research communications
Synthesis, κ2N,N′]diaquanickel(II) dichloride
and Hirshfeld surface analysis of bis[4-(2-aminoethyl)morpholine-aPG and Research Department of Physics, Government Arts College for Men, (Autonomous), Chennai 600 035, Tamil Nadu, India
*Correspondence e-mail: drsskphy@gmail.com
The title coordination compound, [Ni(C6H14N2O)2(H2O)2]Cl2, was synthesized by mixing 4-(2-aminoethyl)morpholine and nickel chloride in double-distilled water. The comprises one half of an NiII cation (located on an inversion centre), one 4-(2-aminoethyl)morpholine ligand, one coordinated water molecule and one chloride ion outside the metal coordination sphere. The nickel ion is in a octahedral environment of the N4O2 type, coordinating four N atoms from two 4-(2-aminoethyl)morpholine ligands and two trans-located O atoms from two water molecules. The morpholine ligand was found disordered over two positions with a site occupancy ratio of 0.708 (8):0.292 (8). The is consolidated by N—H⋯Cl, N—H⋯O, C—H⋯Cl and C—H⋯O hydrogen bonds. Hirshfeld surface analysis confirms that van der Waals interactions are prevalent in the crystal packing of the synthesized complex.
Keywords: crystal structure; metal-organic; morpholine; hydrogen bond; IR; Hirshfeld surface.
1. Chemical context
Morpholine has been recognized as a convenient ligand for the design of supramolecular structures (Cvrtila et al., 2012) since it is a ditopic heterocyclic molecule that can coordinate the metal ion via one hetero atom, leaving the other free for linking to other molecules either by coordination to metal ions (Gálvez Ruiz et al., 2008; Willett et al., 2005; Lapadula et al., 2010; Clegg et al., 2010) or by hydrogen bonding (Lian et al., 2008; Weinberger et al., 1998; Ivanov et al., 2001). The coordination of a morpholine molecule to a metal ion activates the morpholine molecule as a hydrogen-bond donor by increasing the partial positive charge of the morpholine amine hydrogen. Coordination of two morpholine molecules through nitrogen lone pairs on a single metal centre can lead to a good bonding site for negatively charged small species. A prerequisite for this is that the morpholine ligands are bonded to the central ion in a cis configuration, which may be achieved by the use of chelating co-ligands. These will induce the binding of morpholine in a convenient configuration, so that its N—H groups form a pincer, which can bind guest molecules in the second coordination sphere. Intriguingly, reports of morpholine-based metal–organic receptors are scarce (White et al., 1999). Transition-metal ions can be an important source of magnetic moments, and when connected through proper bridging ligands, superexchange interactions can take place (Konar et al., 2005). Parallel to the development of organic electro-optical (EO) and non-linear optical (NLO) materials [Lamshöft et al., (2011)], a subject of great interest comprises metal–organic chromophores.
Metal–organic frameworks (MOFs) are crystalline hybrid materials with networks constructed from the self-assembly of metal ions with, at least, one organic linker. As a result of their availability from commercial sources and/or easy synthetic methodologies, organic ligands based on carboxylate or nitrogen compounds have been used extensively, mainly with transition-metal ions, to isolate new and improved MOF architectures, to be studied for a large range of practical applications (Horcajada et al., 2012; Kreno et al., 2012; He et al., 2012; Chughtai et al., 2015). Morpholine can be used as a ligand in metal complexes and it can also be a component of protective coatings on fresh fruits and used as an emulsifier in the preparation of pharmaceuticals and cosmetic products (Kuchowicz & Rydzyński, 1998). As a continuation of our recent work on compounds belonging to the morpholine family (Chidambaranathan et al., 2023) we are now using morpholine as ligand for coordination complexes. The current study describes the synthesis, Hirshfeld surface, and infrared spectroscopy of bis[4-(2-aminoethyl)morpholine-κ2N:N′]diaquanickel(II) dichloride.
2. Structural commentary
The title compound (Fig. 1) crystallizes in the monoclinic P21/n with two complexes in the The comprises one half of an NiII cation, which is located on an inversion centre, one [(4-(2-aminoethyl) morpholine] ligand, one coordinated water molecule and one chloride ion outside the metal coordination sphere. The nickel ion is in an octahedral environment of the type N4O2; the coordination sphere comprises two N,N′-bidentate morpholine ligands defining the equatorial plane, which form two five-membered chelate rings with the metal centre (Suleiman Gwaram et al., 2011). The two remaining trans axial positions are occupied by the oxygen atoms from the water molecules. As a result of symmetry, the N2—Ni—N2i, N1—Ni—N1i and O2–Ni–O2i angles are 180° [symmetry code: (i) −x + 1, −y + 1, −z + 1] and the axes of the octahedron are almost perpendicular to each other [N2—Ni—O2 = 90.80 (12), N2—Ni—O2i = 89.20 (12) and O2—Ni—N1i = 91.86 (14)°]. The morpholine rings adopt a chair conformation·The Ni—N (amine) distances, Ni—N1 and Ni—N2, are of 2.249 (4) and 2.067 (3) Å, respectively, in good agreement with the values observed in the literature (Chiumia et al. 1999; Chattopadhyay et al. 2005).
3. Supramolecular features
Figs. 2 and 3 highlight the main supramolecular interactions formed by the title compound (see also Table 1), while Fig. 4 shows the overall viewed down the b-axis direction. In the crystal, the oxygen atoms of the water and of the morpholine molecules (O1 and O2) act as acceptors for several intermolecular interactions of the types N—H⋯O and C—H⋯O, respectively. The uncoordinated chloride anions act as acceptors to C—H and N—H groups of the morpholine molecules and link the adjacent molecules via O—H⋯Cl interactions involving the water molecules.
In particular, a bifurcated intermolecular hydrogen bond is formed between the N2—H2E moiety of the morpholine ligand in the with an adjacent chloride anion and an adjacent morpholine molecule [N2—H2E⋯Cl1i = 2.79 Å and 138.6°; N2—H2E⋯O1′ii = 2.38 Å and 126.3°; symmetry codes: (i) x − , −y + , z − ; (ii) x, y − 1, z]. The two symmetry-related water molecules coordinated by the Ni ion interact each with two chloride anions [O2—H1W⋯Cl1 = 2.23 (2) Å and 166 (4)°; O2—H2W⋯Cl1vii = 2.24 (2) and 166 (5)°; symmetry code: (vii) −x + , y + , −z + ;] . Finally, graph-set analysis (Spackman et al., 2021) shows that very weak intermolecular hydrogen bonds of the type N—H⋯O form an R22(14) ring motif binding two morpholine molecules into a supramolecular dimer (Fig. 3; Bernstein et al., 1995; Motherwell et al., 2000; Spackman et al., 2021).
The intermolecular interactions were also studied using Hirshfeld surface analysis, by mapping the normalized contact distances using CrystalExplorer21.5 (Spackman et al., 2021). The Hirshfeld surface (HS) was created with a standard surface resolution; the three-dimensional dnorm surface mapped over a set colour scale ranging from −0.5438 to 1.2671 a.u. is shown in Fig. 5. In the dnorm map, blue and red patches show intermolecular interactions with distances greater than and less than the van der Waals radii sum of the interacting elements, respectively (Venkatesan et al., 2016). The brighter red (big circle), lighter red (big circle), lighter red (small circle) and white spots appearing on the HS represent the O—H⋯Cl, N—H⋯Cl, C—H⋯Cl and N—H⋯O interactions, respectively.
Fig. 6 shows the two-dimensional fingerprint plots exhibiting (a) all intermolecular interactions and those delineated into (b) H⋯H, (c) H⋯Cl/Cl⋯H and (d) O⋯H/H⋯O contacts. The distances from a place on the HS to the closest atoms outside and inside the surface are represented by de and di in the figure. The most important interaction is H⋯H, which accounts for 63.1% of the total crystal packing and is shown in Fig. 6b by a pair of symmetrical blunt spikes with points at de + di ∼2.4 Å. The high contribution of these interactions suggests that van der Waals interactions play a major role in the crystal packing (Hathwar et al., 2015). The H⋯Cl interactions are shown by the presence of a pair of wings in the fingerprint plot shown in Fig. 6c with the tips at de + di ∼2.5 Å, contributing 25.5% to the HS. The pair of sharp symmetrical spikes in the fingerprint plot delineated into O⋯H/H⋯O contacts (11.3% contribution to the HS, Fig. 6d), shows a symmetric distribution of points with the tips at de + di ∼2.1 Å.
4. Database survey
A search in the Cambridge Structural Database (CSD, version 5.40; Groom et al., 2016) for the keyword `4-(2-aminoethyl)morpholine' yielded nine hits for coordination compounds of 4-(2-aminoethyl)morpholine with metals, including catena-[bis(μ2-dicyanamide-N,N′)(4-(2-aminoethyl)morpholine]nickel(II) (FIJROG; Konar et al., 2005), bis[2-(morpholin-4-yl)ethanamine][5,10,15,20-tetrakis(4-methoxyphenyl)porphyrinato]iron(II) (NABXEW; Ben Haj Hassen et al., 2016; NABXEW01; Khélifa et al., 2016), trans-bis[4-(2-aminoethyl)morpholine]bis(nitrito)nickel(II) (NAVNAA; Chattopadhyay et al., 2005; RANVEJ and NAVNAA01; Brayshaw et al., 2012), trans-bis(isothiocyanato-N)bis[4-(2-aminoethyl)morpholine-N,N′]nickel(II) (NENSUU; Laskar et al., 2001), [4-(2-aminoethyl)morpholine-N,N′]aqua(oxalate-O,O′)copper(II) monohydrate (XAZRUM; Koćwin-Giełzak et al., 2006) and (μ2-oxalato)bis[4-(2-aminoethyl)morpholine]dicopper(II) diperchlorate (YIKQAK; Mukherjee et al., 2001). All of the above-mentioned structures are consolidated by hydrogen bonds and contain morpholine rings in a chair conformation.
5. Synthesis and crystallization
According to the reaction shown in the scheme, the title compound was synthesized by mixing two moles of 4-(2-aminoethyl)morpholine (4.34 g) and one mole of nickel chloride hexahydrate (3.96 g) in 100 ml of double-distilled water at 303 K. At room temperature, the solution was allowed to evaporate, yielding plate-like ultramarine blue crystals of the title compound. The FT–IR spectrum of the compound was recorded on a BRUKER FT–IR spectrometer. FT–IR (KBr, cm−1): 3455 (w, N—H), 2967 (w, CH2), 1614 (s, H2O), 1307 (s, C—N).
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were positioned geometrically (C—H = 0.97 Å) and refined using a riding model with [Uiso(H) = 1.2Ueq(C)]. The water hydrogen atoms, H1W and H2W, were found in a difference-Fourier map and refined freely.
details are summarized in Table 2
|
The morpholine ligand was found disordered over two positions with a site occupancy ratio of 0.708 (8):0.292 (8). The positions of the disordered atoms were identified from difference electron-density peaks and refined using DFIX restraints to achieve the target bond distance of the corresponding atoms. Anisotropic displacement parameters of atoms in the group were restrained to be equal using SIMU restraints with an effective standard deviation of 0.02 Å2.
Supporting information
https://doi.org/10.1107/S2056989023001470/xi2027sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023001470/xi2027Isup2.hkl
FTIR spectrum. DOI: https://doi.org/10.1107/S2056989023001470/xi2027sup3.pdf
Data collection: APEX3 (Bruker, 2016); cell
APEX3/SAINT (Bruker, 2016); data reduction: SAINT/XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020).[Ni(C6H14N2O)2(H2O)2]Cl2 | F(000) = 452 |
Mr = 426.02 | Dx = 1.501 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 8.6495 (4) Å | Cell parameters from 9948 reflections |
b = 8.6593 (4) Å | θ = 6.2–70.1° |
c = 13.1882 (6) Å | µ = 4.30 mm−1 |
β = 107.415 (1)° | T = 298 K |
V = 942.50 (8) Å3 | Block, green |
Z = 2 | 0.18 × 0.15 × 0.10 mm |
Bruker D8 VENTURE diffractometer with PHOTON II detector | 1632 independent reflections |
Radiation source: micro-focus sealed tube | 1564 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
ω and φ scan | θmax = 66.0°, θmin = 6.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −10→10 |
Tmin = 0.453, Tmax = 0.622 | k = −10→10 |
15220 measured reflections | l = −15→15 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.059 | w = 1/[σ2(Fo2) + (0.0874P)2 + 1.7374P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.165 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.70 e Å−3 |
1632 reflections | Δρmin = −0.38 e Å−3 |
143 parameters | Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
113 restraints | Extinction coefficient: 0.0076 (14) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Morpholine moiety is disordered over two positions with a site occupancy ratio of 70:30. The positions of disordered atoms were identified from difference electron density peaks and refined using DFIX restraints to achieve target bond distance of corresponding atoms. Anisotropic displacement parameters of atoms in the group were restrained to be equal using SIMU restraint with an effective standard deviation of 0.02 Å2 |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.500000 | 0.500000 | 0.500000 | 0.0377 (4) | |
Cl1 | 0.58426 (12) | 0.26230 (11) | 0.79999 (7) | 0.0497 (4) | |
N2 | 0.3557 (4) | 0.3416 (4) | 0.5464 (2) | 0.0417 (7) | |
H2E | 0.321086 | 0.270181 | 0.496166 | 0.050* | |
H2F | 0.412811 | 0.294617 | 0.605857 | 0.050* | |
C1 | 0.2163 (5) | 0.4214 (5) | 0.5645 (4) | 0.0530 (10) | |
H1A | 0.169116 | 0.357477 | 0.607952 | 0.064* | |
H1B | 0.134252 | 0.439523 | 0.497077 | 0.064* | |
C2 | 0.2705 (6) | 0.5732 (6) | 0.6197 (4) | 0.0617 (12) | |
H2A | 0.177632 | 0.627145 | 0.629318 | 0.074* | |
H2B | 0.346316 | 0.554100 | 0.689329 | 0.074* | |
N1 | 0.3495 (4) | 0.6720 (4) | 0.5568 (3) | 0.0540 (9) | |
C3 | 0.4447 (7) | 0.7938 (6) | 0.6282 (5) | 0.0788 (16) | |
H3A | 0.503172 | 0.746613 | 0.695416 | 0.095* | 0.708 (8) |
H3B | 0.524266 | 0.834796 | 0.596811 | 0.095* | 0.708 (8) |
H3C | 0.394298 | 0.808352 | 0.684009 | 0.095* | 0.292 (8) |
H3D | 0.551081 | 0.750267 | 0.661767 | 0.095* | 0.292 (8) |
C6 | 0.2296 (8) | 0.7512 (6) | 0.4671 (6) | 0.0877 (19) | |
H6A | 0.285455 | 0.782072 | 0.416555 | 0.105* | 0.708 (8) |
H6B | 0.148727 | 0.675497 | 0.431770 | 0.105* | 0.708 (8) |
H6C | 0.217530 | 0.688961 | 0.403994 | 0.105* | 0.292 (8) |
H6D | 0.126270 | 0.748890 | 0.481740 | 0.105* | 0.292 (8) |
O1 | 0.2524 (8) | 0.9954 (5) | 0.5545 (5) | 0.0697 (15) | 0.708 (8) |
C5 | 0.1454 (8) | 0.8844 (7) | 0.4888 (6) | 0.0633 (18) | 0.708 (8) |
H5A | 0.086425 | 0.932949 | 0.422181 | 0.076* | 0.708 (8) |
H5B | 0.067047 | 0.851491 | 0.523849 | 0.076* | 0.708 (8) |
C4 | 0.3492 (9) | 0.9208 (8) | 0.6487 (6) | 0.0674 (19) | 0.708 (8) |
H4A | 0.278788 | 0.882257 | 0.688096 | 0.081* | 0.708 (8) |
H4B | 0.421466 | 0.996291 | 0.693024 | 0.081* | 0.708 (8) |
C4' | 0.4697 (19) | 0.9379 (15) | 0.5939 (14) | 0.068 (4) | 0.292 (8) |
H4'1 | 0.553724 | 0.933106 | 0.559085 | 0.082* | 0.292 (8) |
H4'2 | 0.506450 | 1.006516 | 0.654532 | 0.082* | 0.292 (8) |
C5' | 0.254 (2) | 0.8918 (14) | 0.4431 (12) | 0.063 (4) | 0.292 (8) |
H5'1 | 0.150028 | 0.934129 | 0.402873 | 0.076* | 0.292 (8) |
H5'2 | 0.320186 | 0.887646 | 0.395218 | 0.076* | 0.292 (8) |
O1' | 0.3261 (18) | 0.9976 (12) | 0.5223 (10) | 0.062 (3) | 0.292 (8) |
O2 | 0.6639 (4) | 0.5015 (4) | 0.6529 (3) | 0.0588 (9) | |
H1W | 0.657 (5) | 0.441 (4) | 0.701 (3) | 0.057 (13)* | |
H2W | 0.738 (6) | 0.567 (5) | 0.677 (4) | 0.10 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0404 (6) | 0.0349 (6) | 0.0345 (5) | −0.0046 (3) | 0.0065 (4) | 0.0025 (3) |
Cl1 | 0.0538 (6) | 0.0504 (6) | 0.0434 (6) | 0.0047 (4) | 0.0124 (4) | 0.0080 (4) |
N2 | 0.0451 (16) | 0.0373 (16) | 0.0409 (16) | −0.0009 (13) | 0.0101 (13) | 0.0004 (13) |
C1 | 0.048 (2) | 0.053 (2) | 0.060 (2) | −0.0070 (18) | 0.0202 (19) | −0.006 (2) |
C2 | 0.060 (3) | 0.060 (3) | 0.069 (3) | −0.003 (2) | 0.027 (2) | −0.017 (2) |
N1 | 0.0505 (18) | 0.0363 (17) | 0.066 (2) | −0.0030 (14) | 0.0033 (16) | −0.0021 (15) |
C3 | 0.074 (3) | 0.049 (3) | 0.094 (4) | −0.006 (2) | −0.006 (3) | −0.017 (3) |
C6 | 0.079 (3) | 0.054 (3) | 0.097 (4) | 0.011 (2) | −0.023 (3) | −0.006 (3) |
O1 | 0.080 (4) | 0.040 (2) | 0.093 (4) | 0.002 (2) | 0.031 (3) | −0.004 (2) |
C5 | 0.068 (4) | 0.049 (3) | 0.072 (4) | 0.008 (3) | 0.020 (3) | −0.001 (3) |
C4 | 0.073 (4) | 0.052 (4) | 0.080 (4) | −0.007 (3) | 0.027 (3) | −0.024 (3) |
C4' | 0.074 (7) | 0.046 (7) | 0.079 (8) | −0.009 (6) | 0.015 (7) | −0.010 (6) |
C5' | 0.075 (7) | 0.048 (7) | 0.065 (7) | 0.006 (6) | 0.019 (6) | −0.007 (6) |
O1' | 0.077 (7) | 0.041 (5) | 0.071 (6) | 0.000 (5) | 0.024 (5) | 0.000 (4) |
O2 | 0.0611 (19) | 0.0566 (19) | 0.0482 (17) | −0.0190 (14) | 0.0003 (15) | 0.0115 (13) |
Ni1—N2 | 2.067 (3) | C3—H3D | 0.9700 |
Ni1—N2i | 2.067 (3) | C6—C5' | 1.292 (13) |
Ni1—O2i | 2.090 (3) | C6—C5 | 1.439 (8) |
Ni1—O2 | 2.090 (3) | C6—H6A | 0.9700 |
Ni1—N1i | 2.249 (4) | C6—H6B | 0.9700 |
Ni1—N1 | 2.249 (4) | C6—H6C | 0.9700 |
N2—C1 | 1.470 (5) | C6—H6D | 0.9700 |
N2—H2E | 0.8900 | O1—C4 | 1.428 (9) |
N2—H2F | 0.8900 | O1—C5 | 1.432 (8) |
C1—C2 | 1.508 (6) | C5—H5A | 0.9700 |
C1—H1A | 0.9700 | C5—H5B | 0.9700 |
C1—H1B | 0.9700 | C4—H4A | 0.9700 |
C2—N1 | 1.492 (6) | C4—H4B | 0.9700 |
C2—H2A | 0.9700 | C4'—O1' | 1.414 (15) |
C2—H2B | 0.9700 | C4'—H4'1 | 0.9700 |
N1—C6 | 1.487 (6) | C4'—H4'2 | 0.9700 |
N1—C3 | 1.487 (6) | C5'—O1' | 1.389 (14) |
C3—C4' | 1.366 (13) | C5'—H5'1 | 0.9700 |
C3—C4 | 1.449 (8) | C5'—H5'2 | 0.9700 |
C3—H3A | 0.9700 | O2—H1W | 0.840 (19) |
C3—H3B | 0.9700 | O2—H2W | 0.84 (2) |
C3—H3C | 0.9700 | ||
N2—Ni1—N2i | 180.00 (12) | C4'—C3—H3C | 106.5 |
N2—Ni1—O2i | 89.20 (12) | N1—C3—H3C | 106.5 |
N2i—Ni1—O2i | 90.80 (12) | C4'—C3—H3D | 106.5 |
N2—Ni1—O2 | 90.80 (12) | N1—C3—H3D | 106.5 |
N2i—Ni1—O2 | 89.20 (12) | H3C—C3—H3D | 106.5 |
O2i—Ni1—O2 | 180.0 | C5'—C6—N1 | 120.2 (8) |
N2—Ni1—N1i | 96.89 (13) | C5—C6—N1 | 119.0 (6) |
N2i—Ni1—N1i | 83.11 (13) | C5—C6—H6A | 107.6 |
O2i—Ni1—N1i | 88.14 (14) | N1—C6—H6A | 107.6 |
O2—Ni1—N1i | 91.86 (14) | C5—C6—H6B | 107.6 |
N2—Ni1—N1 | 83.11 (13) | N1—C6—H6B | 107.6 |
N2i—Ni1—N1 | 96.89 (13) | H6A—C6—H6B | 107.0 |
O2i—Ni1—N1 | 91.86 (14) | C5'—C6—H6C | 107.3 |
O2—Ni1—N1 | 88.14 (14) | N1—C6—H6C | 107.3 |
N1i—Ni1—N1 | 180.0 | C5'—C6—H6D | 107.3 |
C1—N2—Ni1 | 109.5 (2) | N1—C6—H6D | 107.3 |
C1—N2—H2E | 109.8 | H6C—C6—H6D | 106.9 |
Ni1—N2—H2E | 109.8 | C4—O1—C5 | 109.1 (5) |
C1—N2—H2F | 109.8 | O1—C5—C6 | 112.6 (5) |
Ni1—N2—H2F | 109.8 | O1—C5—H5A | 109.1 |
H2E—N2—H2F | 108.2 | C6—C5—H5A | 109.1 |
N2—C1—C2 | 109.7 (3) | O1—C5—H5B | 109.1 |
N2—C1—H1A | 109.7 | C6—C5—H5B | 109.1 |
C2—C1—H1A | 109.7 | H5A—C5—H5B | 107.8 |
N2—C1—H1B | 109.7 | O1—C4—C3 | 113.5 (6) |
C2—C1—H1B | 109.7 | O1—C4—H4A | 108.9 |
H1A—C1—H1B | 108.2 | C3—C4—H4A | 108.9 |
N1—C2—C1 | 111.1 (4) | O1—C4—H4B | 108.9 |
N1—C2—H2A | 109.4 | C3—C4—H4B | 108.9 |
C1—C2—H2A | 109.4 | H4A—C4—H4B | 107.7 |
N1—C2—H2B | 109.4 | C3—C4'—O1' | 111.1 (11) |
C1—C2—H2B | 109.4 | C3—C4'—H4'1 | 109.4 |
H2A—C2—H2B | 108.0 | O1'—C4'—H4'1 | 109.4 |
C6—N1—C3 | 107.4 (4) | C3—C4'—H4'2 | 109.4 |
C6—N1—C2 | 112.3 (4) | O1'—C4'—H4'2 | 109.4 |
C3—N1—C2 | 108.3 (4) | H4'1—C4'—H4'2 | 108.0 |
C6—N1—Ni1 | 112.1 (4) | C6—C5'—O1' | 120.4 (13) |
C3—N1—Ni1 | 114.5 (3) | C6—C5'—H5'1 | 107.2 |
C2—N1—Ni1 | 102.3 (2) | O1'—C5'—H5'1 | 107.2 |
C4'—C3—N1 | 123.4 (8) | C6—C5'—H5'2 | 107.2 |
C4—C3—N1 | 114.7 (5) | O1'—C5'—H5'2 | 107.2 |
C4—C3—H3A | 108.6 | H5'1—C5'—H5'2 | 106.9 |
N1—C3—H3A | 108.6 | C5'—O1'—C4' | 111.6 (12) |
C4—C3—H3B | 108.6 | Ni1—O2—H1W | 123 (3) |
N1—C3—H3B | 108.6 | Ni1—O2—H2W | 126 (3) |
H3A—C3—H3B | 107.6 | H1W—O2—H2W | 111 (3) |
Ni1—N2—C1—C2 | −40.4 (4) | Ni1—N1—C6—C5' | −104.5 (10) |
N2—C1—C2—N1 | 57.2 (5) | C3—N1—C6—C5 | −41.7 (8) |
C1—C2—N1—C6 | 79.2 (5) | C2—N1—C6—C5 | 77.2 (6) |
C1—C2—N1—C3 | −162.3 (4) | Ni1—N1—C6—C5 | −168.3 (5) |
C1—C2—N1—Ni1 | −41.1 (4) | C4—O1—C5—C6 | −53.8 (8) |
C6—N1—C3—C4' | −27.4 (12) | N1—C6—C5—O1 | 49.0 (9) |
C2—N1—C3—C4' | −148.9 (10) | C5—O1—C4—C3 | 58.6 (8) |
Ni1—N1—C3—C4' | 97.7 (10) | N1—C3—C4—O1 | −56.0 (8) |
C6—N1—C3—C4 | 43.7 (7) | N1—C3—C4'—O1' | 42.8 (18) |
C2—N1—C3—C4 | −77.8 (6) | N1—C6—C5'—O1' | −37 (2) |
Ni1—N1—C3—C4 | 168.8 (5) | C6—C5'—O1'—C4' | 50 (2) |
C3—N1—C6—C5' | 22.1 (12) | C3—C4'—O1'—C5' | −49 (2) |
C2—N1—C6—C5' | 141.0 (10) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2E···Cl1ii | 0.89 | 2.79 | 3.509 (3) | 139 |
N2—H2E···O1iii | 0.89 | 2.62 | 3.138 (6) | 118 |
N2—H2E···O1′iii | 0.89 | 2.38 | 2.998 (10) | 126 |
N2—H2F···Cl1 | 0.89 | 2.56 | 3.407 (3) | 159 |
C2—H2A···Cl1iv | 0.97 | 2.94 | 3.894 (5) | 169 |
C3—H3D···O2 | 0.97 | 2.38 | 3.120 (7) | 133 |
C6—H6C···O2i | 0.97 | 2.19 | 3.002 (8) | 140 |
C4—H4B···Cl1v | 0.97 | 2.84 | 3.799 (7) | 168 |
C4′—H4′1···O1′vi | 0.97 | 1.81 | 2.72 (2) | 156 |
C4′—H4′2···Cl1v | 0.97 | 2.88 | 3.827 (16) | 167 |
O2—H1W···Cl1 | 0.84 (2) | 2.23 (2) | 3.054 (3) | 166 (4) |
O2—H2W···Cl1vii | 0.84 (2) | 2.24 (2) | 3.069 (3) | 166 (5) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1/2, −y+1/2, z−1/2; (iii) x, y−1, z; (iv) −x+1/2, y+1/2, −z+3/2; (v) x, y+1, z; (vi) −x+1, −y+2, −z+1; (vii) −x+3/2, y+1/2, −z+3/2. |
Acknowledgements
The authors gratefully acknowledge Dr Shobhana Krishnaswamy, SAIF, IITM, Chennai, for the single-crystal X-ray diffraction data collection and structure solution and Dr M. Palanichamy, Emeritus Professor, Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai, for scientific discussions.
References
Ben Haj Hassen, L., Ezzayani, K., Rousselin, Y., Stern, C., Nasri, H. & Schulz, C. E. (2016). J. Mol. Struct. 1110, 138–142. CSD CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brayshaw, S. K., Easun, T. L., George, M. W., Griffin, A. M. E., Johnson, A. L., Raithby, P. R., Savarese, T. L., Schiffers, S., Warren, J. E., Warren, M. R. & Teat, S. J. (2012). Dalton Trans. 41, 90–97. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chattopadhyay, T., Ghosh, M., Majee, A., Nethaji, M. & Das, D. (2005). Polyhedron, 24, 1677–1681. Web of Science CSD CrossRef CAS Google Scholar
Chidambaranathan, B., Sivaraj, S. & Selvakumar, S. (2023). Acta Cryst. E79, 8–13. CSD CrossRef IUCr Journals Google Scholar
Chiumia, G. C., Craig, D. C., Phillips, D. J., Rae, A. D. & Kaifi, F. M. Z. (1999). Inorg. Chim. Acta, 285, 297–300. Web of Science CSD CrossRef CAS Google Scholar
Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A. & Verpoort, F. (2015). Chem. Soc. Rev. 44, 6804–6849. Web of Science CrossRef CAS PubMed Google Scholar
Clegg, J. K., Hayter, M. J., Jolliffe, K. A., Lindoy, L. F., McMurtrie, J. C., Meehan, G. V., Neville, S. M., Parsons, S., Tasker, P. A., Turner, P. & White, F. J. (2010). Dalton Trans. 39, 2804–2815. CSD CrossRef CAS PubMed Google Scholar
Cvrtila, I., Stilinović, V. & Kaitner, B. (2012). Struct. Chem. 23, 587–594. CSD CrossRef CAS Google Scholar
Gálvez Ruiz, J. C., Nöth, H. & Warchhold, M. (2008). Eur. J. Inorg. Chem. pp. 251–266. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
He, Y. B., Zhou, W., Krishna, R. & Chen, B. L. (2012). Chem. Commun. 48, 11813–11831. Web of Science CrossRef CAS Google Scholar
Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Férey, G., Morris, R. E. & Serre, C. (2012). Chem. Rev. 112, 1232–1268. Web of Science CrossRef CAS PubMed Google Scholar
Ivanov, A. V., Kritikos, M., Antzutkin, O. N. & Forsling, W. (2001). Inorg. Chim. Acta, 321, 63–74. CSD CrossRef CAS Google Scholar
Khélifa, A. B., Ezzayani, K. & Belkhiria, M. S. (2016). J. Mol. Struct. 1122, 18–23. Google Scholar
Koćwin-Giełzak, K. & Marciniak, B. (2006). Acta Cryst. E62, m155–m157. CSD CrossRef IUCr Journals Google Scholar
Konar, S., Dalai, S., Mukherjee, P. S., Drew, M. G. B., Ribas, J. & Ray Chaudhuri, N. (2005). Inorg. Chim. Acta, 358, 957–963. CSD CrossRef CAS Google Scholar
Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105–1125. Web of Science CrossRef CAS PubMed Google Scholar
Kuchowicz, E. & Rydzyński, K. (1998). Appl. Occup. Environ. Hyg. 13, 113–121. CrossRef Google Scholar
Lamshöft, M., Storp, J., Ivanova, B. & Spiteller, P. (2011). Polyhedron, 30, 2564–2573. Google Scholar
Lapadula, G., Judaš, N., Friščić, T. & Jones, W. (2010). Chem. Eur. J. 16, 7400–7403. CSD CrossRef CAS PubMed Google Scholar
Laskar, I. R., Maji, T. K., Das, D., Lu, T.-H., Wong, W.-T., Okamoto, K. I. & Ray Chaudhuri, N. (2001). Polyhedron, 20, 2073–2082. CSD CrossRef CAS Google Scholar
Lian, Z. X., Liu, P., Zhang, J. M., Lou, T. J., Wang, T. X. & Li, H. H. (2008). Chin. J. Struct. Chem. 27, 639–644. CAS Google Scholar
Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857–871. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mukherjee, P. S., Maji, T. K., Koner, S., Rosair, G. & Chaudhuri, N. R. (2001). Indian J. Chem. 40a, 451–455. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m298. CSD CrossRef IUCr Journals Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Weinberger, P., Schamschule, R., Mereiter, K., Dlhán, L., Boca, R. & Linert, W. (1998). J. Mol. Struct. 446, 115–126. CSD CrossRef CAS Google Scholar
White, D. J., Laing, N., Miller, H., Parsons, S., Tasker, P. A. & Coles, S. (1999). Chem. Commun. pp. 2077–2078. CSD CrossRef Google Scholar
Willett, R. D., Butcher, R., Landee, C. P. & Twamley, B. (2005). Polyhedron, 24, 2222–2231. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.