |
Ni—O6i | 2.0052 (13) | P1—O6iv | 1.5180 (14) |
Ni—O7i | 2.0799 (15) | P1—O2 | 1.5361 (14) |
Ni—O7 | 2.0799 (15) | P1—O3 | 1.5371 (13) |
Ni—O4 | 2.1512 (13) | P1—O1 | 1.5502 (13) |
Ni—O4i | 2.1513 (13) | P2—O5i | 1.5253 (13) |
Ni—P2 | 2.7695 (7) | P2—O5 | 1.5253 (13) |
Al—O2ii | 1.7731 (14) | P2—O4 | 1.5444 (13) |
Al—O1 | 1.7908 (14) | P2—O4i | 1.5444 (13) |
Al—O5iii | 1.7979 (14) | O7—H71 | 0.8131 |
Al—O3iii | 1.8818 (14) | O7—H72 | 0.8572 |
O6—Ni—O6i | 102.68 (8) | O5iii—Al—O4 | 90.50 (6) |
O6—Ni—O7i | 85.94 (6) | O3iii—Al—O4 | 176.10 (6) |
O6i—Ni—O7i | 88.23 (6) | O6iv—P1—O2 | 113.48 (8) |
O6—Ni—O7 | 88.23 (6) | O6iv—P1—O3 | 108.43 (8) |
O6i—Ni—O7 | 85.94 (6) | O2—P1—O3 | 109.89 (8) |
O7i—Ni—O7 | 170.66 (9) | O6iv—P1—O1 | 111.07 (8) |
O6—Ni—O4 | 94.96 (5) | O2—P1—O1 | 104.47 (8) |
O6i—Ni—O4 | 162.34 (5) | O3—P1—O1 | 109.41 (8) |
O7i—Ni—O4 | 93.78 (6) | O5i—P2—O5 | 106.90 (11) |
O7—Ni—O4 | 93.98 (6) | O5i—P2—O4 | 111.02 (7) |
O6—Ni—O4i | 162.34 (5) | O5—P2—O4 | 113.39 (7) |
O6i—Ni—O4i | 94.96 (5) | O5i—P2—O4i | 113.39 (7) |
O7i—Ni—O4i | 93.98 (6) | O5—P2—O4i | 111.02 (7) |
O7—Ni—O4i | 93.78 (6) | O4—P2—O4i | 101.24 (10) |
O4—Ni—O4i | 67.41 (7) | O5i—P2—Ni | 126.55 (5) |
O6—Ni—P2 | 128.66 (4) | O5—P2—Ni | 126.55 (5) |
O6i—Ni—P2 | 128.66 (4) | O4—P2—Ni | 50.62 (5) |
O7i—Ni—P2 | 94.67 (4) | O4i—P2—Ni | 50.62 (5) |
O7—Ni—P2 | 94.67 (4) | P1—O1—Al | 133.93 (9) |
O4—Ni—P2 | 33.70 (3) | P1—O2—Aliv | 142.39 (9) |
O4i—Ni—P2 | 33.71 (3) | P1—O3—Alv | 128.58 (8) |
O2ii—Al—O1 | 124.32 (7) | P2—O4—Al | 132.86 (8) |
O2ii—Al—O5iii | 117.33 (7) | P2—O4—Ni | 95.68 (6) |
O1—Al—O5iii | 118.28 (7) | Al—O4—Ni | 130.40 (7) |
O2ii—Al—O3iii | 92.12 (6) | P2—O5—Alv | 140.21 (9) |
O1—Al—O3iii | 87.71 (6) | P1ii—O6—Ni | 126.87 (8) |
O5iii—Al—O3iii | 93.10 (6) | Ni—O7—H71 | 129.9 |
O2ii—Al—O4 | 87.54 (6) | Ni—O7—H72 | 115.6 |
O1—Al—O4 | 89.27 (6) | H71—O7—H72 | 104.1 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, −y+1, z−1/2; (iv) −x+1/2, y+1/2, −z+1/2; (v) x, −y+1, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H71···O1v | 0.81 | 1.99 | 2.790 (2) | 167 |
O7—H72···O3vi | 0.86 | 2.11 | 2.961 (2) | 170 |
Symmetry codes: (v) x, −y+1, z+1/2; (vi) −x+1/2, −y+1/2, −z+1. |
(I) | (II) | |
PO4 tetrahedra | ||
P1—O6iv | 1.5152 (19) | 1.5180 (14) |
P1—O2 | 1.5342 (19) | 1.5361 (14) |
P1—O3 | 1.5350 (18) | 1.5371 (13) |
P1—O1 | 1.5493 (18) | 1.5502 (13) |
P2—O5 | 1.5294 (18) | 1.5253 (13) |
P2—O4 | 1.5420 (18) | 1.5444 (13) |
AlO5 trigonal bipyramid | ||
Al—O2ii | 1.7847 (19) | 1.7731 (14) |
Al—O1 | 1.8013 (19) | 1.7908 (14) |
Al—O5iv | 1.8080 (18) | 1.7979 (14) |
Al—O3iv | 1.8886 (19) | 1.8818 (14) |
Al—O4 | 1.9320 (18) | 1.9271 (14) |
MnO6 octahedra | ||
M—O6 | 2.0799 (19) | 2.0052 (13) |
M—O7 | 2.1990 (20) | 2.0799 (15) |
M—O4 | 2.2805 (18) | 2.1512 (13) |
O4···O4i | 2.407 (5) | 2.387 (4) |
O6···O7 | 2.950 (3) | 2.785 (2) |
O6···O7i | 2.962 (4) | 2.844 (3) |
O4···O6 | 3.192 (3) | 3.065 (2) |
O4···O7 | 3.254 (3) | 3.089 (2) |
O4···O7i | 3.291 (3) | 3.094 (3) |
O6···O6i | 3.372 (5) | 3.132 (4) |
Symmetry codes: (i) -x, y, -z + 1/2; (ii) -x + 1/2, y - 1/2, -z + 1/2; (iv) x, -y + 1, z - 1/2; (vi) -x + 1/2, y + 1/2, -z + 1. |
Funding information
This work was supported financially by Grant-in-Aid for Scientific Research on Innovative Areas No. 18H05456.
References
Bieniok, A., Brendel, U., Lottermoser, W. & Amthauer, G. (2008). Z. Kristallogr. 223, 186–194. Web of Science CrossRef CAS Google Scholar
Chippindale, A. M., Cowley, A. R. & Bond, A. D. (1998). Acta Cryst. C54, IUC9800061. CrossRef IUCr Journals Google Scholar
Chippindale, A. M., Cowley, A. R. & Walton, R. I. (1996). J. Mater. Chem. 6, 611–614. CrossRef ICSD CAS Web of Science Google Scholar
Chippindale, A. M., Sharma, A. V. & Hibble, S. J. (2009). Acta Cryst. E65, i38–i39. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Kiriukhina, G. V., Yakubovich, O. V., Shvanskaya, L. V., Kochetkova, E. M., Dimitrova, O. V., Volkov, A. S. & Simonov, S. V. (2020). Acta Cryst. C76, 302–310. CrossRef ICSD IUCr Journals Google Scholar
Lii, K.-H. & Huang, C.-Y. (1995). J. Chem. Soc. Dalton Trans. pp. 571–574. CrossRef ICSD Web of Science Google Scholar
Medina, M. E., Iglesias, M., Gutiérrez-Puebla, E. & Monge, M. A. (2004). J. Mater. Chem. 14, 845–850. Web of Science CrossRef CAS Google Scholar
Meyer, L. M. & Haushalter, R. C. (1994). Chem. Mater. 6, 349–350. CrossRef ICSD CAS Web of Science Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Panz, C., Polborn, K. & Behrens, P. (1998). Inorg. Chim. Acta, 269, 73–82. Web of Science CrossRef ICSD CAS Google Scholar
Pauling, L. (1929). J. Am. Chem. Soc. 51, 1010–1026. CrossRef CAS Google Scholar
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 93. Ithaca: Cornell University Press. Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.