research communications
Synthesis, characterization, and crystal structures of N,N′-bis(2-dialkylaminophenyl)thioureas
aDepartment of Chemical Education and Research Institute of Natural Sciences, Gyeongsang National University, Gyeongsangnam-do 52828, Republic of Korea
*Correspondence e-mail: klee1@gnu.ac.kr
N,N′-Bis[2-(dimethylamino)phenyl]thiourea, C17H22N4S (1), and N,N′-bis[2-(diethylamino)phenyl]thiourea, C21H30N4S (2), were prepared by the treatment of 1,1′-thiocarbonyldiimidazole and 2 equivalents of 2-amino-N,N′-dialkylaniline. Both compounds exhibit intramolecular hydrogen bonds between the N—H(thiourea) and NR2 (R = Me, Et) groups. The other N—H bonds face the sulfur atoms of S=C bonds in an adjacent molecule, which forms an intermolecular interaction in the packed structure. The structural details match the spectroscopic data acquired from NMR and IR spectroscopy.
Keywords: crystal structure; aryl-substituted thiourea; hydrogen bond.
1. Chemical context
Thioureas and their derivatives are found in numerous organic and biological molecules (Schroeder, 1955; Kožurková et al., 2017; Khan et al., 2021; Ronchetti et al., 2021). Recent reviews pointed out that thioureas have been used in various research areas, such as catalysis (Doyle & Jacobsen, 2007; Zhang & Schreiner, 2009; Sun et al., 2017; Parvin et al., 2020), chemical sensing (Li et al., 2010; Khan et al., 2021; Al-Saidi & Khan, 2022), as ligands (Saeed et al., 2014; Zahra et al., 2022), etc. For example, strong hydrogen bonding in some thiourea compounds allows them to be using as organocatalysts in different chemical transformations. Furthermore, thioureas with chiral substituents are easily available and are used in asymmetric catalysis. Finally, thioureas substituted with functionalized aromatic rings can act as chemosensors.
Aryl-substituted thiourea compounds with amine groups in the ortho positions are expected to have versatile applications due to the unique hydrogen-bonding interactions, but so far, no such compounds have been reported. Diaryl thioureas with dimethylamine functional groups in the meta or para positions of the aryl substituents have been reported, but their crystal structures are unknown.
This report describes the preparation and crystal structures of N,N′-bis(2-dimethylaminophenyl)thiourea (1) and N,N′-bis(2-diethylaminophenyl)thiourea (2). Compounds 1 and 2 were prepared by treating 1,1′-thiocarbonyldiimidazole and two equivalents of 2-amino-N,N′-dialkylaniline in CH2Cl2. Methyl and NH resonances for 1 were observed at δ 2.64 and 8.82 ppm in the 1H NMR spectrum, whereas singlets at δ 43.99 and 178.66 ppm in the 13C NMR spectrum match to methyl and C=S resonances (Figs. S1 and S2 in the supporting information). Ethyl and NH resonances for 2 were found at δ 0.89, 2.89, and 9.14 ppm in the 1H NMR spectrum, while resonances at δ 12.47, 48.07, and 176.68 ppm in 13C NMR spectrum correspond to the ethyl and C=S groups (Figs. S3 and S4). In the IR spectra, the NH stretches were observed at 3165 and 3226 cm−1 for 1 and 2, respectively (Figs. S5 and S6). High-resolution ESI–MS data confirmed the formation of 1 and 2 with the desired isotopic patterns (Figs. S7 and S8).
2. Structural commentary
One of the most noticeable features in both 1 and 2 is the intramolecular hydrogen bonding between one of the thiourea NH moieties and the NR2 group (R = Me and Et) in the ortho position of the aromatic rings (Figs. 1 and 2). The N2—H2 bond distance of 0.896 (15) Å in 1 is slightly shorter (within error ranges) than the N2—H2 bond distance of 0.905 (15) Å in 2, whereas the N3⋯H2 distance of 1.957 (17) Å for 1 is more elongated than the N3⋯H2 distance of 1.864 (15) Å for 2. Bond distance analysis suggests that the hydrogen bonding interaction is stronger in 2, due to the increased basicity of amine with longer chains. The increased hydrogen bonding was also observed in the solution, as demonstrated with the deshielded NH resonance of 2 at δ 9.14 ppm compared to that for 1 at δ 8.82 ppm. It is worth noting that, contrary to what is expected, there are no hydrogen bonds between N4 and H2 in both 1 and 2 even as the corresponding N⋯H distances are 2.707 (12) and 2.641 (14) Å for 1 and 2, respectively.
Slightly asymmetric C1—N1 and C1—N2 bond distances are observed for the trigonal planar thiourea backbones, presumably due to the intramolecular hydrogen-bonding interactions. The C1—S1 bond distance of 1.6879 (11) Å in 1 is between the values for a double and a single bond, while the sum of bond angles around the thiourea carbon (C1) is 360.0°. In the thiourea backbone, the C1—N2 bond [1.3396 (14) Å] that is involved in intramolecular hydrogen bonding is slightly shorter than the C1—N1 bond [1.3621 (15) Å] without the intramolecular hydrogen bonding. The other C—N bond distances, such as C1—N1, C3—N3, C8—N2, and C9—N4 range from 1.41 to 1.43 Å. Similar bond distances and angles were observed for 2. The thiourea backbone contains the C1—S1 bond distance of 1.6921 (11) Å, and C1—N2 and C1—N1 bond distances of 1.3415 (14) and 1.3652 (14) Å, respectively, while the sum of the bond angles around C1 is 360.0°. Finally, the C1—N1, C3—N3, C8—N2, and C9—N4 bond distances range from 1.42 to 1.43 Å. Overall, a similar C1—S1 bond distance is observed within a variation of 0.01 Å between 1 and 2, while both structures exhibit a trigonal–planar geometry around the central carbon (C1). Furthermore, the C1—N2 bonds involved in intramolecular hydrogen bonds are 0.02 Å shorter than the C1—N1 bonds in 1 and 2 that do not participate in the hydrogen bonding.
3. Supramolecular features
Supramolecular features for 1 and 2 were investigated using Hirshfeld surface analysis with CrystalExplorer 21.5 (Spackman et al., 2021). Hirshfeld surfaces for 1 and 2 were mapped over dnorm in the range of −0.27 to 1.29 and −0.18 to 1.48 a.u. for 1 and 2, respectively (Figs. 3 and 4). The most intense red spots on the surface indicate the intermolecular H1⋯S1 interactions (Tables 1 and 2) with the graph-set descriptor R22(8) (Bernstein et al., 1995). The corresponding intermolecular distances of H1⋯S1 were measured to be 2.506 (14) and 2.677 (16) Å for 1 and 2, respectively. In addition, the acquired N—H stretch from IR spectra red shifted for 1 (3165 cm−1) when compared to that of 2 (3226 cm−1). This matches the elongated N1—H1 bond distance of 0.905 (15) Å and shorter H1⋯S1 interaction of 2.506 (14) Å for 1 when compared to those for 2 at 0.851 (16) and 2.677 (16) Å.
|
|
Some weaker interactions were observed as faint red spots on the Hirshfeld surface. The spots in 1 correspond to the short contacts of C15—H15A⋯H15A—C15 and C5—H5⋯C9—C10 (Fig. 3). In addition, the spots in 2 correspond to C20—H20A⋯C15—H15B, C4—H4⋯C11, and C20—H20B⋯C5—C6 interactions (Fig. 4). No appreciable π–π interactions or hydrogen bonding associated with N4 atoms are observed for either 1 or 2. The Hirshfeld surface of 1 arises from H⋯H (64.8%), C⋯H/H⋯C (22.9%), and S⋯H/H⋯S (12.1%) contacts, whereas H⋯H (71.3%), C⋯H/H⋯C (14.4%), and S⋯H/H⋯S (11.4%) contacts contribute to the surface of 2. The minor contributions include N⋯H/H⋯N (0.2%) for 1 and C⋯C (2.0%) and N⋯H/H⋯N (1.0%) for 2.
4. Database survey
A search in the Cambridge Structural Database for structures 1 and 2 did not match any reported structures, including derivative searches. Similar compounds with dimethylamine at the meta or para position have been prepared, but the structures are unknown.
5. Synthesis and crystallization
Compounds 1 and 2 were prepared by treating 1,1′-thiocarbonyldiimidazole with two equivalents of 2-amino-N,N′-dialkylaniline in CH2Cl2 (Fig. 5) following the reported procedures (Ren et al., 2011; Thapa et al., 2020). Detailed procedures are described below. Single crystals were grown by diffusion of pentane vapor into a solution of 1 in THF or 2 in Et2O, respectively. The relative intensities of IR bands were described as vw, w, m, s, and vs, corresponding to very weak, weak, medium, strong, and very strong, respectively.
N,N'-Bis(2-dimethylaminophenyl)thiourea (1). To a stirred solution of 1,1′-thiocarbonyldiimidazole (0.38 g, 2.2 mmol) in CH2Cl2 (5 mL) was added a solution of 2-amino-N,N′-dimethylaniline (0.58 g, 4.3 mmol) in CH2Cl2 (5 mL). The resulting solution was heated at 323 K overnight. CH2Cl2 (50 mL) was added to the pale-yellow solution, and the solution was washed with deionized (DI) water (60 mL) three times. The organic layer was dried over Na2SO4 and evaporated to dryness under vacuum. The obtained solid was solubilized in a minimum amount of CH2Cl2 (ca 5 mL) and excess amount of Et2O was added before the solution was stored at 253 K. The product was obtained as an off-white powder. Yield: 0.47 g (70%). 1H NMR (CDCl3, 300 MHz): δ 8.82 (br s, NH, 2H), 7.96 (s, Ar, 2H), 7.19–7.13 (m, Ar, 2H), 7.13–7.06 (m, Ar, 4H), 2.64 (s, NMe2, 12H). 13C{1H} NMR (CDCl3, 126 MHz): δ 178.66 (s, C—S), 146.26 (s, Ar), 132.49 (s, Ar), 126.25 (s, Ar), 124.16 (s, Ar), 123.56 (s, Ar), 119.71 (s, Ar), 44.00 [s, N(CH3)2]. IR (ATR, cm−1): 3165 s (N—H stretch), 3068 w (C—H stretch), 2984 w (C—H stretch), 2936 w (C—H stretch), 2834 m (C—H stretch), 2788 w (C—H stretch), 1596 s, 1583 s, 1552 s, 1525 s, 1489 vs, 1451 m, 1429 w, 1405 w, 1362 s, 1297 m, 1259 s, 1215 s, 1159 w, 1150 m, 1100 s, 1045 vs, 935 vs, 855 vw, 809 m, 751 vs, 735 m, 644 m, 623 vs, 566 m, 558 m, 531 m, 507 m, 493 s. ESI–MS m/z: calculated for C17H23N4S 315.1643; found 315.1644.
N,N'-Bis(2-diethylaminophenyl)thiourea (2). To a stirred solution of 1,1′-thiocarbonyldiimidazole (0.40 g, 2.2 mmol) in CH2Cl2 (5 mL) was added a solution of 2-amino-N,N′-dimethylaniline (0.74 g, 4.5 mmol) in CH2Cl2 (5 mL). The resulting solution was heated at 323 K overnight. CH2Cl2 (20 mL) was added to the pale-yellow solution, and the solution was washed with DI water (30 mL) three times. The organic layer was dried over Na2SO4 and evaporated to dryness under vacuum. The obtained solid was solubilized in a minimum amount of CH2Cl2 (ca 5 mL) and excess amount of Et2O was added before the solution was stored at 253 K. The product was obtained as an off-white powder. Yield: 0.51 g (61%). 1H NMR (CDCl3, 300 MHz): δ 9.14 (br s, NH, 2H), 8.27 (s, Ar, 2H), 7.20–7.10 (m, Ar, 6H), 2.89 (q, NCH2, 8H), 0.89 (t, CH3, 12H). 13C{1H} NMR (CDCl3, 126 MHz): δ 176.68 (s, C—S), 141.93 (s, Ar), 135.14 (s, Ar), 125.03 (s, Ar), 124.59 (s, Ar), 123.19 (s, Ar), 121.78 (s, Ar), 48.07 [s, N(CH2CH3)2], 12.47 [s, N(CH2CH3)2]. IR (ATR, cm−1): 3226 s (N—H stretch), 2977 s (C—H stretch), 2958 w (C—H stretch), 2936 w (C—H stretch), 2866 m (C—H stretch), 1600 s, 1577 m, 1556 s, 1523 s, 1485 vs, 1442 s, 1370 vs, 1347 m, 1336 w, 1302 m, 1285 m, 1275 m, 1257 m, 1236 s, 1203 s, 1162 s, 1088 s, 1066 m, 1015 s, 942 w, 901 w, 861 w, 828 m, 799 m, 766 w, 755 vs, 735 m, 692 m, 646 s, 623 s, 586 m, 555 m, 523 m, 506 s, 470 m, 463 m, 435 w. ESI–MS m/z: calculated for C21H31N4S 371.2269; found 371.2273.
6. Refinement
Crystal data, data collection, and structure . Upon scrutiny, no appreciable disorder was observed in either structure. The positions of hydrogen on nitrogen atoms were refined, whereas the other hydrogen atoms were optimized using riding models [C—H = 0.93–0.98 Å; Uiso(H) = 1.2–1.5Ueq(C)].
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989022012245/jq2024sup1.cif
contains datablocks global, 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989022012245/jq20241sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989022012245/jq20242sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022012245/jq20241sup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989022012245/jq20242sup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989022012245/jq2024sup6.docx
For both structures, data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).C17H22N4S | Z = 2 |
Mr = 314.44 | F(000) = 336 |
Triclinic, P1 | Dx = 1.246 Mg m−3 |
a = 7.6486 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.8964 (2) Å | Cell parameters from 8859 reflections |
c = 10.9266 (2) Å | θ = 2.5–27.5° |
α = 78.086 (1)° | µ = 0.20 mm−1 |
β = 70.863 (1)° | T = 173 K |
γ = 81.135 (1)° | BLOCK, colourless |
V = 838.10 (3) Å3 | 0.41 × 0.33 × 0.16 mm |
Bruker APEXII CCD diffractometer | 3496 reflections with I > 2σ(I) |
Multilayer monochromator | Rint = 0.023 |
φ and ω scans | θmax = 27.5°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −9→9 |
Tmin = 0.705, Tmax = 0.746 | k = −14→14 |
15212 measured reflections | l = −13→14 |
3820 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.034 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0424P)2 + 0.2821P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3820 reflections | Δρmax = 0.24 e Å−3 |
209 parameters | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.11704 (4) | 0.46317 (3) | 0.30114 (3) | 0.02635 (10) | |
N2 | 0.38096 (14) | 0.27534 (9) | 0.32181 (9) | 0.0225 (2) | |
H2 | 0.466 (2) | 0.2452 (13) | 0.3632 (14) | 0.027* | |
N1 | 0.20935 (15) | 0.34773 (9) | 0.51263 (9) | 0.0246 (2) | |
H1 | 0.115 (2) | 0.4039 (14) | 0.5467 (14) | 0.030* | |
N4 | 0.71659 (14) | 0.34986 (9) | 0.14163 (10) | 0.0256 (2) | |
N3 | 0.57747 (15) | 0.21641 (10) | 0.50554 (11) | 0.0288 (2) | |
C9 | 0.59665 (16) | 0.29364 (10) | 0.09912 (11) | 0.0216 (2) | |
C2 | 0.23764 (17) | 0.23641 (10) | 0.60252 (11) | 0.0231 (2) | |
C3 | 0.41291 (17) | 0.17201 (10) | 0.60109 (11) | 0.0241 (2) | |
C1 | 0.24274 (15) | 0.35521 (10) | 0.38108 (11) | 0.0207 (2) | |
C8 | 0.42590 (15) | 0.25953 (10) | 0.18851 (11) | 0.0206 (2) | |
C13 | 0.30914 (17) | 0.19843 (11) | 0.15256 (12) | 0.0270 (3) | |
H13 | 0.193140 | 0.176791 | 0.214054 | 0.032* | |
C10 | 0.64498 (18) | 0.26354 (11) | −0.02667 (12) | 0.0280 (3) | |
H10 | 0.759573 | 0.286296 | −0.089404 | 0.034* | |
C7 | 0.07808 (19) | 0.19426 (12) | 0.69835 (12) | 0.0302 (3) | |
H7 | −0.039053 | 0.239647 | 0.700428 | 0.036* | |
C4 | 0.4167 (2) | 0.06285 (11) | 0.69360 (12) | 0.0319 (3) | |
H4 | 0.532617 | 0.015914 | 0.692284 | 0.038* | |
C12 | 0.36034 (19) | 0.16861 (12) | 0.02749 (13) | 0.0329 (3) | |
H12 | 0.280371 | 0.126205 | 0.003170 | 0.039* | |
C11 | 0.5286 (2) | 0.20110 (13) | −0.06139 (13) | 0.0334 (3) | |
H11 | 0.564805 | 0.180434 | −0.147111 | 0.040* | |
C17 | 0.65604 (19) | 0.48128 (12) | 0.15808 (15) | 0.0360 (3) | |
H17A | 0.677991 | 0.534802 | 0.071569 | 0.054* | |
H17B | 0.726455 | 0.507818 | 0.207029 | 0.054* | |
H17C | 0.523152 | 0.489167 | 0.206665 | 0.054* | |
C5 | 0.2567 (2) | 0.02127 (12) | 0.78690 (13) | 0.0386 (3) | |
H5 | 0.263790 | −0.053267 | 0.848686 | 0.046* | |
C16 | 0.91227 (18) | 0.33728 (14) | 0.06450 (15) | 0.0385 (3) | |
H16A | 0.951293 | 0.248938 | 0.054645 | 0.058* | |
H16B | 0.987224 | 0.364986 | 0.109466 | 0.058* | |
H16C | 0.929808 | 0.389445 | −0.022427 | 0.058* | |
C6 | 0.0869 (2) | 0.08720 (13) | 0.79092 (13) | 0.0385 (3) | |
H6 | −0.023033 | 0.059693 | 0.856327 | 0.046* | |
C14 | 0.7454 (2) | 0.12829 (15) | 0.48739 (17) | 0.0428 (3) | |
H14A | 0.786992 | 0.115000 | 0.565347 | 0.064* | |
H14B | 0.843493 | 0.163155 | 0.410108 | 0.064* | |
H14C | 0.718103 | 0.047721 | 0.474562 | 0.064* | |
C15 | 0.6169 (2) | 0.33902 (13) | 0.52041 (17) | 0.0435 (4) | |
H15A | 0.504137 | 0.397587 | 0.530400 | 0.065* | |
H15B | 0.715220 | 0.372392 | 0.442398 | 0.065* | |
H15C | 0.657686 | 0.329057 | 0.598368 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.02772 (17) | 0.02673 (16) | 0.02053 (15) | 0.00853 (11) | −0.00787 (12) | −0.00237 (11) |
N2 | 0.0221 (5) | 0.0251 (5) | 0.0180 (5) | 0.0051 (4) | −0.0064 (4) | −0.0037 (4) |
N1 | 0.0283 (5) | 0.0220 (5) | 0.0182 (5) | 0.0087 (4) | −0.0052 (4) | −0.0030 (4) |
N4 | 0.0226 (5) | 0.0245 (5) | 0.0292 (5) | −0.0008 (4) | −0.0079 (4) | −0.0042 (4) |
N3 | 0.0261 (5) | 0.0299 (5) | 0.0324 (6) | 0.0031 (4) | −0.0124 (4) | −0.0081 (4) |
C9 | 0.0227 (6) | 0.0182 (5) | 0.0218 (5) | 0.0038 (4) | −0.0080 (4) | −0.0014 (4) |
C2 | 0.0313 (6) | 0.0199 (5) | 0.0174 (5) | 0.0030 (4) | −0.0088 (5) | −0.0036 (4) |
C3 | 0.0321 (6) | 0.0209 (5) | 0.0227 (5) | 0.0027 (4) | −0.0127 (5) | −0.0074 (4) |
C1 | 0.0203 (5) | 0.0193 (5) | 0.0199 (5) | −0.0006 (4) | −0.0044 (4) | −0.0015 (4) |
C8 | 0.0218 (5) | 0.0189 (5) | 0.0191 (5) | 0.0052 (4) | −0.0064 (4) | −0.0035 (4) |
C13 | 0.0231 (6) | 0.0274 (6) | 0.0298 (6) | 0.0005 (4) | −0.0080 (5) | −0.0055 (5) |
C10 | 0.0283 (6) | 0.0300 (6) | 0.0201 (6) | 0.0034 (5) | −0.0036 (5) | −0.0030 (5) |
C7 | 0.0342 (7) | 0.0288 (6) | 0.0232 (6) | 0.0025 (5) | −0.0053 (5) | −0.0041 (5) |
C4 | 0.0462 (8) | 0.0232 (6) | 0.0307 (6) | 0.0080 (5) | −0.0214 (6) | −0.0064 (5) |
C12 | 0.0351 (7) | 0.0337 (7) | 0.0368 (7) | 0.0016 (5) | −0.0179 (6) | −0.0134 (5) |
C11 | 0.0409 (7) | 0.0369 (7) | 0.0237 (6) | 0.0073 (6) | −0.0121 (5) | −0.0123 (5) |
C17 | 0.0326 (7) | 0.0269 (6) | 0.0475 (8) | −0.0036 (5) | −0.0078 (6) | −0.0105 (6) |
C5 | 0.0628 (10) | 0.0221 (6) | 0.0276 (7) | 0.0026 (6) | −0.0155 (6) | 0.0013 (5) |
C16 | 0.0230 (6) | 0.0416 (7) | 0.0498 (8) | −0.0017 (5) | −0.0086 (6) | −0.0106 (6) |
C6 | 0.0506 (9) | 0.0308 (7) | 0.0252 (6) | −0.0046 (6) | −0.0020 (6) | 0.0001 (5) |
C14 | 0.0306 (7) | 0.0474 (8) | 0.0546 (9) | 0.0098 (6) | −0.0180 (7) | −0.0195 (7) |
C15 | 0.0392 (8) | 0.0329 (7) | 0.0593 (10) | −0.0069 (6) | −0.0154 (7) | −0.0069 (7) |
S1—C1 | 1.6879 (11) | C7—H7 | 0.9500 |
N2—H2 | 0.896 (15) | C7—C6 | 1.3862 (17) |
N2—C1 | 1.3396 (14) | C4—H4 | 0.9500 |
N2—C8 | 1.4235 (14) | C4—C5 | 1.380 (2) |
N1—H1 | 0.905 (15) | C12—H12 | 0.9500 |
N1—C2 | 1.4316 (14) | C12—C11 | 1.380 (2) |
N1—C1 | 1.3621 (15) | C11—H11 | 0.9500 |
N4—C9 | 1.4152 (15) | C17—H17A | 0.9800 |
N4—C17 | 1.4645 (16) | C17—H17B | 0.9800 |
N4—C16 | 1.4583 (17) | C17—H17C | 0.9800 |
N3—C3 | 1.4233 (16) | C5—H5 | 0.9500 |
N3—C14 | 1.4636 (17) | C5—C6 | 1.376 (2) |
N3—C15 | 1.4657 (17) | C16—H16A | 0.9800 |
C9—C8 | 1.4004 (16) | C16—H16B | 0.9800 |
C9—C10 | 1.3960 (16) | C16—H16C | 0.9800 |
C2—C3 | 1.4109 (16) | C6—H6 | 0.9500 |
C2—C7 | 1.3903 (17) | C14—H14A | 0.9800 |
C3—C4 | 1.3963 (16) | C14—H14B | 0.9800 |
C8—C13 | 1.3843 (17) | C14—H14C | 0.9800 |
C13—H13 | 0.9500 | C15—H15A | 0.9800 |
C13—C12 | 1.3855 (18) | C15—H15B | 0.9800 |
C10—H10 | 0.9500 | C15—H15C | 0.9800 |
C10—C11 | 1.3835 (19) | ||
C1—N2—H2 | 115.8 (9) | C5—C4—H4 | 119.1 |
C1—N2—C8 | 124.84 (10) | C13—C12—H12 | 120.3 |
C8—N2—H2 | 117.6 (9) | C11—C12—C13 | 119.35 (12) |
C2—N1—H1 | 115.3 (9) | C11—C12—H12 | 120.3 |
C1—N1—H1 | 111.8 (9) | C10—C11—H11 | 119.7 |
C1—N1—C2 | 125.90 (10) | C12—C11—C10 | 120.53 (12) |
C9—N4—C17 | 113.86 (10) | C12—C11—H11 | 119.7 |
C9—N4—C16 | 115.07 (10) | N4—C17—H17A | 109.5 |
C16—N4—C17 | 110.25 (10) | N4—C17—H17B | 109.5 |
C3—N3—C14 | 116.65 (11) | N4—C17—H17C | 109.5 |
C3—N3—C15 | 113.45 (10) | H17A—C17—H17B | 109.5 |
C14—N3—C15 | 110.35 (11) | H17A—C17—H17C | 109.5 |
C8—C9—N4 | 119.15 (10) | H17B—C17—H17C | 109.5 |
C10—C9—N4 | 122.93 (11) | C4—C5—H5 | 119.8 |
C10—C9—C8 | 117.82 (11) | C6—C5—C4 | 120.36 (12) |
C3—C2—N1 | 124.50 (11) | C6—C5—H5 | 119.8 |
C7—C2—N1 | 115.61 (11) | N4—C16—H16A | 109.5 |
C7—C2—C3 | 119.87 (11) | N4—C16—H16B | 109.5 |
C2—C3—N3 | 120.27 (10) | N4—C16—H16C | 109.5 |
C4—C3—N3 | 122.17 (11) | H16A—C16—H16B | 109.5 |
C4—C3—C2 | 117.53 (12) | H16A—C16—H16C | 109.5 |
N2—C1—S1 | 123.65 (9) | H16B—C16—H16C | 109.5 |
N2—C1—N1 | 116.15 (10) | C7—C6—H6 | 120.4 |
N1—C1—S1 | 120.19 (8) | C5—C6—C7 | 119.19 (13) |
C9—C8—N2 | 119.51 (10) | C5—C6—H6 | 120.4 |
C13—C8—N2 | 119.31 (10) | N3—C14—H14A | 109.5 |
C13—C8—C9 | 120.82 (10) | N3—C14—H14B | 109.5 |
C8—C13—H13 | 119.8 | N3—C14—H14C | 109.5 |
C8—C13—C12 | 120.45 (12) | H14A—C14—H14B | 109.5 |
C12—C13—H13 | 119.8 | H14A—C14—H14C | 109.5 |
C9—C10—H10 | 119.5 | H14B—C14—H14C | 109.5 |
C11—C10—C9 | 121.03 (12) | N3—C15—H15A | 109.5 |
C11—C10—H10 | 119.5 | N3—C15—H15B | 109.5 |
C2—C7—H7 | 119.4 | N3—C15—H15C | 109.5 |
C6—C7—C2 | 121.18 (12) | H15A—C15—H15B | 109.5 |
C6—C7—H7 | 119.4 | H15A—C15—H15C | 109.5 |
C3—C4—H4 | 119.1 | H15B—C15—H15C | 109.5 |
C5—C4—C3 | 121.79 (12) | ||
N2—C8—C13—C12 | −172.36 (10) | C1—N1—C2—C7 | −115.29 (13) |
N1—C2—C3—N3 | −0.24 (17) | C8—N2—C1—S1 | −8.08 (16) |
N1—C2—C3—C4 | −178.48 (11) | C8—N2—C1—N1 | 173.53 (10) |
N1—C2—C7—C6 | 179.76 (12) | C8—C9—C10—C11 | −0.54 (17) |
N4—C9—C8—N2 | −3.56 (15) | C8—C13—C12—C11 | −0.39 (19) |
N4—C9—C8—C13 | −176.63 (10) | C13—C12—C11—C10 | −0.40 (19) |
N4—C9—C10—C11 | 175.69 (11) | C10—C9—C8—N2 | 172.81 (10) |
N3—C3—C4—C5 | 179.22 (11) | C10—C9—C8—C13 | −0.25 (16) |
C9—C8—C13—C12 | 0.72 (17) | C7—C2—C3—N3 | −178.31 (11) |
C9—C10—C11—C12 | 0.88 (19) | C7—C2—C3—C4 | 3.45 (17) |
C2—N1—C1—S1 | 150.72 (10) | C4—C5—C6—C7 | 1.4 (2) |
C2—N1—C1—N2 | −30.83 (17) | C17—N4—C9—C8 | −74.41 (13) |
C2—C3—C4—C5 | −2.57 (18) | C17—N4—C9—C10 | 109.41 (13) |
C2—C7—C6—C5 | −0.5 (2) | C16—N4—C9—C8 | 156.94 (11) |
C3—C2—C7—C6 | −2.01 (19) | C16—N4—C9—C10 | −19.25 (16) |
C3—C4—C5—C6 | 0.2 (2) | C14—N3—C3—C2 | −164.03 (11) |
C1—N2—C8—C9 | 114.58 (13) | C14—N3—C3—C4 | 14.13 (17) |
C1—N2—C8—C13 | −72.26 (15) | C15—N3—C3—C2 | 66.05 (15) |
C1—N1—C2—C3 | 66.56 (17) | C15—N3—C3—C4 | −115.79 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.905 (15) | 2.506 (14) | 3.3814 (10) | 163.4 (14) |
N2—H2···N3 | 0.896 (15) | 1.957 (17) | 2.8018 (17) | 156.8 (13) |
Symmetry code: (i) −x, −y+1, −z+1. |
C21H30N4S | F(000) = 800 |
Mr = 370.55 | Dx = 1.240 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6159 (7) Å | Cell parameters from 8945 reflections |
b = 16.0524 (11) Å | θ = 2.5–28.4° |
c = 12.9462 (8) Å | µ = 0.18 mm−1 |
β = 96.724 (3)° | T = 296 K |
V = 1984.6 (2) Å3 | Block, colourless |
Z = 4 | 0.63 × 0.46 × 0.33 mm |
Bruker APEXII CCD diffractometer | 4402 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.037 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.4°, θmin = 2.0° |
Tmin = 0.671, Tmax = 0.746 | h = −12→12 |
19639 measured reflections | k = −21→21 |
4948 independent reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.095 | w = 1/[σ2(Fo2) + (0.0441P)2 + 0.8116P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
4948 reflections | Δρmax = 0.32 e Å−3 |
245 parameters | Δρmin = −0.26 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.02729 (3) | 0.62006 (2) | 0.58639 (3) | 0.02352 (9) | |
N2 | 0.24439 (10) | 0.69094 (6) | 0.50659 (7) | 0.01290 (18) | |
H2 | 0.2836 (15) | 0.6950 (9) | 0.4466 (11) | 0.015* | |
N3 | 0.33323 (10) | 0.67098 (6) | 0.31488 (7) | 0.01359 (19) | |
N1 | 0.17251 (10) | 0.56268 (6) | 0.44080 (7) | 0.01455 (19) | |
H1 | 0.1150 (15) | 0.5228 (10) | 0.4448 (11) | 0.017* | |
N4 | 0.20893 (10) | 0.85320 (6) | 0.42949 (7) | 0.01425 (19) | |
C3 | 0.37577 (11) | 0.58724 (7) | 0.33846 (8) | 0.0127 (2) | |
C9 | 0.25294 (11) | 0.84099 (7) | 0.53724 (8) | 0.0131 (2) | |
C2 | 0.29696 (11) | 0.53669 (7) | 0.39875 (8) | 0.0127 (2) | |
C8 | 0.25996 (11) | 0.75917 (7) | 0.57688 (8) | 0.0129 (2) | |
C4 | 0.49907 (12) | 0.55411 (7) | 0.30729 (8) | 0.0157 (2) | |
H4 | 0.554145 | 0.587217 | 0.269367 | 0.019* | |
C7 | 0.33721 (12) | 0.45419 (7) | 0.41875 (8) | 0.0156 (2) | |
H7 | 0.281572 | 0.420032 | 0.454924 | 0.019* | |
C5 | 0.54073 (12) | 0.47335 (8) | 0.33161 (9) | 0.0172 (2) | |
H5 | 0.624257 | 0.453287 | 0.311572 | 0.021* | |
C16 | 0.44184 (12) | 0.72933 (7) | 0.28857 (9) | 0.0176 (2) | |
H16A | 0.398226 | 0.781294 | 0.264119 | 0.021* | |
H16B | 0.488678 | 0.706059 | 0.232742 | 0.021* | |
C10 | 0.29015 (12) | 0.90660 (7) | 0.60646 (9) | 0.0164 (2) | |
H10 | 0.289327 | 0.960906 | 0.581382 | 0.020* | |
C12 | 0.32860 (12) | 0.81178 (8) | 0.75043 (9) | 0.0168 (2) | |
H12 | 0.350995 | 0.802119 | 0.821254 | 0.020* | |
C13 | 0.29531 (11) | 0.74547 (7) | 0.68286 (8) | 0.0152 (2) | |
H13 | 0.296695 | 0.691408 | 0.708783 | 0.018* | |
C1 | 0.15685 (11) | 0.62606 (7) | 0.50880 (8) | 0.0142 (2) | |
C6 | 0.45841 (12) | 0.42208 (7) | 0.38581 (9) | 0.0177 (2) | |
H6 | 0.484168 | 0.367023 | 0.399816 | 0.021* | |
C18 | 0.05902 (12) | 0.83248 (7) | 0.40160 (9) | 0.0165 (2) | |
H18A | 0.042289 | 0.777080 | 0.427390 | 0.020* | |
H18B | 0.039633 | 0.830878 | 0.326388 | 0.020* | |
C14 | 0.20097 (12) | 0.67896 (8) | 0.24495 (9) | 0.0177 (2) | |
H14A | 0.161228 | 0.733438 | 0.255343 | 0.021* | |
H14B | 0.135428 | 0.637633 | 0.264764 | 0.021* | |
C11 | 0.32826 (12) | 0.89210 (8) | 0.71185 (9) | 0.0174 (2) | |
H11 | 0.353513 | 0.936423 | 0.756383 | 0.021* | |
C20 | 0.24384 (12) | 0.93418 (7) | 0.38573 (9) | 0.0180 (2) | |
H20A | 0.210396 | 0.978289 | 0.427696 | 0.022* | |
H20B | 0.195027 | 0.939178 | 0.316070 | 0.022* | |
C17 | 0.54904 (13) | 0.74644 (8) | 0.38189 (10) | 0.0211 (2) | |
H17A | 0.614692 | 0.787422 | 0.363685 | 0.032* | |
H17B | 0.597900 | 0.695884 | 0.402564 | 0.032* | |
H17C | 0.502305 | 0.766842 | 0.438405 | 0.032* | |
C21 | 0.39972 (13) | 0.94621 (8) | 0.38091 (10) | 0.0213 (2) | |
H21A | 0.430684 | 0.908551 | 0.330719 | 0.032* | |
H21B | 0.449937 | 0.935165 | 0.448033 | 0.032* | |
H21C | 0.416989 | 1.002519 | 0.360919 | 0.032* | |
C15 | 0.21500 (15) | 0.66843 (8) | 0.13015 (9) | 0.0251 (3) | |
H15A | 0.123605 | 0.667487 | 0.091349 | 0.038* | |
H15B | 0.262470 | 0.617064 | 0.119600 | 0.038* | |
H15C | 0.267808 | 0.714092 | 0.106882 | 0.038* | |
C19 | −0.04336 (13) | 0.89250 (8) | 0.44342 (10) | 0.0229 (3) | |
H19A | −0.036737 | 0.946001 | 0.411224 | 0.034* | |
H19B | −0.020992 | 0.897916 | 0.517347 | 0.034* | |
H19C | −0.136942 | 0.871446 | 0.428077 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.02364 (16) | 0.01920 (16) | 0.03137 (18) | −0.00753 (12) | 0.01852 (13) | −0.00934 (12) |
N2 | 0.0141 (4) | 0.0115 (4) | 0.0137 (4) | −0.0010 (3) | 0.0045 (3) | −0.0009 (3) |
N3 | 0.0141 (4) | 0.0124 (5) | 0.0147 (4) | −0.0004 (3) | 0.0032 (3) | 0.0012 (3) |
N1 | 0.0136 (4) | 0.0124 (5) | 0.0188 (5) | −0.0030 (4) | 0.0068 (3) | −0.0025 (4) |
N4 | 0.0146 (4) | 0.0123 (4) | 0.0155 (4) | −0.0017 (4) | 0.0001 (3) | 0.0017 (3) |
C3 | 0.0131 (5) | 0.0134 (5) | 0.0115 (5) | 0.0001 (4) | 0.0011 (4) | −0.0020 (4) |
C9 | 0.0108 (5) | 0.0131 (5) | 0.0156 (5) | 0.0000 (4) | 0.0020 (4) | −0.0006 (4) |
C2 | 0.0124 (5) | 0.0142 (5) | 0.0116 (5) | 0.0002 (4) | 0.0018 (4) | −0.0025 (4) |
C8 | 0.0106 (5) | 0.0122 (5) | 0.0162 (5) | −0.0003 (4) | 0.0034 (4) | −0.0022 (4) |
C4 | 0.0143 (5) | 0.0182 (6) | 0.0150 (5) | −0.0018 (4) | 0.0035 (4) | −0.0024 (4) |
C7 | 0.0184 (5) | 0.0141 (5) | 0.0144 (5) | −0.0014 (4) | 0.0021 (4) | −0.0007 (4) |
C5 | 0.0137 (5) | 0.0194 (6) | 0.0183 (5) | 0.0032 (4) | 0.0015 (4) | −0.0043 (4) |
C16 | 0.0204 (6) | 0.0149 (5) | 0.0187 (5) | −0.0030 (4) | 0.0070 (4) | 0.0004 (4) |
C10 | 0.0157 (5) | 0.0125 (5) | 0.0210 (5) | −0.0008 (4) | 0.0027 (4) | −0.0014 (4) |
C12 | 0.0132 (5) | 0.0230 (6) | 0.0141 (5) | 0.0026 (4) | 0.0013 (4) | −0.0020 (4) |
C13 | 0.0143 (5) | 0.0151 (5) | 0.0168 (5) | 0.0021 (4) | 0.0038 (4) | 0.0013 (4) |
C1 | 0.0134 (5) | 0.0138 (5) | 0.0159 (5) | 0.0006 (4) | 0.0038 (4) | 0.0001 (4) |
C6 | 0.0192 (6) | 0.0148 (5) | 0.0184 (5) | 0.0039 (4) | −0.0008 (4) | −0.0020 (4) |
C18 | 0.0152 (5) | 0.0153 (5) | 0.0184 (5) | −0.0009 (4) | −0.0011 (4) | −0.0011 (4) |
C14 | 0.0168 (5) | 0.0172 (6) | 0.0186 (5) | 0.0030 (4) | 0.0003 (4) | 0.0005 (4) |
C11 | 0.0138 (5) | 0.0182 (6) | 0.0203 (5) | −0.0014 (4) | 0.0016 (4) | −0.0064 (4) |
C20 | 0.0203 (6) | 0.0132 (5) | 0.0202 (5) | −0.0014 (4) | 0.0017 (4) | 0.0035 (4) |
C17 | 0.0195 (6) | 0.0189 (6) | 0.0255 (6) | −0.0044 (5) | 0.0047 (5) | −0.0030 (5) |
C21 | 0.0227 (6) | 0.0164 (6) | 0.0255 (6) | −0.0032 (5) | 0.0061 (5) | 0.0010 (5) |
C15 | 0.0354 (7) | 0.0219 (6) | 0.0169 (6) | −0.0012 (5) | −0.0016 (5) | 0.0007 (5) |
C19 | 0.0163 (6) | 0.0243 (7) | 0.0281 (6) | 0.0005 (5) | 0.0031 (5) | −0.0038 (5) |
S1—C1 | 1.6921 (11) | C10—C11 | 1.3903 (16) |
N2—H2 | 0.905 (15) | C12—H12 | 0.9300 |
N2—C8 | 1.4206 (14) | C12—C13 | 1.3910 (16) |
N2—C1 | 1.3415 (14) | C12—C11 | 1.3826 (17) |
N3—C3 | 1.4277 (14) | C13—H13 | 0.9300 |
N3—C16 | 1.4722 (14) | C6—H6 | 0.9300 |
N3—C14 | 1.4779 (14) | C18—H18A | 0.9700 |
N1—H1 | 0.851 (16) | C18—H18B | 0.9700 |
N1—C2 | 1.4335 (14) | C18—C19 | 1.5217 (17) |
N1—C1 | 1.3652 (14) | C14—H14A | 0.9700 |
N4—C9 | 1.4231 (14) | C14—H14B | 0.9700 |
N4—C18 | 1.4822 (14) | C14—C15 | 1.5174 (17) |
N4—C20 | 1.4724 (14) | C11—H11 | 0.9300 |
C3—C2 | 1.4072 (15) | C20—H20A | 0.9700 |
C3—C4 | 1.4013 (15) | C20—H20B | 0.9700 |
C9—C8 | 1.4089 (15) | C20—C21 | 1.5198 (17) |
C9—C10 | 1.4018 (15) | C17—H17A | 0.9600 |
C2—C7 | 1.3955 (16) | C17—H17B | 0.9600 |
C8—C13 | 1.3919 (15) | C17—H17C | 0.9600 |
C4—H4 | 0.9300 | C21—H21A | 0.9600 |
C4—C5 | 1.3822 (17) | C21—H21B | 0.9600 |
C7—H7 | 0.9300 | C21—H21C | 0.9600 |
C7—C6 | 1.3865 (16) | C15—H15A | 0.9600 |
C5—H5 | 0.9300 | C15—H15B | 0.9600 |
C5—C6 | 1.3879 (17) | C15—H15C | 0.9600 |
C16—H16A | 0.9700 | C19—H19A | 0.9600 |
C16—H16B | 0.9700 | C19—H19B | 0.9600 |
C16—C17 | 1.5186 (17) | C19—H19C | 0.9600 |
C10—H10 | 0.9300 | ||
C8—N2—H2 | 118.1 (9) | N1—C1—S1 | 119.00 (8) |
C1—N2—H2 | 113.5 (9) | C7—C6—C5 | 119.00 (11) |
C1—N2—C8 | 127.18 (9) | C7—C6—H6 | 120.5 |
C3—N3—C16 | 117.08 (9) | C5—C6—H6 | 120.5 |
C3—N3—C14 | 114.65 (9) | N4—C18—H18A | 108.5 |
C16—N3—C14 | 112.71 (9) | N4—C18—H18B | 108.5 |
C2—N1—H1 | 112.4 (10) | N4—C18—C19 | 114.99 (10) |
C1—N1—H1 | 113.5 (10) | H18A—C18—H18B | 107.5 |
C1—N1—C2 | 128.45 (10) | C19—C18—H18A | 108.5 |
C9—N4—C18 | 112.15 (9) | C19—C18—H18B | 108.5 |
C9—N4—C20 | 116.34 (9) | N3—C14—H14A | 108.5 |
C20—N4—C18 | 111.31 (9) | N3—C14—H14B | 108.5 |
C2—C3—N3 | 120.14 (10) | N3—C14—C15 | 114.93 (10) |
C4—C3—N3 | 121.78 (10) | H14A—C14—H14B | 107.5 |
C4—C3—C2 | 118.01 (10) | C15—C14—H14A | 108.5 |
C8—C9—N4 | 118.78 (10) | C15—C14—H14B | 108.5 |
C10—C9—N4 | 123.20 (10) | C10—C11—H11 | 120.0 |
C10—C9—C8 | 118.02 (10) | C12—C11—C10 | 119.99 (11) |
C3—C2—N1 | 124.79 (10) | C12—C11—H11 | 120.0 |
C7—C2—N1 | 115.56 (10) | N4—C20—H20A | 108.9 |
C7—C2—C3 | 119.63 (10) | N4—C20—H20B | 108.9 |
C9—C8—N2 | 119.24 (9) | N4—C20—C21 | 113.48 (10) |
C13—C8—N2 | 120.32 (10) | H20A—C20—H20B | 107.7 |
C13—C8—C9 | 120.14 (10) | C21—C20—H20A | 108.9 |
C3—C4—H4 | 119.2 | C21—C20—H20B | 108.9 |
C5—C4—C3 | 121.52 (11) | C16—C17—H17A | 109.5 |
C5—C4—H4 | 119.2 | C16—C17—H17B | 109.5 |
C2—C7—H7 | 119.3 | C16—C17—H17C | 109.5 |
C6—C7—C2 | 121.37 (11) | H17A—C17—H17B | 109.5 |
C6—C7—H7 | 119.3 | H17A—C17—H17C | 109.5 |
C4—C5—H5 | 119.9 | H17B—C17—H17C | 109.5 |
C4—C5—C6 | 120.27 (11) | C20—C21—H21A | 109.5 |
C6—C5—H5 | 119.9 | C20—C21—H21B | 109.5 |
N3—C16—H16A | 109.3 | C20—C21—H21C | 109.5 |
N3—C16—H16B | 109.3 | H21A—C21—H21B | 109.5 |
N3—C16—C17 | 111.40 (9) | H21A—C21—H21C | 109.5 |
H16A—C16—H16B | 108.0 | H21B—C21—H21C | 109.5 |
C17—C16—H16A | 109.3 | C14—C15—H15A | 109.5 |
C17—C16—H16B | 109.3 | C14—C15—H15B | 109.5 |
C9—C10—H10 | 119.3 | C14—C15—H15C | 109.5 |
C11—C10—C9 | 121.32 (11) | H15A—C15—H15B | 109.5 |
C11—C10—H10 | 119.3 | H15A—C15—H15C | 109.5 |
C13—C12—H12 | 120.1 | H15B—C15—H15C | 109.5 |
C11—C12—H12 | 120.1 | C18—C19—H19A | 109.5 |
C11—C12—C13 | 119.72 (10) | C18—C19—H19B | 109.5 |
C8—C13—H13 | 119.6 | C18—C19—H19C | 109.5 |
C12—C13—C8 | 120.71 (11) | H19A—C19—H19B | 109.5 |
C12—C13—H13 | 119.6 | H19A—C19—H19C | 109.5 |
N2—C1—S1 | 124.35 (9) | H19B—C19—H19C | 109.5 |
N2—C1—N1 | 116.61 (10) | ||
N2—C8—C13—C12 | 171.57 (10) | C4—C3—C2—N1 | 176.86 (10) |
N3—C3—C2—N1 | −0.16 (16) | C4—C3—C2—C7 | −4.85 (15) |
N3—C3—C2—C7 | 178.13 (9) | C4—C5—C6—C7 | −2.64 (17) |
N3—C3—C4—C5 | 179.08 (10) | C16—N3—C3—C2 | 157.09 (10) |
N1—C2—C7—C6 | −177.58 (10) | C16—N3—C3—C4 | −19.82 (14) |
N4—C9—C8—N2 | 9.69 (15) | C16—N3—C14—C15 | 56.20 (13) |
N4—C9—C8—C13 | −176.53 (10) | C10—C9—C8—N2 | −170.21 (10) |
N4—C9—C10—C11 | 177.90 (10) | C10—C9—C8—C13 | 3.57 (16) |
C3—N3—C16—C17 | −67.54 (12) | C13—C12—C11—C10 | 2.17 (17) |
C3—N3—C14—C15 | −81.12 (12) | C1—N2—C8—C9 | −128.51 (12) |
C3—C2—C7—C6 | 3.98 (16) | C1—N2—C8—C13 | 57.73 (15) |
C3—C4—C5—C6 | 1.66 (17) | C1—N1—C2—C3 | −60.21 (16) |
C9—N4—C18—C19 | 69.76 (13) | C1—N1—C2—C7 | 121.44 (12) |
C9—N4—C20—C21 | 68.56 (13) | C18—N4—C9—C8 | 68.45 (13) |
C9—C8—C13—C12 | −2.13 (16) | C18—N4—C9—C10 | −111.66 (12) |
C9—C10—C11—C12 | −0.65 (17) | C18—N4—C20—C21 | −161.30 (10) |
C2—N1—C1—S1 | −153.44 (9) | C14—N3—C3—C2 | −67.53 (13) |
C2—N1—C1—N2 | 28.65 (17) | C14—N3—C3—C4 | 115.56 (11) |
C2—C3—C4—C5 | 2.11 (16) | C14—N3—C16—C17 | 156.26 (10) |
C2—C7—C6—C5 | −0.18 (17) | C11—C12—C13—C8 | −0.78 (17) |
C8—N2—C1—S1 | 10.13 (16) | C20—N4—C9—C8 | −161.81 (10) |
C8—N2—C1—N1 | −172.09 (10) | C20—N4—C9—C10 | 18.08 (15) |
C8—C9—C10—C11 | −2.20 (16) | C20—N4—C18—C19 | −62.54 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.851 (16) | 2.677 (16) | 3.5017 (10) | 163.6 (13) |
N2—H2···N3 | 0.905 (15) | 1.864 (15) | 2.7366 (14) | 161.4 (13) |
Symmetry code: (i) −x, −y+1, −z+1. |
Acknowledgements
Dr Ji-Eun Lee (Gyeongsang National University) is gratefully acknowledged for collecting the single-crystal XRD data.
Funding information
Funding for this research was provided by: National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2021R1G1A1093332 and 2022R1F1A1064158).
References
Al-Saidi, H. M. & Khan, S. (2022). Crit. Rev. Anal. Chem. pp. 1–17. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Doyle, A. G. & Jacobsen, E. N. (2007). Chem. Rev. 107, 5713–5743. Web of Science CrossRef PubMed CAS Google Scholar
Khan, E., Khan, S., Gul, Z. & Muhammad, M. (2021). Crit. Rev. Anal. Chem. 51, 812–834. Web of Science CAS PubMed Google Scholar
Kožurková, M., Sabolová, D. & Kristian, P. (2017). J. Appl. Toxicol. 37, 1132–1139. Web of Science PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, A.-F., Wang, J.-H., Wang, F. & Jiang, Y.-B. (2010). Chem. Soc. Rev. 39, 3729–3745. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parvin, T., Yadav, R. & Choudhury, L. H. (2020). Org. Biomol. Chem. 18, 5513–5532. Web of Science CrossRef CAS PubMed Google Scholar
Ren, P., Vechorkin, O., Csok, Z., Salihu, I., Scopelliti, R. & Hu, X. (2011). Dalton Trans. 40, 8906–8911. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ronchetti, R., Moroni, G., Carotti, A., Gioiello, A. & Camaioni, E. (2021). RSC Med. Chem. 12, 1046–1064. Web of Science CrossRef CAS PubMed Google Scholar
Saeed, A., Flörke, U. & Erben, M. F. (2014). J. Sulfur Chem. 35, 318–355. Web of Science CrossRef CAS Google Scholar
Schroeder, D. C. (1955). Chem. Rev. 55, 181–228. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y.-L., Wei, Y. & Shi, M. (2017). ChemCatChem, 9, 718–727. Web of Science CrossRef CAS Google Scholar
Thapa, P., Palacios, P. M., Tran, T., Pierce, B. S. & Foss, F. W. (2020). J. Org. Chem. 85, 1991–2009. Web of Science CrossRef CAS PubMed Google Scholar
Zahra, U., Saeed, A., Abdul Fattah, T., Flörke, U. & Erben, M. F. (2022). RSC Adv. 12, 12710–12745. Web of Science CrossRef CAS PubMed Google Scholar
Zhang, Z. & Schreiner, P. R. (2009). Chem. Soc. Rev. 38, 1187–1198. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.