research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of the sulfones of 2,3-di­phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one and 2,3-di­phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one

crossmark logo

aDepartment of Biochemistry and Molecular Biology Pennsylvania State University, University Park, PA 16802, USA, bDepartment of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA, cMendel Science Center, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA, and dPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 8 February 2023; accepted 20 February 2023; online 23 February 2023)

The title sulfones, 2,3-diphenyl-2,3-di­hydro-4H-1,3-benzo­thia­zine-1,1,4-trione, C20H15NO3S, and 2,3-diphenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zine-1,1,4-trione, C19H14N2O3S, crystallize in space group P21/n with two mol­ecules in each of the asymmetric units and have almost identical unit cells and extended structures. In both structures, the thia­zine rings exhibit a screw-boat pucker. The inter­molecular inter­actions observed are C—H⋯O-type hydrogen bonds and parallel partial ππ stacking between the fused aromatic rings (benzo- or pyrido-) of the core of the mol­ecules within each asymmetric unit, and also connecting to mol­ecules with translational periodicity in the a-axis direction in what can be described as columns (two per asymmetric unit) of stacked mol­ecules with alternating chirality. The pendant phenyl groups of both mol­ecules do not participate in aromatic ring inter­actions.

1. Chemical context

The 2,3-di­hydro-4H-1,3-thia­zin-4-ones are a group of six-membered heterocycles with a wide range of biological activity (Ryabukhin et al., 1996[Ryabukhin, Y. I., Korzhavina, O. B. & Suzdalev, K. F. (1996). Adv. Heterocycl. Chem. 66, 131-190.]; Silverberg & Moyer, 2019[Silverberg, L. J. & Moyer, Q. J. (2019). Arkivoc, (i), 139-227.]). Surrey's research (Surrey et al., 1958[Surrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469-3471.], Surrey, 1963a[Surrey, A. R. (1963a). US Patent 3082209.],b[Surrey, A. R. (1963b). US Patent 3093639.]) resulted in the discovery of two drugs, the anti­anxiety and muscle relaxant chlormezanone, 2-(4-chloro­phen­yl)-3-methyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1,1-dioxide (O'Neil, 2006[O'Neil, M. J. (2006). Editor. The Merck Index, 14th ed., p. 349. Whitehouse Station, NJ: Merck & Co. Inc.]; Tanaka & Hirayama, 2005[Tanaka, R. & Hirayama, N. (2005). Anal. Sci. X, 21, X57-X58.]) and the muscle relaxant dichlormezanone, 2-(3,4-di­chloro­phen­yl)-3-methyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1,1-dioxide (Elks & Ganellin, 1990[Elks, J. & Ganellin, C. R. (1990). Editors. Dictionary of Drugs, p. 382. Cambridge, UK: Chapman and Hall.]). These sulfones showed greater activity than the sulfides from which they were synthesized (Surrey et al., 1958[Surrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469-3471.]).

[Scheme 1]

Compounds in this group with a fused benzene or pyridine ring are of particular inter­est because of their potential biological activity (Silverberg et al., 2016[Silverberg, L. J., Tierney, J., Pacheco, C., Lagalante, A., Bachert, J. T., Bayliff, J. A., Bendinsky, R. V., Cali, A. S., Chen, L., Cooper, A. D., Minehan, M. J., Mroz, C. R., Noble, D. J., Weisbeck, A. K., Xie, Y. & Yang, Z. (2016). Arkivoc, (vi), 122-143.], 2020[Silverberg, L. J., Pacheco, C., Sahu, D., Scholl, P., Sobhi, H. F., Bachert, J. T., Bandholz, K., Bendinsky, R. V., Bradley, H. G., Colburn, B. K., Coyle, D. J., Dahl, J. R., Felty, M., Fox, R. F., Gonzalez, K. M., Islam, J. M., Koperna, S. E., Moyer, Q. J., Noble, D. J., Ramirez, M. E. & Yang, Z. (2020). J. Heterocycl. Chem. 57, 1797-1805.], 2021[Silverberg, L. J., Mal, T. K., Pacheco, C. N., Povelones, M. L., Malfara, M. F., Lagalante, A. F., Olsen, M. A., Yennawar, H. P., Sobhi, H. F., Baney, K. R., Bozeman, R. L., Eroh, C. S., Fleming, M. J., Garcia, T. L., Gregory, C. L., Hahn, J. E., Hatter, A. M., Johns, L., Klinger, T. L., Li, J., Menig, A. J., Muench, G. C., Ramirez, M. E., Reilly, J., Sacco, N., Sheidy, A., Stoner, M. M., Thompson, E. N. & Yazdani, S. (2021). Molecules, 26, 6099.]; Malfara et al., 2021[Malfara, M. F., Silverberg, L. J., DiMaio, J., Lagalante, A. F., Olsen, M. A., Madison, E. & Povelones, M. L. (2021). Mol. Biochem. Parasitol. 245, 111396.]). We have previously reported the preparation of the title sulfones 2,3-diphenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one 1,1-dioxide 1 and 2,3-diphenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one 1,1-dioxide 2 (Silverberg, 2020[Silverberg, L. J. (2020). WO2020231873 A1.]). We have also described the X-ray crystal structures of the corresponding sulfides 3 and 4 and sulfoxides 5 and 6 (Yennawar, Bendinsky et al., 2014[Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, 465-465.]; Yennawar, Singh et al., 2014[Yennawar, H. P., Singh, H. & Silverberg, L. J. (2014). Acta Cryst. E70, 638-638.]; Yennawar, Fox et al., 2017[Yennawar, H. P., Fox, R., Moyer, Q. J., Yang, Z. & Silverberg, L. J. (2017). Acta Cryst. E73, 1189-1191.]; Yennawar, Noble et al., 2017[Yennawar, H. P., Noble, D. J., Yang, Z. & Silverberg, L. J. (2017). IUCrData, 2, x171112.]). Herein we report the crystal structures of 1 and 2, along with a more complete characterization than previously reported (Silverberg, 2020[Silverberg, L. J. (2020). WO2020231873 A1.]).

2. Structural commentary

The two title compounds (Figs. 1[link] and 2[link]) are structurally very similar with two mol­ecules of each in the asymmetric units of the respective crystals. Both of the crystal structures are in the monoclinic space group P21/n with very similar unit-cell dimensions, and are fairly well superimposable (Fig. 3[link]).

[Figure 1]
Figure 1
The asymmetric unit of 1 with displacement ellipsoids drawn at 50% probability level.
[Figure 2]
Figure 2
The asymmetric unit of 2 with displacement ellipsoids drawn at 50% probability level.
[Figure 3]
Figure 3
Overlay plot of 1 and 2 where atoms S1 and S2 of the two structures are matched. The atoms that differ in the two structures, namely C2 and C22 of 1 and N2 and N4 of 2, are labeled.

The structures of 1 and 2 both display a screw-boat (pucker) conformation for the four thia­zine rings in the two asymmetric units [puckering amplitude Q ranging between 0.616 (4) and 0.6449 (16) Å, and the θ and φ values, after accounting for the absolute conformation transformations, are between 60.7 (4) and 63.02 (16)°, and 140.53 (18) and 142.9 (4)°, respectively]. The puckering observed is similar to that in the sulfoxides 5 and 6 (Yennawar, Fox et al. 2017[Yennawar, H. P., Fox, R., Moyer, Q. J., Yang, Z. & Silverberg, L. J. (2017). Acta Cryst. E73, 1189-1191.]; Yennawar, Noble et al. 2017[Yennawar, H. P., Noble, D. J., Yang, Z. & Silverberg, L. J. (2017). IUCrData, 2, x171112.]), but is different from the envelope conformations seen in the sulfides 3 and 4 (Yennawar, Bendinsky et al., 2014[Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, 465-465.]; Yennawar, Singh et al., 2014[Yennawar, H. P., Singh, H. & Silverberg, L. J. (2014). Acta Cryst. E70, 638-638.]). Each mol­ecule contains one stereogenic center, which lies between the N atom and the SO2 group of the heterocyclic ring: in the asymmetric unit of 1, C8 has an S configuration and C28 an R configuration, thus generating a racemic pair. The situation is 2 is similar, with C8 S and C28 R.

In compound 1, the dihedral angle between the substituent phenyl rings is 58.7 (2) and 57.4 (3)° in the two asymmetric mol­ecules. Between the co-planar atoms of the fused benzene and the phenyl rings, the dihedral angle ranges between 83 and 100°. Compound 2 is again similar, showing a dihedral angle between the substituent phenyl rings of 53.04 (11) and 57.24 (13)°. Between the co-planar atoms of the pyridine ring and the phenyl rings of the respective structures, the dihedral angle ranges between 76 and 101°.

3. Supra­molecular features

Both of the extended structures are consolidated by C—H⋯O hydrogen bonds (Tables 1[link] and 2[link]). Assuming that the C—H⋯O angle should be greater than or equal to 130° as one of the qualifiers for such inter­actions, a very small variation in mol­ecular positioning in the two structures results in two additional inter­actions for 2 as compared to that in 1. However, in both structures (starting from the inter­actions within the asymmetric units followed by translation periodicity along the a direction) inter­molecular ππ stacking inter­actions between the fused aromatic rings, namely the benzene ring of the benzo­thia­zine unit in 1 and the pyridine ring of the pyrido­thia­zine unit in 2, can be seen (Figs. 4[link] and 5[link]). The centroid–centroid separations in 1 are 3.522 (3) and 3.521 (3) Å with corresponding values of 3.5715 (15) and 3.5991 (15) Å in 2.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O5i 0.95 2.65 3.353 (6) 131
C8—H8⋯O6ii 1.00 2.29 3.070 (6) 134
C16—H16⋯O6ii 0.95 2.67 3.410 (6) 135
C20—H20⋯O6 0.95 2.61 3.422 (6) 144
C28—H28⋯O3 1.00 2.31 3.096 (5) 135
C36—H36⋯O3iii 0.95 2.62 3.412 (6) 141
C40—H40⋯O3 0.95 2.73 3.473 (7) 136
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) x+1, y, z; (iii) [x-1, y, z].

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O5i 0.93 2.56 3.234 (3) 130
C5—H5⋯O4ii 0.93 2.69 3.388 (2) 132
C8—H8⋯O6ii 0.98 2.31 3.089 (2) 136
C16—H16⋯O6ii 0.93 2.71 3.466 (3) 139
C20—H20⋯O6 0.93 2.70 3.496 (3) 145
C25—H25⋯O1 0.93 2.75 3.463 (3) 135
C28—H28⋯O3 0.98 2.37 3.126 (2) 134
C36—H36⋯O3iii 0.93 2.64 3.381 (3) 137
C40—H40⋯O3 0.93 2.68 3.439 (3) 140
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) x+1, y, z; (iii) [x-1, y, z].
[Figure 4]
Figure 4
Crystal packing diagram for 1 showing inter­molecular pairs of C—H⋯O hydrogen bonds. Columns (four per unit cell) of mol­ecules with alternating chirality, due to the translational periodicity down the a direction can be envisioned.
[Figure 5]
Figure 5
Crystal packing diagram for 2 showing strong similarity with that of 1.

4. Database survey

Searches were undertaken using the American Chemical Society's Chemical Abstract Service (CAS) Scifinder platform. Only two crystal structures of other sulfones of 2,3-di­hydro-4H-1,3-benzo­thia­zin-4-ones have been reported (Elghamry et al. 2007[Elghamry, I., Döpp, D. & Henkel, G. J. (2007). J. Heterocycl. Chem. 44, 849-852.]). No other sulfone of a 2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one has been synthesized.

5. Synthesis and crystallization

TLC plates (silica gel GF, 250-micron, 10 × 20 cm, cat. No. 21521) were purchased from Analtech. TLCs were visualized under short-wave UV, and then with I2, and then by spraying with ceric ammonium nitrate/sulfuric acid and heating. Infrared spectra were run on a Thermo-Fisher NICOLET iS50 FT–IR using a diamond-ATR attachment for direct powder analysis (Penn State Schuylkill). 1H and 13C NMR experiments (Penn State's shared NMR facility, University Park) were carried out on a Bruker Advance-III-HD 500.20-MHz (1H frequency) instrument using a 5 mm Prodigy (liquid nitro­gen cooled) BBO BB-1H/19F/D Z-GRD cryoprobe. Samples were dissolved in CDCl3 and analyzed at room temperature. Typical conditions for 1H acquisition were 2 s relaxation delay, acquisition time of 4.089 s, spectral width of 8 kHz, 16 scans. Spectra were zero-filled to 128k points, and multiplied by exponential multiplication (EM with LB = 0.3 Hz) prior to FT. For the 13C experiments, data were acquired with power-gated 1H decoupling using a 2 s relaxation delay, with acquisition time of 1.1 s, spectral width of 29.8 kHz, and 256 scans. Spectra were zero-filled once, and multiplied by EM with LB = 2 Hz prior to FT. The exact masses of the synthesized compounds were determined using LC–MS (Villanova University). Exact mass was measured on a SCIEX Exion LC with a SCIEX 5600+ TripleTOF MS. Separation was achieved on an Agilent Infinity LabPoroshell 120 EC-C18 column maintained at 40°C with a gradient of 90/10 (water/aceto­nitrile with 0.1% formic acid) ramped from 5/95 over 6 min at a flowrate of 0.5 ml min−1. The TOF–MS was scanned over 100–500 Da and calibrated with the SCIEX APCI positive calibrant solution prior to accurate mass analysis. Compound exact mass was measured in positive ESI mode with a DP = 100 V, CE = 10, GAS1 = GAS2 = 60 psi, CUR = 30 psi, ISV = 5500 V, and source temperature of 450°C. Melting points were performed on a Vernier Melt Station (Penn State Schuylkill).

General Oxidation Procedure (Surrey et al., 1958[Surrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469-3471.]; Silverberg, 2020[Silverberg, L. J. (2020). WO2020231873 A1.]; Cannon et al., 2015[Cannon, K., Gandla, D., Lauro, S., Silverberg, L., Tierney, J. & Lagalante, A. (2015). Int. J. Chem. 7, 73-84.]): The heterocycle (0.267 mmol) was dissolved in glacial acetic acid (1.2 ml). An aqueous solution of KMnO4 (0.535 mmol in 1.45 ml water) was added dropwise at room temperature with vigorous stirring. The reaction was followed by TLC. Solid sodium bis­ulfite (NaHSO3/Na2S2O5) was added until the solution remained colorless; 1.45 ml of water was added and stirred for 10 min. The mixture was extracted with CH2Cl2 (3 × 5 ml). The organics were combined and washed once with sat. NaCl. The solution was dried over Na2SO4 and filtered. The product was purified by chromatography in a silica gel micro-column with mixtures of ethyl acetate and hexa­nes. Crystals for X-ray were grown as detailed below.

2,3-Diphenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one 1,1-dioxide, 1: Crystals for X-ray analysis were grown by slow evaporation from 2-propanol solution. 0.050 g (54%). m.p. 436–438 K. 1H NMR (CDCl3): δ(ppm): 8.29 (d, 1H, J = 7.7 Hz), 7.70 (m, 2H), 7.60 (t, J = 7.6 Hz, 1H), 7.32 (m, 2H), 7.25 (m, 8H), 5.79 (m, 1H, C2-H). 13C NMR (CDCl3) δ(ppm) 161.1 (C=O), 141.9, 135.0, 134.1, 133.4, 130.6, 130.0, 129.8, 129.1, 128.9, 128.6, 128.2, 126.6, 124.1, 82.6 (C2). HRMS (m/z): [M + H]+ of 350.0838 is consistent with calculated [M + H]+ of 350.0845. IR (neat, cm−1): 1655 (C=O), 1313 (SO2). Rf (50% EtOAc/hexa­nes) = 0.46.

2,3-Diphenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one 1,1-dioxide, 2: Crystals for X-ray were grown by slow evaporation from ethanol solution. 0.079 g (77%). m.p.: 483–484 K (decomposition). 1H NMR (CDCl3): δ(ppm): 8.77 (d, J = 5.1 Hz, 1H), 8.62 (d, J = 8.0 Hz, 1H), 7.67 (dd, J = 8.1, 4.7 Hz, 1H), 7.31 (m, 9H), 5.88 (s, 1H, C2-H). 13C NMR (CDCl3) δ(ppm): 160.5 (C=O), 153.9, 152.2, 141.3, 139.0, 130.2, 129.8, 129.1, 128.7, 128.4, 128.3, 126.4, 82.4 (C2). HRMS (m/z): [M + H]+ of 351.0790 is consistent with calculated [M + H]+ of 351.0797. IR (neat, cm−1): 1655 (C=O), 1325 (SO2). Rf (50% EtOAc/hexa­nes) = 0.37.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms were placed in their geometrically calculated positions and refined using the riding model with parent-atom—H lengths of 0.93–0.95 Å (aromatic CH) and 0.98–1.00 Å (methine CH). Isotropic displacement parameters for these atoms were set to 1.2 times Ueq of the parent atom.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C20H15NO3S C19H14N2O3S
Mr 349.39 350.38
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 173 298
a, b, c (Å) 6.8530 (6), 25.7472 (15), 19.0240 (12) 6.8584 (19), 25.487 (7), 19.008 (5)
β (°) 97.394 (7) 94.669 (7)
V3) 3328.8 (4) 3311.6 (16)
Z 8 8
Radiation type Cu Kα Mo Kα
μ (mm−1) 1.89 0.22
Crystal size (mm) 0.2 × 0.06 × 0.04 0.22 × 0.04 × 0.02
 
Data collection
Diffractometer ROD, Synergy Custom system, HyPix-Arc 150 Bruker CCD area detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.649, 1.000 0.237, 0.9
No. of measured, independent and observed [I > 2σ(I)] reflections 21581, 6557, 4087 29524, 7909, 5509
Rint 0.074 0.040
(sin θ/λ)max−1) 0.628 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.092, 0.300, 1.10 0.051, 0.138, 1.04
No. of reflections 6557 7909
No. of parameters 452 451
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.66, −1.06 0.31, −0.27
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 and (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.42.63a (Rigaku OD, 2022) for (1); SMART V5.634 (Bruker, 2001) for (2). Cell refinement: CrysAlis PRO 1.171.42.63a (Rigaku OD, 2022) for (1); SAINT V6.36A (Bruker, 2001) for (2). Data reduction: CrysAlis PRO 1.171.42.63a (Rigaku OD, 2022) for (1); SAINT V6.36A (Bruker, 2016) for (2). Program(s) used to solve structure: olex2.solve 1.3-ac4 (Bourhis et al., 2015) for (1); SHELXS (Sheldrick, 2008) for (2). For both structures, program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Olex2 1.3-ac4 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.3-ac4 (Dolomanov et al., 2009).

2,3-Diphenyl-2,3-dihydro-4H-1,3-benzothiazine-1,1,4-trione (1) top
Crystal data top
C20H15NO3SF(000) = 1456
Mr = 349.39Dx = 1.394 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 6.8530 (6) ÅCell parameters from 6963 reflections
b = 25.7472 (15) Åθ = 2.9–70.6°
c = 19.0240 (12) ŵ = 1.89 mm1
β = 97.394 (7)°T = 173 K
V = 3328.8 (4) Å3Block, clear colourless
Z = 80.2 × 0.06 × 0.04 mm
Data collection top
ROD, Synergy Custom system, HyPix-Arc 150
diffractometer
6557 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source4087 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.074
Detector resolution: 10.0000 pixels mm-1θmax = 75.7°, θmin = 2.9°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 3131
Tmin = 0.649, Tmax = 1.000l = 2318
21581 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.092 w = 1/[σ2(Fo2) + (0.1722P)2 + 1.2363P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.300(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.66 e Å3
6557 reflectionsΔρmin = 1.06 e Å3
452 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0038 (5)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.62556 (19)0.74906 (4)0.62956 (6)0.0454 (4)
O10.4248 (5)0.76270 (12)0.63479 (18)0.0532 (9)
O20.7399 (6)0.78342 (13)0.59272 (17)0.0608 (10)
O30.5497 (5)0.61116 (11)0.74902 (16)0.0456 (8)
N10.6484 (5)0.69574 (13)0.74977 (18)0.0390 (8)
C10.6386 (7)0.68627 (17)0.5944 (2)0.0407 (10)
C20.6537 (7)0.6796 (2)0.5231 (3)0.0501 (12)
H20.6546480.7086770.4925000.060*
C30.6673 (8)0.6295 (2)0.4972 (3)0.0544 (13)
H30.6807890.6243140.4486400.065*
C40.6615 (7)0.58719 (19)0.5413 (3)0.0517 (12)
H40.6682590.5531020.5226560.062*
C50.6457 (7)0.59407 (18)0.6128 (3)0.0489 (12)
H50.6435830.5647080.6429410.059*
C60.6330 (7)0.64378 (17)0.6404 (2)0.0419 (10)
C70.6090 (7)0.64872 (16)0.7171 (2)0.0424 (10)
C80.7557 (7)0.73578 (16)0.7164 (2)0.0428 (10)
H80.8872820.7211530.7097040.051*
C90.7905 (7)0.78609 (15)0.7569 (2)0.0399 (10)
C100.6351 (7)0.81491 (17)0.7762 (2)0.0464 (11)
H100.5041920.8022070.7667740.056*
C110.6728 (9)0.86284 (18)0.8097 (2)0.0537 (13)
H110.5668330.8830720.8223770.064*
C120.8631 (8)0.88091 (18)0.8244 (3)0.0515 (12)
H120.8883160.9132470.8478530.062*
C131.0162 (8)0.85202 (19)0.8050 (3)0.0533 (13)
H131.1470620.8646940.8148520.064*
C140.9815 (8)0.80463 (18)0.7713 (2)0.0490 (12)
H141.0881080.7848840.7580930.059*
C150.6318 (7)0.69896 (16)0.8253 (2)0.0429 (11)
C160.7980 (8)0.69680 (18)0.8737 (2)0.0516 (12)
H160.9233330.6919470.8583430.062*
C170.7812 (10)0.7018 (2)0.9453 (3)0.0638 (16)
H170.8957530.7007150.9791900.077*
C180.6001 (11)0.7083 (2)0.9673 (3)0.0691 (18)
H180.5892980.7120691.0162970.083*
C190.4346 (10)0.7092 (2)0.9185 (3)0.0669 (16)
H190.3092070.7131260.9340680.080*
C200.4482 (8)0.70451 (19)0.8461 (3)0.0537 (12)
H200.3335540.7051180.8122180.064*
S20.13252 (18)0.49892 (4)0.65164 (6)0.0439 (4)
O40.0701 (5)0.48580 (12)0.65590 (18)0.0540 (9)
O50.2516 (6)0.46129 (12)0.62200 (17)0.0565 (10)
O60.0546 (5)0.64719 (11)0.74688 (16)0.0467 (8)
N20.1453 (6)0.56260 (13)0.76148 (18)0.0408 (9)
C210.1453 (7)0.55831 (17)0.6066 (2)0.0413 (10)
C220.1579 (7)0.55769 (18)0.5345 (2)0.0481 (11)
H220.1612090.5257490.5097110.058*
C230.1655 (8)0.6047 (2)0.4994 (2)0.0506 (12)
H230.1747750.6050130.4499950.061*
C240.1596 (7)0.65089 (18)0.5357 (3)0.0506 (12)
H240.1643570.6828850.5111270.061*
C250.1468 (7)0.65103 (18)0.6081 (2)0.0461 (11)
H250.1455170.6830640.6328680.055*
C260.1357 (7)0.60427 (17)0.6446 (2)0.0403 (10)
C270.1111 (7)0.60690 (16)0.7219 (2)0.0420 (10)
C280.2553 (7)0.51938 (16)0.7368 (2)0.0419 (10)
H280.3879250.5328270.7292780.050*
C290.2872 (8)0.47302 (16)0.7859 (2)0.0454 (11)
C300.1322 (9)0.44441 (18)0.8061 (2)0.0556 (14)
H300.0002990.4546070.7908360.067*
C310.1698 (11)0.4010 (2)0.8486 (3)0.0698 (17)
H310.0634390.3816620.8627240.084*
C320.3619 (12)0.3856 (2)0.8706 (3)0.078 (2)
H320.3869870.3553380.8988490.093*
C330.5153 (11)0.4141 (2)0.8514 (3)0.0766 (19)
H330.6467380.4040080.8675410.092*
C340.4806 (9)0.4575 (2)0.8087 (3)0.0590 (14)
H340.5878390.4766650.7948420.071*
C350.1235 (7)0.56603 (16)0.8364 (2)0.0434 (11)
C360.0597 (8)0.5610 (2)0.8570 (3)0.0567 (13)
H360.1720830.5568510.8226320.068*
C370.0791 (10)0.5620 (2)0.9288 (3)0.0699 (16)
H370.2051740.5584560.9440780.084*
C380.0863 (11)0.5680 (3)0.9778 (3)0.0791 (19)
H380.0730550.5680551.0269360.095*
C390.2698 (11)0.5741 (3)0.9570 (3)0.0789 (19)
H390.3819750.5788910.9912380.095*
C400.2890 (9)0.5731 (2)0.8853 (2)0.0570 (13)
H400.4145790.5773320.8699280.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0655 (9)0.0296 (6)0.0391 (6)0.0001 (5)0.0002 (5)0.0001 (4)
O10.061 (2)0.0395 (17)0.057 (2)0.0105 (16)0.0017 (16)0.0030 (15)
O20.097 (3)0.0413 (19)0.0443 (18)0.0202 (18)0.0095 (18)0.0079 (15)
O30.058 (2)0.0301 (15)0.0467 (17)0.0032 (14)0.0004 (14)0.0002 (13)
N10.053 (2)0.0259 (17)0.0377 (19)0.0017 (15)0.0038 (16)0.0035 (14)
C10.050 (3)0.033 (2)0.039 (2)0.0015 (19)0.0021 (18)0.0064 (18)
C20.057 (3)0.048 (3)0.042 (3)0.005 (2)0.003 (2)0.000 (2)
C30.059 (3)0.057 (3)0.046 (3)0.000 (3)0.001 (2)0.013 (2)
C40.060 (3)0.044 (3)0.050 (3)0.000 (2)0.002 (2)0.021 (2)
C50.056 (3)0.035 (2)0.053 (3)0.003 (2)0.004 (2)0.008 (2)
C60.055 (3)0.032 (2)0.038 (2)0.0004 (19)0.0021 (19)0.0066 (18)
C70.054 (3)0.024 (2)0.048 (3)0.0027 (19)0.002 (2)0.0033 (18)
C80.060 (3)0.025 (2)0.043 (2)0.0033 (19)0.007 (2)0.0053 (18)
C90.056 (3)0.0244 (19)0.039 (2)0.0002 (18)0.0016 (19)0.0020 (17)
C100.059 (3)0.032 (2)0.046 (3)0.001 (2)0.003 (2)0.003 (2)
C110.080 (4)0.035 (2)0.044 (3)0.005 (2)0.000 (2)0.001 (2)
C120.075 (4)0.030 (2)0.048 (3)0.010 (2)0.001 (2)0.005 (2)
C130.061 (3)0.042 (3)0.055 (3)0.013 (2)0.001 (2)0.004 (2)
C140.061 (3)0.038 (2)0.047 (3)0.007 (2)0.002 (2)0.001 (2)
C150.062 (3)0.027 (2)0.039 (2)0.003 (2)0.006 (2)0.0033 (18)
C160.069 (3)0.043 (3)0.039 (2)0.005 (2)0.007 (2)0.005 (2)
C170.102 (5)0.047 (3)0.038 (3)0.004 (3)0.006 (3)0.001 (2)
C180.128 (6)0.038 (3)0.043 (3)0.012 (3)0.020 (3)0.003 (2)
C190.097 (5)0.047 (3)0.063 (3)0.009 (3)0.033 (3)0.014 (3)
C200.067 (3)0.042 (3)0.055 (3)0.000 (2)0.017 (2)0.009 (2)
S20.0639 (8)0.0257 (5)0.0396 (6)0.0007 (5)0.0026 (5)0.0015 (4)
O40.063 (2)0.0390 (17)0.057 (2)0.0106 (16)0.0041 (16)0.0020 (15)
O50.087 (3)0.0370 (17)0.0442 (18)0.0210 (17)0.0040 (17)0.0065 (14)
O60.060 (2)0.0281 (15)0.0503 (18)0.0065 (14)0.0026 (15)0.0040 (14)
N20.056 (2)0.0279 (17)0.0372 (19)0.0005 (16)0.0035 (16)0.0005 (15)
C210.051 (3)0.031 (2)0.039 (2)0.0002 (19)0.0025 (19)0.0034 (18)
C220.059 (3)0.041 (2)0.043 (2)0.006 (2)0.001 (2)0.006 (2)
C230.061 (3)0.052 (3)0.038 (2)0.005 (2)0.004 (2)0.008 (2)
C240.058 (3)0.037 (2)0.056 (3)0.001 (2)0.004 (2)0.016 (2)
C250.053 (3)0.034 (2)0.050 (3)0.000 (2)0.000 (2)0.004 (2)
C260.050 (3)0.032 (2)0.038 (2)0.0057 (18)0.0014 (18)0.0016 (18)
C270.052 (3)0.029 (2)0.043 (2)0.0015 (19)0.0007 (19)0.0006 (19)
C280.060 (3)0.030 (2)0.035 (2)0.001 (2)0.0034 (19)0.0011 (18)
C290.071 (3)0.028 (2)0.035 (2)0.003 (2)0.002 (2)0.0009 (18)
C300.091 (4)0.035 (2)0.041 (3)0.004 (2)0.007 (2)0.002 (2)
C310.125 (6)0.038 (3)0.046 (3)0.002 (3)0.012 (3)0.003 (2)
C320.142 (7)0.042 (3)0.045 (3)0.018 (4)0.004 (4)0.009 (2)
C330.109 (5)0.057 (3)0.057 (3)0.023 (4)0.018 (3)0.004 (3)
C340.079 (4)0.043 (3)0.049 (3)0.011 (3)0.013 (3)0.000 (2)
C350.062 (3)0.030 (2)0.039 (2)0.003 (2)0.008 (2)0.0006 (18)
C360.064 (3)0.053 (3)0.054 (3)0.003 (3)0.011 (2)0.009 (2)
C370.087 (5)0.069 (4)0.057 (3)0.013 (3)0.022 (3)0.008 (3)
C380.114 (6)0.076 (4)0.050 (3)0.006 (4)0.021 (4)0.005 (3)
C390.106 (5)0.088 (5)0.040 (3)0.006 (4)0.003 (3)0.007 (3)
C400.074 (4)0.055 (3)0.039 (3)0.005 (3)0.004 (2)0.005 (2)
Geometric parameters (Å, º) top
S1—O11.436 (4)S2—O41.442 (4)
S1—O21.425 (3)S2—O51.429 (3)
S1—C11.756 (4)S2—C211.760 (4)
S1—C81.806 (5)S2—C281.805 (4)
O3—C71.239 (5)O6—C271.224 (5)
N1—C71.372 (5)N2—C271.370 (5)
N1—C81.459 (5)N2—C281.455 (5)
N1—C151.458 (5)N2—C351.454 (5)
C1—C21.383 (6)C21—C221.385 (6)
C1—C61.405 (6)C21—C261.393 (6)
C2—H20.9500C22—H220.9500
C2—C31.387 (7)C22—C231.386 (6)
C3—H30.9500C23—H230.9500
C3—C41.378 (7)C23—C241.380 (7)
C4—H40.9500C24—H240.9500
C4—C51.390 (6)C24—C251.392 (6)
C5—H50.9500C25—H250.9500
C5—C61.390 (6)C25—C261.397 (6)
C6—C71.494 (6)C26—C271.502 (6)
C8—H81.0000C28—H281.0000
C8—C91.510 (5)C28—C291.514 (6)
C9—C101.386 (6)C29—C301.387 (7)
C9—C141.387 (7)C29—C341.399 (7)
C10—H100.9500C30—H300.9500
C10—C111.398 (6)C30—C311.383 (7)
C11—H110.9500C31—H310.9500
C11—C121.379 (7)C31—C321.387 (9)
C12—H120.9500C32—H320.9500
C12—C131.375 (7)C32—C331.370 (9)
C13—H130.9500C33—H330.9500
C13—C141.385 (6)C33—C341.383 (7)
C14—H140.9500C34—H340.9500
C15—C161.370 (6)C35—C361.369 (7)
C15—C201.375 (7)C35—C401.383 (6)
C16—H160.9500C36—H360.9500
C16—C171.388 (7)C36—C371.391 (7)
C17—H170.9500C37—H370.9500
C17—C181.370 (9)C37—C381.381 (9)
C18—H180.9500C38—H380.9500
C18—C191.370 (9)C38—C391.375 (9)
C19—H190.9500C39—H390.9500
C19—C201.397 (7)C39—C401.387 (7)
C20—H200.9500C40—H400.9500
O1—S1—C1110.4 (2)O4—S2—C21109.8 (2)
O1—S1—C8110.4 (2)O4—S2—C28111.0 (2)
O2—S1—O1118.4 (2)O5—S2—O4117.8 (2)
O2—S1—C1109.0 (2)O5—S2—C21109.3 (2)
O2—S1—C8109.2 (2)O5—S2—C28109.2 (2)
C1—S1—C897.5 (2)C21—S2—C2897.9 (2)
C7—N1—C8120.4 (4)C27—N2—C28121.2 (4)
C7—N1—C15117.5 (4)C27—N2—C35117.1 (4)
C15—N1—C8119.8 (3)C35—N2—C28119.0 (3)
C2—C1—S1120.2 (4)C22—C21—S2119.0 (3)
C2—C1—C6121.6 (4)C22—C21—C26122.5 (4)
C6—C1—S1118.2 (3)C26—C21—S2118.5 (3)
C1—C2—H2120.6C21—C22—H22120.7
C1—C2—C3118.7 (5)C21—C22—C23118.6 (4)
C3—C2—H2120.6C23—C22—H22120.7
C2—C3—H3119.7C22—C23—H23119.8
C4—C3—C2120.6 (4)C24—C23—C22120.4 (4)
C4—C3—H3119.7C24—C23—H23119.8
C3—C4—H4119.8C23—C24—H24119.7
C3—C4—C5120.5 (4)C23—C24—C25120.5 (4)
C5—C4—H4119.8C25—C24—H24119.7
C4—C5—H5119.9C24—C25—H25119.9
C4—C5—C6120.2 (5)C24—C25—C26120.3 (4)
C6—C5—H5119.9C26—C25—H25119.9
C1—C6—C7123.9 (4)C21—C26—C25117.7 (4)
C5—C6—C1118.3 (4)C21—C26—C27124.4 (4)
C5—C6—C7117.8 (4)C25—C26—C27117.9 (4)
O3—C7—N1121.6 (4)O6—C27—N2122.1 (4)
O3—C7—C6119.8 (4)O6—C27—C26119.9 (4)
N1—C7—C6118.6 (4)N2—C27—C26117.9 (4)
S1—C8—H8107.6S2—C28—H28107.4
N1—C8—S1108.3 (3)N2—C28—S2108.2 (3)
N1—C8—H8107.6N2—C28—H28107.4
N1—C8—C9116.0 (4)N2—C28—C29116.3 (4)
C9—C8—S1109.3 (3)C29—C28—S2109.7 (3)
C9—C8—H8107.6C29—C28—H28107.4
C10—C9—C8121.2 (4)C30—C29—C28122.3 (5)
C10—C9—C14120.1 (4)C30—C29—C34119.4 (5)
C14—C9—C8118.6 (4)C34—C29—C28118.2 (5)
C9—C10—H10120.3C29—C30—H30120.0
C9—C10—C11119.4 (5)C31—C30—C29119.9 (6)
C11—C10—H10120.3C31—C30—H30120.0
C10—C11—H11119.8C30—C31—H31119.8
C12—C11—C10120.3 (5)C30—C31—C32120.4 (6)
C12—C11—H11119.8C32—C31—H31119.8
C11—C12—H12120.1C31—C32—H32120.1
C13—C12—C11119.8 (5)C33—C32—C31119.8 (5)
C13—C12—H12120.1C33—C32—H32120.1
C12—C13—H13119.7C32—C33—H33119.7
C12—C13—C14120.6 (5)C32—C33—C34120.6 (6)
C14—C13—H13119.7C34—C33—H33119.7
C9—C14—H14120.1C29—C34—H34120.1
C13—C14—C9119.7 (5)C33—C34—C29119.8 (6)
C13—C14—H14120.1C33—C34—H34120.1
C16—C15—N1119.7 (4)C36—C35—N2119.2 (4)
C16—C15—C20121.6 (5)C36—C35—C40121.5 (5)
C20—C15—N1118.7 (4)C40—C35—N2119.3 (4)
C15—C16—H16120.4C35—C36—H36120.4
C15—C16—C17119.3 (5)C35—C36—C37119.2 (5)
C17—C16—H16120.4C37—C36—H36120.4
C16—C17—H17119.9C36—C37—H37120.3
C18—C17—C16120.3 (5)C38—C37—C36119.4 (6)
C18—C17—H17119.9C38—C37—H37120.3
C17—C18—H18120.0C37—C38—H38119.3
C17—C18—C19119.9 (5)C39—C38—C37121.3 (6)
C19—C18—H18120.0C39—C38—H38119.3
C18—C19—H19119.6C38—C39—H39120.4
C18—C19—C20120.8 (6)C38—C39—C40119.2 (6)
C20—C19—H19119.6C40—C39—H39120.4
C15—C20—C19118.2 (5)C35—C40—C39119.4 (6)
C15—C20—H20120.9C35—C40—H40120.3
C19—C20—H20120.9C39—C40—H40120.3
S1—C1—C2—C3178.8 (4)S2—C21—C22—C23179.2 (4)
S1—C1—C6—C5179.3 (4)S2—C21—C26—C25179.8 (3)
S1—C1—C6—C72.4 (6)S2—C21—C26—C271.2 (7)
S1—C8—C9—C1065.3 (5)S2—C28—C29—C3062.1 (5)
S1—C8—C9—C14111.2 (4)S2—C28—C29—C34114.8 (4)
O1—S1—C1—C298.3 (4)O4—S2—C21—C2295.0 (4)
O1—S1—C1—C681.6 (4)O4—S2—C21—C2682.9 (4)
O1—S1—C8—N155.2 (3)O4—S2—C28—N256.2 (3)
O1—S1—C8—C972.2 (4)O4—S2—C28—C2971.6 (4)
O2—S1—C1—C233.3 (5)O5—S2—C21—C2235.7 (4)
O2—S1—C1—C6146.8 (4)O5—S2—C21—C26146.4 (4)
O2—S1—C8—N1173.1 (3)O5—S2—C28—N2172.3 (3)
O2—S1—C8—C959.6 (4)O5—S2—C28—C2959.9 (4)
N1—C8—C9—C1057.5 (6)N2—C28—C29—C3061.0 (6)
N1—C8—C9—C14125.9 (5)N2—C28—C29—C34122.0 (5)
N1—C15—C16—C17177.7 (4)N2—C35—C36—C37177.2 (5)
N1—C15—C20—C19178.0 (4)N2—C35—C40—C39177.1 (5)
C1—S1—C8—N159.9 (3)C21—S2—C28—N258.7 (3)
C1—S1—C8—C9172.8 (3)C21—S2—C28—C29173.5 (4)
C1—C2—C3—C41.5 (8)C21—C22—C23—C240.3 (8)
C1—C6—C7—O3159.3 (4)C21—C26—C27—O6161.4 (4)
C1—C6—C7—N118.8 (7)C21—C26—C27—N215.7 (7)
C2—C1—C6—C50.8 (7)C22—C21—C26—C252.4 (7)
C2—C1—C6—C7177.5 (4)C22—C21—C26—C27176.6 (4)
C2—C3—C4—C51.3 (8)C22—C23—C24—C250.3 (8)
C3—C4—C5—C60.9 (8)C23—C24—C25—C261.3 (7)
C4—C5—C6—C10.6 (7)C24—C25—C26—C212.3 (7)
C4—C5—C6—C7177.8 (4)C24—C25—C26—C27176.8 (4)
C5—C6—C7—O319.0 (7)C25—C26—C27—O617.6 (7)
C5—C6—C7—N1162.8 (4)C25—C26—C27—N2165.3 (4)
C6—C1—C2—C31.3 (7)C26—C21—C22—C231.4 (8)
C7—N1—C8—S156.4 (5)C27—N2—C28—S257.3 (5)
C7—N1—C8—C9179.8 (4)C27—N2—C28—C29178.8 (4)
C7—N1—C15—C16100.3 (5)C27—N2—C35—C3683.8 (5)
C7—N1—C15—C2080.1 (5)C27—N2—C35—C4097.7 (5)
C8—S1—C1—C2146.7 (4)C28—S2—C21—C22149.2 (4)
C8—S1—C1—C633.4 (4)C28—S2—C21—C2632.9 (4)
C8—N1—C7—O3167.2 (4)C28—N2—C27—O6165.2 (4)
C8—N1—C7—C614.7 (6)C28—N2—C27—C2617.7 (6)
C8—N1—C15—C1662.6 (5)C28—N2—C35—C36114.4 (5)
C8—N1—C15—C20117.0 (5)C28—N2—C35—C4064.1 (6)
C8—C9—C10—C11176.0 (4)C28—C29—C30—C31177.1 (4)
C8—C9—C14—C13176.6 (4)C28—C29—C34—C33177.5 (5)
C9—C10—C11—C121.0 (7)C29—C30—C31—C320.6 (8)
C10—C9—C14—C130.0 (7)C30—C29—C34—C330.5 (7)
C10—C11—C12—C131.0 (7)C30—C31—C32—C331.4 (9)
C11—C12—C13—C140.5 (7)C31—C32—C33—C341.7 (9)
C12—C13—C14—C90.0 (7)C32—C33—C34—C291.2 (8)
C14—C9—C10—C110.5 (7)C34—C29—C30—C310.2 (7)
C15—N1—C7—O34.4 (7)C35—N2—C27—O63.8 (7)
C15—N1—C7—C6177.5 (4)C35—N2—C27—C26179.1 (4)
C15—N1—C8—S1141.2 (3)C35—N2—C28—S2141.6 (3)
C15—N1—C8—C917.8 (6)C35—N2—C28—C2917.7 (6)
C15—C16—C17—C180.7 (8)C35—C36—C37—C380.1 (8)
C16—C15—C20—C191.5 (7)C36—C35—C40—C391.4 (8)
C16—C17—C18—C190.7 (8)C36—C37—C38—C391.2 (10)
C17—C18—C19—C201.0 (8)C37—C38—C39—C401.1 (10)
C18—C19—C20—C150.1 (7)C38—C39—C40—C350.1 (9)
C20—C15—C16—C171.8 (7)C40—C35—C36—C371.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O5i0.952.653.353 (6)131
C8—H8···O6ii1.002.293.070 (6)134
C16—H16···O6ii0.952.673.410 (6)135
C20—H20···O60.952.613.422 (6)144
C28—H28···O31.002.313.096 (5)135
C36—H36···O3iii0.952.623.412 (6)141
C40—H40···O30.952.733.473 (7)136
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z.
2,3-Diphenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazine-1,1,4-trione (2) top
Crystal data top
C19H14N2O3SF(000) = 1456
Mr = 350.38Dx = 1.406 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.8584 (19) ÅCell parameters from 5480 reflections
b = 25.487 (7) Åθ = 2.3–26.1°
c = 19.008 (5) ŵ = 0.22 mm1
β = 94.669 (7)°T = 298 K
V = 3311.6 (16) Å3Needle, colorless
Z = 80.22 × 0.04 × 0.02 mm
Data collection top
Bruker CCD area detector
diffractometer
5509 reflections with I > 2σ(I)
phi and ω scansRint = 0.040
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.4°, θmin = 1.3°
Tmin = 0.237, Tmax = 0.9h = 99
29524 measured reflectionsk = 3232
7909 independent reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.239P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7909 reflectionsΔρmax = 0.31 e Å3
451 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.63430 (8)0.74816 (2)0.62562 (3)0.04230 (15)
O10.4325 (2)0.75929 (6)0.63311 (8)0.0578 (4)
O20.7474 (3)0.78399 (6)0.58785 (8)0.0681 (5)
O30.5672 (2)0.60846 (5)0.74613 (7)0.0460 (3)
N10.6591 (2)0.69392 (5)0.74620 (8)0.0339 (3)
C10.6539 (3)0.68391 (7)0.59048 (10)0.0372 (4)
N20.6667 (3)0.68078 (7)0.52113 (9)0.0485 (4)
C30.6840 (3)0.63236 (9)0.49538 (11)0.0536 (6)
H30.6934630.6286670.4471040.064*
C40.6885 (3)0.58773 (8)0.53596 (11)0.0484 (5)
H40.7026100.5549550.5154650.058*
C50.6718 (3)0.59221 (7)0.60787 (11)0.0409 (5)
H50.6722930.5624700.6362340.049*
C60.6543 (3)0.64206 (7)0.63705 (10)0.0342 (4)
C70.6251 (3)0.64642 (7)0.71450 (10)0.0348 (4)
C80.7641 (3)0.73481 (6)0.71038 (9)0.0329 (4)
H80.8927060.7206570.7015370.039*
C90.7973 (3)0.78510 (6)0.75095 (9)0.0349 (4)
C100.6433 (3)0.81482 (7)0.77271 (11)0.0434 (5)
H100.5150800.8034400.7631750.052*
C110.6813 (4)0.86115 (8)0.80844 (11)0.0521 (6)
H110.5784410.8808590.8234880.062*
C120.8701 (4)0.87842 (8)0.82198 (12)0.0566 (6)
H120.8949050.9097510.8461380.068*
C131.0224 (4)0.84948 (9)0.79988 (12)0.0586 (6)
H131.1501970.8613400.8089380.070*
C140.9866 (3)0.80271 (8)0.76418 (11)0.0465 (5)
H141.0900550.7832270.7491500.056*
C150.6365 (3)0.69882 (7)0.82159 (10)0.0386 (4)
C160.7981 (4)0.69689 (8)0.86865 (11)0.0536 (6)
H160.9205270.6895830.8532830.064*
C170.7772 (5)0.70596 (10)0.93957 (13)0.0721 (7)
H170.8867650.7053110.9717840.087*
C180.5986 (5)0.71578 (10)0.96239 (14)0.0763 (9)
H180.5867780.7220231.0100560.092*
C190.4354 (5)0.71657 (10)0.91580 (16)0.0763 (8)
H190.3130120.7228430.9318760.092*
C200.4533 (3)0.70791 (9)0.84404 (13)0.0576 (6)
H200.3435380.7082670.8119320.069*
S20.13994 (8)0.49436 (2)0.65360 (2)0.03987 (15)
O40.0638 (2)0.48498 (5)0.66084 (8)0.0538 (4)
O50.2549 (3)0.45389 (5)0.62563 (8)0.0642 (5)
O60.0749 (2)0.64799 (5)0.73881 (7)0.0468 (4)
N30.1540 (2)0.56289 (5)0.75909 (8)0.0356 (4)
C210.1620 (3)0.55275 (6)0.60387 (10)0.0348 (4)
N40.1748 (2)0.54607 (6)0.53518 (8)0.0432 (4)
C230.1843 (3)0.58965 (8)0.49718 (11)0.0485 (5)
H230.1914930.5865420.4487120.058*
C240.1841 (3)0.63940 (8)0.52628 (11)0.0469 (5)
H240.1928990.6688640.4978550.056*
C250.1706 (3)0.64482 (7)0.59793 (11)0.0410 (5)
H250.1695570.6779870.6182830.049*
C260.1587 (2)0.60021 (6)0.63938 (9)0.0327 (4)
C270.1291 (3)0.60600 (7)0.71683 (10)0.0354 (4)
C280.2623 (3)0.51705 (6)0.73556 (9)0.0340 (4)
H280.3929320.5290970.7255730.041*
C290.2885 (3)0.47234 (7)0.78757 (10)0.0416 (5)
C300.1352 (4)0.44247 (8)0.80797 (11)0.0533 (6)
H300.0074710.4508920.7917610.064*
C310.1710 (5)0.40003 (9)0.85245 (13)0.0733 (8)
H310.0672650.3798120.8657270.088*
C320.3580 (6)0.38766 (11)0.87699 (14)0.0930 (11)
H320.3811060.3591420.9070280.112*
C330.5112 (5)0.41710 (12)0.85749 (15)0.0914 (10)
H330.6382350.4086550.8746140.110*
C340.4785 (4)0.45936 (9)0.81249 (13)0.0633 (6)
H340.5833460.4790400.7989280.076*
C350.1232 (3)0.56794 (7)0.83321 (10)0.0422 (5)
C360.0608 (4)0.55993 (9)0.85463 (13)0.0618 (6)
H360.1657560.5530100.8218310.074*
C370.0874 (5)0.56238 (12)0.92666 (17)0.0913 (10)
H370.2106990.5569030.9423740.110*
C380.0697 (7)0.57292 (14)0.97419 (16)0.1078 (12)
H380.0528670.5738581.0222270.129*
C390.2486 (6)0.58194 (15)0.95149 (15)0.1071 (12)
H390.3530650.5897830.9840690.129*
C400.2778 (4)0.57965 (10)0.88050 (12)0.0692 (7)
H400.4009870.5859860.8651340.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0610 (4)0.0304 (2)0.0346 (3)0.0002 (2)0.0017 (2)0.00136 (19)
O10.0600 (10)0.0494 (8)0.0608 (10)0.0194 (7)0.0144 (8)0.0116 (7)
O20.1144 (14)0.0454 (9)0.0452 (9)0.0225 (9)0.0100 (9)0.0039 (7)
O30.0600 (9)0.0318 (7)0.0461 (8)0.0101 (6)0.0053 (7)0.0014 (6)
N10.0438 (9)0.0268 (7)0.0309 (8)0.0005 (6)0.0024 (7)0.0046 (6)
C10.0402 (11)0.0361 (9)0.0349 (10)0.0008 (8)0.0009 (8)0.0062 (8)
N20.0591 (11)0.0516 (10)0.0347 (9)0.0033 (8)0.0032 (8)0.0088 (8)
C30.0576 (14)0.0645 (14)0.0385 (12)0.0032 (11)0.0019 (10)0.0208 (11)
C40.0447 (12)0.0473 (11)0.0531 (13)0.0001 (9)0.0036 (10)0.0232 (10)
C50.0395 (11)0.0353 (10)0.0473 (12)0.0008 (8)0.0003 (9)0.0110 (8)
C60.0326 (10)0.0308 (9)0.0389 (10)0.0009 (7)0.0012 (8)0.0095 (7)
C70.0355 (10)0.0298 (9)0.0385 (10)0.0002 (7)0.0008 (8)0.0051 (8)
C80.0362 (10)0.0277 (8)0.0344 (10)0.0000 (7)0.0011 (8)0.0026 (7)
C90.0458 (11)0.0249 (8)0.0334 (10)0.0018 (7)0.0002 (8)0.0012 (7)
C100.0490 (12)0.0327 (9)0.0477 (12)0.0019 (8)0.0012 (9)0.0064 (8)
C110.0706 (16)0.0340 (10)0.0513 (13)0.0069 (10)0.0034 (11)0.0091 (9)
C120.0846 (18)0.0377 (11)0.0478 (13)0.0140 (11)0.0078 (12)0.0137 (10)
C130.0616 (15)0.0550 (13)0.0587 (15)0.0228 (11)0.0017 (12)0.0157 (11)
C140.0502 (13)0.0427 (11)0.0466 (12)0.0043 (9)0.0038 (10)0.0091 (9)
C150.0544 (12)0.0278 (9)0.0342 (10)0.0031 (8)0.0074 (9)0.0057 (7)
C160.0689 (15)0.0515 (12)0.0396 (12)0.0056 (11)0.0005 (11)0.0025 (10)
C170.110 (2)0.0658 (16)0.0388 (13)0.0026 (15)0.0039 (14)0.0051 (12)
C180.135 (3)0.0554 (15)0.0415 (14)0.0112 (16)0.0260 (17)0.0101 (11)
C190.098 (2)0.0676 (17)0.0699 (19)0.0138 (15)0.0470 (17)0.0170 (14)
C200.0604 (15)0.0546 (13)0.0598 (15)0.0074 (11)0.0178 (12)0.0099 (11)
S20.0619 (3)0.0239 (2)0.0325 (3)0.0015 (2)0.0038 (2)0.00153 (18)
O40.0589 (10)0.0428 (8)0.0571 (9)0.0192 (7)0.0116 (7)0.0086 (7)
O50.1104 (14)0.0397 (8)0.0414 (9)0.0282 (8)0.0011 (8)0.0074 (6)
O60.0610 (9)0.0305 (7)0.0485 (8)0.0107 (6)0.0025 (7)0.0063 (6)
N30.0479 (10)0.0271 (7)0.0316 (8)0.0024 (6)0.0031 (7)0.0017 (6)
C210.0401 (11)0.0308 (9)0.0330 (10)0.0023 (7)0.0005 (8)0.0036 (7)
N40.0545 (11)0.0441 (9)0.0307 (9)0.0005 (7)0.0023 (7)0.0013 (7)
C230.0561 (13)0.0559 (13)0.0332 (11)0.0003 (10)0.0026 (9)0.0088 (9)
C240.0473 (12)0.0451 (11)0.0479 (12)0.0036 (9)0.0014 (10)0.0175 (9)
C250.0416 (11)0.0301 (9)0.0503 (12)0.0004 (8)0.0018 (9)0.0051 (8)
C260.0316 (10)0.0288 (8)0.0373 (10)0.0006 (7)0.0002 (8)0.0001 (7)
C270.0369 (10)0.0291 (9)0.0392 (10)0.0010 (7)0.0019 (8)0.0042 (7)
C280.0424 (10)0.0265 (8)0.0324 (9)0.0014 (7)0.0010 (8)0.0018 (7)
C290.0632 (13)0.0293 (9)0.0310 (10)0.0043 (9)0.0030 (9)0.0000 (8)
C300.0805 (17)0.0383 (11)0.0418 (12)0.0025 (10)0.0081 (11)0.0017 (9)
C310.133 (3)0.0419 (12)0.0476 (14)0.0040 (14)0.0228 (16)0.0059 (11)
C320.170 (4)0.0582 (17)0.0487 (16)0.028 (2)0.001 (2)0.0197 (13)
C330.119 (3)0.086 (2)0.0635 (18)0.035 (2)0.0273 (18)0.0165 (16)
C340.0714 (17)0.0604 (14)0.0548 (14)0.0069 (12)0.0152 (12)0.0078 (11)
C350.0615 (14)0.0312 (9)0.0346 (10)0.0008 (9)0.0086 (9)0.0022 (8)
C360.0666 (16)0.0621 (14)0.0587 (15)0.0074 (12)0.0179 (12)0.0076 (12)
C370.111 (3)0.093 (2)0.077 (2)0.0220 (19)0.053 (2)0.0210 (18)
C380.171 (4)0.116 (3)0.0408 (17)0.009 (3)0.033 (2)0.0017 (17)
C390.144 (3)0.137 (3)0.0400 (16)0.025 (3)0.0044 (18)0.0144 (18)
C400.0865 (19)0.0826 (18)0.0381 (13)0.0191 (15)0.0032 (12)0.0114 (12)
Geometric parameters (Å, º) top
S1—O11.4309 (16)S2—O41.4349 (16)
S1—O21.4289 (16)S2—O51.4268 (15)
S1—C11.7776 (18)S2—C211.7762 (18)
S1—C81.8085 (19)S2—C281.8037 (18)
O3—C71.222 (2)O6—C271.218 (2)
N1—C71.364 (2)N3—C271.364 (2)
N1—C81.466 (2)N3—C281.473 (2)
N1—C151.459 (2)N3—C351.447 (2)
C1—N21.331 (2)C21—N41.327 (2)
C1—C61.386 (3)C21—C261.386 (2)
N2—C31.336 (3)N4—C231.329 (2)
C3—H30.9300C23—H230.9300
C3—C41.373 (3)C23—C241.383 (3)
C4—H40.9300C24—H240.9300
C4—C51.386 (3)C24—C251.379 (3)
C5—H50.9300C25—H250.9300
C5—C61.395 (2)C25—C261.389 (2)
C6—C71.506 (3)C26—C271.510 (3)
C8—H80.9800C28—H280.9800
C8—C91.503 (2)C28—C291.510 (2)
C9—C101.390 (3)C29—C301.379 (3)
C9—C141.377 (3)C29—C341.390 (3)
C10—H100.9300C30—H300.9300
C10—C111.376 (3)C30—C311.383 (3)
C11—H110.9300C31—H310.9300
C11—C121.372 (3)C31—C321.365 (4)
C12—H120.9300C32—H320.9300
C12—C131.372 (3)C32—C331.367 (4)
C13—H130.9300C33—H330.9300
C13—C141.383 (3)C33—C341.382 (3)
C14—H140.9300C34—H340.9300
C15—C161.367 (3)C35—C361.372 (3)
C15—C201.379 (3)C35—C401.366 (3)
C16—H160.9300C36—H360.9300
C16—C171.387 (3)C36—C371.397 (4)
C17—H170.9300C37—H370.9300
C17—C181.356 (4)C37—C381.375 (5)
C18—H180.9300C38—H380.9300
C18—C191.370 (4)C38—C391.353 (5)
C19—H190.9300C39—H390.9300
C19—C201.397 (3)C39—C401.382 (4)
C20—H200.9300C40—H400.9300
O1—S1—C1108.86 (9)O4—S2—C21108.44 (8)
O1—S1—C8111.01 (9)O4—S2—C28111.03 (9)
O2—S1—O1119.48 (10)O5—S2—O4119.14 (10)
O2—S1—C1109.82 (9)O5—S2—C21109.50 (9)
O2—S1—C8108.66 (9)O5—S2—C28108.74 (9)
C1—S1—C896.59 (8)C21—S2—C2897.89 (8)
C7—N1—C8119.92 (15)C27—N3—C28120.15 (15)
C7—N1—C15118.80 (14)C27—N3—C35118.72 (14)
C15—N1—C8119.39 (13)C35—N3—C28118.90 (14)
N2—C1—S1116.15 (14)N4—C21—S2115.57 (13)
N2—C1—C6126.13 (17)N4—C21—C26126.60 (16)
C6—C1—S1117.72 (14)C26—C21—S2117.81 (14)
C1—N2—C3115.68 (18)C21—N4—C23115.95 (16)
N2—C3—H3118.0N4—C23—H23118.4
N2—C3—C4123.90 (19)N4—C23—C24123.15 (19)
C4—C3—H3118.0C24—C23—H23118.4
C3—C4—H4120.5C23—C24—H24120.4
C3—C4—C5119.07 (18)C25—C24—C23119.26 (17)
C5—C4—H4120.5C25—C24—H24120.4
C4—C5—H5120.5C24—C25—H25120.3
C4—C5—C6118.94 (19)C24—C25—C26119.32 (17)
C6—C5—H5120.5C26—C25—H25120.3
C1—C6—C5116.27 (17)C21—C26—C25115.71 (17)
C1—C6—C7125.04 (15)C21—C26—C27124.67 (15)
C5—C6—C7118.58 (16)C25—C26—C27119.46 (16)
O3—C7—N1122.41 (17)O6—C27—N3122.22 (17)
O3—C7—C6119.79 (15)O6—C27—C26119.29 (16)
N1—C7—C6117.77 (15)N3—C27—C26118.39 (15)
S1—C8—H8107.5S2—C28—H28107.6
N1—C8—S1108.82 (12)N3—C28—S2107.80 (12)
N1—C8—H8107.5N3—C28—H28107.6
N1—C8—C9115.31 (14)N3—C28—C29115.84 (15)
C9—C8—S1109.85 (12)C29—C28—S2110.23 (12)
C9—C8—H8107.5C29—C28—H28107.6
C10—C9—C8122.03 (16)C30—C29—C28123.24 (19)
C14—C9—C8118.21 (16)C30—C29—C34119.20 (19)
C14—C9—C10119.72 (17)C34—C29—C28117.46 (19)
C9—C10—H10120.1C29—C30—H30119.9
C11—C10—C9119.8 (2)C29—C30—C31120.2 (2)
C11—C10—H10120.1C31—C30—H30119.9
C10—C11—H11119.8C30—C31—H31119.8
C12—C11—C10120.4 (2)C32—C31—C30120.3 (3)
C12—C11—H11119.8C32—C31—H31119.8
C11—C12—H12120.0C31—C32—H32119.9
C11—C12—C13120.03 (19)C31—C32—C33120.1 (3)
C13—C12—H12120.0C33—C32—H32119.9
C12—C13—H13119.9C32—C33—H33119.8
C12—C13—C14120.3 (2)C32—C33—C34120.4 (3)
C14—C13—H13119.9C34—C33—H33119.8
C9—C14—C13119.8 (2)C29—C34—H34120.1
C9—C14—H14120.1C33—C34—C29119.8 (3)
C13—C14—H14120.1C33—C34—H34120.1
C16—C15—N1119.61 (18)C36—C35—N3119.09 (19)
C16—C15—C20120.9 (2)C40—C35—N3119.53 (19)
C20—C15—N1119.38 (18)C40—C35—C36121.4 (2)
C15—C16—H16120.4C35—C36—H36120.6
C15—C16—C17119.2 (2)C35—C36—C37118.7 (3)
C17—C16—H16120.4C37—C36—H36120.6
C16—C17—H17119.7C36—C37—H37120.2
C18—C17—C16120.6 (3)C38—C37—C36119.6 (3)
C18—C17—H17119.7C38—C37—H37120.2
C17—C18—H18119.7C37—C38—H38119.8
C17—C18—C19120.5 (2)C39—C38—C37120.4 (3)
C19—C18—H18119.7C39—C38—H38119.8
C18—C19—H19120.1C38—C39—H39119.6
C18—C19—C20119.8 (3)C38—C39—C40120.8 (3)
C20—C19—H19120.1C40—C39—H39119.6
C15—C20—C19118.9 (2)C35—C40—C39119.0 (3)
C15—C20—H20120.5C35—C40—H40120.5
C19—C20—H20120.5C39—C40—H40120.5
S1—C1—N2—C3179.14 (15)S2—C21—N4—C23177.70 (14)
S1—C1—C6—C5179.38 (14)S2—C21—C26—C25178.19 (14)
S1—C1—C6—C74.6 (3)S2—C21—C26—C272.7 (2)
S1—C8—C9—C1064.1 (2)S2—C28—C29—C3056.3 (2)
S1—C8—C9—C14113.40 (17)S2—C28—C29—C34119.99 (18)
O1—S1—C1—N297.46 (17)O4—S2—C21—N495.33 (16)
O1—S1—C1—C682.47 (16)O4—S2—C21—C2682.93 (16)
O1—S1—C8—N152.60 (14)O4—S2—C28—N353.75 (14)
O1—S1—C8—C974.51 (14)O4—S2—C28—C2973.56 (15)
O2—S1—C1—N235.07 (19)O5—S2—C21—N436.17 (18)
O2—S1—C1—C6145.00 (15)O5—S2—C21—C26145.57 (15)
O2—S1—C8—N1174.07 (12)O5—S2—C28—N3173.30 (12)
O2—S1—C8—C958.82 (15)O5—S2—C28—C2959.39 (16)
N1—C8—C9—C1059.3 (2)N3—C28—C29—C3066.4 (2)
N1—C8—C9—C14123.22 (18)N3—C28—C29—C34117.3 (2)
N1—C15—C16—C17174.64 (19)N3—C35—C36—C37176.9 (2)
N1—C15—C20—C19175.11 (19)N3—C35—C40—C39177.0 (2)
C1—S1—C8—N160.54 (13)C21—S2—C28—N359.54 (13)
C1—S1—C8—C9172.35 (13)C21—S2—C28—C29173.14 (14)
C1—N2—C3—C40.1 (3)C21—N4—C23—C240.9 (3)
C1—C6—C7—O3157.04 (18)C21—C26—C27—O6159.73 (18)
C1—C6—C7—N120.8 (3)C21—C26—C27—N316.7 (3)
N2—C1—C6—C50.7 (3)N4—C21—C26—C250.1 (3)
N2—C1—C6—C7175.37 (18)N4—C21—C26—C27175.31 (18)
N2—C3—C4—C50.9 (3)N4—C23—C24—C250.9 (3)
C3—C4—C5—C61.1 (3)C23—C24—C25—C260.4 (3)
C4—C5—C6—C10.4 (3)C24—C25—C26—C210.1 (3)
C4—C5—C6—C7176.70 (17)C24—C25—C26—C27175.55 (17)
C5—C6—C7—O318.9 (3)C25—C26—C27—O615.6 (3)
C5—C6—C7—N1163.18 (16)C25—C26—C27—N3167.98 (16)
C6—C1—N2—C30.9 (3)C26—C21—N4—C230.4 (3)
C7—N1—C8—S157.44 (18)C27—N3—C28—S258.41 (19)
C7—N1—C8—C9178.63 (15)C27—N3—C28—C29177.60 (16)
C7—N1—C15—C1699.0 (2)C27—N3—C35—C3689.0 (2)
C7—N1—C15—C2084.2 (2)C27—N3—C35—C4092.1 (2)
C8—S1—C1—N2147.65 (16)C28—S2—C21—N4149.32 (15)
C8—S1—C1—C632.42 (16)C28—S2—C21—C2632.42 (16)
C8—N1—C7—O3167.93 (17)C28—N3—C27—O6165.63 (17)
C8—N1—C7—C614.3 (2)C28—N3—C27—C2618.0 (2)
C8—N1—C15—C1665.4 (2)C28—N3—C35—C36107.9 (2)
C8—N1—C15—C20111.5 (2)C28—N3—C35—C4070.9 (2)
C8—C9—C10—C11178.63 (18)C28—C29—C30—C31175.96 (19)
C8—C9—C14—C13178.46 (19)C28—C29—C34—C33176.8 (2)
C9—C10—C11—C120.7 (3)C29—C30—C31—C320.6 (4)
C10—C9—C14—C130.9 (3)C30—C29—C34—C330.4 (3)
C10—C11—C12—C130.0 (3)C30—C31—C32—C330.2 (4)
C11—C12—C13—C140.3 (4)C31—C32—C33—C340.4 (5)
C12—C13—C14—C90.2 (3)C32—C33—C34—C290.7 (4)
C14—C9—C10—C111.2 (3)C34—C29—C30—C310.3 (3)
C15—N1—C7—O33.7 (3)C35—N3—C27—O62.8 (3)
C15—N1—C7—C6178.52 (15)C35—N3—C27—C26179.13 (16)
C15—N1—C8—S1138.38 (14)C35—N3—C28—S2138.78 (14)
C15—N1—C8—C914.5 (2)C35—N3—C28—C2914.8 (2)
C15—C16—C17—C181.1 (4)C35—C36—C37—C380.3 (4)
C16—C15—C20—C191.7 (3)C36—C35—C40—C391.9 (4)
C16—C17—C18—C190.4 (4)C36—C37—C38—C391.3 (5)
C17—C18—C19—C200.9 (4)C37—C38—C39—C401.4 (6)
C18—C19—C20—C150.2 (3)C38—C39—C40—C350.2 (5)
C20—C15—C16—C172.2 (3)C40—C35—C36—C371.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O5i0.932.563.234 (3)130
C5—H5···O4ii0.932.693.388 (2)132
C8—H8···O6ii0.982.313.089 (2)136
C16—H16···O6ii0.932.713.466 (3)139
C20—H20···O60.932.703.496 (3)145
C25—H25···O10.932.753.463 (3)135
C28—H28···O30.982.373.126 (2)134
C36—H36···O3iii0.932.643.381 (3)137
C40—H40···O30.932.683.439 (3)140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z.
 

Funding information

Research reported here was conducted on instrumentation funded by National Science Foundation: CHEM-0131112 for the Bruker AXS diffractometer, and SIG S10 grants of the National Institutes of Health under award numbers 1S10OD028589–01 and 1S10RR023439–01, for the Rigaku diffraction system to Dr Neela Yennawar.

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCannon, K., Gandla, D., Lauro, S., Silverberg, L., Tierney, J. & Lagalante, A. (2015). Int. J. Chem. 7, 73–84.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElghamry, I., Döpp, D. & Henkel, G. J. (2007). J. Heterocycl. Chem. 44, 849–852.  CSD CrossRef CAS Google Scholar
First citationElks, J. & Ganellin, C. R. (1990). Editors. Dictionary of Drugs, p. 382. Cambridge, UK: Chapman and Hall.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMalfara, M. F., Silverberg, L. J., DiMaio, J., Lagalante, A. F., Olsen, M. A., Madison, E. & Povelones, M. L. (2021). Mol. Biochem. Parasitol. 245, 111396.  CrossRef PubMed Google Scholar
First citationO'Neil, M. J. (2006). Editor. The Merck Index, 14th ed., p. 349. Whitehouse Station, NJ: Merck & Co. Inc.  Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRyabukhin, Y. I., Korzhavina, O. B. & Suzdalev, K. F. (1996). Adv. Heterocycl. Chem. 66, 131–190.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilverberg, L. J. (2020). WO2020231873 A1.  Google Scholar
First citationSilverberg, L. J., Mal, T. K., Pacheco, C. N., Povelones, M. L., Malfara, M. F., Lagalante, A. F., Olsen, M. A., Yennawar, H. P., Sobhi, H. F., Baney, K. R., Bozeman, R. L., Eroh, C. S., Fleming, M. J., Garcia, T. L., Gregory, C. L., Hahn, J. E., Hatter, A. M., Johns, L., Klinger, T. L., Li, J., Menig, A. J., Muench, G. C., Ramirez, M. E., Reilly, J., Sacco, N., Sheidy, A., Stoner, M. M., Thompson, E. N. & Yazdani, S. (2021). Molecules, 26, 6099.  CSD CrossRef PubMed Google Scholar
First citationSilverberg, L. J. & Moyer, Q. J. (2019). Arkivoc, (i), 139–227.  Web of Science CrossRef Google Scholar
First citationSilverberg, L. J., Pacheco, C., Sahu, D., Scholl, P., Sobhi, H. F., Bachert, J. T., Bandholz, K., Bendinsky, R. V., Bradley, H. G., Colburn, B. K., Coyle, D. J., Dahl, J. R., Felty, M., Fox, R. F., Gonzalez, K. M., Islam, J. M., Koperna, S. E., Moyer, Q. J., Noble, D. J., Ramirez, M. E. & Yang, Z. (2020). J. Heterocycl. Chem. 57, 1797–1805.  CrossRef CAS Google Scholar
First citationSilverberg, L. J., Tierney, J., Pacheco, C., Lagalante, A., Bachert, J. T., Bayliff, J. A., Bendinsky, R. V., Cali, A. S., Chen, L., Cooper, A. D., Minehan, M. J., Mroz, C. R., Noble, D. J., Weisbeck, A. K., Xie, Y. & Yang, Z. (2016). Arkivoc, (vi), 122–143.  Google Scholar
First citationSurrey, A. R. (1963a). US Patent 3082209.  Google Scholar
First citationSurrey, A. R. (1963b). US Patent 3093639.  Google Scholar
First citationSurrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469–3471.  CrossRef CAS Web of Science Google Scholar
First citationTanaka, R. & Hirayama, N. (2005). Anal. Sci. X, 21, X57–X58.  CAS Google Scholar
First citationYennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, 465–465.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Fox, R., Moyer, Q. J., Yang, Z. & Silverberg, L. J. (2017). Acta Cryst. E73, 1189–1191.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Noble, D. J., Yang, Z. & Silverberg, L. J. (2017). IUCrData, 2, x171112.  Google Scholar
First citationYennawar, H. P., Singh, H. & Silverberg, L. J. (2014). Acta Cryst. E70, 638–638.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds