research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of bis­­[4-(2-amino­eth­yl)morpholine-κ2N,N′]di­aqua­nickel(II) dichloride

crossmark logo

aPG and Research Department of Physics, Government Arts College for Men, (Autonomous), Chennai 600 035, Tamil Nadu, India
*Correspondence e-mail: drsskphy@gmail.com

Edited by C. Massera, Università di Parma, Italy (Received 23 January 2023; accepted 18 February 2023; online 23 February 2023)

The title coordination compound, [Ni(C6H14N2O)2(H2O)2]Cl2, was synthesized by mixing 4-(2-amino­eth­yl)morpholine and nickel chloride in double-distilled water. The asymmetric unit comprises one half of an NiII cation (located on an inversion centre), one 4-(2-amino­eth­yl)morpholine ligand, one coordinated water mol­ecule and one chloride ion outside the metal coordination sphere. The nickel ion is in a octa­hedral environment of the N4O2 type, coordinating four N atoms from two 4-(2-amino­eth­yl)morpholine ligands and two trans-located O atoms from two water mol­ecules. The morpholine ligand was found disordered over two positions with a site occupancy ratio of 0.708 (8):0.292 (8). The crystal structure is consolidated by N—H⋯Cl, N—H⋯O, C—H⋯Cl and C—H⋯O hydrogen bonds. Hirshfeld surface analysis confirms that van der Waals inter­actions are prevalent in the crystal packing of the synthesized complex.

1. Chemical context

Morpholine has been recognized as a convenient ligand for the design of supra­molecular structures (Cvrtila et al., 2012[Cvrtila, I., Stilinović, V. & Kaitner, B. (2012). Struct. Chem. 23, 587-594.]) since it is a ditopic heterocyclic mol­ecule that can coordinate the metal ion via one hetero atom, leaving the other free for linking to other mol­ecules either by coordination to metal ions (Gálvez Ruiz et al., 2008[Gálvez Ruiz, J. C., Nöth, H. & Warchhold, M. (2008). Eur. J. Inorg. Chem. pp. 251-266.]; Willett et al., 2005[Willett, R. D., Butcher, R., Landee, C. P. & Twamley, B. (2005). Polyhedron, 24, 2222-2231.]; Lapadula et al., 2010[Lapadula, G., Judaš, N., Friščić, T. & Jones, W. (2010). Chem. Eur. J. 16, 7400-7403.]; Clegg et al., 2010[Clegg, J. K., Hayter, M. J., Jolliffe, K. A., Lindoy, L. F., McMurtrie, J. C., Meehan, G. V., Neville, S. M., Parsons, S., Tasker, P. A., Turner, P. & White, F. J. (2010). Dalton Trans. 39, 2804-2815.]) or by hydrogen bonding (Lian et al., 2008[Lian, Z. X., Liu, P., Zhang, J. M., Lou, T. J., Wang, T. X. & Li, H. H. (2008). Chin. J. Struct. Chem. 27, 639-644.]; Weinberger et al., 1998[Weinberger, P., Schamschule, R., Mereiter, K., Dlhán, L., Boca, R. & Linert, W. (1998). J. Mol. Struct. 446, 115-126.]; Ivanov et al., 2001[Ivanov, A. V., Kritikos, M., Antzutkin, O. N. & Forsling, W. (2001). Inorg. Chim. Acta, 321, 63-74.]). The coordination of a morpholine mol­ecule to a metal ion activates the morpholine mol­ecule as a hydrogen-bond donor by increasing the partial positive charge of the morpholine amine hydrogen. Coordination of two morpholine mol­ecules through nitro­gen lone pairs on a single metal centre can lead to a good bonding site for negatively charged small species. A prerequisite for this is that the morpholine ligands are bonded to the central ion in a cis configuration, which may be achieved by the use of chelating co-ligands. These will induce the binding of morpholine in a convenient configuration, so that its N—H groups form a pincer, which can bind guest mol­ecules in the second coordination sphere. Intriguingly, reports of morpholine-based metal–organic receptors are scarce (White et al., 1999[White, D. J., Laing, N., Miller, H., Parsons, S., Tasker, P. A. & Coles, S. (1999). Chem. Commun. pp. 2077-2078.]). Transition-metal ions can be an important source of magnetic moments, and when connected through proper bridging ligands, superexchange inter­actions can take place (Konar et al., 2005[Konar, S., Dalai, S., Mukherjee, P. S., Drew, M. G. B., Ribas, J. & Ray Chaudhuri, N. (2005). Inorg. Chim. Acta, 358, 957-963.]). Parallel to the development of organic electro-optical (EO) and non-linear optical (NLO) materials [Lamshöft et al., (2011[Lamshöft, M., Storp, J., Ivanova, B. & Spiteller, P. (2011). Polyhedron, 30, 2564-2573.])], a subject of great inter­est comprises metal–organic chromophores.

[Scheme 1]

Metal–organic frameworks (MOFs) are crystalline hybrid materials with networks constructed from the self-assembly of metal ions with, at least, one organic linker. As a result of their availability from commercial sources and/or easy synthetic methodologies, organic ligands based on carboxyl­ate or nitro­gen compounds have been used extensively, mainly with transition-metal ions, to isolate new and improved MOF architectures, to be studied for a large range of practical applications (Horcajada et al., 2012[Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Férey, G., Morris, R. E. & Serre, C. (2012). Chem. Rev. 112, 1232-1268.]; Kreno et al., 2012[Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105-1125.]; He et al., 2012[He, Y. B., Zhou, W., Krishna, R. & Chen, B. L. (2012). Chem. Commun. 48, 11813-11831.]; Chughtai et al., 2015[Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A. & Verpoort, F. (2015). Chem. Soc. Rev. 44, 6804-6849.]). Morpholine can be used as a ligand in metal complexes and it can also be a component of protective coatings on fresh fruits and used as an emulsifier in the preparation of pharmaceuticals and cosmetic products (Kuchowicz & Rydzyński, 1998[Kuchowicz, E. & Rydzyński, K. (1998). Appl. Occup. Environ. Hyg. 13, 113-121.]). As a continuation of our recent work on compounds belonging to the morpholine family (Chidambaranathan et al., 2023[Chidambaranathan, B., Sivaraj, S. & Selvakumar, S. (2023). Acta Cryst. E79, 8-13.]) we are now using morpholine as ligand for coordination complexes. The current study describes the synthesis, crystal structure, Hirshfeld surface, and infrared spectroscopy of bis­[4-(2-amino­eth­yl)morpholine-κ2N:N′]di­aqua­nickel(II) dichloride.

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes in the monoclinic space group P21/n with two complexes in the unit cell. The asymmetric unit comprises one half of an NiII cation, which is located on an inversion centre, one [(4-(2-amino­eth­yl) morpholine] ligand, one coordinated water mol­ecule and one chloride ion outside the metal coordination sphere. The nickel ion is in an octa­hedral environment of the type N4O2; the coordination sphere comprises two N,N′-bidentate morpholine ligands defining the equatorial plane, which form two five-membered chelate rings with the metal centre (Suleiman Gwaram et al., 2011[Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m298.]). The two remaining trans axial positions are occupied by the oxygen atoms from the water mol­ecules. As a result of symmetry, the N2—Ni—N2i, N1—Ni—N1i and O2–Ni–O2i angles are 180° [symmetry code: (i) −x + 1, −y + 1, −z + 1] and the axes of the octa­hedron are almost perpendicular to each other [N2—Ni—O2 = 90.80 (12), N2—Ni—O2i = 89.20 (12) and O2—Ni—N1i = 91.86 (14)°]. The morpholine rings adopt a chair conformation·The Ni—N (amine) distances, Ni—N1 and Ni—N2, are of 2.249 (4) and 2.067 (3) Å, respectively, in good agreement with the values observed in the literature (Chiumia et al. 1999[Chiumia, G. C., Craig, D. C., Phillips, D. J., Rae, A. D. & Kaifi, F. M. Z. (1999). Inorg. Chim. Acta, 285, 297-300.]; Chattopadhyay et al. 2005[Chattopadhyay, T., Ghosh, M., Majee, A., Nethaji, M. & Das, D. (2005). Polyhedron, 24, 1677-1681.]).

[Figure 1]
Figure 1
ORTEP diagram of the title compound with the atom-numbering scheme. Ellipsoids are drawn at 50% probability. Only the main component of the disordered ligand is shown for clarity. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]

3. Supra­molecular features

Figs. 2[link] and 3[link] highlight the main supra­molecular inter­actions formed by the title compound (see also Table 1[link]), while Fig. 4[link] shows the overall crystal structure viewed down the b-axis direction. In the crystal, the oxygen atoms of the water and of the morpholine mol­ecules (O1 and O2) act as acceptors for several inter­molecular inter­actions of the types N—H⋯O and C—H⋯O, respectively. The uncoordinated chloride anions act as acceptors to C—H and N—H groups of the morpholine mol­ecules and link the adjacent mol­ecules via O—H⋯Cl inter­actions involving the water mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2E⋯Cl1i 0.89 2.79 3.509 (3) 139
N2—H2E⋯O1ii 0.89 2.62 3.138 (6) 118
N2—H2E⋯O1′ii 0.89 2.38 2.998 (10) 126
N2—H2F⋯Cl1 0.89 2.56 3.407 (3) 159
C2—H2A⋯Cl1iii 0.97 2.94 3.894 (5) 169
C3—H3D⋯O2 0.97 2.38 3.120 (7) 133
C6—H6C⋯O2iv 0.97 2.19 3.002 (8) 140
C4—H4B⋯Cl1v 0.97 2.84 3.799 (7) 168
C4′—H4′1⋯O1′vi 0.97 1.81 2.72 (2) 156
C4′—H4′2⋯Cl1v 0.97 2.88 3.827 (16) 167
O2—H1W⋯Cl1 0.84 (2) 2.23 (2) 3.054 (3) 166 (4)
O2—H2W⋯Cl1vii 0.84 (2) 2.24 (2) 3.069 (3) 166 (5)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, y-1, z]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, -y+1, -z+1]; (v) x, y+1, z; (vi) [-x+1, -y+2, -z+1]; (vii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Supra­molecular inter­actions (dotted lines) in the title compound.
[Figure 3]
Figure 3
R22(14) ring motif formed between the two morpholine mol­ecules through very weak N—H⋯O inter­actions (dotted lines). [Symmetry codes ii and iv as in Table 1[link]. Symmetry code: (viii) −x + 1, −y, −z + 1.]
[Figure 4]
Figure 4
Crystal structure of the title compound viewed down the b-axis direction. Dotted lines represent supra­molecular inter­actions.

In particular, a bifurcated inter­molecular hydrogen bond is formed between the N2—H2E moiety of the morpholine ligand in the asymmetric unit with an adjacent chloride anion and an adjacent morpholine mol­ecule [N2—H2E⋯Cl1i = 2.79 Å and 138.6°; N2—H2E⋯O1′ii = 2.38 Å and 126.3°; symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (ii) x, y − 1, z]. The two symmetry-related water mol­ecules coordinated by the Ni ion inter­act each with two chloride anions [O2—H1W⋯Cl1 = 2.23 (2) Å and 166 (4)°; O2—H2W⋯Cl1vii = 2.24 (2) and 166 (5)°; symmetry code: (vii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}];] . Finally, graph-set analysis (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) shows that very weak inter­molecular hydrogen bonds of the type N—H⋯O form an R22(14) ring motif binding two morpholine mol­ecules into a supra­molecular dimer (Fig. 3[link]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Motherwell et al., 2000[Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857-871.]; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]).

The inter­molecular inter­actions were also studied using Hirshfeld surface analysis, by mapping the normalized contact distances using CrystalExplorer21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surface (HS) was created with a standard surface resolution; the three-dimensional dnorm surface mapped over a set colour scale ranging from −0.5438 to 1.2671 a.u. is shown in Fig. 5[link]. In the dnorm map, blue and red patches show inter­molecular inter­actions with distances greater than and less than the van der Waals radii sum of the inter­acting elements, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The brighter red (big circle), lighter red (big circle), lighter red (small circle) and white spots appearing on the HS represent the O—H⋯Cl, N—H⋯Cl, C—H⋯Cl and N—H⋯O inter­actions, respectively.

[Figure 5]
Figure 5
The Hirshfeld surface of the title compound mapped over dnorm, showing the relevant close contacts.

Fig. 6[link] shows the two-dimensional fingerprint plots exhibiting (a) all inter­molecular inter­actions and those delineated into (b) H⋯H, (c) H⋯Cl/Cl⋯H and (d) O⋯H/H⋯O contacts. The distances from a place on the HS to the closest atoms outside and inside the surface are represented by de and di in the figure. The most important inter­action is H⋯H, which accounts for 63.1% of the total crystal packing and is shown in Fig. 6[link]b by a pair of symmetrical blunt spikes with points at de + di ∼2.4 Å. The high contribution of these inter­actions suggests that van der Waals inter­actions play a major role in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]). The H⋯Cl inter­actions are shown by the presence of a pair of wings in the fingerprint plot shown in Fig. 6[link]c with the tips at de + di ∼2.5 Å, contributing 25.5% to the HS. The pair of sharp symmetrical spikes in the fingerprint plot delineated into O⋯H/H⋯O contacts (11.3% contribution to the HS, Fig. 6[link]d), shows a symmetric distribution of points with the tips at de + di ∼2.1 Å.

[Figure 6]
Figure 6
View of the two-dimensional fingerprint plots for the title compound showing (a) all inter­actions, and those delineated into (b) H⋯H (63.1%), (c) H⋯Cl/Cl⋯H (25.5%) and (d) O⋯H/H⋯O (11.3%) contacts.

4. Database survey

A search in the Cambridge Structural Database (CSD, version 5.40; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the keyword `4-(2-amino­eth­yl)morpholine' yielded nine hits for coordination compounds of 4-(2-amino­eth­yl)morpholine with metals, including catena-[bis­(μ2-dicyanamide-N,N′)(4-(2-amino­eth­yl)morpholine]­nick­el(II) (FIJROG; Konar et al., 2005[Konar, S., Dalai, S., Mukherjee, P. S., Drew, M. G. B., Ribas, J. & Ray Chaudhuri, N. (2005). Inorg. Chim. Acta, 358, 957-963.]), bis­[2-(morpholin-4-yl)ethanamine][5,10,15,20-tetra­kis­(4-meth­oxy­phen­yl)porph­yr­inato]iron(II) (NABXEW; Ben Haj Hassen et al., 2016[Ben Haj Hassen, L., Ezzayani, K., Rousselin, Y., Stern, C., Nasri, H. & Schulz, C. E. (2016). J. Mol. Struct. 1110, 138-142.]; NABXEW01; Khélifa et al., 2016[Khélifa, A. B., Ezzayani, K. & Belkhiria, M. S. (2016). J. Mol. Struct. 1122, 18-23.]), trans-bis­[4-(2-amino­eth­yl)morpholine]­bis­(nitrito)nickel(II) (NAVNAA; Chattopadhyay et al., 2005[Chattopadhyay, T., Ghosh, M., Majee, A., Nethaji, M. & Das, D. (2005). Polyhedron, 24, 1677-1681.]; RANVEJ and NAVNAA01; Brayshaw et al., 2012[Brayshaw, S. K., Easun, T. L., George, M. W., Griffin, A. M. E., Johnson, A. L., Raithby, P. R., Savarese, T. L., Schiffers, S., Warren, J. E., Warren, M. R. & Teat, S. J. (2012). Dalton Trans. 41, 90-97.]), trans-bis­(iso­thio­cyanato-N)bis­[4-(2-amino­eth­yl)morph­oline-N,N′]nickel(II) (NENSUU; Laskar et al., 2001[Laskar, I. R., Maji, T. K., Das, D., Lu, T.-H., Wong, W.-T., Okamoto, K. I. & Ray Chaudhuri, N. (2001). Polyhedron, 20, 2073-2082.]), [4-(2-amino­eth­yl)morpholine-N,N′]aqua­(oxalate-O,O′)cop­per(II) monohydrate (XAZRUM; Koćwin-Giełzak et al., 2006[Koćwin-Giełzak, K. & Marciniak, B. (2006). Acta Cryst. E62, m155-m157.]) and (μ2-oxalato)bis­[4-(2-amino­eth­yl)morpholine]­dicopper(II) diperchlorate (YIKQAK; Mukherjee et al., 2001[Mukherjee, P. S., Maji, T. K., Koner, S., Rosair, G. & Chaudhuri, N. R. (2001). Indian J. Chem. 40a, 451-455.]). All of the above-mentioned structures are consolidated by hydrogen bonds and contain morpholine rings in a chair conformation.

5. Synthesis and crystallization

According to the reaction shown in the scheme, the title compound was synthesized by mixing two moles of 4-(2-amino­eth­yl)morpholine (4.34 g) and one mole of nickel chloride hexa­hydrate (3.96 g) in 100 ml of double-distilled water at 303 K. At room temperature, the solution was allowed to evaporate, yielding plate-like ultramarine blue crystals of the title compound. The FT–IR spectrum of the compound was recorded on a BRUKER FT–IR spectrometer. FT–IR (KBr, cm−1): 3455 (w, N—H), 2967 (w, CH2), 1614 (s, H2O), 1307 (s, C—N).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were positioned geometrically (C—H = 0.97 Å) and refined using a riding model with [Uiso(H) = 1.2Ueq(C)]. The water hydrogen atoms, H1W and H2W, were found in a difference-Fourier map and refined freely.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C6H14N2O)2(H2O)2]Cl2
Mr 426.02
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 8.6495 (4), 8.6593 (4), 13.1882 (6)
β (°) 107.415 (1)
V3) 942.50 (8)
Z 2
Radiation type Cu Kα
μ (mm−1) 4.30
Crystal size (mm) 0.18 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker D8 VENTURE diffractometer with PHOTON II detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.453, 0.622
No. of measured, independent and observed [I > 2σ(I)] reflections 15220, 1632, 1564
Rint 0.043
(sin θ/λ)max−1) 0.592
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.165, 1.08
No. of reflections 1632
No. of parameters 143
No. of restraints 113
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.70, −0.39
Computer programs: APEX3, SAINT and XPREP (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

The morpholine ligand was found disordered over two positions with a site occupancy ratio of 0.708 (8):0.292 (8). The positions of the disordered atoms were identified from difference electron-density peaks and refined using DFIX restraints to achieve the target bond distance of the corresponding atoms. Anisotropic displacement parameters of atoms in the group were restrained to be equal using SIMU restraints with an effective standard deviation of 0.02 Å2.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3/SAINT (Bruker, 2016); data reduction: SAINT/XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020).

Bis[4-(2-aminoethyl)morpholine-κ2N,N']diaquanickel(II) dichloride top
Crystal data top
[Ni(C6H14N2O)2(H2O)2]Cl2F(000) = 452
Mr = 426.02Dx = 1.501 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 8.6495 (4) ÅCell parameters from 9948 reflections
b = 8.6593 (4) Åθ = 6.2–70.1°
c = 13.1882 (6) ŵ = 4.30 mm1
β = 107.415 (1)°T = 298 K
V = 942.50 (8) Å3Block, green
Z = 20.18 × 0.15 × 0.10 mm
Data collection top
Bruker D8 VENTURE
diffractometer with PHOTON II detector
1632 independent reflections
Radiation source: micro-focus sealed tube1564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω and φ scanθmax = 66.0°, θmin = 6.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1010
Tmin = 0.453, Tmax = 0.622k = 1010
15220 measured reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0874P)2 + 1.7374P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.165(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.70 e Å3
1632 reflectionsΔρmin = 0.38 e Å3
143 parametersExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
113 restraintsExtinction coefficient: 0.0076 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Morpholine moiety is disordered over two positions with a site occupancy ratio of 70:30. The positions of disordered atoms were identified from difference electron density peaks and refined using DFIX restraints to achieve target bond distance of corresponding atoms. Anisotropic displacement parameters of atoms in the group were restrained to be equal using SIMU restraint with an effective standard deviation of 0.02 Å2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.5000000.5000000.5000000.0377 (4)
Cl10.58426 (12)0.26230 (11)0.79999 (7)0.0497 (4)
N20.3557 (4)0.3416 (4)0.5464 (2)0.0417 (7)
H2E0.3210860.2701810.4961660.050*
H2F0.4128110.2946170.6058570.050*
C10.2163 (5)0.4214 (5)0.5645 (4)0.0530 (10)
H1A0.1691160.3574770.6079520.064*
H1B0.1342520.4395230.4970770.064*
C20.2705 (6)0.5732 (6)0.6197 (4)0.0617 (12)
H2A0.1776320.6271450.6293180.074*
H2B0.3463160.5541000.6893290.074*
N10.3495 (4)0.6720 (4)0.5568 (3)0.0540 (9)
C30.4447 (7)0.7938 (6)0.6282 (5)0.0788 (16)
H3A0.5031720.7466130.6954160.095*0.708 (8)
H3B0.5242660.8347960.5968110.095*0.708 (8)
H3C0.3942980.8083520.6840090.095*0.292 (8)
H3D0.5510810.7502670.6617670.095*0.292 (8)
C60.2296 (8)0.7512 (6)0.4671 (6)0.0877 (19)
H6A0.2854550.7820720.4165550.105*0.708 (8)
H6B0.1487270.6754970.4317700.105*0.708 (8)
H6C0.2175300.6889610.4039940.105*0.292 (8)
H6D0.1262700.7488900.4817400.105*0.292 (8)
O10.2524 (8)0.9954 (5)0.5545 (5)0.0697 (15)0.708 (8)
C50.1454 (8)0.8844 (7)0.4888 (6)0.0633 (18)0.708 (8)
H5A0.0864250.9329490.4221810.076*0.708 (8)
H5B0.0670470.8514910.5238490.076*0.708 (8)
C40.3492 (9)0.9208 (8)0.6487 (6)0.0674 (19)0.708 (8)
H4A0.2787880.8822570.6880960.081*0.708 (8)
H4B0.4214660.9962910.6930240.081*0.708 (8)
C4'0.4697 (19)0.9379 (15)0.5939 (14)0.068 (4)0.292 (8)
H4'10.5537240.9331060.5590850.082*0.292 (8)
H4'20.5064501.0065160.6545320.082*0.292 (8)
C5'0.254 (2)0.8918 (14)0.4431 (12)0.063 (4)0.292 (8)
H5'10.1500280.9341290.4028730.076*0.292 (8)
H5'20.3201860.8876460.3952180.076*0.292 (8)
O1'0.3261 (18)0.9976 (12)0.5223 (10)0.062 (3)0.292 (8)
O20.6639 (4)0.5015 (4)0.6529 (3)0.0588 (9)
H1W0.657 (5)0.441 (4)0.701 (3)0.057 (13)*
H2W0.738 (6)0.567 (5)0.677 (4)0.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0404 (6)0.0349 (6)0.0345 (5)0.0046 (3)0.0065 (4)0.0025 (3)
Cl10.0538 (6)0.0504 (6)0.0434 (6)0.0047 (4)0.0124 (4)0.0080 (4)
N20.0451 (16)0.0373 (16)0.0409 (16)0.0009 (13)0.0101 (13)0.0004 (13)
C10.048 (2)0.053 (2)0.060 (2)0.0070 (18)0.0202 (19)0.006 (2)
C20.060 (3)0.060 (3)0.069 (3)0.003 (2)0.027 (2)0.017 (2)
N10.0505 (18)0.0363 (17)0.066 (2)0.0030 (14)0.0033 (16)0.0021 (15)
C30.074 (3)0.049 (3)0.094 (4)0.006 (2)0.006 (3)0.017 (3)
C60.079 (3)0.054 (3)0.097 (4)0.011 (2)0.023 (3)0.006 (3)
O10.080 (4)0.040 (2)0.093 (4)0.002 (2)0.031 (3)0.004 (2)
C50.068 (4)0.049 (3)0.072 (4)0.008 (3)0.020 (3)0.001 (3)
C40.073 (4)0.052 (4)0.080 (4)0.007 (3)0.027 (3)0.024 (3)
C4'0.074 (7)0.046 (7)0.079 (8)0.009 (6)0.015 (7)0.010 (6)
C5'0.075 (7)0.048 (7)0.065 (7)0.006 (6)0.019 (6)0.007 (6)
O1'0.077 (7)0.041 (5)0.071 (6)0.000 (5)0.024 (5)0.000 (4)
O20.0611 (19)0.0566 (19)0.0482 (17)0.0190 (14)0.0003 (15)0.0115 (13)
Geometric parameters (Å, º) top
Ni1—N22.067 (3)C3—H3D0.9700
Ni1—N2i2.067 (3)C6—C5'1.292 (13)
Ni1—O2i2.090 (3)C6—C51.439 (8)
Ni1—O22.090 (3)C6—H6A0.9700
Ni1—N1i2.249 (4)C6—H6B0.9700
Ni1—N12.249 (4)C6—H6C0.9700
N2—C11.470 (5)C6—H6D0.9700
N2—H2E0.8900O1—C41.428 (9)
N2—H2F0.8900O1—C51.432 (8)
C1—C21.508 (6)C5—H5A0.9700
C1—H1A0.9700C5—H5B0.9700
C1—H1B0.9700C4—H4A0.9700
C2—N11.492 (6)C4—H4B0.9700
C2—H2A0.9700C4'—O1'1.414 (15)
C2—H2B0.9700C4'—H4'10.9700
N1—C61.487 (6)C4'—H4'20.9700
N1—C31.487 (6)C5'—O1'1.389 (14)
C3—C4'1.366 (13)C5'—H5'10.9700
C3—C41.449 (8)C5'—H5'20.9700
C3—H3A0.9700O2—H1W0.840 (19)
C3—H3B0.9700O2—H2W0.84 (2)
C3—H3C0.9700
N2—Ni1—N2i180.00 (12)C4'—C3—H3C106.5
N2—Ni1—O2i89.20 (12)N1—C3—H3C106.5
N2i—Ni1—O2i90.80 (12)C4'—C3—H3D106.5
N2—Ni1—O290.80 (12)N1—C3—H3D106.5
N2i—Ni1—O289.20 (12)H3C—C3—H3D106.5
O2i—Ni1—O2180.0C5'—C6—N1120.2 (8)
N2—Ni1—N1i96.89 (13)C5—C6—N1119.0 (6)
N2i—Ni1—N1i83.11 (13)C5—C6—H6A107.6
O2i—Ni1—N1i88.14 (14)N1—C6—H6A107.6
O2—Ni1—N1i91.86 (14)C5—C6—H6B107.6
N2—Ni1—N183.11 (13)N1—C6—H6B107.6
N2i—Ni1—N196.89 (13)H6A—C6—H6B107.0
O2i—Ni1—N191.86 (14)C5'—C6—H6C107.3
O2—Ni1—N188.14 (14)N1—C6—H6C107.3
N1i—Ni1—N1180.0C5'—C6—H6D107.3
C1—N2—Ni1109.5 (2)N1—C6—H6D107.3
C1—N2—H2E109.8H6C—C6—H6D106.9
Ni1—N2—H2E109.8C4—O1—C5109.1 (5)
C1—N2—H2F109.8O1—C5—C6112.6 (5)
Ni1—N2—H2F109.8O1—C5—H5A109.1
H2E—N2—H2F108.2C6—C5—H5A109.1
N2—C1—C2109.7 (3)O1—C5—H5B109.1
N2—C1—H1A109.7C6—C5—H5B109.1
C2—C1—H1A109.7H5A—C5—H5B107.8
N2—C1—H1B109.7O1—C4—C3113.5 (6)
C2—C1—H1B109.7O1—C4—H4A108.9
H1A—C1—H1B108.2C3—C4—H4A108.9
N1—C2—C1111.1 (4)O1—C4—H4B108.9
N1—C2—H2A109.4C3—C4—H4B108.9
C1—C2—H2A109.4H4A—C4—H4B107.7
N1—C2—H2B109.4C3—C4'—O1'111.1 (11)
C1—C2—H2B109.4C3—C4'—H4'1109.4
H2A—C2—H2B108.0O1'—C4'—H4'1109.4
C6—N1—C3107.4 (4)C3—C4'—H4'2109.4
C6—N1—C2112.3 (4)O1'—C4'—H4'2109.4
C3—N1—C2108.3 (4)H4'1—C4'—H4'2108.0
C6—N1—Ni1112.1 (4)C6—C5'—O1'120.4 (13)
C3—N1—Ni1114.5 (3)C6—C5'—H5'1107.2
C2—N1—Ni1102.3 (2)O1'—C5'—H5'1107.2
C4'—C3—N1123.4 (8)C6—C5'—H5'2107.2
C4—C3—N1114.7 (5)O1'—C5'—H5'2107.2
C4—C3—H3A108.6H5'1—C5'—H5'2106.9
N1—C3—H3A108.6C5'—O1'—C4'111.6 (12)
C4—C3—H3B108.6Ni1—O2—H1W123 (3)
N1—C3—H3B108.6Ni1—O2—H2W126 (3)
H3A—C3—H3B107.6H1W—O2—H2W111 (3)
Ni1—N2—C1—C240.4 (4)Ni1—N1—C6—C5'104.5 (10)
N2—C1—C2—N157.2 (5)C3—N1—C6—C541.7 (8)
C1—C2—N1—C679.2 (5)C2—N1—C6—C577.2 (6)
C1—C2—N1—C3162.3 (4)Ni1—N1—C6—C5168.3 (5)
C1—C2—N1—Ni141.1 (4)C4—O1—C5—C653.8 (8)
C6—N1—C3—C4'27.4 (12)N1—C6—C5—O149.0 (9)
C2—N1—C3—C4'148.9 (10)C5—O1—C4—C358.6 (8)
Ni1—N1—C3—C4'97.7 (10)N1—C3—C4—O156.0 (8)
C6—N1—C3—C443.7 (7)N1—C3—C4'—O1'42.8 (18)
C2—N1—C3—C477.8 (6)N1—C6—C5'—O1'37 (2)
Ni1—N1—C3—C4168.8 (5)C6—C5'—O1'—C4'50 (2)
C3—N1—C6—C5'22.1 (12)C3—C4'—O1'—C5'49 (2)
C2—N1—C6—C5'141.0 (10)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2E···Cl1ii0.892.793.509 (3)139
N2—H2E···O1iii0.892.623.138 (6)118
N2—H2E···O1iii0.892.382.998 (10)126
N2—H2F···Cl10.892.563.407 (3)159
C2—H2A···Cl1iv0.972.943.894 (5)169
C3—H3D···O20.972.383.120 (7)133
C6—H6C···O2i0.972.193.002 (8)140
C4—H4B···Cl1v0.972.843.799 (7)168
C4—H41···O1vi0.971.812.72 (2)156
C4—H42···Cl1v0.972.883.827 (16)167
O2—H1W···Cl10.84 (2)2.23 (2)3.054 (3)166 (4)
O2—H2W···Cl1vii0.84 (2)2.24 (2)3.069 (3)166 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x, y1, z; (iv) x+1/2, y+1/2, z+3/2; (v) x, y+1, z; (vi) x+1, y+2, z+1; (vii) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

The authors gratefully acknowledge Dr Shobhana Krishnaswamy, SAIF, IITM, Chennai, for the single-crystal X-ray diffraction data collection and structure solution and Dr M. Palanichamy, Emeritus Professor, Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai, for scientific discussions.

References

First citationBen Haj Hassen, L., Ezzayani, K., Rousselin, Y., Stern, C., Nasri, H. & Schulz, C. E. (2016). J. Mol. Struct. 1110, 138–142.  CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrayshaw, S. K., Easun, T. L., George, M. W., Griffin, A. M. E., Johnson, A. L., Raithby, P. R., Savarese, T. L., Schiffers, S., Warren, J. E., Warren, M. R. & Teat, S. J. (2012). Dalton Trans. 41, 90–97.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChattopadhyay, T., Ghosh, M., Majee, A., Nethaji, M. & Das, D. (2005). Polyhedron, 24, 1677–1681.  Web of Science CSD CrossRef CAS Google Scholar
First citationChidambaranathan, B., Sivaraj, S. & Selvakumar, S. (2023). Acta Cryst. E79, 8–13.  CSD CrossRef IUCr Journals Google Scholar
First citationChiumia, G. C., Craig, D. C., Phillips, D. J., Rae, A. D. & Kaifi, F. M. Z. (1999). Inorg. Chim. Acta, 285, 297–300.  Web of Science CSD CrossRef CAS Google Scholar
First citationChughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A. & Verpoort, F. (2015). Chem. Soc. Rev. 44, 6804–6849.  Web of Science CrossRef CAS PubMed Google Scholar
First citationClegg, J. K., Hayter, M. J., Jolliffe, K. A., Lindoy, L. F., McMurtrie, J. C., Meehan, G. V., Neville, S. M., Parsons, S., Tasker, P. A., Turner, P. & White, F. J. (2010). Dalton Trans. 39, 2804–2815.  CSD CrossRef CAS PubMed Google Scholar
First citationCvrtila, I., Stilinović, V. & Kaitner, B. (2012). Struct. Chem. 23, 587–594.  CSD CrossRef CAS Google Scholar
First citationGálvez Ruiz, J. C., Nöth, H. & Warchhold, M. (2008). Eur. J. Inorg. Chem. pp. 251–266.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHe, Y. B., Zhou, W., Krishna, R. & Chen, B. L. (2012). Chem. Commun. 48, 11813–11831.  Web of Science CrossRef CAS Google Scholar
First citationHorcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Férey, G., Morris, R. E. & Serre, C. (2012). Chem. Rev. 112, 1232–1268.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIvanov, A. V., Kritikos, M., Antzutkin, O. N. & Forsling, W. (2001). Inorg. Chim. Acta, 321, 63–74.  CSD CrossRef CAS Google Scholar
First citationKhélifa, A. B., Ezzayani, K. & Belkhiria, M. S. (2016). J. Mol. Struct. 1122, 18–23.  Google Scholar
First citationKoćwin-Giełzak, K. & Marciniak, B. (2006). Acta Cryst. E62, m155–m157.  CSD CrossRef IUCr Journals Google Scholar
First citationKonar, S., Dalai, S., Mukherjee, P. S., Drew, M. G. B., Ribas, J. & Ray Chaudhuri, N. (2005). Inorg. Chim. Acta, 358, 957–963.  CSD CrossRef CAS Google Scholar
First citationKreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105–1125.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKuchowicz, E. & Rydzyński, K. (1998). Appl. Occup. Environ. Hyg. 13, 113–121.  CrossRef Google Scholar
First citationLamshöft, M., Storp, J., Ivanova, B. & Spiteller, P. (2011). Polyhedron, 30, 2564–2573.  Google Scholar
First citationLapadula, G., Judaš, N., Friščić, T. & Jones, W. (2010). Chem. Eur. J. 16, 7400–7403.  CSD CrossRef CAS PubMed Google Scholar
First citationLaskar, I. R., Maji, T. K., Das, D., Lu, T.-H., Wong, W.-T., Okamoto, K. I. & Ray Chaudhuri, N. (2001). Polyhedron, 20, 2073–2082.  CSD CrossRef CAS Google Scholar
First citationLian, Z. X., Liu, P., Zhang, J. M., Lou, T. J., Wang, T. X. & Li, H. H. (2008). Chin. J. Struct. Chem. 27, 639–644.  CAS Google Scholar
First citationMotherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857–871.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, P. S., Maji, T. K., Koner, S., Rosair, G. & Chaudhuri, N. R. (2001). Indian J. Chem. 40a, 451–455.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m298.  CSD CrossRef IUCr Journals Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWeinberger, P., Schamschule, R., Mereiter, K., Dlhán, L., Boca, R. & Linert, W. (1998). J. Mol. Struct. 446, 115–126.  CSD CrossRef CAS Google Scholar
First citationWhite, D. J., Laing, N., Miller, H., Parsons, S., Tasker, P. A. & Coles, S. (1999). Chem. Commun. pp. 2077–2078.  CSD CrossRef Google Scholar
First citationWillett, R. D., Butcher, R., Landee, C. P. & Twamley, B. (2005). Polyhedron, 24, 2222–2231.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds