research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, characterization, and crystal structures of N,N′-bis­­(2-di­alkyl­amino­phen­yl)thio­ureas

crossmark logo

aDepartment of Chemical Education and Research Institute of Natural Sciences, Gyeongsang National University, Gyeongsangnam-do 52828, Republic of Korea
*Correspondence e-mail: klee1@gnu.ac.kr

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 2 November 2022; accepted 29 December 2022; online 6 January 2023)

N,N′-Bis[2-(di­methyl­amino)­phen­yl]thio­urea, C17H22N4S (1), and N,N′-bis­[2-(di­ethyl­amino)­phen­yl]thio­urea, C21H30N4S (2), were prepared by the treatment of 1,1′-thio­carbonyl­diimidazole and 2 equivalents of 2-amino-N,N′-di­alkyl­aniline. Both compounds exhibit intra­molecular hydrogen bonds between the N—H(thio­urea) and NR2 (R = Me, Et) groups. The other N—H bonds face the sulfur atoms of S=C bonds in an adjacent mol­ecule, which forms an inter­molecular inter­action in the packed structure. The structural details match the spectroscopic data acquired from NMR and IR spectroscopy.

1. Chemical context

Thio­ureas and their derivatives are found in numerous organic and biological mol­ecules (Schroeder, 1955[Schroeder, D. C. (1955). Chem. Rev. 55, 181-228.]; Kožurková et al., 2017[Kožurková, M., Sabolová, D. & Kristian, P. (2017). J. Appl. Toxicol. 37, 1132-1139.]; Khan et al., 2021[Khan, E., Khan, S., Gul, Z. & Muhammad, M. (2021). Crit. Rev. Anal. Chem. 51, 812-834.]; Ronchetti et al., 2021[Ronchetti, R., Moroni, G., Carotti, A., Gioiello, A. & Camaioni, E. (2021). RSC Med. Chem. 12, 1046-1064.]). Recent reviews pointed out that thio­ureas have been used in various research areas, such as catalysis (Doyle & Jacobsen, 2007[Doyle, A. G. & Jacobsen, E. N. (2007). Chem. Rev. 107, 5713-5743.]; Zhang & Schreiner, 2009[Zhang, Z. & Schreiner, P. R. (2009). Chem. Soc. Rev. 38, 1187-1198.]; Sun et al., 2017[Sun, Y.-L., Wei, Y. & Shi, M. (2017). ChemCatChem, 9, 718-727.]; Parvin et al., 2020[Parvin, T., Yadav, R. & Choudhury, L. H. (2020). Org. Biomol. Chem. 18, 5513-5532.]), chemical sensing (Li et al., 2010[Li, A.-F., Wang, J.-H., Wang, F. & Jiang, Y.-B. (2010). Chem. Soc. Rev. 39, 3729-3745.]; Khan et al., 2021[Khan, E., Khan, S., Gul, Z. & Muhammad, M. (2021). Crit. Rev. Anal. Chem. 51, 812-834.]; Al-Saidi & Khan, 2022[Al-Saidi, H. M. & Khan, S. (2022). Crit. Rev. Anal. Chem. pp. 1-17.]), as ligands (Saeed et al., 2014[Saeed, A., Flörke, U. & Erben, M. F. (2014). J. Sulfur Chem. 35, 318-355.]; Zahra et al., 2022[Zahra, U., Saeed, A., Abdul Fattah, T., Flörke, U. & Erben, M. F. (2022). RSC Adv. 12, 12710-12745.]), etc. For example, strong hydrogen bonding in some thio­urea compounds allows them to be using as organocatalysts in different chemical transformations. Furthermore, thio­ureas with chiral substituents are easily available and are used in asymmetric catalysis. Finally, thio­ureas substituted with functionalized aromatic rings can act as chemosensors.

Aryl-substituted thio­urea compounds with amine groups in the ortho positions are expected to have versatile applications due to the unique hydrogen-bonding inter­actions, but so far, no such compounds have been reported. Diaryl thio­ureas with di­methyl­amine functional groups in the meta or para positions of the aryl substituents have been reported, but their crystal structures are unknown.

[Scheme 1]

This report describes the preparation and crystal structures of N,N′-bis­(2-di­methyl­amino­phen­yl)thio­urea (1) and N,N′-bis­(2-di­ethyl­amino­phen­yl)thio­urea (2). Compounds 1 and 2 were prepared by treating 1,1′-thio­carbonyl­diimidazole and two equivalents of 2-amino-N,N′-di­alkyl­aniline in CH2Cl2. Methyl and NH resonances for 1 were observed at δ 2.64 and 8.82 ppm in the 1H NMR spectrum, whereas singlets at δ 43.99 and 178.66 ppm in the 13C NMR spectrum match to methyl and C=S resonances (Figs. S1 and S2 in the supporting information). Ethyl and NH resonances for 2 were found at δ 0.89, 2.89, and 9.14 ppm in the 1H NMR spectrum, while resonances at δ 12.47, 48.07, and 176.68 ppm in 13C NMR spectrum correspond to the ethyl and C=S groups (Figs. S3 and S4). In the IR spectra, the NH stretches were observed at 3165 and 3226 cm−1 for 1 and 2, respectively (Figs. S5 and S6). High-resolution ESI–MS data confirmed the formation of 1 and 2 with the desired isotopic patterns (Figs. S7 and S8).

2. Structural commentary

One of the most noticeable features in both 1 and 2 is the intra­molecular hydrogen bonding between one of the thio­urea NH moieties and the NR2 group (R = Me and Et) in the ortho position of the aromatic rings (Figs. 1[link] and 2[link]). The N2—H2 bond distance of 0.896 (15) Å in 1 is slightly shorter (within error ranges) than the N2—H2 bond distance of 0.905 (15) Å in 2, whereas the N3⋯H2 distance of 1.957 (17) Å for 1 is more elongated than the N3⋯H2 distance of 1.864 (15) Å for 2. Bond distance analysis suggests that the hydrogen bonding inter­action is stronger in 2, due to the increased basicity of amine with longer chains. The increased hydrogen bonding was also observed in the solution, as demonstrated with the deshielded NH resonance of 2 at δ 9.14 ppm compared to that for 1 at δ 8.82 ppm. It is worth noting that, contrary to what is expected, there are no hydrogen bonds between N4 and H2 in both 1 and 2 even as the corresponding N⋯H distances are 2.707 (12) and 2.641 (14) Å for 1 and 2, respectively.

[Figure 1]
Figure 1
Mol­ecular structure of 1 with displacement ellipsoids at the 50% probability level. Hydrogen atoms attached to carbon were omitted from the figure.
[Figure 2]
Figure 2
Mol­ecular structure of 2 with displacement ellipsoids at the 50% probability level. Hydrogen atoms attached to carbon were omitted from the figure.

Slightly asymmetric C1—N1 and C1—N2 bond distances are observed for the trigonal planar thio­urea backbones, presumably due to the intra­molecular hydrogen-bonding inter­actions. The C1—S1 bond distance of 1.6879 (11) Å in 1 is between the values for a double and a single bond, while the sum of bond angles around the thio­urea carbon (C1) is 360.0°. In the thio­urea backbone, the C1—N2 bond [1.3396 (14) Å] that is involved in intra­molecular hydrogen bonding is slightly shorter than the C1—N1 bond [1.3621 (15) Å] without the intra­molecular hydrogen bonding. The other C—N bond distances, such as C1—N1, C3—N3, C8—N2, and C9—N4 range from 1.41 to 1.43 Å. Similar bond distances and angles were observed for 2. The thio­urea backbone contains the C1—S1 bond distance of 1.6921 (11) Å, and C1—N2 and C1—N1 bond distances of 1.3415 (14) and 1.3652 (14) Å, respectively, while the sum of the bond angles around C1 is 360.0°. Finally, the C1—N1, C3—N3, C8—N2, and C9—N4 bond distances range from 1.42 to 1.43 Å. Overall, a similar C1—S1 bond distance is observed within a variation of 0.01 Å between 1 and 2, while both structures exhibit a trigonal–planar geometry around the central carbon (C1). Furthermore, the C1—N2 bonds involved in intra­molecular hydrogen bonds are 0.02 Å shorter than the C1—N1 bonds in 1 and 2 that do not participate in the hydrogen bonding.

3. Supra­molecular features

Supra­molecular features for 1 and 2 were investigated using Hirshfeld surface analysis with CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Hirshfeld surfaces for 1 and 2 were mapped over dnorm in the range of −0.27 to 1.29 and −0.18 to 1.48 a.u. for 1 and 2, respectively (Figs. 3[link] and 4[link]). The most intense red spots on the surface indicate the inter­molecular H1⋯S1 inter­actions (Tables 1[link] and 2[link]) with the graph-set descriptor R22(8) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The corresponding inter­molecular distances of H1⋯S1 were measured to be 2.506 (14) and 2.677 (16) Å for 1 and 2, respectively. In addition, the acquired N—H stretch from IR spectra red shifted for 1 (3165 cm−1) when compared to that of 2 (3226 cm−1). This matches the elongated N1—H1 bond distance of 0.905 (15) Å and shorter H1⋯S1 inter­action of 2.506 (14) Å for 1 when compared to those for 2 at 0.851 (16) and 2.677 (16) Å.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.905 (15) 2.506 (14) 3.3814 (10) 163.4 (14)
N2—H2⋯N3 0.896 (15) 1.957 (17) 2.8018 (17) 156.8 (13)
Symmetry code: (i) [-x, -y+1, -z+1].

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.851 (16) 2.677 (16) 3.5017 (10) 163.6 (13)
N2—H2⋯N3 0.905 (15) 1.864 (15) 2.7366 (14) 161.4 (13)
Symmetry code: (i) [-x, -y+1, -z+1].
[Figure 3]
Figure 3
(a) Hirshfeld surface mapped over dnorm in the range −0.27 to 1.29. (b) Partial packing plot of 1.
[Figure 4]
Figure 4
(a) Hirshfeld surface mapped over dnorm in the range −0.18 to 1.48. (b) Partial packing plot of 2.

Some weaker inter­actions were observed as faint red spots on the Hirshfeld surface. The spots in 1 correspond to the short contacts of C15—H15A⋯H15A—C15 and C5—H5⋯C9—C10 (Fig. 3[link]). In addition, the spots in 2 correspond to C20—H20A⋯C15—H15B, C4—H4⋯C11, and C20—H20B⋯C5—C6 inter­actions (Fig. 4[link]). No appreciable ππ inter­actions or hydrogen bonding associated with N4 atoms are observed for either 1 or 2. The Hirshfeld surface of 1 arises from H⋯H (64.8%), C⋯H/H⋯C (22.9%), and S⋯H/H⋯S (12.1%) contacts, whereas H⋯H (71.3%), C⋯H/H⋯C (14.4%), and S⋯H/H⋯S (11.4%) contacts contribute to the surface of 2. The minor contributions include N⋯H/H⋯N (0.2%) for 1 and C⋯C (2.0%) and N⋯H/H⋯N (1.0%) for 2.

4. Database survey

A search in the Cambridge Structural Database for structures 1 and 2 did not match any reported structures, including derivative searches. Similar compounds with di­methyl­amine at the meta or para position have been prepared, but the structures are unknown.

5. Synthesis and crystallization

Compounds 1 and 2 were prepared by treating 1,1′-thio­carbonyl­diimidazole with two equivalents of 2-amino-N,N′-di­alkyl­aniline in CH2Cl2 (Fig. 5[link]) following the reported procedures (Ren et al., 2011[Ren, P., Vechorkin, O., Csok, Z., Salihu, I., Scopelliti, R. & Hu, X. (2011). Dalton Trans. 40, 8906-8911.]; Thapa et al., 2020[Thapa, P., Palacios, P. M., Tran, T., Pierce, B. S. & Foss, F. W. (2020). J. Org. Chem. 85, 1991-2009.]). Detailed procedures are described below. Single crystals were grown by diffusion of pentane vapor into a solution of 1 in THF or 2 in Et2O, respectively. The relative intensities of IR bands were described as vw, w, m, s, and vs, corresponding to very weak, weak, medium, strong, and very strong, respectively.

[Figure 5]
Figure 5
Preparation of N,N′-bis­(2-di­methyl­amino­phen­yl)thio­urea (1) and N,N′-bis­(2-di­ethyl­amino­phen­yl)thio­urea (2).

N,N'-Bis(2-di­methyl­amino­phen­yl)thio­urea (1). To a stirred solution of 1,1′-thio­carbonyl­diimidazole (0.38 g, 2.2 mmol) in CH2Cl2 (5 mL) was added a solution of 2-amino-N,N′-di­methyl­aniline (0.58 g, 4.3 mmol) in CH2Cl2 (5 mL). The resulting solution was heated at 323 K overnight. CH2Cl2 (50 mL) was added to the pale-yellow solution, and the solution was washed with deionized (DI) water (60 mL) three times. The organic layer was dried over Na2SO4 and evaporated to dryness under vacuum. The obtained solid was solubilized in a minimum amount of CH2Cl2 (ca 5 mL) and excess amount of Et2O was added before the solution was stored at 253 K. The product was obtained as an off-white powder. Yield: 0.47 g (70%). 1H NMR (CDCl3, 300 MHz): δ 8.82 (br s, NH, 2H), 7.96 (s, Ar, 2H), 7.19–7.13 (m, Ar, 2H), 7.13–7.06 (m, Ar, 4H), 2.64 (s, NMe2, 12H). 13C{1H} NMR (CDCl3, 126 MHz): δ 178.66 (s, C—S), 146.26 (s, Ar), 132.49 (s, Ar), 126.25 (s, Ar), 124.16 (s, Ar), 123.56 (s, Ar), 119.71 (s, Ar), 44.00 [s, N(CH3)2]. IR (ATR, cm−1): 3165 s (N—H stretch), 3068 w (C—H stretch), 2984 w (C—H stretch), 2936 w (C—H stretch), 2834 m (C—H stretch), 2788 w (C—H stretch), 1596 s, 1583 s, 1552 s, 1525 s, 1489 vs, 1451 m, 1429 w, 1405 w, 1362 s, 1297 m, 1259 s, 1215 s, 1159 w, 1150 m, 1100 s, 1045 vs, 935 vs, 855 vw, 809 m, 751 vs, 735 m, 644 m, 623 vs, 566 m, 558 m, 531 m, 507 m, 493 s. ESI–MS m/z: calculated for C17H23N4S 315.1643; found 315.1644.

N,N'-Bis(2-di­ethyl­amino­phen­yl)thio­urea (2). To a stirred solution of 1,1′-thio­carbonyl­diimidazole (0.40 g, 2.2 mmol) in CH2Cl2 (5 mL) was added a solution of 2-amino-N,N′-di­methyl­aniline (0.74 g, 4.5 mmol) in CH2Cl2 (5 mL). The resulting solution was heated at 323 K overnight. CH2Cl2 (20 mL) was added to the pale-yellow solution, and the solution was washed with DI water (30 mL) three times. The organic layer was dried over Na2SO4 and evaporated to dryness under vacuum. The obtained solid was solubilized in a minimum amount of CH2Cl2 (ca 5 mL) and excess amount of Et2O was added before the solution was stored at 253 K. The product was obtained as an off-white powder. Yield: 0.51 g (61%). 1H NMR (CDCl3, 300 MHz): δ 9.14 (br s, NH, 2H), 8.27 (s, Ar, 2H), 7.20–7.10 (m, Ar, 6H), 2.89 (q, NCH2, 8H), 0.89 (t, CH3, 12H). 13C{1H} NMR (CDCl3, 126 MHz): δ 176.68 (s, C—S), 141.93 (s, Ar), 135.14 (s, Ar), 125.03 (s, Ar), 124.59 (s, Ar), 123.19 (s, Ar), 121.78 (s, Ar), 48.07 [s, N(CH2CH3)2], 12.47 [s, N(CH2CH3)2]. IR (ATR, cm−1): 3226 s (N—H stretch), 2977 s (C—H stretch), 2958 w (C—H stretch), 2936 w (C—H stretch), 2866 m (C—H stretch), 1600 s, 1577 m, 1556 s, 1523 s, 1485 vs, 1442 s, 1370 vs, 1347 m, 1336 w, 1302 m, 1285 m, 1275 m, 1257 m, 1236 s, 1203 s, 1162 s, 1088 s, 1066 m, 1015 s, 942 w, 901 w, 861 w, 828 m, 799 m, 766 w, 755 vs, 735 m, 692 m, 646 s, 623 s, 586 m, 555 m, 523 m, 506 s, 470 m, 463 m, 435 w. ESI–MS m/z: calculated for C21H31N4S 371.2269; found 371.2273.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3[link]. Upon scrutiny, no appreciable disorder was observed in either structure. The positions of hydrogen on nitro­gen atoms were refined, whereas the other hydrogen atoms were optimized using riding models [C—H = 0.93–0.98 Å; Uiso(H) = 1.2–1.5Ueq(C)].

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C17H22N4S C21H30N4S
Mr 314.44 370.55
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 173 296
a, b, c (Å) 7.6486 (1), 10.8964 (2), 10.9266 (2) 9.6159 (7), 16.0524 (11), 12.9462 (8)
α, β, γ (°) 78.086 (1), 70.863 (1), 81.135 (1) 90, 96.724 (3), 90
V3) 838.10 (3) 1984.6 (2)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.20 0.18
Crystal size (mm) 0.41 × 0.33 × 0.16 0.63 × 0.46 × 0.33
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.705, 0.746 0.671, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 15212, 3820, 3496 19639, 4948, 4402
Rint 0.023 0.037
(sin θ/λ)max−1) 0.649 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 1.04 0.037, 0.095, 1.04
No. of reflections 3820 4948
No. of parameters 209 245
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.27 0.32, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

N,N'-Bis[2-(dimethylamino)phenyl]thiourea (1) top
Crystal data top
C17H22N4SZ = 2
Mr = 314.44F(000) = 336
Triclinic, P1Dx = 1.246 Mg m3
a = 7.6486 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8964 (2) ÅCell parameters from 8859 reflections
c = 10.9266 (2) Åθ = 2.5–27.5°
α = 78.086 (1)°µ = 0.20 mm1
β = 70.863 (1)°T = 173 K
γ = 81.135 (1)°BLOCK, colourless
V = 838.10 (3) Å30.41 × 0.33 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
3496 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.023
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 99
Tmin = 0.705, Tmax = 0.746k = 1414
15212 measured reflectionsl = 1314
3820 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.2821P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3820 reflectionsΔρmax = 0.24 e Å3
209 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.11704 (4)0.46317 (3)0.30114 (3)0.02635 (10)
N20.38096 (14)0.27534 (9)0.32181 (9)0.0225 (2)
H20.466 (2)0.2452 (13)0.3632 (14)0.027*
N10.20935 (15)0.34773 (9)0.51263 (9)0.0246 (2)
H10.115 (2)0.4039 (14)0.5467 (14)0.030*
N40.71659 (14)0.34986 (9)0.14163 (10)0.0256 (2)
N30.57747 (15)0.21641 (10)0.50554 (11)0.0288 (2)
C90.59665 (16)0.29364 (10)0.09912 (11)0.0216 (2)
C20.23764 (17)0.23641 (10)0.60252 (11)0.0231 (2)
C30.41291 (17)0.17201 (10)0.60109 (11)0.0241 (2)
C10.24274 (15)0.35521 (10)0.38108 (11)0.0207 (2)
C80.42590 (15)0.25953 (10)0.18851 (11)0.0206 (2)
C130.30914 (17)0.19843 (11)0.15256 (12)0.0270 (3)
H130.1931400.1767910.2140540.032*
C100.64498 (18)0.26354 (11)0.02667 (12)0.0280 (3)
H100.7595730.2862960.0894040.034*
C70.07808 (19)0.19426 (12)0.69835 (12)0.0302 (3)
H70.0390530.2396470.7004280.036*
C40.4167 (2)0.06285 (11)0.69360 (12)0.0319 (3)
H40.5326170.0159140.6922840.038*
C120.36034 (19)0.16861 (12)0.02749 (13)0.0329 (3)
H120.2803710.1262050.0031700.039*
C110.5286 (2)0.20110 (13)0.06139 (13)0.0334 (3)
H110.5648050.1804340.1471110.040*
C170.65604 (19)0.48128 (12)0.15808 (15)0.0360 (3)
H17A0.6779910.5348020.0715690.054*
H17B0.7264550.5078180.2070290.054*
H17C0.5231520.4891670.2066650.054*
C50.2567 (2)0.02127 (12)0.78690 (13)0.0386 (3)
H50.2637900.0532670.8486860.046*
C160.91227 (18)0.33728 (14)0.06450 (15)0.0385 (3)
H16A0.9512930.2489380.0546450.058*
H16B0.9872240.3649860.1094660.058*
H16C0.9298080.3894450.0224270.058*
C60.0869 (2)0.08720 (13)0.79092 (13)0.0385 (3)
H60.0230330.0596930.8563270.046*
C140.7454 (2)0.12829 (15)0.48739 (17)0.0428 (3)
H14A0.7869920.1150000.5653470.064*
H14B0.8434930.1631550.4101080.064*
H14C0.7181030.0477210.4745620.064*
C150.6169 (2)0.33902 (13)0.52041 (17)0.0435 (4)
H15A0.5041370.3975870.5304000.065*
H15B0.7152200.3723920.4423980.065*
H15C0.6576860.3290570.5983680.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02772 (17)0.02673 (16)0.02053 (15)0.00853 (11)0.00787 (12)0.00237 (11)
N20.0221 (5)0.0251 (5)0.0180 (5)0.0051 (4)0.0064 (4)0.0037 (4)
N10.0283 (5)0.0220 (5)0.0182 (5)0.0087 (4)0.0052 (4)0.0030 (4)
N40.0226 (5)0.0245 (5)0.0292 (5)0.0008 (4)0.0079 (4)0.0042 (4)
N30.0261 (5)0.0299 (5)0.0324 (6)0.0031 (4)0.0124 (4)0.0081 (4)
C90.0227 (6)0.0182 (5)0.0218 (5)0.0038 (4)0.0080 (4)0.0014 (4)
C20.0313 (6)0.0199 (5)0.0174 (5)0.0030 (4)0.0088 (5)0.0036 (4)
C30.0321 (6)0.0209 (5)0.0227 (5)0.0027 (4)0.0127 (5)0.0074 (4)
C10.0203 (5)0.0193 (5)0.0199 (5)0.0006 (4)0.0044 (4)0.0015 (4)
C80.0218 (5)0.0189 (5)0.0191 (5)0.0052 (4)0.0064 (4)0.0035 (4)
C130.0231 (6)0.0274 (6)0.0298 (6)0.0005 (4)0.0080 (5)0.0055 (5)
C100.0283 (6)0.0300 (6)0.0201 (6)0.0034 (5)0.0036 (5)0.0030 (5)
C70.0342 (7)0.0288 (6)0.0232 (6)0.0025 (5)0.0053 (5)0.0041 (5)
C40.0462 (8)0.0232 (6)0.0307 (6)0.0080 (5)0.0214 (6)0.0064 (5)
C120.0351 (7)0.0337 (7)0.0368 (7)0.0016 (5)0.0179 (6)0.0134 (5)
C110.0409 (7)0.0369 (7)0.0237 (6)0.0073 (6)0.0121 (5)0.0123 (5)
C170.0326 (7)0.0269 (6)0.0475 (8)0.0036 (5)0.0078 (6)0.0105 (6)
C50.0628 (10)0.0221 (6)0.0276 (7)0.0026 (6)0.0155 (6)0.0013 (5)
C160.0230 (6)0.0416 (7)0.0498 (8)0.0017 (5)0.0086 (6)0.0106 (6)
C60.0506 (9)0.0308 (7)0.0252 (6)0.0046 (6)0.0020 (6)0.0001 (5)
C140.0306 (7)0.0474 (8)0.0546 (9)0.0098 (6)0.0180 (7)0.0195 (7)
C150.0392 (8)0.0329 (7)0.0593 (10)0.0069 (6)0.0154 (7)0.0069 (7)
Geometric parameters (Å, º) top
S1—C11.6879 (11)C7—H70.9500
N2—H20.896 (15)C7—C61.3862 (17)
N2—C11.3396 (14)C4—H40.9500
N2—C81.4235 (14)C4—C51.380 (2)
N1—H10.905 (15)C12—H120.9500
N1—C21.4316 (14)C12—C111.380 (2)
N1—C11.3621 (15)C11—H110.9500
N4—C91.4152 (15)C17—H17A0.9800
N4—C171.4645 (16)C17—H17B0.9800
N4—C161.4583 (17)C17—H17C0.9800
N3—C31.4233 (16)C5—H50.9500
N3—C141.4636 (17)C5—C61.376 (2)
N3—C151.4657 (17)C16—H16A0.9800
C9—C81.4004 (16)C16—H16B0.9800
C9—C101.3960 (16)C16—H16C0.9800
C2—C31.4109 (16)C6—H60.9500
C2—C71.3903 (17)C14—H14A0.9800
C3—C41.3963 (16)C14—H14B0.9800
C8—C131.3843 (17)C14—H14C0.9800
C13—H130.9500C15—H15A0.9800
C13—C121.3855 (18)C15—H15B0.9800
C10—H100.9500C15—H15C0.9800
C10—C111.3835 (19)
C1—N2—H2115.8 (9)C5—C4—H4119.1
C1—N2—C8124.84 (10)C13—C12—H12120.3
C8—N2—H2117.6 (9)C11—C12—C13119.35 (12)
C2—N1—H1115.3 (9)C11—C12—H12120.3
C1—N1—H1111.8 (9)C10—C11—H11119.7
C1—N1—C2125.90 (10)C12—C11—C10120.53 (12)
C9—N4—C17113.86 (10)C12—C11—H11119.7
C9—N4—C16115.07 (10)N4—C17—H17A109.5
C16—N4—C17110.25 (10)N4—C17—H17B109.5
C3—N3—C14116.65 (11)N4—C17—H17C109.5
C3—N3—C15113.45 (10)H17A—C17—H17B109.5
C14—N3—C15110.35 (11)H17A—C17—H17C109.5
C8—C9—N4119.15 (10)H17B—C17—H17C109.5
C10—C9—N4122.93 (11)C4—C5—H5119.8
C10—C9—C8117.82 (11)C6—C5—C4120.36 (12)
C3—C2—N1124.50 (11)C6—C5—H5119.8
C7—C2—N1115.61 (11)N4—C16—H16A109.5
C7—C2—C3119.87 (11)N4—C16—H16B109.5
C2—C3—N3120.27 (10)N4—C16—H16C109.5
C4—C3—N3122.17 (11)H16A—C16—H16B109.5
C4—C3—C2117.53 (12)H16A—C16—H16C109.5
N2—C1—S1123.65 (9)H16B—C16—H16C109.5
N2—C1—N1116.15 (10)C7—C6—H6120.4
N1—C1—S1120.19 (8)C5—C6—C7119.19 (13)
C9—C8—N2119.51 (10)C5—C6—H6120.4
C13—C8—N2119.31 (10)N3—C14—H14A109.5
C13—C8—C9120.82 (10)N3—C14—H14B109.5
C8—C13—H13119.8N3—C14—H14C109.5
C8—C13—C12120.45 (12)H14A—C14—H14B109.5
C12—C13—H13119.8H14A—C14—H14C109.5
C9—C10—H10119.5H14B—C14—H14C109.5
C11—C10—C9121.03 (12)N3—C15—H15A109.5
C11—C10—H10119.5N3—C15—H15B109.5
C2—C7—H7119.4N3—C15—H15C109.5
C6—C7—C2121.18 (12)H15A—C15—H15B109.5
C6—C7—H7119.4H15A—C15—H15C109.5
C3—C4—H4119.1H15B—C15—H15C109.5
C5—C4—C3121.79 (12)
N2—C8—C13—C12172.36 (10)C1—N1—C2—C7115.29 (13)
N1—C2—C3—N30.24 (17)C8—N2—C1—S18.08 (16)
N1—C2—C3—C4178.48 (11)C8—N2—C1—N1173.53 (10)
N1—C2—C7—C6179.76 (12)C8—C9—C10—C110.54 (17)
N4—C9—C8—N23.56 (15)C8—C13—C12—C110.39 (19)
N4—C9—C8—C13176.63 (10)C13—C12—C11—C100.40 (19)
N4—C9—C10—C11175.69 (11)C10—C9—C8—N2172.81 (10)
N3—C3—C4—C5179.22 (11)C10—C9—C8—C130.25 (16)
C9—C8—C13—C120.72 (17)C7—C2—C3—N3178.31 (11)
C9—C10—C11—C120.88 (19)C7—C2—C3—C43.45 (17)
C2—N1—C1—S1150.72 (10)C4—C5—C6—C71.4 (2)
C2—N1—C1—N230.83 (17)C17—N4—C9—C874.41 (13)
C2—C3—C4—C52.57 (18)C17—N4—C9—C10109.41 (13)
C2—C7—C6—C50.5 (2)C16—N4—C9—C8156.94 (11)
C3—C2—C7—C62.01 (19)C16—N4—C9—C1019.25 (16)
C3—C4—C5—C60.2 (2)C14—N3—C3—C2164.03 (11)
C1—N2—C8—C9114.58 (13)C14—N3—C3—C414.13 (17)
C1—N2—C8—C1372.26 (15)C15—N3—C3—C266.05 (15)
C1—N1—C2—C366.56 (17)C15—N3—C3—C4115.79 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.905 (15)2.506 (14)3.3814 (10)163.4 (14)
N2—H2···N30.896 (15)1.957 (17)2.8018 (17)156.8 (13)
Symmetry code: (i) x, y+1, z+1.
N,N'-Bis[2-(diethylamino)phenyl]thiourea (2) top
Crystal data top
C21H30N4SF(000) = 800
Mr = 370.55Dx = 1.240 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.6159 (7) ÅCell parameters from 8945 reflections
b = 16.0524 (11) Åθ = 2.5–28.4°
c = 12.9462 (8) ŵ = 0.18 mm1
β = 96.724 (3)°T = 296 K
V = 1984.6 (2) Å3Block, colourless
Z = 40.63 × 0.46 × 0.33 mm
Data collection top
Bruker APEXII CCD
diffractometer
4402 reflections with I > 2σ(I)
φ and ω scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.4°, θmin = 2.0°
Tmin = 0.671, Tmax = 0.746h = 1212
19639 measured reflectionsk = 2121
4948 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.8116P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4948 reflectionsΔρmax = 0.32 e Å3
245 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.02729 (3)0.62006 (2)0.58639 (3)0.02352 (9)
N20.24439 (10)0.69094 (6)0.50659 (7)0.01290 (18)
H20.2836 (15)0.6950 (9)0.4466 (11)0.015*
N30.33323 (10)0.67098 (6)0.31488 (7)0.01359 (19)
N10.17251 (10)0.56268 (6)0.44080 (7)0.01455 (19)
H10.1150 (15)0.5228 (10)0.4448 (11)0.017*
N40.20893 (10)0.85320 (6)0.42949 (7)0.01425 (19)
C30.37577 (11)0.58724 (7)0.33846 (8)0.0127 (2)
C90.25294 (11)0.84099 (7)0.53724 (8)0.0131 (2)
C20.29696 (11)0.53669 (7)0.39875 (8)0.0127 (2)
C80.25996 (11)0.75917 (7)0.57688 (8)0.0129 (2)
C40.49907 (12)0.55411 (7)0.30729 (8)0.0157 (2)
H40.5541450.5872170.2693670.019*
C70.33721 (12)0.45419 (7)0.41875 (8)0.0156 (2)
H70.2815720.4200320.4549240.019*
C50.54073 (12)0.47335 (8)0.33161 (9)0.0172 (2)
H50.6242570.4532870.3115720.021*
C160.44184 (12)0.72933 (7)0.28857 (9)0.0176 (2)
H16A0.3982260.7812940.2641190.021*
H16B0.4886780.7060590.2327420.021*
C100.29015 (12)0.90660 (7)0.60646 (9)0.0164 (2)
H100.2893270.9609060.5813820.020*
C120.32860 (12)0.81178 (8)0.75043 (9)0.0168 (2)
H120.3509950.8021190.8212540.020*
C130.29531 (11)0.74547 (7)0.68286 (8)0.0152 (2)
H130.2966950.6914080.7087830.018*
C10.15685 (11)0.62606 (7)0.50880 (8)0.0142 (2)
C60.45841 (12)0.42208 (7)0.38581 (9)0.0177 (2)
H60.4841680.3670230.3998160.021*
C180.05902 (12)0.83248 (7)0.40160 (9)0.0165 (2)
H18A0.0422890.7770800.4273900.020*
H18B0.0396330.8308780.3263880.020*
C140.20097 (12)0.67896 (8)0.24495 (9)0.0177 (2)
H14A0.1612280.7334380.2553430.021*
H14B0.1354280.6376330.2647640.021*
C110.32826 (12)0.89210 (8)0.71185 (9)0.0174 (2)
H110.3535130.9364230.7563830.021*
C200.24384 (12)0.93418 (7)0.38573 (9)0.0180 (2)
H20A0.2103960.9782890.4276960.022*
H20B0.1950270.9391780.3160700.022*
C170.54904 (13)0.74644 (8)0.38189 (10)0.0211 (2)
H17A0.6146920.7874220.3636850.032*
H17B0.5979000.6958840.4025640.032*
H17C0.5023050.7668420.4384050.032*
C210.39972 (13)0.94621 (8)0.38091 (10)0.0213 (2)
H21A0.4306840.9085510.3307190.032*
H21B0.4499370.9351650.4480330.032*
H21C0.4169891.0025190.3609190.032*
C150.21500 (15)0.66843 (8)0.13015 (9)0.0251 (3)
H15A0.1236050.6674870.0913490.038*
H15B0.2624700.6170640.1196000.038*
H15C0.2678080.7140920.1068820.038*
C190.04336 (13)0.89250 (8)0.44342 (10)0.0229 (3)
H19A0.0367370.9460010.4112240.034*
H19B0.0209920.8979160.5173470.034*
H19C0.1369420.8714460.4280770.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02364 (16)0.01920 (16)0.03137 (18)0.00753 (12)0.01852 (13)0.00934 (12)
N20.0141 (4)0.0115 (4)0.0137 (4)0.0010 (3)0.0045 (3)0.0009 (3)
N30.0141 (4)0.0124 (5)0.0147 (4)0.0004 (3)0.0032 (3)0.0012 (3)
N10.0136 (4)0.0124 (5)0.0188 (5)0.0030 (4)0.0068 (3)0.0025 (4)
N40.0146 (4)0.0123 (4)0.0155 (4)0.0017 (4)0.0001 (3)0.0017 (3)
C30.0131 (5)0.0134 (5)0.0115 (5)0.0001 (4)0.0011 (4)0.0020 (4)
C90.0108 (5)0.0131 (5)0.0156 (5)0.0000 (4)0.0020 (4)0.0006 (4)
C20.0124 (5)0.0142 (5)0.0116 (5)0.0002 (4)0.0018 (4)0.0025 (4)
C80.0106 (5)0.0122 (5)0.0162 (5)0.0003 (4)0.0034 (4)0.0022 (4)
C40.0143 (5)0.0182 (6)0.0150 (5)0.0018 (4)0.0035 (4)0.0024 (4)
C70.0184 (5)0.0141 (5)0.0144 (5)0.0014 (4)0.0021 (4)0.0007 (4)
C50.0137 (5)0.0194 (6)0.0183 (5)0.0032 (4)0.0015 (4)0.0043 (4)
C160.0204 (6)0.0149 (5)0.0187 (5)0.0030 (4)0.0070 (4)0.0004 (4)
C100.0157 (5)0.0125 (5)0.0210 (5)0.0008 (4)0.0027 (4)0.0014 (4)
C120.0132 (5)0.0230 (6)0.0141 (5)0.0026 (4)0.0013 (4)0.0020 (4)
C130.0143 (5)0.0151 (5)0.0168 (5)0.0021 (4)0.0038 (4)0.0013 (4)
C10.0134 (5)0.0138 (5)0.0159 (5)0.0006 (4)0.0038 (4)0.0001 (4)
C60.0192 (6)0.0148 (5)0.0184 (5)0.0039 (4)0.0008 (4)0.0020 (4)
C180.0152 (5)0.0153 (5)0.0184 (5)0.0009 (4)0.0011 (4)0.0011 (4)
C140.0168 (5)0.0172 (6)0.0186 (5)0.0030 (4)0.0003 (4)0.0005 (4)
C110.0138 (5)0.0182 (6)0.0203 (5)0.0014 (4)0.0016 (4)0.0064 (4)
C200.0203 (6)0.0132 (5)0.0202 (5)0.0014 (4)0.0017 (4)0.0035 (4)
C170.0195 (6)0.0189 (6)0.0255 (6)0.0044 (5)0.0047 (5)0.0030 (5)
C210.0227 (6)0.0164 (6)0.0255 (6)0.0032 (5)0.0061 (5)0.0010 (5)
C150.0354 (7)0.0219 (6)0.0169 (6)0.0012 (5)0.0016 (5)0.0007 (5)
C190.0163 (6)0.0243 (7)0.0281 (6)0.0005 (5)0.0031 (5)0.0038 (5)
Geometric parameters (Å, º) top
S1—C11.6921 (11)C10—C111.3903 (16)
N2—H20.905 (15)C12—H120.9300
N2—C81.4206 (14)C12—C131.3910 (16)
N2—C11.3415 (14)C12—C111.3826 (17)
N3—C31.4277 (14)C13—H130.9300
N3—C161.4722 (14)C6—H60.9300
N3—C141.4779 (14)C18—H18A0.9700
N1—H10.851 (16)C18—H18B0.9700
N1—C21.4335 (14)C18—C191.5217 (17)
N1—C11.3652 (14)C14—H14A0.9700
N4—C91.4231 (14)C14—H14B0.9700
N4—C181.4822 (14)C14—C151.5174 (17)
N4—C201.4724 (14)C11—H110.9300
C3—C21.4072 (15)C20—H20A0.9700
C3—C41.4013 (15)C20—H20B0.9700
C9—C81.4089 (15)C20—C211.5198 (17)
C9—C101.4018 (15)C17—H17A0.9600
C2—C71.3955 (16)C17—H17B0.9600
C8—C131.3919 (15)C17—H17C0.9600
C4—H40.9300C21—H21A0.9600
C4—C51.3822 (17)C21—H21B0.9600
C7—H70.9300C21—H21C0.9600
C7—C61.3865 (16)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C5—C61.3879 (17)C15—H15C0.9600
C16—H16A0.9700C19—H19A0.9600
C16—H16B0.9700C19—H19B0.9600
C16—C171.5186 (17)C19—H19C0.9600
C10—H100.9300
C8—N2—H2118.1 (9)N1—C1—S1119.00 (8)
C1—N2—H2113.5 (9)C7—C6—C5119.00 (11)
C1—N2—C8127.18 (9)C7—C6—H6120.5
C3—N3—C16117.08 (9)C5—C6—H6120.5
C3—N3—C14114.65 (9)N4—C18—H18A108.5
C16—N3—C14112.71 (9)N4—C18—H18B108.5
C2—N1—H1112.4 (10)N4—C18—C19114.99 (10)
C1—N1—H1113.5 (10)H18A—C18—H18B107.5
C1—N1—C2128.45 (10)C19—C18—H18A108.5
C9—N4—C18112.15 (9)C19—C18—H18B108.5
C9—N4—C20116.34 (9)N3—C14—H14A108.5
C20—N4—C18111.31 (9)N3—C14—H14B108.5
C2—C3—N3120.14 (10)N3—C14—C15114.93 (10)
C4—C3—N3121.78 (10)H14A—C14—H14B107.5
C4—C3—C2118.01 (10)C15—C14—H14A108.5
C8—C9—N4118.78 (10)C15—C14—H14B108.5
C10—C9—N4123.20 (10)C10—C11—H11120.0
C10—C9—C8118.02 (10)C12—C11—C10119.99 (11)
C3—C2—N1124.79 (10)C12—C11—H11120.0
C7—C2—N1115.56 (10)N4—C20—H20A108.9
C7—C2—C3119.63 (10)N4—C20—H20B108.9
C9—C8—N2119.24 (9)N4—C20—C21113.48 (10)
C13—C8—N2120.32 (10)H20A—C20—H20B107.7
C13—C8—C9120.14 (10)C21—C20—H20A108.9
C3—C4—H4119.2C21—C20—H20B108.9
C5—C4—C3121.52 (11)C16—C17—H17A109.5
C5—C4—H4119.2C16—C17—H17B109.5
C2—C7—H7119.3C16—C17—H17C109.5
C6—C7—C2121.37 (11)H17A—C17—H17B109.5
C6—C7—H7119.3H17A—C17—H17C109.5
C4—C5—H5119.9H17B—C17—H17C109.5
C4—C5—C6120.27 (11)C20—C21—H21A109.5
C6—C5—H5119.9C20—C21—H21B109.5
N3—C16—H16A109.3C20—C21—H21C109.5
N3—C16—H16B109.3H21A—C21—H21B109.5
N3—C16—C17111.40 (9)H21A—C21—H21C109.5
H16A—C16—H16B108.0H21B—C21—H21C109.5
C17—C16—H16A109.3C14—C15—H15A109.5
C17—C16—H16B109.3C14—C15—H15B109.5
C9—C10—H10119.3C14—C15—H15C109.5
C11—C10—C9121.32 (11)H15A—C15—H15B109.5
C11—C10—H10119.3H15A—C15—H15C109.5
C13—C12—H12120.1H15B—C15—H15C109.5
C11—C12—H12120.1C18—C19—H19A109.5
C11—C12—C13119.72 (10)C18—C19—H19B109.5
C8—C13—H13119.6C18—C19—H19C109.5
C12—C13—C8120.71 (11)H19A—C19—H19B109.5
C12—C13—H13119.6H19A—C19—H19C109.5
N2—C1—S1124.35 (9)H19B—C19—H19C109.5
N2—C1—N1116.61 (10)
N2—C8—C13—C12171.57 (10)C4—C3—C2—N1176.86 (10)
N3—C3—C2—N10.16 (16)C4—C3—C2—C74.85 (15)
N3—C3—C2—C7178.13 (9)C4—C5—C6—C72.64 (17)
N3—C3—C4—C5179.08 (10)C16—N3—C3—C2157.09 (10)
N1—C2—C7—C6177.58 (10)C16—N3—C3—C419.82 (14)
N4—C9—C8—N29.69 (15)C16—N3—C14—C1556.20 (13)
N4—C9—C8—C13176.53 (10)C10—C9—C8—N2170.21 (10)
N4—C9—C10—C11177.90 (10)C10—C9—C8—C133.57 (16)
C3—N3—C16—C1767.54 (12)C13—C12—C11—C102.17 (17)
C3—N3—C14—C1581.12 (12)C1—N2—C8—C9128.51 (12)
C3—C2—C7—C63.98 (16)C1—N2—C8—C1357.73 (15)
C3—C4—C5—C61.66 (17)C1—N1—C2—C360.21 (16)
C9—N4—C18—C1969.76 (13)C1—N1—C2—C7121.44 (12)
C9—N4—C20—C2168.56 (13)C18—N4—C9—C868.45 (13)
C9—C8—C13—C122.13 (16)C18—N4—C9—C10111.66 (12)
C9—C10—C11—C120.65 (17)C18—N4—C20—C21161.30 (10)
C2—N1—C1—S1153.44 (9)C14—N3—C3—C267.53 (13)
C2—N1—C1—N228.65 (17)C14—N3—C3—C4115.56 (11)
C2—C3—C4—C52.11 (16)C14—N3—C16—C17156.26 (10)
C2—C7—C6—C50.18 (17)C11—C12—C13—C80.78 (17)
C8—N2—C1—S110.13 (16)C20—N4—C9—C8161.81 (10)
C8—N2—C1—N1172.09 (10)C20—N4—C9—C1018.08 (15)
C8—C9—C10—C112.20 (16)C20—N4—C18—C1962.54 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.851 (16)2.677 (16)3.5017 (10)163.6 (13)
N2—H2···N30.905 (15)1.864 (15)2.7366 (14)161.4 (13)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

Dr Ji-Eun Lee (Gyeongsang National University) is gratefully acknowledged for collecting the single-crystal XRD data.

Funding information

Funding for this research was provided by: National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2021R1G1A1093332 and 2022R1F1A1064158).

References

First citationAl-Saidi, H. M. & Khan, S. (2022). Crit. Rev. Anal. Chem. pp. 1–17.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDoyle, A. G. & Jacobsen, E. N. (2007). Chem. Rev. 107, 5713–5743.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, E., Khan, S., Gul, Z. & Muhammad, M. (2021). Crit. Rev. Anal. Chem. 51, 812–834.  Web of Science CAS PubMed Google Scholar
First citationKožurková, M., Sabolová, D. & Kristian, P. (2017). J. Appl. Toxicol. 37, 1132–1139.  Web of Science PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, A.-F., Wang, J.-H., Wang, F. & Jiang, Y.-B. (2010). Chem. Soc. Rev. 39, 3729–3745.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParvin, T., Yadav, R. & Choudhury, L. H. (2020). Org. Biomol. Chem. 18, 5513–5532.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRen, P., Vechorkin, O., Csok, Z., Salihu, I., Scopelliti, R. & Hu, X. (2011). Dalton Trans. 40, 8906–8911.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRonchetti, R., Moroni, G., Carotti, A., Gioiello, A. & Camaioni, E. (2021). RSC Med. Chem. 12, 1046–1064.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSaeed, A., Flörke, U. & Erben, M. F. (2014). J. Sulfur Chem. 35, 318–355.  Web of Science CrossRef CAS Google Scholar
First citationSchroeder, D. C. (1955). Chem. Rev. 55, 181–228.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-L., Wei, Y. & Shi, M. (2017). ChemCatChem, 9, 718–727.  Web of Science CrossRef CAS Google Scholar
First citationThapa, P., Palacios, P. M., Tran, T., Pierce, B. S. & Foss, F. W. (2020). J. Org. Chem. 85, 1991–2009.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZahra, U., Saeed, A., Abdul Fattah, T., Flörke, U. & Erben, M. F. (2022). RSC Adv. 12, 12710–12745.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, Z. & Schreiner, P. R. (2009). Chem. Soc. Rev. 38, 1187–1198.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds