research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three newly synthesized flavanone hydrazones

crossmark logo

aDepartment of Biochemistry and Molecular Biology Pennsylvania State University, University Park, PA 16802, USA, and bPennsylvania State University, Brandywine Campus, 25 Yearsley Mill Road, Media, Pa 19063, USA
*Correspondence e-mail: ajs8621@psu.edu

Edited by J. Reibenspies, Texas A & M University, USA (Received 10 January 2023; accepted 8 February 2023; online 28 February 2023)

The crystal structures of racemic mixtures of three new flavanone-hydrazones in the centrosymmetric space group (P[\overline{1}]), are reported. The structures of (±,E)-N′-[5,7-dihy­droxy-2-(4-hy­droxy­phen­yl)chroman-4-yl­idene]-2-(naphthalen-1-yl)acetohydrazide ethyl acetate monosolvate, C27H22N2O5·C4H8O2, and of (±,E)-N′-[5,7-dihy­droxy-2-(4-hy­droxy­phen­yl)chroman-4-yl­idene]-4-hy­droxy­benzo­hydra­zide ethanol monosolvate, C22H18N2O6·C2H5OH, both exhibit an intra­molecular O—H⋯N and multiple inter­molecular O—H⋯O and C—H⋯O-type hydro­gen bonds. The third structure, that of (±,E)-N′-(6-methoxy-2-phenyl­chroman-4-yl­idene)-2-(naphthalen-1-yl­oxy)acetohydrazide, C28H24N2O4, has only one inter­molecular N—H⋯O-type hydrogen bond. In each of the three cases, the crystal packings are stabilized by ππ stacking inter­actions between various aromatic components of symmetry-related mol­ecules. The chiral carbon atom of the substituted chromane ring system in each case is puckered away from rest of the ring system.

1. Chemical context

Flavonoids encompass a family of organic, naturally occurring polyphenolic compounds with a general structure consisting of a 15-carbon skeleton containing two phenyl rings and a heterocyclic ring. Flavonoids include various subcategories – chalcones, flavones, flavanones, flavanols, isoflavones, anthocyanins – all of which have demonstrated differential health benefits such as anti-­oxidative, anti-inflammatory, anti-mutagenic, and anti-carcinogenic properties (Panche et al., 2016[Panche, A. N., Diwan, A. D. & Chandra, S. R. (2016). J. Nutr. Sci. 5, e47.]). As a result of their biologically privileged scaffold, flavonoids and their synthetic derivatives are of significant inter­est to the medicinal chemistry community as potential treatments of disease. We recently reported the first crystal structure of a hydrazone derivative of naringenin, (R/S,E)-2-(4-hy­droxy­phen­yl)-4-(2-phenyl­hydrazineyl­idene)chromane-5,7-diol, a biologically active compound that has been reported to induce apoptosis in human cervical cancer cells (Yennawar & Sigmon, 2022[Yennawar, H. P. & Sigmon, A. (2022). Acta Cryst. E78, 346-348.]; Kim et al., 2012[Kim, J. H., Kang, J., Kim, M., Bak, Y., Park, Y., Jung, K. Y., Lim, Y. & Yoon, D. Y. (2012). Toxicol. In Vitro, 26, 67-73.]). To further explore the medicinal potential of this class of compounds, three new flavonoid hydrazone compounds have been synthesized and structurally characterized. The three novel compounds are: (±,E)-N′-[5,7-dihy­droxy-2-(4-hy­droxy­phen­yl)chroman-4-yl­idene]-2-(naphthalen-1-yl)acetohydrazide ethyl acetate monosolvate (I), (±,E)-N′-(5,7-dihy­droxy-2-(4-hy­droxy­phen­yl)chroman-4-yl­idene)-4-hy­droxy­benzohydrazide ethanol monosolvate (II) and, (±,E)-N′-(6-meth­oxy-2-phenyl­chroman-4-yl­idene)-2-(naphthalen-1-yl­oxy)-acetohydrazide (III).

[Scheme 1]

2. Structural commentary

Each of the three title compounds (Figs. 1[link], 2[link] and 3[link]) has a carbon–nitro­gen double bond [N1=C1: 1.291 (3), 1.294 (4) and 1.284 (5) Å] and all are in the E isomeric form. The pyran ring of the chromane ring system in each structure has an envelope pucker with values of the puckering amplitude Q of 0.423 (3), 0.397 (6), 0.331 (5) Å, and of θ = 57.9 (4), 53.9 (6), 58.1 (7)°, respectively. The chiral carbon (C8) in each case is displaced between 0.454 and 0.580 Å from the chromane ring planes. The puckering is similar to that seen in the previously reported structure (Yennawar & Sigmon, 2022[Yennawar, H. P. & Sigmon, A. (2022). Acta Cryst. E78, 346-348.]).

[Figure 1]
Figure 1
Asymmetric unit of I with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Asymmetric unit of II with displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
Asymmetric unit of III with displacement ellipsoids drawn at the 50% probability level.

In compound I, the disordered fractions (65/35%) of the 4-hy­droxy­phenyl ring makes dihedral angles of 77.128 (5) and 83.872 (5)°, respectively, with the chromane ring system. An intra­mol­ecular O—H⋯N hydrogen bond exists between one of the hy­droxy groups on the chromane ring and the nitro­gen of the hydrazone group [O—H⋯N = 2.527 (2) Å, 147°]. Another hy­droxy group on the chromane ring participates in a hydrogen bond with the carbonyl group of the solvent ethyl acetate mol­ecule [O2—H2⋯O6 = 2.720 (3) Å, 173°]. The naphthalene ring system is close to perpendicular to the chromane ring system [dihedral angle 77.692 (5)°].

In II, the 4-hy­droxy­phenyl ring of the hydrazone moiety is coplanar with the chromane ring [dihedral angle of 2.485 (3)° with the chromane ring system] whereas the other hy­droxy­phenyl ring is almost perpendicular [75.449 (5)°] to the chromane ring system. The chiral carbon of chromane ring (C8_1) and the methyl carbon (C2_1) of the solvent mol­ecule show positional disorder. An intra­mol­ecular O—H⋯N hydrogen bond exists between one of the hy­droxy groups on the chromane ring and the nitro­gen of the hydrazone group [O3—H3⋯N1 = 2.542 (3) Å, 147°].

In III, the phenyl ring makes a dihedral angle of 86.17 (1)° with the chromane ring system, while the naphthalene ring system is perpendicular to the chromane ring system [dihedral angle = 89.65 (1)°].

3. Supra­molecular features

The extended packing of both I and II (Figs. 4[link] and 5[link]) exhibit inter­molecular O—H⋯O and C—H⋯O-type inter­actions. Additionally II has N—H⋯O-type inter­actions (Tables 1[link] and 2[link]). Both these packings have solvent mol­ecules, namely ethyl acetate and ethanol, respectively, which inter­act with the parent mol­ecules via O—H⋯O-type hydrogen bonds. In I, ππ inter­actions between the chromane rings of symmetry-related neighbors in the [101] direction are observed. The hy­droxy­phenyl rings also show similar stacking with their symmetry-related counterparts along the [10[\overline{1}]] direction. Partial stacking (ππ) inter­actions [centroid–centroid distance = 4.51 (1) Å] are observed between the chromane unit and the 4-hydroxyphenyl ring of the hydrazone moiety.

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1 0.82 1.80 2.527 (2) 147
O2—H2⋯O6 0.82 1.91 2.720 (3) 173
O4—H4⋯O3i 0.82 1.93 2.730 (3) 166
C9—H9B⋯O4ii 0.97 2.57 3.461 (3) 153
Symmetry codes: (i) x, y+1, z; (ii) [-x+2, -y+2, -z+1].

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1 0.82 1.82 2.542 (3) 147
O6—H6⋯O2i 0.82 2.12 2.739 (4) 132
O4_1—H4_1⋯O3ii 0.82 1.87 2.52 (3) 136
O4_2—H4_2⋯O3ii 0.82 1.96 2.728 (15) 156
O1_3—H1_3⋯O5iii 0.82 1.92 2.62 (2) 144
O1_4—H1_4⋯O5iii 0.82 2.28 2.877 (17) 130
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1; (iii) [-x, -y+2, -z+1].
[Figure 4]
Figure 4
Crystal packing diagram for I showing intra­molecular O—H⋯N and inter­molecular O—H⋯O and C—H⋯O hydrogen bonds, as well as extensive ππ stacking inter­actions between aromatic groups.
[Figure 5]
Figure 5
Crystal packing diagram for II showing intra­molecular O—H⋯N, inter­molecular O—H⋯O, N—H⋯O, C—H⋯O hydrogen bonds, as well as ππ stacking inter­actions.

In III (Fig. 6[link]) the hydrogen-bond inter­action is limited to one N—H⋯O-type hydrogen bond between the hydrazone group and carbonyl oxygen of a symmetry-related neighbor [N2—H2⋯O3 = 2.922 (4) Å, 167°], in a parallel, mutual give-and-take fashion (Table 3[link]). Parallel, partial stacking between symmetry-related naphthalene rings [centroid–centroid distance = 3.790 (2) Å], and also between the chromane ring system and the hydrazone group of neighboring mol­ecules [centroid–centroid distance = 3.730 (3) Å] further stabilizes the packing.

Table 3
Hydrogen-bond geometry (Å, °) for III[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.86 2.08 2.922 (4) 167
Symmetry code: (i) [-x+2, -y, -z+1].
[Figure 6]
Figure 6
Crystal packing diagram for III showing inter­molecular parallel N—H⋯O hydrogen bond pairs, and the ππ stacking inter­actions.

4. Database survey

A structure search was performed in Scifinder and Reaxys, and no identical structures were found. A text search (`flavanone' and `chroman-4-yl­idene' and `chromane-5,7-diol' and `benzo­pyran-4-yl­idene' and `chromen-4-yl­idene') was performed in the CCDC's free Access Structures online database (Groom et al., 2016; accessed January, 2023[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Six structures were found of hydrazone derivatives of flavanones, including our previously reported naringenin derivative (Yennawar & Sigmon, 2022[Yennawar, H. P. & Sigmon, A. (2022). Acta Cryst. E78, 346-348.]). No crystal structures were found of flavanone hydrazones containing a naphthalene moiety. Examples of other flavanone hydrazones for which crystal data have been reported include acyl hydrazone derivatives of 2-phen­ylchroman-4-one and hesperetin. In particular, crystal structures for 2′-[2-(4-fluoro­phen­yl)­chroman-4-yl­idene]iso­nico­tinohydrazide (Nie et al., 2006[Nie, A., Ghosh, S. & Huang, Z. (2006). Acta Cryst. E62, o1824-o1825.]) and N-{(±)-[5,7-di­hy­droxy-2-(3-hy­droxy-4-meth­oxy-phen­yl)­chroman-4-yl­idene]am­ino}­benzamide (Lodyga-Chruscinska et al., 2015[Lodyga-Chruscinska, E., Symonowicz, M., Sykula, A., Bujacz, A., Garribba, E., Rowinska-Zyrek, M., Oldziej, S., Klewicka, E., Janicka, M., Krolewska, K., Cieslak, M., Brodowska, K. & Chruscinski, L. (2015). J. Inorg. Biochem. 143, 34-47.]) have been reported.

5. Synthesis and crystallization

For the preparation of I, naringenin (653 mg, 2.4 mmol) and 2-(naphthalen-1-yl)acetohydrazide (501 mg, 2.5 mmol) were dissolved in ethanol (10 mL). Acetic acid (2.4 mmol, 137 µL) was added and the resultant solution was heated at reflux for 21 h. The precipitate was isolated via vacuum filtration and recrystallized from ethyl acetate via slow evaporation at room temperature to furnish clear, plate-shaped crystals suitable for X-ray analysis.

For the preparation of II, naringenin (3.000 g, 11.02 mmol) and 4-hy­droxy­benzohydrazine (2.011 g, 13.22 mmol) were dissolved in ethanol (20 mL). Acetic acid (17.5 mmol, 1.0 mL) was added and the resultant solution was heated at reflux for 48 h. The precipitate was isolated via filtration and recrystallized from ethanol via slow evaporation at room temperature to furnish transparent yellow, plate-shaped crystals suitable for X-ray analysis.

For the preparation of III, 6-meth­oxy­flavanone (381 mg, 1.5 mmol), 2-(naphthalen-1-yl)acetohydrazide (356.8 mg, 1.1 eq, 1.65 mmol), and p-toluene­sulfonic acid (29 mg, 0.10 eq, 0.15 mmol) were dissolved in toluene (15mL). The resultant mixture was heated at reflux for 12 h with a Dean–Stark apparatus. The solvent was removed and the crude product was purified on an automated flash chromatography system using a normal phase silica gel column with a gradient of hexa­ne:ethyl acetate (70:30 to 0:100). Recrystallization of the purified compound from ethanol via slow evaporation at room temperature furnished yellow, needle-shaped crystals suitable for X-ray analysis.

6. Refinement

Crystal data, data collection and structure refinement details for all three structures are summarized in Table 4[link]. The hydrogen atoms were placed in their geometrically calculated positions and their coordinates refined using the riding model with parent-atom—H lengths of 0.93 Å (CH), 0.98 Å (chiral-CH), 0.96 Å (CH3), 0.97 Å (CH2), 0.86 Å (NH) or 0.82 Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH) or 1.5 (CH3, OH) times Ueq of the parent atom. In II, the positional disorder of the chiral carbon (C8) and phen­oxy ring atoms (C10 through C15) refined to a percentage population ratio of 66/34, and that of the solvent (ethanol) mol­ecule to 57/43, necessitating the use of a total of 136 restraints. The idealized Me of the ethanol mol­ecule were refined as rotating group(s): C2_3 and C2_4 (H2A_3 through H2C_4).

Table 4
Experimental details

  I II III
Crystal data
Chemical formula C27H22N2O5·C4H8O2 C22H18N2O6·C2H6O C28H24N2O4
Mr 542.57 452.45 452.49
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 293 293 293
a, b, c (Å) 9.2210 (5), 12.1902 (8), 13.4982 (7) 10.0964 (9), 10.1570 (8), 12.3628 (10) 5.0681 (6), 13.4993 (15), 17.1144 (18)
α, β, γ (°) 94.413 (5), 95.172 (4), 111.561 (5) 84.557 (7), 68.169 (8), 82.529 (7) 74.392 (9), 86.34 (1), 88.416 (10)
V3) 1395.40 (15) 1165.39 (18) 1125.4 (2)
Z 2 2 2
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 0.76 0.80 0.73
Crystal size (mm) 0.12 × 0.1 × 0.02 0.18 × 0.16 × 0.04 0.17 × 0.04 × 0.03
 
Data collection
Diffractometer ROD, Synergy Custom system, HyPix-Arc 150 ROD, Synergy Custom system, HyPix-Arc 150 ROD, Synergy Custom system, HyPix-Arc 150
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.912, 1.000 0.660, 1.000 0.889, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15709, 5498, 3477 12522, 4585, 2642 11899, 4404, 1823
Rint 0.034 0.045 0.051
(sin θ/λ)max−1) 0.629 0.637 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.212, 1.09 0.086, 0.301, 1.07 0.077, 0.285, 0.99
No. of reflections 5498 4585 4404
No. of parameters 404 405 309
No. of restraints 60 136 6
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.25 0.45, −0.27 0.31, −0.24
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO 1.171.42.63a (Rigaku OD, 2022); cell refinement: CrysAlis PRO 1.171.42.63a (Rigaku OD, 2022); data reduction: CrysAlis PRO 1.171.42.63a (Rigaku OD, 2022). Program(s) used to solve structure: olex2.solve 1.3-ac4 (Bourhis et al., 2015) for (I). For all structures, program(s) used to refine structure: SHELXL 2018/3 (Sheldrick, 2015); molecular graphics: Olex2 1.3-ac4 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.3-ac4 (Dolomanov et al., 2009).

(±,E)-N'-[5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-ylidene]-2-(naphthalen-1-yl)acetohydrazide ethyl acetate monosolvate (I) top
Crystal data top
C27H22N2O5·C4H8O2Z = 2
Mr = 542.57F(000) = 572
Triclinic, P1Dx = 1.291 Mg m3
a = 9.2210 (5) ÅCu Kα radiation, λ = 1.54184 Å
b = 12.1902 (8) ÅCell parameters from 7321 reflections
c = 13.4982 (7) Åθ = 3.3–75.2°
α = 94.413 (5)°µ = 0.76 mm1
β = 95.172 (4)°T = 293 K
γ = 111.561 (5)°Plate, clear colourless
V = 1395.40 (15) Å30.12 × 0.1 × 0.02 mm
Data collection top
ROD, Synergy Custom system, HyPix-Arc 150
diffractometer
5498 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source3477 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.0000 pixels mm-1θmax = 75.9°, θmin = 3.3°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1514
Tmin = 0.912, Tmax = 1.000l = 1612
15709 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.1145P)2 + 0.0876P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.212(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.50 e Å3
5498 reflectionsΔρmin = 0.25 e Å3
404 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
60 restraintsExtinction coefficient: 0.0043 (8)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.6529 (2)0.67088 (14)0.64906 (14)0.0691 (5)
O20.3755 (3)0.32732 (16)0.78886 (14)0.0732 (6)
H20.3572230.2559100.7848800.110*
O30.6861 (2)0.29835 (14)0.53395 (12)0.0587 (5)
H30.7342940.3378330.4924320.088*
O40.8931 (2)1.22094 (14)0.63511 (15)0.0699 (5)
H40.8200551.2326420.6047450.105*
O50.9167 (2)0.35560 (15)0.32740 (13)0.0676 (5)
N10.8079 (2)0.48109 (16)0.44746 (14)0.0523 (5)
N20.8883 (2)0.52798 (17)0.37020 (14)0.0559 (5)
H2A0.9079530.6005220.3599400.067*
C10.7675 (3)0.54747 (19)0.50946 (17)0.0504 (5)
C20.6743 (3)0.48816 (19)0.58533 (16)0.0495 (5)
C30.6336 (3)0.36660 (19)0.59418 (17)0.0497 (5)
C40.5359 (3)0.3116 (2)0.66263 (17)0.0556 (6)
H4A0.5104460.2312040.6677960.067*
C50.4763 (3)0.3773 (2)0.72333 (18)0.0561 (6)
C60.5177 (3)0.4979 (2)0.71828 (19)0.0616 (7)
H60.4787940.5418320.7601040.074*
C70.6165 (3)0.5524 (2)0.65115 (18)0.0547 (6)
C80.7937 (4)0.7331 (2)0.6102 (2)0.0692 (8)
H80.8799160.7293320.6560790.083*
C90.8033 (3)0.6775 (2)0.50939 (17)0.0562 (6)
H9A0.7290950.6891580.4597010.067*
H9B0.9080120.7161260.4911920.067*
C100.8150 (4)0.8617 (2)0.6144 (2)0.0618 (7)
C11A0.941 (4)0.942 (2)0.6829 (18)0.057 (4)0.29 (3)
H11A1.0094480.9177390.7216400.068*0.29 (3)
C11B0.9501 (17)0.9468 (11)0.6569 (10)0.075 (3)0.71 (3)
H11B1.0293050.9238930.6842040.090*0.71 (3)
C12A0.957 (3)1.061 (2)0.6892 (16)0.054 (4)0.29 (3)
H12A1.0329111.1159390.7373330.065*0.29 (3)
C12B0.9790 (14)1.0664 (10)0.6628 (10)0.073 (3)0.71 (3)
H12B1.0759911.1222730.6917940.088*0.71 (3)
C130.8629 (3)1.1015 (2)0.62542 (18)0.0552 (6)
C14A0.754 (3)1.017 (2)0.561 (2)0.063 (6)0.29 (3)
H14A0.7160161.0366960.5013390.076*0.29 (3)
C14B0.7203 (11)1.0200 (8)0.5770 (8)0.0591 (17)0.71 (3)
H14B0.6372521.0421500.5559690.071*0.71 (3)
C15A0.696 (4)0.897 (3)0.583 (2)0.060 (5)0.29 (3)
H15A0.5902080.8486530.5771670.072*0.29 (3)
C15B0.7098 (16)0.8998 (12)0.5617 (11)0.074 (3)0.71 (3)
H15B0.6301810.8457460.5151810.089*0.71 (3)
C160.9357 (3)0.4563 (2)0.31054 (17)0.0557 (6)
C171.0111 (3)0.5114 (2)0.22271 (18)0.0657 (7)
H17A1.1136050.5062190.2230750.079*
H17B1.0258910.5947480.2287030.079*
C180.9101 (3)0.4491 (2)0.12479 (18)0.0599 (6)
C190.8009 (4)0.4899 (3)0.0847 (2)0.0792 (9)
H190.7871970.5542130.1183330.095*
C200.7074 (4)0.4338 (4)0.0093 (3)0.0987 (12)
H200.6321330.4608050.0365530.118*
C210.7296 (5)0.3416 (4)0.0578 (3)0.0965 (11)
H210.6690120.3063060.1189580.116*
C220.8380 (4)0.2977 (3)0.0206 (2)0.0786 (9)
C230.9276 (3)0.3499 (2)0.07340 (18)0.0619 (7)
C241.0342 (4)0.3000 (3)0.1086 (2)0.0826 (9)
H241.0942720.3314360.1706100.099*
C251.0540 (6)0.2075 (4)0.0561 (3)0.1191 (15)
H251.1255860.1766400.0824170.143*
C260.9669 (7)0.1600 (4)0.0366 (4)0.1339 (18)
H260.9820940.0980630.0731140.161*
C270.8617 (5)0.2017 (4)0.0744 (3)0.1051 (13)
H270.8031980.1678240.1364910.126*
O60.3415 (3)0.09561 (19)0.78449 (17)0.0915 (7)
O70.3890 (3)0.04819 (19)0.85469 (17)0.0935 (7)
C280.3659 (5)0.1020 (3)0.9623 (3)0.1020 (12)
H28A0.3580330.1782760.9617570.153*
H28B0.4624890.1104911.0014440.153*
H28C0.2787700.0495730.9911000.153*
C290.3634 (4)0.0516 (2)0.8580 (2)0.0724 (8)
C300.3861 (6)0.1082 (3)0.7563 (3)0.1097 (13)
H30A0.4496100.0518870.7153690.132*
H30B0.2791940.1433610.7225550.132*
C310.4493 (5)0.2009 (4)0.7716 (3)0.1133 (13)
H31A0.4326600.2504600.7095380.170*
H31B0.3967360.2482310.8208390.170*
H31C0.5599270.1644630.7944260.170*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0919 (14)0.0403 (9)0.0881 (12)0.0322 (9)0.0401 (11)0.0149 (8)
O20.0844 (14)0.0609 (11)0.0837 (12)0.0294 (11)0.0366 (11)0.0241 (10)
O30.0746 (12)0.0409 (8)0.0697 (11)0.0291 (8)0.0206 (9)0.0091 (7)
O40.0734 (13)0.0367 (9)0.0982 (14)0.0202 (9)0.0059 (10)0.0081 (8)
O50.0899 (14)0.0518 (10)0.0704 (11)0.0340 (10)0.0232 (10)0.0093 (8)
N10.0621 (13)0.0438 (10)0.0561 (11)0.0235 (9)0.0148 (9)0.0089 (8)
N20.0724 (14)0.0402 (10)0.0598 (11)0.0232 (10)0.0201 (10)0.0102 (8)
C10.0600 (15)0.0398 (11)0.0555 (12)0.0230 (11)0.0095 (11)0.0074 (9)
C20.0575 (14)0.0393 (11)0.0571 (12)0.0233 (10)0.0106 (11)0.0073 (9)
C30.0532 (14)0.0405 (11)0.0589 (13)0.0220 (10)0.0069 (11)0.0057 (9)
C40.0626 (16)0.0428 (12)0.0643 (14)0.0220 (11)0.0094 (12)0.0115 (10)
C50.0628 (16)0.0511 (13)0.0609 (14)0.0257 (12)0.0145 (12)0.0146 (11)
C60.0747 (18)0.0519 (14)0.0676 (15)0.0308 (13)0.0239 (13)0.0097 (11)
C70.0654 (16)0.0417 (12)0.0648 (14)0.0272 (11)0.0138 (12)0.0102 (10)
C80.089 (2)0.0471 (14)0.0797 (17)0.0298 (14)0.0289 (15)0.0120 (12)
C90.0717 (17)0.0420 (12)0.0617 (14)0.0266 (12)0.0160 (12)0.0114 (10)
C100.0781 (19)0.0458 (13)0.0735 (16)0.0326 (14)0.0247 (14)0.0125 (12)
C11A0.076 (8)0.048 (7)0.049 (7)0.029 (5)0.004 (6)0.003 (5)
C11B0.085 (4)0.061 (3)0.090 (6)0.040 (3)0.004 (5)0.019 (4)
C12A0.068 (8)0.047 (6)0.054 (7)0.030 (6)0.001 (6)0.005 (5)
C12B0.070 (4)0.051 (3)0.096 (6)0.023 (3)0.000 (4)0.007 (4)
C130.0627 (16)0.0356 (11)0.0691 (15)0.0194 (11)0.0127 (12)0.0069 (10)
C14A0.063 (9)0.064 (7)0.075 (8)0.040 (6)0.002 (6)0.006 (6)
C14B0.051 (3)0.043 (2)0.087 (4)0.023 (2)0.011 (3)0.001 (2)
C15A0.055 (7)0.049 (7)0.062 (8)0.004 (5)0.009 (6)0.002 (6)
C15B0.087 (5)0.045 (3)0.081 (6)0.018 (3)0.002 (4)0.003 (3)
C160.0619 (16)0.0452 (12)0.0579 (13)0.0180 (11)0.0104 (11)0.0015 (10)
C170.0754 (19)0.0553 (15)0.0600 (15)0.0158 (13)0.0196 (13)0.0017 (11)
C180.0638 (16)0.0591 (15)0.0588 (14)0.0209 (13)0.0206 (12)0.0158 (11)
C190.081 (2)0.082 (2)0.087 (2)0.0371 (17)0.0281 (18)0.0308 (16)
C200.064 (2)0.127 (3)0.108 (3)0.031 (2)0.009 (2)0.055 (2)
C210.085 (3)0.111 (3)0.075 (2)0.013 (2)0.0124 (18)0.019 (2)
C220.078 (2)0.079 (2)0.0632 (17)0.0101 (17)0.0154 (15)0.0095 (15)
C230.0668 (17)0.0615 (15)0.0526 (13)0.0161 (13)0.0172 (12)0.0093 (11)
C240.103 (3)0.084 (2)0.0773 (18)0.050 (2)0.0276 (17)0.0138 (16)
C250.170 (4)0.117 (3)0.109 (3)0.091 (3)0.051 (3)0.015 (3)
C260.189 (6)0.103 (3)0.118 (4)0.060 (4)0.056 (4)0.006 (3)
C270.127 (4)0.089 (3)0.071 (2)0.011 (2)0.023 (2)0.0125 (18)
O60.1160 (19)0.0635 (13)0.1004 (15)0.0374 (13)0.0119 (13)0.0261 (11)
O70.131 (2)0.0734 (14)0.0982 (15)0.0582 (14)0.0304 (14)0.0243 (11)
C280.134 (3)0.098 (3)0.099 (2)0.064 (3)0.043 (2)0.0249 (19)
C290.0725 (19)0.0546 (15)0.096 (2)0.0243 (14)0.0256 (16)0.0242 (14)
C300.150 (4)0.080 (2)0.106 (3)0.053 (3)0.015 (3)0.000 (2)
C310.131 (4)0.100 (3)0.129 (3)0.065 (3)0.035 (3)0.004 (2)
Geometric parameters (Å, º) top
O1—C71.361 (3)C14A—H14A0.9300
O1—C81.413 (3)C14A—C15A1.43 (3)
O2—H20.8200C14B—H14B0.9300
O2—C51.353 (3)C14B—C15B1.430 (14)
O3—H30.8200C15A—H15A0.9300
O3—C31.361 (3)C15B—H15B0.9300
O4—H40.8200C16—C171.506 (3)
O4—C131.371 (3)C17—H17A0.9700
O5—C161.217 (3)C17—H17B0.9700
N1—N21.372 (3)C17—C181.515 (4)
N1—C11.291 (3)C18—C191.367 (4)
N2—H2A0.8600C18—C231.415 (4)
N2—C161.356 (3)C19—H190.9300
C1—C21.458 (3)C19—C201.434 (5)
C1—C91.496 (3)C20—H200.9300
C2—C31.406 (3)C20—C211.346 (5)
C2—C71.404 (3)C21—H210.9300
C3—C41.384 (3)C21—C221.372 (5)
C4—H4A0.9300C22—C231.413 (4)
C4—C51.385 (3)C22—C271.426 (5)
C5—C61.386 (3)C23—C241.400 (4)
C6—H60.9300C24—H240.9300
C6—C71.374 (3)C24—C251.363 (4)
C8—H80.9800C25—H250.9300
C8—C91.497 (3)C25—C261.383 (7)
C8—C101.502 (3)C26—H260.9300
C9—H9A0.9700C26—C271.331 (6)
C9—H9B0.9700C27—H270.9300
C10—C11A1.41 (3)O6—C291.199 (3)
C10—C11B1.337 (13)O7—C291.320 (3)
C10—C15A1.36 (3)O7—C301.459 (4)
C10—C15B1.386 (13)C28—H28A0.9600
C11A—H11A0.9300C28—H28B0.9600
C11A—C12A1.40 (3)C28—H28C0.9600
C11B—H11B0.9300C28—C291.487 (5)
C11B—C12B1.377 (14)C30—H30A0.9700
C12A—H12A0.9300C30—H30B0.9700
C12A—C131.41 (2)C30—C311.469 (5)
C12B—H12B0.9300C31—H31A0.9600
C12B—C131.362 (12)C31—H31B0.9600
C13—C14A1.33 (2)C31—H31C0.9600
C13—C14B1.388 (9)
C7—O1—C8115.96 (18)C13—C14B—C15B115.5 (9)
C5—O2—H2109.5C15B—C14B—H14B122.2
C3—O3—H3109.5C10—C15A—C14A112 (2)
C13—O4—H4109.5C10—C15A—H15A124.1
C1—N1—N2120.20 (19)C14A—C15A—H15A124.1
N1—N2—H2A121.1C10—C15B—C14B121.7 (11)
C16—N2—N1117.90 (19)C10—C15B—H15B119.1
C16—N2—H2A121.1C14B—C15B—H15B119.1
N1—C1—C2116.19 (19)O5—C16—N2121.9 (2)
N1—C1—C9126.6 (2)O5—C16—C17123.7 (2)
C2—C1—C9117.23 (18)N2—C16—C17114.5 (2)
C3—C2—C1122.97 (18)C16—C17—H17A109.4
C7—C2—C1119.7 (2)C16—C17—H17B109.4
C7—C2—C3117.3 (2)C16—C17—C18111.0 (2)
O3—C3—C2121.0 (2)H17A—C17—H17B108.0
O3—C3—C4117.68 (19)C18—C17—H17A109.4
C4—C3—C2121.30 (19)C18—C17—H17B109.4
C3—C4—H4A120.3C19—C18—C17119.4 (3)
C3—C4—C5119.5 (2)C19—C18—C23119.2 (3)
C5—C4—H4A120.3C23—C18—C17121.3 (2)
O2—C5—C4122.1 (2)C18—C19—H19120.0
O2—C5—C6117.4 (2)C18—C19—C20120.1 (3)
C4—C5—C6120.6 (2)C20—C19—H19120.0
C5—C6—H6120.2C19—C20—H20120.3
C7—C6—C5119.7 (2)C21—C20—C19119.3 (3)
C7—C6—H6120.2C21—C20—H20120.3
O1—C7—C2121.2 (2)C20—C21—H21118.6
O1—C7—C6117.2 (2)C20—C21—C22122.7 (3)
C6—C7—C2121.6 (2)C22—C21—H21118.6
O1—C8—H8106.8C21—C22—C23118.5 (3)
O1—C8—C9113.1 (2)C21—C22—C27121.6 (3)
O1—C8—C10108.5 (2)C23—C22—C27119.9 (3)
C9—C8—H8106.8C22—C23—C18120.0 (3)
C9—C8—C10114.5 (2)C24—C23—C18123.8 (3)
C10—C8—H8106.8C24—C23—C22116.1 (3)
C1—C9—C8111.10 (19)C23—C24—H24118.5
C1—C9—H9A109.4C25—C24—C23123.0 (3)
C1—C9—H9B109.4C25—C24—H24118.5
C8—C9—H9A109.4C24—C25—H25120.2
C8—C9—H9B109.4C24—C25—C26119.5 (4)
H9A—C9—H9B108.0C26—C25—H25120.2
C11A—C10—C8116.4 (14)C25—C26—H26119.5
C11B—C10—C8120.6 (7)C27—C26—C25120.9 (4)
C11B—C10—C15B116.0 (9)C27—C26—H26119.5
C15A—C10—C8122.4 (14)C22—C27—H27119.7
C15A—C10—C11A118 (2)C26—C27—C22120.6 (4)
C15B—C10—C8122.7 (6)C26—C27—H27119.7
C10—C11A—H11A121.9C29—O7—C30117.7 (3)
C12A—C11A—C10116 (3)H28A—C28—H28B109.5
C12A—C11A—H11A121.9H28A—C28—H28C109.5
C10—C11B—H11B118.0H28B—C28—H28C109.5
C10—C11B—C12B124.0 (12)C29—C28—H28A109.5
C12B—C11B—H11B118.0C29—C28—H28B109.5
C11A—C12A—H12A118.7C29—C28—H28C109.5
C11A—C12A—C13123 (2)O6—C29—O7123.1 (3)
C13—C12A—H12A118.7O6—C29—C28124.7 (3)
C11B—C12B—H12B120.6O7—C29—C28112.2 (3)
C13—C12B—C11B118.8 (11)O7—C30—H30A110.2
C13—C12B—H12B120.6O7—C30—H30B110.2
O4—C13—C12A117.7 (11)O7—C30—C31107.6 (3)
O4—C13—C14B120.9 (5)H30A—C30—H30B108.5
C12B—C13—O4117.6 (5)C31—C30—H30A110.2
C12B—C13—C14B121.5 (7)C31—C30—H30B110.2
C14A—C13—O4127.3 (11)C30—C31—H31A109.5
C14A—C13—C12A115.0 (16)C30—C31—H31B109.5
C13—C14A—H14A120.1C30—C31—H31C109.5
C13—C14A—C15A120 (2)H31A—C31—H31B109.5
C15A—C14A—H14A120.1H31A—C31—H31C109.5
C13—C14B—H14B122.2H31B—C31—H31C109.5
O1—C8—C9—C150.2 (3)C9—C8—C10—C11B104.4 (7)
O1—C8—C10—C11A111.6 (14)C9—C8—C10—C15A81.1 (15)
O1—C8—C10—C11B128.3 (7)C9—C8—C10—C15B65.0 (8)
O1—C8—C10—C15A46.3 (16)C10—C8—C9—C1175.2 (2)
O1—C8—C10—C15B62.4 (8)C10—C11A—C12A—C135 (3)
O2—C5—C6—C7178.3 (2)C10—C11B—C12B—C131.6 (14)
O3—C3—C4—C5178.2 (2)C11A—C10—C15A—C14A43 (3)
O4—C13—C14A—C15A156 (2)C11A—C12A—C13—O4177.2 (19)
O4—C13—C14B—C15B173.1 (9)C11A—C12A—C13—C14A2 (3)
O5—C16—C17—C1866.2 (4)C11B—C10—C15B—C14B19 (2)
N1—N2—C16—O54.2 (4)C11B—C12B—C13—O4178.0 (7)
N1—N2—C16—C17175.2 (2)C11B—C12B—C13—C14B3.6 (11)
N1—C1—C2—C32.0 (4)C12A—C13—C14A—C15A25 (3)
N1—C1—C2—C7175.6 (2)C12B—C13—C14B—C15B5.3 (12)
N1—C1—C9—C8158.5 (3)C13—C14A—C15A—C1048 (4)
N2—N1—C1—C2176.4 (2)C13—C14B—C15B—C1017 (2)
N2—N1—C1—C92.0 (4)C15A—C10—C11A—C12A19 (3)
N2—C16—C17—C18113.2 (3)C15B—C10—C11B—C12B9.3 (15)
C1—N1—N2—C16176.4 (2)C16—C17—C18—C1991.2 (3)
C1—C2—C3—O33.0 (4)C16—C17—C18—C2389.4 (3)
C1—C2—C3—C4175.5 (2)C17—C18—C19—C20178.3 (3)
C1—C2—C7—O13.5 (4)C17—C18—C23—C22176.4 (2)
C1—C2—C7—C6174.6 (2)C17—C18—C23—C241.5 (4)
C2—C1—C9—C823.1 (3)C18—C19—C20—C210.7 (5)
C2—C3—C4—C50.3 (4)C18—C23—C24—C25177.2 (3)
C3—C2—C7—O1178.6 (2)C19—C18—C23—C223.0 (4)
C3—C2—C7—C63.2 (4)C19—C18—C23—C24179.1 (3)
C3—C4—C5—O2177.4 (2)C19—C20—C21—C220.6 (5)
C3—C4—C5—C62.1 (4)C20—C21—C22—C231.3 (5)
C4—C5—C6—C71.2 (4)C20—C21—C22—C27178.6 (3)
C5—C6—C7—O1179.8 (2)C21—C22—C23—C183.1 (4)
C5—C6—C7—C21.5 (4)C21—C22—C23—C24178.8 (3)
C7—O1—C8—C952.2 (3)C21—C22—C27—C26179.6 (4)
C7—O1—C8—C10179.6 (2)C22—C23—C24—C250.8 (5)
C7—C2—C3—O3179.3 (2)C23—C18—C19—C201.1 (4)
C7—C2—C3—C42.3 (4)C23—C22—C27—C260.5 (6)
C8—O1—C7—C224.6 (4)C23—C24—C25—C260.5 (6)
C8—O1—C7—C6157.2 (2)C24—C25—C26—C271.4 (7)
C8—C10—C11A—C12A177.8 (16)C25—C26—C27—C220.9 (7)
C8—C10—C11B—C12B179.4 (7)C27—C22—C23—C18176.8 (3)
C8—C10—C15A—C14A159.4 (18)C27—C22—C23—C241.3 (4)
C8—C10—C15B—C14B171.4 (10)C29—O7—C30—C31168.3 (3)
C9—C1—C2—C3179.4 (2)C30—O7—C29—O61.6 (5)
C9—C1—C2—C72.9 (3)C30—O7—C29—C28178.6 (3)
C9—C8—C10—C11A121.0 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.821.802.527 (2)147
O2—H2···O60.821.912.720 (3)173
O4—H4···O3i0.821.932.730 (3)166
C9—H9B···O4ii0.972.573.461 (3)153
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+2, z+1.
(±,E)-N'-[5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-ylidene]-4-hydroxybenzohydrazide ethanol monosolvate (II) top
Crystal data top
C22H18N2O6·C2H6OZ = 2
Mr = 452.45F(000) = 476
Triclinic, P1Dx = 1.289 Mg m3
a = 10.0964 (9) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.1570 (8) ÅCell parameters from 5399 reflections
c = 12.3628 (10) Åθ = 3.9–76.0°
α = 84.557 (7)°µ = 0.80 mm1
β = 68.169 (8)°T = 293 K
γ = 82.529 (7)°Plate, yellow
V = 1165.39 (18) Å30.18 × 0.16 × 0.04 mm
Data collection top
ROD, Synergy Custom system, HyPix-Arc 150
diffractometer
4585 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source2642 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.045
Detector resolution: 10.0000 pixels mm-1θmax = 79.0°, θmin = 3.9°
ω scansh = 1211
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1112
Tmin = 0.660, Tmax = 1.000l = 1514
12522 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.086 w = 1/[σ2(Fo2) + (0.1916P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.301(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.45 e Å3
4585 reflectionsΔρmin = 0.27 e Å3
405 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
136 restraintsExtinction coefficient: 0.015 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.1351 (2)0.6849 (2)0.79739 (19)0.0754 (7)
O20.3070 (2)0.4492 (2)0.5747 (2)0.0785 (7)
H20.3425570.4112580.6388240.118*
O30.0348 (2)0.7463 (2)0.37844 (18)0.0724 (6)
H30.0850100.7963290.3902340.109*
O50.3098 (3)0.9705 (2)0.3030 (2)0.0837 (7)
O60.6730 (3)1.3952 (3)0.3686 (2)0.0925 (8)
H60.6402911.4427480.4245800.139*
N10.1291 (3)0.8729 (2)0.4979 (2)0.0644 (7)
N20.2153 (3)0.9675 (2)0.4986 (2)0.0654 (7)
H2A0.2112700.9974850.5626290.079*
C10.0487 (3)0.8194 (3)0.5956 (3)0.0607 (7)
C20.0431 (3)0.7220 (3)0.5882 (3)0.0610 (7)
C30.0481 (3)0.6899 (3)0.4820 (3)0.0609 (8)
C40.1388 (3)0.6004 (3)0.4786 (3)0.0639 (8)
H40.1441300.5825510.4079480.077*
C50.2211 (3)0.5383 (3)0.5811 (3)0.0654 (8)
C60.2188 (3)0.5665 (3)0.6873 (3)0.0682 (8)
H6A0.2756410.5245980.7560090.082*
C70.1302 (3)0.6585 (3)0.6892 (3)0.0643 (8)
C90.0375 (4)0.8466 (4)0.7136 (3)0.0741 (9)
H9AA0.0456890.9403410.7158500.089*0.340 (11)
H9AB0.1172210.7965850.7297970.089*0.340 (11)
H9BC0.1302960.8662850.7106290.089*0.660 (11)
H9BD0.0298670.9247540.7394930.089*0.660 (11)
O4_10.106 (5)0.864 (3)1.260 (2)0.073 (5)0.340 (11)
H4_10.0306620.8251791.2621610.110*0.340 (11)
C8_10.0995 (14)0.8119 (11)0.8069 (7)0.066 (3)0.340 (11)
H8_10.1767530.8775400.8003650.079*0.340 (11)
C10_10.097 (2)0.8167 (15)0.9282 (10)0.061 (3)0.340 (11)
C11_10.175 (2)0.9296 (17)0.9914 (13)0.070 (3)0.340 (11)
H11_10.2257290.9937740.9585690.084*0.340 (11)
C12_10.176 (3)0.943 (2)1.1033 (17)0.077 (4)0.340 (11)
H12_10.2098731.0234141.1395620.092*0.340 (11)
C13_10.1256 (16)0.8330 (19)1.1593 (13)0.056 (3)0.340 (11)
C14_10.039 (2)0.730 (2)1.0937 (16)0.080 (5)0.340 (11)
H14_10.0097720.6651751.1267830.096*0.340 (11)
C15_10.026 (2)0.7250 (18)0.9820 (14)0.076 (4)0.340 (11)
H15_10.0348120.6559470.9390160.092*0.340 (11)
O4_20.135 (2)0.8700 (16)1.2634 (11)0.077 (3)0.660 (11)
H4_20.0962230.8136661.2974140.115*0.660 (11)
C8_20.0097 (7)0.7352 (7)0.7987 (4)0.0706 (19)0.660 (11)
H8_20.0680190.6627100.7773630.085*0.660 (11)
C10_20.0381 (10)0.7645 (10)0.9230 (6)0.071 (2)0.660 (11)
C11_20.1351 (10)0.8742 (10)0.9700 (7)0.076 (2)0.660 (11)
H11_20.1782980.9256120.9234560.092*0.660 (11)
C12_20.1690 (17)0.9089 (12)1.0835 (10)0.083 (3)0.660 (11)
H12_20.2431210.9743461.1169400.099*0.660 (11)
C13_20.0882 (10)0.8423 (11)1.1457 (8)0.064 (2)0.660 (11)
C14_20.0007 (13)0.7302 (12)1.1015 (9)0.078 (2)0.660 (11)
H14_20.0435770.6777331.1477800.094*0.660 (11)
C15_20.0274 (9)0.6940 (9)0.9912 (7)0.078 (2)0.660 (11)
H15_20.0915500.6198840.9623660.093*0.660 (11)
C16_20.3063 (3)1.0107 (3)0.3936 (3)0.0636 (8)
C17_20.4023 (3)1.1118 (3)0.3940 (3)0.0608 (7)
C18_20.4883 (3)1.1626 (3)0.2872 (3)0.0723 (9)
H18_20.4856081.1328520.2192390.087*
C19_20.5787 (4)1.2575 (4)0.2797 (3)0.0819 (10)
H19_20.6365721.2913230.2073240.098*
C20_20.5820 (3)1.3016 (3)0.3814 (3)0.0707 (9)
C21_20.4985 (3)1.2513 (3)0.4867 (3)0.0693 (8)
H21_20.5011841.2812190.5546210.083*
C22_20.4093 (3)1.1559 (3)0.4939 (3)0.0659 (8)
H22_20.3534931.1210010.5666230.079*
O1_30.388 (2)1.274 (2)0.7634 (16)0.091 (4)0.433 (11)
H1_30.3406461.2018270.7587890.136*0.433 (11)
C1_30.5178 (19)1.2716 (16)0.8636 (15)0.098 (4)0.433 (11)
H1A_30.4946411.2433790.9322370.117*0.433 (11)
H1B_30.5751771.2072450.8539810.117*0.433 (11)
C2_30.6057 (13)1.4090 (11)0.8819 (13)0.143 (6)0.433 (11)
H2A_30.5968261.4504230.8067720.214*0.433 (11)
H2B_30.5776661.4669630.9247420.214*0.433 (11)
H2C_30.7035261.3919030.9240620.214*0.433 (11)
O1_40.412 (2)1.3022 (18)0.7513 (12)0.106 (4)0.567 (11)
H1_40.3507751.2423910.7550890.159*0.567 (11)
C1_40.527 (2)1.313 (2)0.8644 (15)0.163 (8)0.567 (11)
H1A_40.6094371.2755140.8628170.196*0.567 (11)
H1B_40.5544481.4061730.8811590.196*0.567 (11)
C2_40.4798 (13)1.2400 (19)0.9615 (9)0.206 (8)0.567 (11)
H2A_40.4479101.1484510.9443460.310*0.567 (11)
H2B_40.5567801.2449511.0360360.310*0.567 (11)
H2C_40.4017301.2833910.9632060.310*0.567 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0832 (14)0.0856 (15)0.0645 (14)0.0407 (12)0.0238 (10)0.0078 (11)
O20.0804 (14)0.0765 (14)0.0888 (16)0.0392 (11)0.0314 (13)0.0090 (12)
O30.0789 (14)0.0811 (15)0.0653 (13)0.0354 (11)0.0278 (10)0.0010 (11)
O50.1085 (17)0.0820 (15)0.0691 (15)0.0476 (13)0.0290 (12)0.0070 (11)
O60.0878 (16)0.0978 (19)0.099 (2)0.0569 (14)0.0259 (13)0.0063 (14)
N10.0650 (14)0.0629 (15)0.0726 (17)0.0284 (11)0.0269 (12)0.0000 (12)
N20.0682 (15)0.0660 (15)0.0703 (16)0.0289 (12)0.0270 (12)0.0056 (12)
C10.0607 (16)0.0604 (17)0.0678 (18)0.0188 (13)0.0266 (13)0.0051 (13)
C20.0598 (16)0.0607 (17)0.0676 (19)0.0216 (13)0.0239 (13)0.0037 (14)
C30.0626 (16)0.0604 (17)0.0646 (18)0.0175 (13)0.0252 (13)0.0030 (13)
C40.0621 (16)0.0664 (18)0.0709 (19)0.0189 (14)0.0282 (14)0.0068 (15)
C50.0598 (16)0.0637 (18)0.080 (2)0.0207 (13)0.0266 (14)0.0121 (15)
C60.0642 (17)0.0693 (19)0.072 (2)0.0276 (14)0.0191 (14)0.0037 (15)
C70.0594 (16)0.0702 (19)0.0664 (19)0.0203 (13)0.0202 (13)0.0109 (14)
C90.079 (2)0.081 (2)0.072 (2)0.0358 (16)0.0279 (16)0.0060 (16)
O4_10.073 (11)0.091 (9)0.065 (7)0.011 (6)0.029 (6)0.029 (6)
C8_10.078 (7)0.060 (6)0.066 (5)0.025 (5)0.029 (5)0.002 (4)
C10_10.093 (11)0.047 (8)0.057 (6)0.028 (6)0.032 (7)0.012 (4)
C11_10.088 (10)0.068 (9)0.060 (7)0.012 (6)0.032 (6)0.012 (5)
C12_10.100 (10)0.090 (9)0.062 (8)0.035 (8)0.043 (8)0.017 (6)
C13_10.040 (7)0.090 (6)0.041 (5)0.050 (5)0.004 (4)0.001 (4)
C14_10.096 (14)0.094 (8)0.066 (7)0.026 (8)0.039 (7)0.016 (5)
C15_10.094 (12)0.080 (9)0.068 (7)0.002 (7)0.044 (8)0.014 (6)
O4_20.086 (9)0.086 (4)0.061 (3)0.022 (4)0.027 (3)0.003 (3)
C8_20.067 (3)0.078 (4)0.074 (3)0.024 (3)0.026 (2)0.011 (2)
C10_20.076 (5)0.071 (6)0.073 (4)0.019 (3)0.028 (3)0.009 (3)
C11_20.089 (6)0.074 (7)0.075 (5)0.015 (4)0.037 (5)0.012 (4)
C12_20.090 (4)0.096 (6)0.074 (5)0.020 (5)0.037 (4)0.020 (4)
C13_20.047 (4)0.083 (4)0.062 (4)0.039 (3)0.009 (3)0.008 (3)
C14_20.080 (6)0.091 (4)0.072 (4)0.024 (4)0.030 (3)0.015 (3)
C15_20.078 (5)0.085 (5)0.075 (4)0.013 (3)0.030 (3)0.014 (3)
C16_20.0712 (18)0.0588 (17)0.0642 (19)0.0208 (14)0.0236 (14)0.0042 (14)
C17_20.0573 (15)0.0597 (17)0.0670 (19)0.0153 (13)0.0208 (13)0.0053 (13)
C18_20.0748 (19)0.077 (2)0.067 (2)0.0291 (16)0.0208 (15)0.0048 (15)
C19_20.076 (2)0.096 (2)0.074 (2)0.0429 (18)0.0173 (16)0.0016 (18)
C20_20.0616 (17)0.073 (2)0.084 (2)0.0257 (14)0.0270 (15)0.0075 (16)
C21_20.0640 (17)0.073 (2)0.075 (2)0.0218 (15)0.0238 (15)0.0100 (16)
C22_20.0654 (17)0.0676 (18)0.0684 (19)0.0223 (14)0.0228 (14)0.0071 (14)
O1_30.096 (7)0.060 (8)0.086 (6)0.019 (4)0.001 (5)0.009 (4)
C1_30.100 (8)0.083 (8)0.091 (9)0.023 (6)0.006 (5)0.012 (6)
C2_30.100 (8)0.080 (7)0.189 (14)0.002 (6)0.017 (7)0.022 (8)
O1_40.134 (8)0.069 (8)0.102 (5)0.032 (5)0.019 (5)0.009 (5)
C1_40.179 (15)0.154 (18)0.132 (10)0.079 (13)0.014 (7)0.018 (10)
C2_40.174 (11)0.36 (2)0.077 (6)0.065 (12)0.031 (6)0.000 (9)
Geometric parameters (Å, º) top
O1—C71.370 (4)C15_1—H15_10.9300
O1—C8_11.410 (9)O4_2—H4_20.8200
O1—C8_21.433 (5)O4_2—C13_21.397 (10)
O2—H20.8200C8_2—H8_20.9800
O2—C51.359 (3)C8_2—C10_21.506 (8)
O3—H30.8200C10_2—C11_21.398 (10)
O3—C31.363 (3)C10_2—C15_21.356 (9)
O5—C16_21.215 (3)C11_2—H11_20.9300
O6—H60.8200C11_2—C12_21.383 (9)
O6—C20_21.366 (3)C12_2—H12_20.9300
N1—N21.380 (3)C12_2—C13_21.393 (10)
N1—C11.294 (4)C13_2—C14_21.375 (9)
N2—H2A0.8600C14_2—H14_20.9300
N2—C16_21.354 (4)C14_2—C15_21.365 (9)
C1—C21.471 (3)C15_2—H15_20.9300
C1—C91.471 (4)C16_2—C17_21.502 (4)
C2—C31.403 (4)C17_2—C18_21.378 (4)
C2—C71.388 (4)C17_2—C22_21.382 (4)
C3—C41.385 (4)C18_2—H18_20.9300
C4—H40.9300C18_2—C19_21.386 (4)
C4—C51.377 (4)C19_2—H19_20.9300
C5—C61.378 (4)C19_2—C20_21.387 (5)
C6—H6A0.9300C20_2—C21_21.355 (5)
C6—C71.383 (4)C21_2—H21_20.9300
C9—H9AA0.9700C21_2—C22_21.382 (4)
C9—H9AB0.9700C22_2—H22_20.9300
C9—H9BC0.9700O1_3—H1_30.8200
C9—H9BD0.9700O1_3—C1_31.431 (11)
C9—C8_11.494 (11)C1_3—H1A_30.9700
C9—C8_21.469 (7)C1_3—H1B_30.9700
O4_1—H4_10.8200C1_3—C2_31.541 (12)
O4_1—C13_11.405 (15)C2_3—H2A_30.9601
C8_1—H8_10.9800C2_3—H2B_30.9599
C8_1—C10_11.515 (11)C2_3—H2C_30.9600
C10_1—C11_11.424 (14)O1_4—H1_40.8200
C10_1—C15_11.375 (14)O1_4—C1_41.448 (12)
C11_1—H11_10.9300C1_4—H1A_40.9700
C11_1—C12_11.399 (13)C1_4—H1B_40.9700
C12_1—H12_10.9300C1_4—C2_41.542 (14)
C12_1—C13_11.401 (14)C2_4—H2A_40.9600
C13_1—C14_11.379 (14)C2_4—H2B_40.9601
C14_1—H14_10.9300C2_4—H2C_40.9600
C14_1—C15_11.341 (14)
C7—O1—C8_1115.5 (4)O1—C8_2—C10_2107.3 (4)
C7—O1—C8_2115.1 (3)C9—C8_2—H8_2107.0
C5—O2—H2109.5C9—C8_2—C10_2114.6 (5)
C3—O3—H3109.5C10_2—C8_2—H8_2107.0
C20_2—O6—H6109.5C11_2—C10_2—C8_2117.9 (8)
C1—N1—N2119.6 (3)C15_2—C10_2—C8_2124.3 (8)
N1—N2—H2A121.7C15_2—C10_2—C11_2117.8 (6)
C16_2—N2—N1116.7 (3)C10_2—C11_2—H11_2118.9
C16_2—N2—H2A121.7C12_2—C11_2—C10_2122.3 (7)
N1—C1—C2116.6 (3)C12_2—C11_2—H11_2118.9
N1—C1—C9127.1 (3)C11_2—C12_2—H12_2121.2
C9—C1—C2116.3 (3)C11_2—C12_2—C13_2117.6 (9)
C3—C2—C1122.7 (3)C13_2—C12_2—H12_2121.2
C7—C2—C1119.9 (3)C12_2—C13_2—O4_2116.0 (9)
C7—C2—C3117.4 (3)C14_2—C13_2—O4_2122.3 (9)
O3—C3—C2121.4 (2)C14_2—C13_2—C12_2118.9 (8)
O3—C3—C4117.4 (3)C13_2—C14_2—H14_2119.3
C4—C3—C2121.2 (3)C15_2—C14_2—C13_2121.5 (8)
C3—C4—H4120.4C15_2—C14_2—H14_2119.3
C5—C4—C3119.1 (3)C10_2—C15_2—C14_2121.0 (8)
C5—C4—H4120.4C10_2—C15_2—H15_2119.5
O2—C5—C4117.7 (3)C14_2—C15_2—H15_2119.5
O2—C5—C6120.7 (3)O5—C16_2—N2121.7 (3)
C4—C5—C6121.5 (3)O5—C16_2—C17_2121.4 (3)
C5—C6—H6A120.7N2—C16_2—C17_2116.9 (3)
C5—C6—C7118.5 (3)C18_2—C17_2—C16_2117.1 (3)
C7—C6—H6A120.7C18_2—C17_2—C22_2118.7 (3)
O1—C7—C2121.9 (2)C22_2—C17_2—C16_2124.2 (3)
O1—C7—C6115.9 (3)C17_2—C18_2—H18_2119.6
C6—C7—C2122.2 (3)C17_2—C18_2—C19_2120.9 (3)
C1—C9—H9AA108.8C19_2—C18_2—H18_2119.6
C1—C9—H9AB108.8C18_2—C19_2—H19_2120.4
C1—C9—H9BC109.0C18_2—C19_2—C20_2119.2 (3)
C1—C9—H9BD109.0C20_2—C19_2—H19_2120.4
C1—C9—C8_1113.6 (4)O6—C20_2—C19_2116.6 (3)
H9AA—C9—H9AB107.7C21_2—C20_2—O6123.2 (3)
H9BC—C9—H9BD107.8C21_2—C20_2—C19_2120.2 (3)
C8_1—C9—H9AA108.8C20_2—C21_2—H21_2119.8
C8_1—C9—H9AB108.8C20_2—C21_2—C22_2120.4 (3)
C8_2—C9—C1113.0 (3)C22_2—C21_2—H21_2119.8
C8_2—C9—H9BC109.0C17_2—C22_2—H22_2119.7
C8_2—C9—H9BD109.0C21_2—C22_2—C17_2120.5 (3)
C13_1—O4_1—H4_1109.4C21_2—C22_2—H22_2119.7
O1—C8_1—C9113.3 (8)C1_3—O1_3—H1_3109.5
O1—C8_1—H8_1107.8O1_3—C1_3—H1A_3109.3
O1—C8_1—C10_1107.5 (7)O1_3—C1_3—H1B_3109.3
C9—C8_1—H8_1107.8O1_3—C1_3—C2_3111.6 (12)
C9—C8_1—C10_1112.3 (8)H1A_3—C1_3—H1B_3108.0
C10_1—C8_1—H8_1107.8C2_3—C1_3—H1A_3109.3
C11_1—C10_1—C8_1115.7 (13)C2_3—C1_3—H1B_3109.3
C15_1—C10_1—C8_1127.0 (13)C1_3—C2_3—H2A_3108.3
C15_1—C10_1—C11_1117.3 (10)C1_3—C2_3—H2B_3114.2
C10_1—C11_1—H11_1120.3C1_3—C2_3—H2C_3105.8
C12_1—C11_1—C10_1119.5 (12)H2A_3—C2_3—H2B_3109.5
C12_1—C11_1—H11_1120.3H2A_3—C2_3—H2C_3109.5
C11_1—C12_1—H12_1120.8H2B_3—C2_3—H2C_3109.5
C11_1—C12_1—C13_1118.4 (13)C1_4—O1_4—H1_4109.5
C13_1—C12_1—H12_1120.8O1_4—C1_4—H1A_4109.4
C12_1—C13_1—O4_1113.3 (16)O1_4—C1_4—H1B_4109.4
C14_1—C13_1—O4_1119.9 (16)O1_4—C1_4—C2_4111.3 (13)
C14_1—C13_1—C12_1119.2 (13)H1A_4—C1_4—H1B_4108.0
C13_1—C14_1—H14_1120.0C2_4—C1_4—H1A_4109.4
C15_1—C14_1—C13_1119.9 (15)C2_4—C1_4—H1B_4109.4
C15_1—C14_1—H14_1120.0C1_4—C2_4—H2A_4110.4
C10_1—C15_1—H15_1118.4C1_4—C2_4—H2B_4111.2
C14_1—C15_1—C10_1123.1 (13)C1_4—C2_4—H2C_4106.7
C14_1—C15_1—H15_1118.4H2A_4—C2_4—H2B_4109.5
C13_2—O4_2—H4_2109.7H2A_4—C2_4—H2C_4109.5
O1—C8_2—C9113.5 (5)H2B_4—C2_4—H2C_4109.5
O1—C8_2—H8_2107.0
O1—C8_1—C10_1—C11_1130.6 (15)C7—C2—C3—O3179.2 (3)
O1—C8_1—C10_1—C15_150.2 (19)C7—C2—C3—C41.4 (5)
O1—C8_2—C10_2—C11_272.0 (8)C9—C1—C2—C3177.4 (3)
O1—C8_2—C10_2—C15_2110.1 (9)C9—C1—C2—C72.1 (4)
O2—C5—C6—C7179.6 (3)C9—C8_1—C10_1—C11_1104.1 (16)
O3—C3—C4—C5178.0 (3)C9—C8_1—C10_1—C15_175.1 (17)
O5—C16_2—C17_2—C18_23.7 (5)C9—C8_2—C10_2—C11_255.1 (9)
O5—C16_2—C17_2—C22_2176.2 (3)C9—C8_2—C10_2—C15_2122.8 (8)
O6—C20_2—C21_2—C22_2179.5 (3)O4_1—C13_1—C14_1—C15_1160 (3)
N1—N2—C16_2—O51.6 (5)C8_1—O1—C7—C225.8 (7)
N1—N2—C16_2—C17_2178.9 (2)C8_1—O1—C7—C6153.2 (7)
N1—C1—C2—C31.8 (5)C8_1—C10_1—C11_1—C12_1178.8 (19)
N1—C1—C2—C7178.7 (3)C8_1—C10_1—C15_1—C14_1173.7 (18)
N1—C1—C9—C8_1157.7 (6)C10_1—C11_1—C12_1—C13_113 (4)
N1—C1—C9—C8_2154.8 (4)C11_1—C10_1—C15_1—C14_17 (3)
N2—N1—C1—C2178.4 (2)C11_1—C12_1—C13_1—O4_1169 (3)
N2—N1—C1—C90.7 (5)C11_1—C12_1—C13_1—C14_119 (4)
N2—C16_2—C17_2—C18_2175.8 (3)C12_1—C13_1—C14_1—C15_112 (3)
N2—C16_2—C17_2—C22_24.3 (5)C13_1—C14_1—C15_1—C10_11 (3)
C1—N1—N2—C16_2174.2 (3)C15_1—C10_1—C11_1—C12_10 (3)
C1—C2—C3—O31.2 (5)O4_2—C13_2—C14_2—C15_2169.8 (14)
C1—C2—C3—C4178.2 (3)C8_2—O1—C7—C224.7 (5)
C1—C2—C7—O10.9 (5)C8_2—O1—C7—C6156.3 (4)
C1—C2—C7—C6179.8 (3)C8_2—C10_2—C11_2—C12_2179.6 (10)
C1—C9—C8_1—O147.3 (10)C8_2—C10_2—C15_2—C14_2177.1 (9)
C1—C9—C8_1—C10_1169.4 (8)C10_2—C11_2—C12_2—C13_29.0 (19)
C1—C9—C8_2—O149.8 (6)C11_2—C10_2—C15_2—C14_20.8 (14)
C1—C9—C8_2—C10_2173.6 (5)C11_2—C12_2—C13_2—O4_2173.6 (14)
C2—C1—C9—C8_121.4 (7)C11_2—C12_2—C13_2—C14_212.4 (19)
C2—C1—C9—C8_226.1 (5)C12_2—C13_2—C14_2—C15_29.7 (18)
C2—C3—C4—C52.6 (5)C13_2—C14_2—C15_2—C10_23.0 (17)
C3—C2—C7—O1178.7 (3)C15_2—C10_2—C11_2—C12_22.4 (15)
C3—C2—C7—C60.2 (5)C16_2—C17_2—C18_2—C19_2179.2 (3)
C3—C4—C5—O2178.8 (3)C16_2—C17_2—C22_2—C21_2178.7 (3)
C3—C4—C5—C62.3 (5)C17_2—C18_2—C19_2—C20_20.1 (6)
C4—C5—C6—C70.7 (5)C18_2—C17_2—C22_2—C21_21.5 (5)
C5—C6—C7—O1178.4 (3)C18_2—C19_2—C20_2—O6179.9 (3)
C5—C6—C7—C20.5 (5)C18_2—C19_2—C20_2—C21_20.6 (6)
C7—O1—C8_1—C949.7 (10)C19_2—C20_2—C21_2—C22_20.0 (5)
C7—O1—C8_1—C10_1174.4 (8)C20_2—C21_2—C22_2—C17_21.0 (5)
C7—O1—C8_2—C949.4 (6)C22_2—C17_2—C18_2—C19_20.9 (5)
C7—O1—C8_2—C10_2177.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.821.822.542 (3)147
O6—H6···O2i0.822.122.739 (4)132
O4_1—H4_1···O3ii0.821.872.52 (3)136
O4_2—H4_2···O3ii0.821.962.728 (15)156
O1_3—H1_3···O5iii0.821.922.62 (2)144
O1_4—H1_4···O5iii0.822.282.877 (17)130
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1; (iii) x, y+2, z+1.
(±,E)-N'-(6-Methoxy-2-phenylchroman-4-ylidene)-2-(naphthalen-1-yloxy)-acetohydrazide (III) top
Crystal data top
C28H24N2O4Z = 2
Mr = 452.49F(000) = 476
Triclinic, P1Dx = 1.335 Mg m3
a = 5.0681 (6) ÅCu Kα radiation, λ = 1.54184 Å
b = 13.4993 (15) ÅCell parameters from 3831 reflections
c = 17.1144 (18) Åθ = 3.7–73.1°
α = 74.392 (9)°µ = 0.73 mm1
β = 86.34 (1)°T = 293 K
γ = 88.416 (10)°Needle, clear yellow
V = 1125.4 (2) Å30.17 × 0.04 × 0.03 mm
Data collection top
ROD, Synergy Custom system, HyPix-Arc 150
diffractometer
4404 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source1823 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.051
Detector resolution: 10.0000 pixels mm-1θmax = 76.5°, θmin = 3.4°
ω scansh = 56
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1616
Tmin = 0.889, Tmax = 1.000l = 2120
11899 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.077 w = 1/[σ2(Fo2) + (0.1489P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.285(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.31 e Å3
4404 reflectionsΔρmin = 0.24 e Å3
309 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.0075 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1662 (5)0.3408 (2)0.51160 (17)0.0808 (9)
O20.3870 (6)0.5290 (2)0.18760 (17)0.0873 (10)
O31.2146 (6)0.0164 (2)0.41472 (17)0.0801 (9)
O40.9806 (6)0.1395 (2)0.24739 (15)0.0734 (9)
N10.7481 (6)0.2143 (2)0.38761 (19)0.0665 (9)
N20.8829 (6)0.1260 (3)0.42458 (19)0.0676 (9)
H20.8360290.0915240.4732770.081*
C10.5738 (8)0.2504 (3)0.4307 (2)0.0640 (10)
C90.4980 (9)0.2062 (3)0.5185 (2)0.0783 (13)
H9A0.3880210.1466060.5244940.094*
H9B0.6565440.1830960.5473370.094*
C80.3562 (11)0.2788 (4)0.5551 (3)0.1022 (18)
H80.4935930.3278430.5565980.123*
C20.4336 (7)0.3430 (3)0.3891 (2)0.0628 (10)
C70.2328 (8)0.3834 (3)0.4300 (2)0.0690 (11)
C60.0890 (8)0.4682 (3)0.3908 (3)0.0789 (13)
H60.0463600.4941640.4192160.095*
C50.1448 (9)0.5139 (4)0.3106 (3)0.0803 (13)
H50.0461660.5708410.2842280.096*
C40.3478 (8)0.4764 (3)0.2679 (3)0.0709 (12)
C30.4898 (8)0.3925 (3)0.3065 (2)0.0669 (11)
H30.6261000.3674440.2778220.080*
C100.2606 (8)0.2418 (3)0.6417 (3)0.0769 (13)
C110.0709 (9)0.1683 (4)0.6671 (3)0.0991 (16)
H110.0024370.1387490.6295770.119*
C120.0191 (11)0.1377 (5)0.7459 (4)0.123 (2)
H120.1487130.0876630.7617420.148*
C130.0766 (14)0.1789 (5)0.8018 (4)0.126 (3)
H130.0100540.1587140.8555120.151*
C140.2700 (14)0.2496 (5)0.7791 (4)0.122 (2)
H140.3402620.2768820.8176270.146*
C150.3630 (10)0.2812 (4)0.6993 (3)0.0975 (16)
H150.4964500.3297000.6840400.117*
C161.0878 (8)0.0944 (3)0.3838 (2)0.0635 (10)
C171.1610 (8)0.1602 (3)0.2998 (2)0.0686 (11)
H17A1.1520620.2324090.2988190.082*
H17B1.3397620.1441270.2828620.082*
C180.9661 (8)0.2057 (3)0.1711 (2)0.0664 (11)
C191.1124 (9)0.2940 (3)0.1450 (2)0.0783 (13)
H191.2285050.3112410.1790500.094*
C201.0843 (10)0.3574 (4)0.0665 (3)0.0871 (15)
H201.1817660.4175270.0490670.105*
C210.9201 (9)0.3338 (4)0.0157 (3)0.0835 (14)
H210.9068780.3772310.0363600.100*
C220.7663 (8)0.2428 (4)0.0409 (3)0.0745 (12)
C230.5937 (10)0.2149 (4)0.0094 (3)0.0892 (14)
H230.5774970.2569130.0617200.107*
C240.4485 (11)0.1279 (5)0.0160 (4)0.1064 (17)
H240.3326900.1109280.0182550.128*
C250.4757 (11)0.0636 (4)0.0951 (3)0.0992 (17)
H250.3785210.0033450.1124410.119*
C260.6395 (8)0.0876 (3)0.1459 (3)0.0782 (13)
H260.6534460.0443770.1979400.094*
C270.7907 (8)0.1786 (3)0.1205 (2)0.0665 (11)
C280.6094 (9)0.4996 (4)0.1449 (3)0.0982 (17)
H28A0.6244270.5442730.0907010.147*
H28B0.5892650.4299520.1424650.147*
H28C0.7659860.5043970.1723180.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0821 (18)0.091 (2)0.0612 (18)0.0282 (16)0.0048 (15)0.0090 (15)
O20.092 (2)0.084 (2)0.0690 (19)0.0149 (17)0.0009 (17)0.0044 (16)
O30.0884 (19)0.080 (2)0.0646 (18)0.0234 (16)0.0024 (15)0.0105 (15)
O40.0956 (19)0.0717 (18)0.0488 (15)0.0066 (15)0.0098 (14)0.0071 (13)
N10.0739 (19)0.060 (2)0.062 (2)0.0149 (16)0.0072 (17)0.0109 (16)
N20.075 (2)0.071 (2)0.0536 (18)0.0181 (17)0.0033 (16)0.0133 (16)
C10.068 (2)0.062 (2)0.061 (2)0.0055 (19)0.006 (2)0.014 (2)
C90.084 (3)0.086 (3)0.061 (3)0.018 (2)0.002 (2)0.016 (2)
C80.122 (4)0.102 (4)0.068 (3)0.043 (3)0.007 (3)0.004 (3)
C20.061 (2)0.062 (2)0.065 (2)0.0057 (19)0.0061 (19)0.016 (2)
C70.070 (2)0.075 (3)0.059 (2)0.005 (2)0.005 (2)0.014 (2)
C60.079 (3)0.081 (3)0.073 (3)0.026 (2)0.006 (2)0.016 (2)
C50.082 (3)0.075 (3)0.076 (3)0.018 (2)0.002 (2)0.010 (2)
C40.075 (2)0.069 (3)0.063 (3)0.002 (2)0.008 (2)0.007 (2)
C30.070 (2)0.067 (3)0.060 (2)0.005 (2)0.003 (2)0.011 (2)
C100.081 (3)0.078 (3)0.066 (3)0.017 (2)0.004 (2)0.014 (2)
C110.098 (3)0.116 (4)0.085 (4)0.008 (3)0.010 (3)0.028 (3)
C120.108 (4)0.142 (6)0.101 (5)0.007 (4)0.019 (4)0.005 (4)
C130.155 (6)0.137 (6)0.070 (4)0.055 (5)0.005 (4)0.010 (4)
C140.165 (6)0.125 (5)0.090 (5)0.039 (5)0.047 (4)0.050 (4)
C150.104 (4)0.089 (4)0.101 (4)0.001 (3)0.020 (3)0.025 (3)
C160.068 (2)0.067 (3)0.055 (2)0.009 (2)0.0058 (19)0.016 (2)
C170.078 (2)0.077 (3)0.049 (2)0.000 (2)0.006 (2)0.013 (2)
C180.079 (2)0.066 (3)0.048 (2)0.006 (2)0.000 (2)0.0062 (19)
C190.094 (3)0.073 (3)0.060 (3)0.007 (2)0.006 (2)0.004 (2)
C200.102 (3)0.079 (3)0.069 (3)0.007 (3)0.000 (3)0.000 (2)
C210.095 (3)0.085 (3)0.062 (3)0.003 (3)0.002 (3)0.005 (2)
C220.080 (3)0.081 (3)0.061 (3)0.018 (2)0.009 (2)0.018 (2)
C230.099 (3)0.104 (4)0.066 (3)0.019 (3)0.025 (3)0.022 (3)
C240.110 (4)0.121 (5)0.098 (4)0.007 (4)0.032 (3)0.039 (4)
C250.105 (4)0.103 (4)0.093 (4)0.016 (3)0.019 (3)0.027 (3)
C260.086 (3)0.079 (3)0.069 (3)0.000 (2)0.007 (2)0.018 (2)
C270.072 (2)0.073 (3)0.055 (2)0.008 (2)0.005 (2)0.017 (2)
C280.096 (3)0.102 (4)0.082 (3)0.002 (3)0.010 (3)0.004 (3)
Geometric parameters (Å, º) top
O1—C81.376 (5)C12—H120.9300
O1—C71.383 (4)C12—C131.349 (7)
O2—C41.371 (5)C13—H130.9300
O2—C281.411 (5)C13—C141.351 (6)
O3—C161.228 (5)C14—H140.9300
O4—C171.404 (5)C14—C151.374 (6)
O4—C181.374 (4)C15—H150.9300
N1—N21.376 (4)C16—C171.503 (5)
N1—C11.284 (5)C17—H17A0.9700
N2—H20.8600C17—H17B0.9700
N2—C161.338 (5)C18—C191.374 (5)
C1—C91.488 (5)C18—C271.401 (6)
C1—C21.453 (5)C19—H190.9300
C9—H9A0.9700C19—C201.399 (6)
C9—H9B0.9700C20—H200.9300
C9—C81.451 (6)C20—C211.345 (7)
C8—H80.9800C21—H210.9300
C8—C101.485 (6)C21—C221.425 (6)
C2—C71.382 (5)C22—C231.392 (6)
C2—C31.406 (5)C22—C271.414 (6)
C7—C61.376 (6)C23—H230.9300
C6—H60.9300C23—C241.357 (7)
C6—C51.360 (5)C24—H240.9300
C5—H50.9300C24—C251.410 (7)
C5—C41.387 (6)C25—H250.9300
C4—C31.361 (5)C25—C261.345 (6)
C3—H30.9300C26—H260.9300
C10—C111.366 (5)C26—C271.416 (6)
C10—C151.372 (6)C28—H28A0.9600
C11—H110.9300C28—H28B0.9600
C11—C121.352 (6)C28—H28C0.9600
C8—O1—C7115.8 (3)C13—C14—H14120.0
C4—O2—C28116.6 (4)C13—C14—C15120.1 (6)
C18—O4—C17118.8 (3)C15—C14—H14120.0
C1—N1—N2118.2 (3)C10—C15—C14120.6 (5)
N1—N2—H2120.4C10—C15—H15119.7
C16—N2—N1119.1 (3)C14—C15—H15119.7
C16—N2—H2120.4O3—C16—N2121.2 (3)
N1—C1—C9126.7 (4)O3—C16—C17121.6 (3)
N1—C1—C2116.4 (3)N2—C16—C17117.2 (4)
C2—C1—C9116.8 (3)O4—C17—C16107.4 (3)
C1—C9—H9A109.0O4—C17—H17A110.2
C1—C9—H9B109.0O4—C17—H17B110.2
H9A—C9—H9B107.8C16—C17—H17A110.2
C8—C9—C1113.0 (4)C16—C17—H17B110.2
C8—C9—H9A109.0H17A—C17—H17B108.5
C8—C9—H9B109.0O4—C18—C27116.1 (3)
O1—C8—C9118.2 (5)C19—C18—O4122.8 (4)
O1—C8—H8102.8C19—C18—C27121.1 (4)
O1—C8—C10109.7 (4)C18—C19—H19120.4
C9—C8—H8102.8C18—C19—C20119.1 (5)
C9—C8—C10117.8 (4)C20—C19—H19120.4
C10—C8—H8102.8C19—C20—H20119.1
C7—C2—C1120.0 (4)C21—C20—C19121.8 (4)
C7—C2—C3117.8 (4)C21—C20—H20119.1
C3—C2—C1122.1 (4)C20—C21—H21119.8
C2—C7—O1121.9 (4)C20—C21—C22120.4 (4)
C6—C7—O1117.0 (4)C22—C21—H21119.8
C6—C7—C2121.1 (4)C23—C22—C21122.6 (4)
C7—C6—H6120.0C23—C22—C27119.0 (4)
C5—C6—C7120.0 (4)C27—C22—C21118.4 (4)
C5—C6—H6120.0C22—C23—H23119.2
C6—C5—H5119.7C24—C23—C22121.7 (5)
C6—C5—C4120.5 (4)C24—C23—H23119.2
C4—C5—H5119.7C23—C24—H24120.4
O2—C4—C5115.4 (4)C23—C24—C25119.1 (5)
C3—C4—O2125.1 (4)C25—C24—H24120.4
C3—C4—C5119.6 (4)C24—C25—H25119.4
C2—C3—H3119.5C26—C25—C24121.3 (5)
C4—C3—C2121.0 (4)C26—C25—H25119.4
C4—C3—H3119.5C25—C26—H26119.9
C11—C10—C8122.0 (5)C25—C26—C27120.3 (4)
C11—C10—C15117.8 (4)C27—C26—H26119.9
C15—C10—C8120.2 (5)C18—C27—C22119.3 (4)
C10—C11—H11119.5C18—C27—C26122.0 (4)
C12—C11—C10121.0 (5)C22—C27—C26118.7 (4)
C12—C11—H11119.5O2—C28—H28A109.5
C11—C12—H12119.6O2—C28—H28B109.5
C13—C12—C11120.9 (6)O2—C28—H28C109.5
C13—C12—H12119.6H28A—C28—H28B109.5
C12—C13—H13120.2H28A—C28—H28C109.5
C12—C13—C14119.5 (6)H28B—C28—H28C109.5
C14—C13—H13120.2
O1—C8—C10—C1173.5 (6)C7—C6—C5—C40.6 (7)
O1—C8—C10—C15106.7 (6)C6—C5—C4—O2179.6 (4)
O1—C7—C6—C5179.8 (4)C6—C5—C4—C30.7 (7)
O2—C4—C3—C2179.5 (4)C5—C4—C3—C20.1 (6)
O3—C16—C17—O4103.6 (5)C3—C2—C7—O1179.0 (4)
O4—C18—C19—C20179.6 (4)C3—C2—C7—C61.2 (6)
O4—C18—C27—C22179.7 (4)C10—C11—C12—C130.2 (10)
O4—C18—C27—C260.7 (6)C11—C10—C15—C142.1 (8)
N1—N2—C16—O3179.5 (4)C11—C12—C13—C141.8 (11)
N1—N2—C16—C171.4 (5)C12—C13—C14—C151.7 (10)
N1—C1—C9—C8162.8 (5)C13—C14—C15—C100.2 (9)
N1—C1—C2—C7176.4 (4)C15—C10—C11—C122.1 (8)
N1—C1—C2—C31.7 (6)C17—O4—C18—C192.9 (6)
N2—N1—C1—C90.2 (6)C17—O4—C18—C27177.3 (3)
N2—N1—C1—C2179.2 (3)C18—O4—C17—C16165.4 (3)
N2—C16—C17—O478.3 (4)C18—C19—C20—C210.7 (8)
C1—N1—N2—C16171.6 (4)C19—C18—C27—C220.5 (6)
C1—C9—C8—O142.0 (7)C19—C18—C27—C26179.5 (4)
C1—C9—C8—C10177.5 (4)C19—C20—C21—C220.6 (8)
C1—C2—C7—O12.8 (6)C20—C21—C22—C23180.0 (5)
C1—C2—C7—C6176.9 (4)C20—C21—C22—C270.1 (7)
C1—C2—C3—C4177.0 (4)C21—C22—C23—C24179.8 (5)
C9—C1—C2—C72.7 (6)C21—C22—C27—C180.7 (6)
C9—C1—C2—C3179.2 (4)C21—C22—C27—C26179.7 (4)
C9—C8—C10—C1165.5 (7)C22—C23—C24—C250.8 (8)
C9—C8—C10—C15114.3 (6)C23—C22—C27—C18179.4 (4)
C8—O1—C7—C219.7 (6)C23—C22—C27—C260.4 (6)
C8—O1—C7—C6160.6 (5)C23—C24—C25—C261.0 (9)
C8—C10—C11—C12178.1 (5)C24—C25—C26—C270.5 (8)
C8—C10—C15—C14178.1 (5)C25—C26—C27—C18179.2 (4)
C2—C1—C9—C818.2 (6)C25—C26—C27—C220.2 (7)
C2—C7—C6—C50.4 (7)C27—C18—C19—C200.2 (7)
C7—O1—C8—C943.1 (6)C27—C22—C23—C240.1 (7)
C7—O1—C8—C10178.1 (4)C28—O2—C4—C5173.4 (4)
C7—C2—C3—C41.1 (6)C28—O2—C4—C36.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.862.082.922 (4)167
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

Research reported here was conducted on instrumentation funded by SIG S10 grants of the National Institutes of Health under award Nos. 1S10OD028589–01 and 1S10RR023439–01 to Dr Neela Yennawar.

Funding information

Funding for this research was provided by: Pennsylvania State University (grant No. CCRCDP 150000005862 to Dr Anna Sigmon).

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKim, J. H., Kang, J., Kim, M., Bak, Y., Park, Y., Jung, K. Y., Lim, Y. & Yoon, D. Y. (2012). Toxicol. In Vitro, 26, 67–73.  Web of Science CrossRef PubMed Google Scholar
First citationLodyga-Chruscinska, E., Symonowicz, M., Sykula, A., Bujacz, A., Garribba, E., Rowinska-Zyrek, M., Oldziej, S., Klewicka, E., Janicka, M., Krolewska, K., Cieslak, M., Brodowska, K. & Chruscinski, L. (2015). J. Inorg. Biochem. 143, 34–47.  Web of Science CAS PubMed Google Scholar
First citationNie, A., Ghosh, S. & Huang, Z. (2006). Acta Cryst. E62, o1824–o1825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPanche, A. N., Diwan, A. D. & Chandra, S. R. (2016). J. Nutr. Sci. 5, e47.  CrossRef PubMed Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P. & Sigmon, A. (2022). Acta Cryst. E78, 346–348.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds