research communications
Crystal structures of di-μ-chlorido-bis({(E)-5-(ethylamino)-4-methyl-2-[(pyridin-2-yl)diazenyl]phenolato}copper(II)) and chloridobis(1,10-phenanthroline)copper(II) chloride tetrahydrate
aDepartment of Chemistry, The University of Kansas, Lawrence, KS 66045, USA, bX-ray Crystallography Laboratory, The University of Kansas, Lawrence, KS 66045, USA, and cProtein Structure Laboratory, The University of Kansas, Lawrence, KS66047, USA
*Correspondence e-mail: mmure@ku.edu
The dark-red title complex crystallized from an equimolar methanol solution of (E)-5-(ethylamino)-4-methyl-2-[(pyridin-2-yl)diazenyl]phenol and CuCl2(phen) (phen = 1,10-phenanthroline) as a centrosymmetric dimer, [CuCl(C14H15N4O)]2. The Cu atoms are bridged by two Cl ligands and have a slightly distorted square-pyramidal coordination, where two N atoms from the azo and the pyridine moieties, a phenolic O and a Cl atom comprise the base and the other Cl occupies the apex position. The apical Cu—Cl bond, 2.6192 (4) Å, is longer than the basal one, 2.2985 (3) Å, due to Jahn–Teller distortion. The dimers are associated via weak intermolecular hydrogen bonds and π–π stacking interactions between phenyl and pyridine rings. A monomeric by-product of the same reaction, [CuCl(phen)2]Cl·4H2O, has a trigonal–bipyramidal coordination of Cu with equatorial Cl ligand, and extensive outer-sphere disorder. In the structure of 4, the packing of cations leaves continuous channels containing disordered Cl− anions and solvent molecules. The identity of the solvent (water or a water/methanol mixture) was not certain. The disordered anion/solvent regions comprise 28% of the unit-cell volume. The disorder was approximated by five partly occupied positions of the Cl− anion and ten positions of O atoms with a total occupancy of 3, giving a total of 48 electrons per in agreement with the integral electron density of 47.8 electrons in the disordered region, as was estimated using the BYPASS-type solvent-masking program [van der Sluis & Spek (1990). Acta Cryst. A46, 194–201].
1. Chemical context
The (E)-5-(ethylamino)-4-methyl-2-[(pyridin-2-yl)diazenyl]phenol ligand (1) was synthesized from a coupling reaction of pyridine-2-diazotate and 3-ethylamino-p-cresol as a model for the lysine tyrosylquinone (LTQ) cofactor (Fig. 1) of lysyl oxidase-like 2 (LOXL2) that is inhibited by 2-hydrazinopyridine (2HP). LOXL2 is a member of the lysyl oxidase family of proteins, and its upregulation has been closely associated with fibrosis and tumor metastasis (Moon et al. 2014; Mahjour et al., 2019; Wei et al., 2021). We have recently identified 2HP-modified LTQ, LTQ-2HP (Fig. 1) in 2HP-inhibited LOXL2 by mass spectrometry-based peptide mapping (Meier, Go et al., 2022). Since there is no structural information of a catalytically competent form of LOXL2, we conducted comparative spectroscopic studies of 2HP-inhibited LOXL2 and the corresponding model compound in solution, in order to understand the spatial arrangement of the LTQ cofactor and the active site CuII (Meier, Moon et al., 2022). The UV–vis spectroscopic feature of 2HP-inhibited LOXL2 indicated the ligation of LTQ-2HP to the active site CuII (Fig. 2).
In order to model the LTQ-2HP ligated to the active site CuII, 1 was mixed with an equimolar amount of dichloro(phen)Cu (phen = 1,10-phenanthroline) in anhydrous methanol to isolate dark-red solids (2), where the phen ligand was used to mimic two of the three His ligands of the active site CuII in LOXL2 (Meier, Kuczera et al., 2022). Upon slow evaporation of methanol solution of 2, dark-red crystals (3) were isolated and characterized as a dimeric complex [CuCl(C14H15N4O)]2 (Fig. 1).
After isolation of 3, green prismatic crystals (4) were isolated from the mother liquor and identified as a monomeric complex, [CuCl(phen)2]− Cl+·4H2O (Fig. 1). Herein we report the crystal structures of 3 and 4.
2. Structural commentary
The molecule of 3 (Fig. 2) has a crystallographic inversion center. Each Cu atom is penta-coordinated by N1, N3, and the deprotonated O1 of the oxoanion 1, as well as two inversion-related bridging chloride ligands, Cl and Cl'. Atoms N1, N3, O1 and Cl are nearly coplanar and comprise the base of a distorted square pyramid while Cl' occupies the apical position. The apical Cu—Cl bond is ca 0.32 Å longer than the basal one due to the Jahn–Teller effect (Addison et al., 1984). The Addison parameter, τ = (β – α)/60° = 0.007 (where α = 160.67° and β = 161.00° are the widest bond angles) indicates a small distortion from an ideal square-pyramidal geometry (τ = 0) towards a trigonal–bipyramidal geometry (τ = 1). The coordination polyhedra of the two Cu atoms share one base-to-apex edge (Fig. 1b), while their basal planes are rigorously parallel to each other (with an interplanar separation of 1.789 Å), in a type II arrangement as classified by Rodriguez et al. (1999). The Cu2Cl2 plane is perpendicular to the basal planes. The geometry agrees with that in other Cu2(μ-Cl)2 centers (Sasmal et al., 2013; Rodriguez et al., 1999). In the ligand 1, the aromatic phenyl and pyridine rings are conjugated through the N=N (azo) bond of 1.301 (2) Å and adopt a E, or trans, configuration about this bond, with a C—N=N—C torsion angle of −179.0 (1)°. The dimer also contains two pairs of weak intramolecular hydrogen bonds, C11—H11⋯Cl and C11—H11⋯O1 (Table 1).
The 4 contains one monomeric cation (Fig. 3) in which the CuII atom has a distorted trigonal–bipyramidal coordination (τ = 0.848) with two chelating 1,10-phenanthroline ligands and one Cl atom, the latter in an equatorial position. A similar coordination geometry was observed in monomeric CuII complexes [Cu(CN)(phen)2]NO3 (Anderson, 1974) and [CuCl(5,6-dimethyl-1,10-phenanthroline)2]PF6 (Yamada, 2002), although the Cu—Cl bond in the latter [2.257 (1) Å] is much shorter than in 4 [2.3527 (6) Å].
in the structure of3. Supramolecular features
The crystal packing of 3 is shown in Fig. 4. Each molecule forms ten weak intermolecular hydrogen bonds C—H⋯X, where X = Cl or O (Grabowski, 2021). The Cl atom is engaged in four such interactions and the O atom in two (supporting Fig. 1A). Additional stabilization is provided by off-center parallel π–π stacking interactions (Janiak, 2000; Martinez & Iverson, 2012) between two phenyl rings, between two pyridine rings, or between a phenyl and a pyridine ring (Fig. 4 and supporting Fig. 1B,C). The distances between ring centers (centroid–centroid distances), the distances between the ring center and the plane of the ring (plane-plane distances) and the α angle between the ring normal and the center of the opposite ring of the three modes of π–π interactions are summarized in Table 2. Remarkably, the amino-H atom is not engaged in any hydrogen bond, probably due to screening by two adjacent methyl groups.
|
In the structure of 4 (supplemental Fig. 2), the packing of cations leaves continuous channels containing disordered Cl− anions and solvent molecules. Of the latter, one water molecule per is ordered, being `anchored' by an O1—H1A⋯Cl1 hydrogen bond with the cation [O1⋯Cl1 = 3.173 (3), H1A⋯Cl1 = 2.34 Å]. The rest of the solvent is intensely disordered and its identity (water or a water/methanol mixture) was not certain. The disordered anion/solvent regions comprise 28% of the unit-cell volume. The disorder was approximated by five partly occupied positions of the Cl− anion and ten positions of O atoms with a total occupancy of 3 – presumably water molecules whose hydrogen atoms could not be located. This gives a total of 48 electrons per in agreement with the integral electron density of 47.8 electrons in the disordered region, as was estimated using the BYPASS-type solvent-masking program (van der Sluis & Spek, 1990) on the OLEX2 platform (Dolomanov et al., 2009).
4. Database survey
Several crystal structures of penta-coordinated centrosymmetric CuII dimers with the Cu atoms bridged by two Cl ligands and bonded to ligands with N and O atoms, have been deposited in the Cambridge Structural Database (CSD, Version 5.38; Groom et al., 2016), viz. FEWFAO (Rodriguez et al., 1999), MUNWIB, MUNWOH (Kapoor et al., 2002), YECGUK (Das et al., 2012), SIDQED (Sasmal et al., 2013), and POJKOQ (Smolentsev et al., 2014). However, no complexes with ligand 1 were found. To our knowledge, 3 is the first example of a penta-coordinated centrosymmetric CuII dimer in which the Cu atoms are bridged by two Cl ligands and are bonded each to two N atoms (pyridine N and aromatic –N=N–) and a phenoxy-O atom. There are multiple structures of phen and its derivatives complexed with CuII, the two structures closely related to 4 being PENCUN (Anderson, 1975) and XUMZOU (Yamada et al., 2002), see Section 2.
5. Synthesis and crystallization
5.1. Synthesis of pyridine-2-diazotate
Isoamyl nitrite (4.03 ml, 30 mmol) was added to a slurry of 2-aminopyridine (2.82 g, 30 mmol) and sodium amide (1.29 g, 33 mmol) in 30 ml of anhydrous THF and the reaction mixture was refluxed for 2 h (Bunton et al., 1974). After cooling to room temperature, precipitates were isolated by vacuum filtration, washed with tetrahydrofuran (THF) and dried under vacuum. Pyridine-2-diazoate was isolated as a pale-yellow solid (2 g, 63%) 1H NMR (400 MHz, DMSO-d6) δ 8.26 (d, J = 3.7 Hz, 1H), 7.55 (dd, J = 7.7 Hz, 1H), 7.39 (d, J = 8.2 Hz, 1H), 6.91 (dd, J = 7.7 Hz, 1H).
5.2. Synthesis of (E)-5-(ethylamino)-4-methyl-2-[(pyridin-2-yl)diazenyl]phenol, 1
3-Ethylamino-p-cresol (5.3 g, 35.1 mmol) was added to the suspension of pyridine-2-diazotate (7.5 g, 70.8 mmol) in 100 ml of ethanol and the pH of the reaction mixture was adjusted to 8 by aqueous HCl (Nakagawa & Wada, 1962). After refluxing for 2 h, the solvent was removed under reduced pressure. The resulting solids were washed with water and dried in vacuo. (E)-5-(Ethylamino)-4-methyl-2-[(pyridin-2-yl)diazenyl]phenol, 1, was isolated as a dark-red solid (4.59 g, 51%). 1H NMR (400 MHz, chloroform-d) δ 16.05 (s, 1H), 8.40 (d, J = 4.1 Hz, 2H), 7.75–7.66 (m, 2H), 7.55 (d, J = 8.3 Hz, 2H), 7.06–6.98 (m, 2H), 6.92 (s, 2H), 5.74 (s, 2H), 4.63 (s, 1H), 3.28 (dt, J = 13.4, 7.2 Hz, 4H), 2.10 (s, 5H), 1.33 (t, J = 7.2 Hz, 6H). 13C NMR (101 MHz, chloroform-d) δ 175.67, 156.20, 155.56, 148.78, 138.06, 133.91, 133.11, 121.71, 119.72, 110.42, 97.71, 38.17, 16.51, 14.08. HRMS (ESI+) C14H18N4O (M+ + 1) calculated: 257.1402, observed 257.1419.
5.3. Crystallization
Compound 1 was purified by recrystallization from methanol by slow evaporation. Dark-yellow needle-like crystals of 1 were obtained after a week at room temperature. CuCl2(phen) (123 mg, 0.39 mmol) was added to a suspension of 1 (100 mg, 0.39 mmol) in 5 ml of methanol. The reaction mixture was sonicated to completely dissolve solids and subjected to slow evaporation of methanol at room temperature. Dark-red single crystals of 3, suitable for X-ray crystallography, were obtained within a day. After removing the crystals of 3, small green crystals of 4 were formed from the mother liquor. Recrystallization of 3 by slow evaporation of an equimolar mixture of 1 in methanol and CuCl2 in a minimal amount of water at room temperature gave dark-red crystals within a couple of days (Fig. 1). The UV–vis spectra of crystalline 3 obtained by two methods are identical and superimposable to the visible region of the UV–vis spectrum of 2HP-inhibited LOXL2 (Fig. 5). These results strongly support our hypothesis that 2HP-inhibited LOXL2 contains LTQ-2HP that is ligated to the active site Cu2+ and the LTQ cofactor resides in the vicinity of the Cu2+ center (Meier, Moon et al., 2022; Meier, Kuczera et al., 2022).
6. Refinement
Crystal data, data collection and structure . In 3, all H atoms were refined in isotropic approximation. In 4, the H atoms of the disordered water molecules were ignored, H1A was refined in an isotropic approximation, other H atoms were placed in idealized positions (C—H = 0.95, O—H = 0.84 Å) and refined as riding on their carrier atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). The treatment of the disorder is described in the Supramolecular features section.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S205698902300138X/zv2019sup1.cif
contains datablocks global, 3, 4. DOI:Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S205698902300138X/zv20193sup2.hkl
Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S205698902300138X/zv20194sup3.hkl
Supplementary figures. DOI: https://doi.org/10.1107/S205698902300138X/zv2019sup4.docx
For both structures, data collection: APEX4 v2021.4-0 (Bruker, 2021); cell
SAINT V8.40B (Bruker, 2016); data reduction: SAINT V8.40B (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).[Cu2Cl2(C14H15N4O)2] | Z = 1 |
Mr = 708.58 | F(000) = 362 |
Triclinic, P1 | Dx = 1.713 Mg m−3 |
a = 8.6965 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.7974 (4) Å | Cell parameters from 9951 reflections |
c = 9.5574 (4) Å | θ = 2.4–37.9° |
α = 88.6165 (17)° | µ = 1.79 mm−1 |
β = 79.3644 (16)° | T = 100 K |
γ = 73.0017 (15)° | Plate, clear dark red |
V = 686.90 (5) Å3 | 0.1 × 0.05 × 0.02 mm |
Bruker D8 Venture diffractometer | 6202 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.047 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 37.8°, θmin = 2.2° |
Tmin = 0.89, Tmax = 0.94 | h = −14→14 |
120912 measured reflections | k = −15→15 |
7366 independent reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.090 | All H-atom parameters refined |
S = 1.02 | w = 1/[σ2(Fo2) + (0.036P)2 + 0.8401P] where P = (Fo2 + 2Fc2)/3 |
7366 reflections | (Δ/σ)max < 0.001 |
250 parameters | Δρmax = 0.75 e Å−3 |
0 restraints | Δρmin = −0.87 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.50615 (2) | 0.52883 (2) | 0.17788 (2) | 0.01407 (4) | |
Cl | 0.69781 (4) | 0.37524 (4) | −0.00149 (3) | 0.01526 (6) | |
O1 | 0.40583 (13) | 0.36521 (12) | 0.25883 (10) | 0.01722 (17) | |
N1 | 0.40360 (14) | 0.63488 (13) | 0.36379 (11) | 0.01349 (17) | |
N2 | 0.41967 (14) | 0.77150 (13) | 0.39617 (12) | 0.01471 (18) | |
N3 | 0.57379 (14) | 0.72690 (14) | 0.16097 (12) | 0.01486 (18) | |
N4 | 0.04781 (15) | 0.28003 (15) | 0.67389 (12) | 0.01713 (19) | |
H4 | −0.004 (3) | 0.314 (3) | 0.747 (3) | 0.029 (6)* | |
C1 | 0.13310 (16) | 0.51697 (16) | 0.66217 (13) | 0.01461 (19) | |
C2 | 0.13569 (16) | 0.36764 (15) | 0.59774 (13) | 0.01418 (19) | |
C3 | 0.22722 (16) | 0.31670 (16) | 0.46195 (13) | 0.0150 (2) | |
H3 | 0.228 (3) | 0.226 (3) | 0.421 (3) | 0.024 (6)* | |
C4 | 0.32015 (16) | 0.40792 (15) | 0.38531 (13) | 0.01372 (19) | |
C5 | 0.31703 (15) | 0.55528 (15) | 0.45068 (13) | 0.01324 (18) | |
C6 | 0.22484 (16) | 0.60569 (16) | 0.58941 (13) | 0.0148 (2) | |
H6 | 0.228 (3) | 0.703 (3) | 0.629 (2) | 0.017 (5)* | |
C7 | 0.51507 (16) | 0.82151 (15) | 0.28082 (13) | 0.01416 (19) | |
C8 | 0.54550 (18) | 0.96791 (16) | 0.28910 (15) | 0.0172 (2) | |
H8 | 0.503 (3) | 1.033 (3) | 0.375 (3) | 0.023 (6)* | |
C9 | 0.63549 (18) | 1.01756 (17) | 0.17109 (16) | 0.0191 (2) | |
H9 | 0.653 (3) | 1.115 (3) | 0.180 (3) | 0.032 (7)* | |
C10 | 0.69318 (19) | 0.92108 (18) | 0.04851 (16) | 0.0207 (2) | |
H10 | 0.750 (3) | 0.952 (3) | −0.035 (3) | 0.032 (7)* | |
C11 | 0.65869 (18) | 0.77677 (17) | 0.04711 (15) | 0.0188 (2) | |
H11 | 0.685 (3) | 0.710 (3) | −0.032 (2) | 0.021 (5)* | |
C12 | 0.02602 (18) | 0.57081 (19) | 0.80418 (14) | 0.0187 (2) | |
H12A | 0.060 (3) | 0.489 (3) | 0.876 (3) | 0.027 (6)* | |
H12B | −0.086 (3) | 0.582 (3) | 0.802 (3) | 0.032 (6)* | |
H12C | 0.033 (3) | 0.668 (3) | 0.835 (3) | 0.026 (6)* | |
C13 | 0.03874 (19) | 0.12852 (17) | 0.62425 (15) | 0.0186 (2) | |
H13A | 0.146 (3) | 0.055 (3) | 0.590 (2) | 0.022 (5)* | |
H13B | −0.020 (3) | 0.149 (3) | 0.549 (3) | 0.022 (5)* | |
C14 | −0.0508 (2) | 0.05186 (18) | 0.74318 (16) | 0.0210 (2) | |
H14A | −0.056 (3) | −0.046 (3) | 0.710 (2) | 0.021 (5)* | |
H14B | −0.160 (3) | 0.118 (3) | 0.781 (3) | 0.031 (6)* | |
H14C | 0.007 (3) | 0.025 (3) | 0.821 (2) | 0.015 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01659 (8) | 0.01450 (7) | 0.01084 (6) | −0.00724 (5) | 0.00253 (5) | 0.00021 (5) |
Cl | 0.01503 (12) | 0.01630 (12) | 0.01354 (11) | −0.00511 (9) | 0.00058 (9) | −0.00025 (9) |
O1 | 0.0209 (4) | 0.0173 (4) | 0.0123 (4) | −0.0080 (3) | 0.0040 (3) | −0.0005 (3) |
N1 | 0.0132 (4) | 0.0147 (4) | 0.0128 (4) | −0.0055 (3) | −0.0010 (3) | 0.0019 (3) |
N2 | 0.0164 (5) | 0.0154 (4) | 0.0126 (4) | −0.0071 (4) | 0.0006 (3) | 0.0004 (3) |
N3 | 0.0157 (4) | 0.0162 (4) | 0.0124 (4) | −0.0066 (4) | 0.0012 (3) | 0.0014 (3) |
N4 | 0.0190 (5) | 0.0194 (5) | 0.0134 (4) | −0.0094 (4) | 0.0018 (4) | 0.0022 (4) |
C1 | 0.0137 (5) | 0.0191 (5) | 0.0106 (4) | −0.0059 (4) | 0.0006 (4) | 0.0014 (4) |
C2 | 0.0136 (5) | 0.0168 (5) | 0.0122 (4) | −0.0057 (4) | −0.0009 (4) | 0.0033 (4) |
C3 | 0.0155 (5) | 0.0164 (5) | 0.0129 (4) | −0.0066 (4) | 0.0011 (4) | 0.0013 (4) |
C4 | 0.0142 (5) | 0.0148 (5) | 0.0120 (4) | −0.0053 (4) | −0.0002 (4) | 0.0020 (3) |
C5 | 0.0132 (5) | 0.0157 (5) | 0.0109 (4) | −0.0060 (4) | 0.0003 (3) | 0.0019 (3) |
C6 | 0.0152 (5) | 0.0176 (5) | 0.0116 (4) | −0.0064 (4) | 0.0002 (4) | 0.0012 (4) |
C7 | 0.0145 (5) | 0.0142 (5) | 0.0132 (4) | −0.0050 (4) | 0.0002 (4) | 0.0009 (4) |
C8 | 0.0196 (6) | 0.0150 (5) | 0.0171 (5) | −0.0070 (4) | −0.0004 (4) | 0.0007 (4) |
C9 | 0.0197 (6) | 0.0162 (5) | 0.0216 (6) | −0.0082 (4) | −0.0001 (5) | 0.0027 (4) |
C10 | 0.0230 (6) | 0.0201 (6) | 0.0190 (5) | −0.0108 (5) | 0.0030 (5) | 0.0034 (4) |
C11 | 0.0209 (6) | 0.0196 (5) | 0.0152 (5) | −0.0091 (5) | 0.0036 (4) | 0.0010 (4) |
C12 | 0.0181 (6) | 0.0255 (6) | 0.0128 (5) | −0.0096 (5) | 0.0019 (4) | −0.0007 (4) |
C13 | 0.0214 (6) | 0.0187 (5) | 0.0165 (5) | −0.0097 (5) | 0.0011 (4) | 0.0020 (4) |
C14 | 0.0233 (6) | 0.0206 (6) | 0.0201 (6) | −0.0112 (5) | 0.0011 (5) | 0.0035 (5) |
Cu1—Cli | 2.6192 (4) | C4—C5 | 1.4436 (18) |
Cu1—Cl | 2.2985 (3) | C5—C6 | 1.4233 (17) |
Cu1—O1 | 1.9654 (10) | C6—H6 | 0.96 (2) |
Cu1—N1 | 1.9574 (11) | C7—C8 | 1.3954 (18) |
Cu1—N3 | 1.9897 (11) | C8—H8 | 0.96 (2) |
O1—C4 | 1.2974 (15) | C8—C9 | 1.3876 (19) |
N1—N2 | 1.3008 (15) | C9—H9 | 0.92 (3) |
N1—C5 | 1.3402 (16) | C9—C10 | 1.388 (2) |
N2—C7 | 1.3963 (16) | C10—H10 | 0.94 (3) |
N3—C7 | 1.3591 (17) | C10—C11 | 1.388 (2) |
N3—C11 | 1.3385 (17) | C11—H11 | 0.92 (2) |
N4—H4 | 0.77 (3) | C12—H12A | 1.00 (3) |
N4—C2 | 1.3490 (16) | C12—H12B | 0.96 (3) |
N4—C13 | 1.4539 (19) | C12—H12C | 0.93 (2) |
C1—C2 | 1.4567 (19) | C13—H13A | 0.97 (2) |
C1—C6 | 1.3647 (17) | C13—H13B | 0.94 (2) |
C1—C12 | 1.4967 (18) | C13—C14 | 1.5154 (19) |
C2—C3 | 1.3989 (18) | C14—H14A | 0.94 (2) |
C3—H3 | 0.90 (2) | C14—H14B | 0.97 (3) |
C3—C4 | 1.4021 (17) | C14—H14C | 0.96 (2) |
Cl—Cu1—Cli | 90.307 (12) | C1—C6—C5 | 120.28 (12) |
O1—Cu1—Cli | 93.88 (3) | C1—C6—H6 | 121.2 (13) |
O1—Cu1—Cl | 98.20 (3) | C5—C6—H6 | 118.5 (13) |
O1—Cu1—N3 | 160.67 (4) | N3—C7—N2 | 118.82 (11) |
N1—Cu1—Cli | 108.61 (3) | N3—C7—C8 | 121.30 (11) |
N1—Cu1—Cl | 161.00 (4) | C8—C7—N2 | 119.86 (12) |
N1—Cu1—O1 | 82.69 (4) | C7—C8—H8 | 120.2 (14) |
N1—Cu1—N3 | 77.99 (4) | C9—C8—C7 | 118.74 (13) |
N3—Cu1—Cl | 99.86 (3) | C9—C8—H8 | 121.0 (14) |
N3—Cu1—Cli | 92.90 (4) | C8—C9—H9 | 116.4 (16) |
Cu1—Cl—Cu1i | 89.693 (12) | C8—C9—C10 | 119.56 (13) |
C4—O1—Cu1 | 111.30 (8) | C10—C9—H9 | 124.0 (17) |
N2—N1—Cu1 | 121.35 (8) | C9—C10—H10 | 122.3 (16) |
N2—N1—C5 | 124.44 (11) | C9—C10—C11 | 118.88 (12) |
C5—N1—Cu1 | 114.21 (9) | C11—C10—H10 | 118.7 (16) |
N1—N2—C7 | 109.40 (10) | N3—C11—C10 | 122.01 (13) |
C7—N3—Cu1 | 112.44 (8) | N3—C11—H11 | 113.9 (14) |
C11—N3—Cu1 | 127.97 (10) | C10—C11—H11 | 124.0 (14) |
C11—N3—C7 | 119.48 (12) | C1—C12—H12A | 109.4 (14) |
C2—N4—H4 | 118.0 (19) | C1—C12—H12B | 111.7 (16) |
C2—N4—C13 | 124.10 (12) | C1—C12—H12C | 112.1 (15) |
C13—N4—H4 | 117.8 (19) | H12A—C12—H12B | 107 (2) |
C2—C1—C12 | 119.00 (11) | H12A—C12—H12C | 109 (2) |
C6—C1—C2 | 118.99 (11) | H12B—C12—H12C | 108 (2) |
C6—C1—C12 | 121.99 (12) | N4—C13—H13A | 112.4 (14) |
N4—C2—C1 | 117.71 (11) | N4—C13—H13B | 107.4 (14) |
N4—C2—C3 | 121.30 (12) | N4—C13—C14 | 110.26 (12) |
C3—C2—C1 | 120.99 (11) | H13A—C13—H13B | 108.9 (19) |
C2—C3—H3 | 121.3 (15) | C14—C13—H13A | 108.5 (14) |
C2—C3—C4 | 120.54 (12) | C14—C13—H13B | 109.2 (14) |
C4—C3—H3 | 118.2 (15) | C13—C14—H14A | 109.6 (14) |
O1—C4—C3 | 122.38 (12) | C13—C14—H14B | 112.8 (16) |
O1—C4—C5 | 119.72 (11) | C13—C14—H14C | 112.1 (13) |
C3—C4—C5 | 117.89 (11) | H14A—C14—H14B | 109 (2) |
N1—C5—C4 | 111.97 (11) | H14A—C14—H14C | 104.7 (19) |
N1—C5—C6 | 126.70 (12) | H14B—C14—H14C | 108 (2) |
C6—C5—C4 | 121.28 (11) | ||
Cu1—O1—C4—C3 | 175.56 (10) | C2—C1—C6—C5 | 2.1 (2) |
Cu1—O1—C4—C5 | −3.62 (15) | C2—C3—C4—O1 | −179.58 (13) |
Cu1—N1—N2—C7 | 0.45 (15) | C2—C3—C4—C5 | −0.39 (19) |
Cu1—N1—C5—C4 | −0.01 (14) | C3—C4—C5—N1 | −176.72 (12) |
Cu1—N1—C5—C6 | −177.55 (11) | C3—C4—C5—C6 | 0.98 (19) |
Cu1—N3—C7—N2 | 0.24 (15) | C4—C5—C6—C1 | −1.9 (2) |
Cu1—N3—C7—C8 | −178.40 (11) | C5—N1—N2—C7 | −179.00 (12) |
Cu1—N3—C11—C10 | 177.82 (12) | C6—C1—C2—N4 | 178.01 (12) |
O1—C4—C5—N1 | 2.50 (18) | C6—C1—C2—C3 | −1.5 (2) |
O1—C4—C5—C6 | −179.81 (12) | C7—N3—C11—C10 | 1.9 (2) |
N1—N2—C7—N3 | −0.44 (17) | C7—C8—C9—C10 | −0.2 (2) |
N1—N2—C7—C8 | 178.23 (12) | C8—C9—C10—C11 | 0.2 (2) |
N1—C5—C6—C1 | 175.44 (13) | C9—C10—C11—N3 | −1.1 (2) |
N2—N1—C5—C4 | 179.48 (12) | C11—N3—C7—N2 | 176.77 (13) |
N2—N1—C5—C6 | 1.9 (2) | C11—N3—C7—C8 | −1.9 (2) |
N2—C7—C8—C9 | −177.61 (13) | C12—C1—C2—N4 | −3.82 (19) |
N3—C7—C8—C9 | 1.0 (2) | C12—C1—C2—C3 | 176.62 (13) |
N4—C2—C3—C4 | −178.88 (13) | C12—C1—C6—C5 | −175.99 (13) |
C1—C2—C3—C4 | 0.7 (2) | C13—N4—C2—C1 | −179.80 (13) |
C2—N4—C13—C14 | 172.24 (13) | C13—N4—C2—C3 | −0.2 (2) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···Clii | 0.92 (3) | 2.91 (3) | 3.6514 (14) | 138 (2) |
C9—H9···O1ii | 0.92 (3) | 2.59 (3) | 3.1592 (18) | 120 (2) |
C11—H11···Cl | 0.92 (2) | 2.93 (2) | 3.4825 (15) | 120.2 (17) |
C11—H11···O1i | 0.92 (2) | 2.60 (2) | 3.4083 (18) | 146.5 (19) |
C12—H12B···O1iii | 0.96 (3) | 2.85 (3) | 3.7902 (19) | 169 (2) |
C12—H12C···Cliv | 0.93 (2) | 3.00 (2) | 3.4542 (15) | 111.9 (17) |
C14—H14B···Clv | 0.97 (3) | 2.94 (3) | 3.6821 (16) | 134.8 (19) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, y+1, z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) x−1, y, z+1. |
[CuCl(C12H8N2)2]Cl·4H2O | F(000) = 2328 |
Mr = 566.91 | Dx = 1.485 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 23.1874 (7) Å | Cell parameters from 9891 reflections |
b = 30.2708 (9) Å | θ = 2.7–33.0° |
c = 7.2839 (2) Å | µ = 1.11 mm−1 |
β = 97.235 (1)° | T = 100 K |
V = 5071.9 (3) Å3 | Plate, clear greenish green |
Z = 8 | 0.2 × 0.1 × 0.05 mm |
Bruker D8 Venture diffractometer | 5840 reflections with I > 2σ(I) |
θ and ω scans | Rint = 0.029 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.3°, θmin = 3.5° |
Tmin = 0.89, Tmax = 0.95 | h = −30→29 |
67930 measured reflections | k = −40→40 |
6173 independent reflections | l = −9→9 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.130 | w = 1/[σ2(Fo2) + (0.0642P)2 + 16.2399P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
6173 reflections | Δρmax = 1.06 e Å−3 |
364 parameters | Δρmin = −0.48 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.27540 (2) | 0.11858 (2) | 0.34073 (4) | 0.02177 (10) | |
Cl1 | 0.29111 (3) | 0.14735 (2) | 0.05112 (7) | 0.02655 (13) | |
N1 | 0.22658 (8) | 0.15474 (6) | 0.5111 (3) | 0.0219 (4) | |
N2 | 0.33904 (9) | 0.15480 (6) | 0.4699 (3) | 0.0249 (4) | |
N3 | 0.20905 (8) | 0.08317 (6) | 0.2241 (3) | 0.0237 (4) | |
N4 | 0.31053 (8) | 0.05547 (6) | 0.3980 (2) | 0.0215 (3) | |
C2 | 0.11535 (11) | 0.07030 (9) | 0.0549 (4) | 0.0339 (5) | |
H2 | 0.080421 | 0.082186 | −0.008153 | 0.041* | |
C3 | 0.12262 (11) | 0.02558 (9) | 0.0713 (3) | 0.0320 (5) | |
H3 | 0.092669 | 0.006179 | 0.019772 | 0.038* | |
C4 | 0.17442 (10) | 0.00847 (8) | 0.1643 (3) | 0.0262 (4) | |
C5 | 0.21693 (10) | 0.03886 (7) | 0.2389 (3) | 0.0223 (4) | |
C6 | 0.18679 (12) | −0.03787 (8) | 0.1861 (3) | 0.0294 (5) | |
H6 | 0.158392 | −0.058845 | 0.137680 | 0.035* | |
C7 | 0.23830 (12) | −0.05215 (8) | 0.2746 (3) | 0.0299 (5) | |
H7 | 0.245351 | −0.082976 | 0.287392 | 0.036* | |
C8 | 0.28242 (11) | −0.02157 (7) | 0.3493 (3) | 0.0248 (4) | |
C9 | 0.27151 (9) | 0.02397 (7) | 0.3316 (3) | 0.0215 (4) | |
C10 | 0.33706 (11) | −0.03444 (8) | 0.4395 (3) | 0.0288 (5) | |
H10 | 0.346589 | −0.064863 | 0.454168 | 0.035* | |
C11 | 0.37645 (11) | −0.00274 (8) | 0.5063 (3) | 0.0288 (5) | |
H11 | 0.413550 | −0.010993 | 0.567009 | 0.035* | |
C12 | 0.36138 (10) | 0.04220 (8) | 0.4839 (3) | 0.0253 (4) | |
H12 | 0.388785 | 0.063878 | 0.532360 | 0.030* | |
C13 | 0.17066 (10) | 0.15345 (7) | 0.5335 (3) | 0.0254 (4) | |
H13 | 0.147100 | 0.130709 | 0.473677 | 0.030* | |
C14 | 0.14494 (11) | 0.18425 (8) | 0.6418 (3) | 0.0302 (5) | |
H14 | 0.104956 | 0.181807 | 0.656823 | 0.036* | |
C15 | 0.17792 (12) | 0.21793 (8) | 0.7258 (3) | 0.0311 (5) | |
H15 | 0.160782 | 0.239449 | 0.796876 | 0.037* | |
C16 | 0.23741 (11) | 0.22029 (7) | 0.7056 (3) | 0.0265 (5) | |
C17 | 0.25979 (10) | 0.18725 (7) | 0.5984 (3) | 0.0223 (4) | |
C18 | 0.32006 (10) | 0.18741 (7) | 0.5757 (3) | 0.0237 (4) | |
C19 | 0.35695 (11) | 0.22065 (8) | 0.6583 (3) | 0.0289 (5) | |
C20 | 0.33264 (12) | 0.25421 (8) | 0.7643 (3) | 0.0329 (5) | |
H20 | 0.357096 | 0.276952 | 0.820068 | 0.040* | |
C21 | 0.27566 (12) | 0.25416 (8) | 0.7864 (3) | 0.0319 (5) | |
H21 | 0.260710 | 0.276953 | 0.856655 | 0.038* | |
C22 | 0.41563 (12) | 0.21906 (9) | 0.6275 (4) | 0.0359 (6) | |
H22 | 0.442180 | 0.240951 | 0.679455 | 0.043* | |
C23 | 0.43414 (12) | 0.18584 (10) | 0.5223 (4) | 0.0381 (6) | |
H23 | 0.473811 | 0.184258 | 0.502541 | 0.046* | |
C24 | 0.39459 (11) | 0.15413 (9) | 0.4438 (4) | 0.0313 (5) | |
H24 | 0.407952 | 0.131427 | 0.369617 | 0.038* | |
C27 | 0.15990 (10) | 0.09837 (8) | 0.1320 (3) | 0.0297 (5) | |
H27 | 0.154850 | 0.129383 | 0.118071 | 0.036* | |
Cl2 | 0.46154 (12) | 0.28339 (11) | 0.0469 (4) | 0.0402 (6) | 0.25 |
Cl3 | 0.500000 | 0.3448 (2) | 0.750000 | 0.0671 (14) | 0.25 |
Cl4 | 0.45206 (18) | 0.41920 (18) | 0.5363 (8) | 0.1083 (15) | 0.35 |
Cl5 | 0.500000 | 0.0804 (2) | 0.250000 | 0.0353 (12)* | 0.15 |
Cl6 | 0.4700 (2) | 0.33053 (15) | 0.8319 (8) | 0.0601 (11) | 0.2 |
O1 | 0.42362 (11) | 0.17008 (13) | 0.0286 (4) | 0.0799 (10) | |
H1A | 0.387673 | 0.166966 | 0.029787 | 0.087 (16)* | |
H1B | 0.442713 | 0.147816 | 0.083907 | 0.131* | |
O2 | 0.45025 (16) | 0.25165 (18) | 0.1188 (6) | 0.0775 (13) | 0.75 |
O3 | 0.500000 | 0.37225 (18) | 0.250000 | 0.0705 (14) | 0.8 |
O4 | 0.5355 (7) | 0.3708 (6) | 0.890 (2) | 0.051 (4)* | 0.15 |
O5 | 0.4383 (4) | 0.3247 (3) | 0.9597 (13) | 0.062 (2)* | 0.3 |
O6 | 0.500000 | 0.4802 (5) | 0.750000 | 0.078 (6) | 0.3 |
O7 | 0.500000 | 0.5117 (8) | 0.750000 | 0.143 (8) | 0.5 |
O8 | 0.500000 | 0.0553 (2) | 0.250000 | 0.073 (3) | 0.5 |
O9 | 0.4821 (6) | 0.0907 (4) | 0.0297 (18) | 0.057 (3)* | 0.2 |
O10 | 0.5421 (3) | 0.0980 (3) | 0.6321 (11) | 0.0487 (17)* | 0.3 |
O11 | 0.4997 (5) | 0.0460 (3) | 0.6952 (12) | 0.069 (3)* | 0.3 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02256 (16) | 0.01895 (15) | 0.02420 (16) | 0.00082 (9) | 0.00442 (10) | −0.00141 (9) |
Cl1 | 0.0350 (3) | 0.0203 (2) | 0.0253 (3) | 0.00274 (19) | 0.0076 (2) | 0.00302 (18) |
N1 | 0.0266 (9) | 0.0171 (8) | 0.0227 (8) | 0.0038 (7) | 0.0052 (7) | 0.0018 (6) |
N2 | 0.0261 (9) | 0.0222 (9) | 0.0266 (9) | 0.0002 (7) | 0.0038 (7) | 0.0006 (7) |
N3 | 0.0249 (9) | 0.0235 (9) | 0.0233 (9) | 0.0011 (7) | 0.0055 (7) | −0.0010 (7) |
N4 | 0.0252 (9) | 0.0209 (8) | 0.0195 (8) | 0.0024 (7) | 0.0071 (7) | 0.0006 (7) |
C2 | 0.0250 (11) | 0.0440 (14) | 0.0327 (12) | 0.0025 (10) | 0.0028 (9) | −0.0055 (11) |
C3 | 0.0281 (11) | 0.0416 (13) | 0.0273 (11) | −0.0072 (10) | 0.0073 (9) | −0.0083 (10) |
C4 | 0.0307 (11) | 0.0300 (11) | 0.0199 (10) | −0.0055 (9) | 0.0114 (8) | −0.0042 (8) |
C5 | 0.0268 (10) | 0.0236 (10) | 0.0182 (9) | −0.0014 (8) | 0.0094 (8) | −0.0012 (7) |
C6 | 0.0405 (13) | 0.0265 (11) | 0.0234 (10) | −0.0101 (9) | 0.0131 (9) | −0.0054 (8) |
C7 | 0.0476 (14) | 0.0211 (10) | 0.0240 (11) | −0.0051 (9) | 0.0159 (10) | −0.0020 (8) |
C8 | 0.0372 (12) | 0.0204 (10) | 0.0194 (10) | 0.0008 (8) | 0.0130 (9) | 0.0010 (7) |
C9 | 0.0287 (10) | 0.0205 (10) | 0.0171 (9) | −0.0005 (8) | 0.0100 (8) | −0.0002 (7) |
C10 | 0.0414 (13) | 0.0217 (10) | 0.0257 (11) | 0.0069 (9) | 0.0134 (9) | 0.0047 (8) |
C11 | 0.0329 (12) | 0.0289 (11) | 0.0258 (11) | 0.0088 (9) | 0.0085 (9) | 0.0054 (9) |
C12 | 0.0265 (10) | 0.0266 (11) | 0.0235 (10) | 0.0035 (8) | 0.0066 (8) | 0.0013 (8) |
C13 | 0.0272 (11) | 0.0222 (10) | 0.0278 (11) | 0.0043 (8) | 0.0070 (8) | 0.0030 (8) |
C14 | 0.0306 (11) | 0.0323 (12) | 0.0288 (11) | 0.0111 (9) | 0.0079 (9) | 0.0033 (9) |
C15 | 0.0404 (13) | 0.0295 (11) | 0.0232 (10) | 0.0167 (10) | 0.0038 (9) | 0.0000 (9) |
C16 | 0.0381 (12) | 0.0203 (10) | 0.0196 (9) | 0.0092 (9) | −0.0016 (9) | 0.0024 (8) |
C17 | 0.0293 (11) | 0.0177 (9) | 0.0194 (9) | 0.0047 (8) | 0.0008 (8) | 0.0029 (7) |
C18 | 0.0294 (11) | 0.0188 (9) | 0.0220 (10) | 0.0024 (8) | 0.0000 (8) | 0.0036 (8) |
C19 | 0.0351 (12) | 0.0216 (10) | 0.0275 (11) | 0.0000 (9) | −0.0060 (9) | 0.0041 (8) |
C20 | 0.0461 (14) | 0.0206 (10) | 0.0280 (11) | 0.0020 (9) | −0.0113 (10) | −0.0005 (9) |
C21 | 0.0495 (15) | 0.0198 (10) | 0.0236 (10) | 0.0101 (10) | −0.0065 (10) | −0.0020 (8) |
C22 | 0.0333 (12) | 0.0306 (12) | 0.0407 (14) | −0.0069 (10) | −0.0069 (10) | 0.0035 (10) |
C23 | 0.0258 (12) | 0.0409 (14) | 0.0468 (15) | −0.0038 (10) | 0.0019 (10) | 0.0046 (12) |
C24 | 0.0266 (11) | 0.0315 (12) | 0.0365 (13) | −0.0001 (9) | 0.0065 (9) | 0.0012 (10) |
C27 | 0.0267 (11) | 0.0313 (12) | 0.0310 (12) | 0.0043 (9) | 0.0035 (9) | −0.0020 (9) |
Cl2 | 0.0320 (12) | 0.0532 (16) | 0.0341 (12) | −0.0030 (11) | −0.0004 (10) | −0.0101 (12) |
Cl3 | 0.080 (4) | 0.062 (3) | 0.056 (3) | 0.000 | −0.006 (3) | 0.000 |
Cl4 | 0.072 (2) | 0.118 (3) | 0.141 (4) | 0.034 (2) | 0.037 (2) | −0.002 (3) |
Cl6 | 0.057 (2) | 0.042 (2) | 0.081 (3) | 0.0021 (18) | 0.008 (2) | 0.001 (2) |
O1 | 0.0370 (13) | 0.150 (3) | 0.0549 (15) | −0.0042 (16) | 0.0139 (11) | 0.0370 (18) |
O2 | 0.0407 (18) | 0.115 (4) | 0.074 (3) | 0.020 (2) | −0.0037 (17) | −0.031 (3) |
O3 | 0.069 (3) | 0.065 (3) | 0.072 (3) | 0.000 | −0.011 (3) | 0.000 |
O6 | 0.034 (7) | 0.077 (9) | 0.132 (17) | 0.000 | 0.050 (8) | 0.000 |
O7 | 0.029 (4) | 0.37 (3) | 0.034 (4) | 0.000 | 0.006 (3) | 0.000 |
O8 | 0.019 (3) | 0.046 (4) | 0.141 (8) | 0.000 | −0.043 (4) | 0.000 |
Cu1—Cl1 | 2.3527 (6) | C11—H11 | 0.9500 |
Cu1—N1 | 2.0914 (18) | C11—C12 | 1.409 (3) |
Cu1—N2 | 1.979 (2) | C12—H12 | 0.9500 |
Cu1—N3 | 1.977 (2) | C13—H13 | 0.9500 |
Cu1—N4 | 2.0979 (18) | C13—C14 | 1.402 (3) |
N1—C13 | 1.328 (3) | C14—H14 | 0.9500 |
N1—C17 | 1.357 (3) | C14—C15 | 1.371 (4) |
N2—C18 | 1.359 (3) | C15—H15 | 0.9500 |
N2—C24 | 1.326 (3) | C15—C16 | 1.407 (4) |
N3—C5 | 1.356 (3) | C16—C17 | 1.407 (3) |
N3—C27 | 1.330 (3) | C16—C21 | 1.433 (4) |
N4—C9 | 1.361 (3) | C17—C18 | 1.428 (3) |
N4—C12 | 1.326 (3) | C18—C19 | 1.406 (3) |
C2—H2 | 0.9500 | C19—C20 | 1.434 (4) |
C2—C3 | 1.367 (4) | C19—C22 | 1.408 (4) |
C2—C27 | 1.400 (4) | C20—H20 | 0.9500 |
C3—H3 | 0.9500 | C20—C21 | 1.351 (4) |
C3—C4 | 1.402 (4) | C21—H21 | 0.9500 |
C4—C5 | 1.407 (3) | C22—H22 | 0.9500 |
C4—C6 | 1.437 (3) | C22—C23 | 1.366 (4) |
C5—C9 | 1.430 (3) | C23—H23 | 0.9500 |
C6—H6 | 0.9500 | C23—C24 | 1.399 (4) |
C6—C7 | 1.354 (4) | C24—H24 | 0.9500 |
C7—H7 | 0.9500 | C27—H27 | 0.9500 |
C7—C8 | 1.435 (3) | Cl3—Cl6 | 1.063 (6) |
C8—C9 | 1.405 (3) | O1—H1A | 0.8400 |
C8—C10 | 1.407 (4) | O1—H1B | 0.8759 |
C10—H10 | 0.9500 | O11—O11i | 0.797 (18) |
C10—C11 | 1.371 (4) | ||
N1—Cu1—Cl1 | 119.65 (5) | C11—C10—H10 | 120.2 |
N1—Cu1—N4 | 125.75 (7) | C10—C11—H11 | 120.3 |
N2—Cu1—Cl1 | 91.76 (6) | C10—C11—C12 | 119.4 (2) |
N2—Cu1—N1 | 81.65 (8) | C12—C11—H11 | 120.3 |
N2—Cu1—N4 | 99.35 (8) | N4—C12—C11 | 122.7 (2) |
N3—Cu1—Cl1 | 90.89 (6) | N4—C12—H12 | 118.7 |
N3—Cu1—N1 | 95.07 (8) | C11—C12—H12 | 118.7 |
N3—Cu1—N2 | 176.52 (8) | N1—C13—H13 | 118.6 |
N3—Cu1—N4 | 81.58 (8) | N1—C13—C14 | 122.8 (2) |
N4—Cu1—Cl1 | 114.55 (5) | C14—C13—H13 | 118.6 |
C13—N1—Cu1 | 131.88 (16) | C13—C14—H14 | 120.3 |
C13—N1—C17 | 117.96 (19) | C15—C14—C13 | 119.5 (2) |
C17—N1—Cu1 | 109.88 (14) | C15—C14—H14 | 120.3 |
C18—N2—Cu1 | 113.38 (15) | C14—C15—H15 | 120.3 |
C24—N2—Cu1 | 127.10 (17) | C14—C15—C16 | 119.3 (2) |
C24—N2—C18 | 118.8 (2) | C16—C15—H15 | 120.3 |
C5—N3—Cu1 | 114.35 (15) | C15—C16—C17 | 117.2 (2) |
C27—N3—Cu1 | 126.91 (17) | C15—C16—C21 | 123.9 (2) |
C27—N3—C5 | 118.7 (2) | C17—C16—C21 | 119.0 (2) |
C9—N4—Cu1 | 110.08 (14) | N1—C17—C16 | 123.2 (2) |
C12—N4—Cu1 | 132.06 (16) | N1—C17—C18 | 116.99 (19) |
C12—N4—C9 | 117.87 (19) | C16—C17—C18 | 119.8 (2) |
C3—C2—H2 | 120.4 | N2—C18—C17 | 117.1 (2) |
C3—C2—C27 | 119.3 (2) | N2—C18—C19 | 122.6 (2) |
C27—C2—H2 | 120.4 | C19—C18—C17 | 120.3 (2) |
C2—C3—H3 | 120.1 | C18—C19—C20 | 118.6 (2) |
C2—C3—C4 | 119.8 (2) | C18—C19—C22 | 117.1 (2) |
C4—C3—H3 | 120.1 | C22—C19—C20 | 124.3 (2) |
C3—C4—C5 | 117.5 (2) | C19—C20—H20 | 119.3 |
C3—C4—C6 | 124.2 (2) | C21—C20—C19 | 121.3 (2) |
C5—C4—C6 | 118.4 (2) | C21—C20—H20 | 119.3 |
N3—C5—C4 | 122.4 (2) | C16—C21—H21 | 119.5 |
N3—C5—C9 | 116.8 (2) | C20—C21—C16 | 121.0 (2) |
C4—C5—C9 | 120.8 (2) | C20—C21—H21 | 119.5 |
C4—C6—H6 | 119.5 | C19—C22—H22 | 120.2 |
C7—C6—C4 | 121.1 (2) | C23—C22—C19 | 119.5 (2) |
C7—C6—H6 | 119.5 | C23—C22—H22 | 120.2 |
C6—C7—H7 | 119.4 | C22—C23—H23 | 120.1 |
C6—C7—C8 | 121.2 (2) | C22—C23—C24 | 119.9 (3) |
C8—C7—H7 | 119.4 | C24—C23—H23 | 120.1 |
C9—C8—C7 | 119.1 (2) | N2—C24—C23 | 122.0 (2) |
C9—C8—C10 | 117.1 (2) | N2—C24—H24 | 119.0 |
C10—C8—C7 | 123.8 (2) | C23—C24—H24 | 119.0 |
N4—C9—C5 | 117.14 (19) | N3—C27—C2 | 122.3 (2) |
N4—C9—C8 | 123.5 (2) | N3—C27—H27 | 118.8 |
C8—C9—C5 | 119.4 (2) | C2—C27—H27 | 118.8 |
C8—C10—H10 | 120.2 | H1A—O1—H1B | 110.7 |
C11—C10—C8 | 119.5 (2) | ||
Cu1—N1—C13—C14 | −172.78 (17) | C8—C10—C11—C12 | 0.3 (3) |
Cu1—N1—C17—C16 | 172.37 (17) | C9—N4—C12—C11 | 0.9 (3) |
Cu1—N1—C17—C18 | −6.7 (2) | C9—C8—C10—C11 | 0.4 (3) |
Cu1—N2—C18—C17 | 8.1 (2) | C10—C8—C9—N4 | −0.5 (3) |
Cu1—N2—C18—C19 | −170.92 (17) | C10—C8—C9—C5 | 179.20 (19) |
Cu1—N2—C24—C23 | 170.0 (2) | C10—C11—C12—N4 | −1.0 (3) |
Cu1—N3—C5—C4 | −179.97 (16) | C12—N4—C9—C5 | −179.83 (18) |
Cu1—N3—C5—C9 | −1.2 (2) | C12—N4—C9—C8 | −0.1 (3) |
Cu1—N3—C27—C2 | −179.82 (18) | C13—N1—C17—C16 | −2.3 (3) |
Cu1—N4—C9—C5 | 0.5 (2) | C13—N1—C17—C18 | 178.66 (19) |
Cu1—N4—C9—C8 | −179.83 (16) | C13—C14—C15—C16 | −1.6 (3) |
Cu1—N4—C12—C11 | −179.50 (16) | C14—C15—C16—C17 | 0.0 (3) |
N1—C13—C14—C15 | 1.5 (4) | C14—C15—C16—C21 | 179.6 (2) |
N1—C17—C18—N2 | −0.6 (3) | C15—C16—C17—N1 | 2.1 (3) |
N1—C17—C18—C19 | 178.50 (19) | C15—C16—C17—C18 | −178.9 (2) |
N2—C18—C19—C20 | 178.7 (2) | C15—C16—C21—C20 | 179.0 (2) |
N2—C18—C19—C22 | −0.1 (3) | C16—C17—C18—N2 | −179.67 (19) |
N3—C5—C9—N4 | 0.5 (3) | C16—C17—C18—C19 | −0.6 (3) |
N3—C5—C9—C8 | −179.28 (18) | C17—N1—C13—C14 | 0.4 (3) |
C2—C3—C4—C5 | 0.5 (3) | C17—C16—C21—C20 | −1.4 (3) |
C2—C3—C4—C6 | −178.8 (2) | C17—C18—C19—C20 | −0.3 (3) |
C3—C2—C27—N3 | −1.2 (4) | C17—C18—C19—C22 | −179.0 (2) |
C3—C4—C5—N3 | 0.3 (3) | C18—N2—C24—C23 | 0.2 (4) |
C3—C4—C5—C9 | −178.41 (19) | C18—C19—C20—C21 | 0.4 (3) |
C3—C4—C6—C7 | 178.7 (2) | C18—C19—C22—C23 | −0.6 (4) |
C4—C5—C9—N4 | 179.26 (18) | C19—C20—C21—C16 | 0.4 (4) |
C4—C5—C9—C8 | −0.5 (3) | C19—C22—C23—C24 | 1.0 (4) |
C4—C6—C7—C8 | −0.2 (3) | C20—C19—C22—C23 | −179.2 (2) |
C5—N3—C27—C2 | 2.0 (3) | C21—C16—C17—N1 | −177.6 (2) |
C5—C4—C6—C7 | −0.7 (3) | C21—C16—C17—C18 | 1.5 (3) |
C6—C4—C5—N3 | 179.7 (2) | C22—C19—C20—C21 | 179.0 (2) |
C6—C4—C5—C9 | 1.0 (3) | C22—C23—C24—N2 | −0.8 (4) |
C6—C7—C8—C9 | 0.7 (3) | C24—N2—C18—C17 | 179.3 (2) |
C6—C7—C8—C10 | −178.8 (2) | C24—N2—C18—C19 | 0.2 (3) |
C7—C8—C9—N4 | 179.92 (19) | C27—N3—C5—C4 | −1.6 (3) |
C7—C8—C9—C5 | −0.4 (3) | C27—N3—C5—C9 | 177.2 (2) |
C7—C8—C10—C11 | 179.9 (2) | C27—C2—C3—C4 | −0.2 (4) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···O11 | 0.95 | 2.72 | 3.354 (11) | 125 |
C12—H12···O11 | 0.95 | 2.75 | 3.380 (12) | 125 |
C13—H13···O4ii | 0.95 | 2.58 | 3.261 (17) | 129 |
C23—H23···O1iii | 0.95 | 2.46 | 3.399 (4) | 172 |
C27—H27···O5iv | 0.95 | 2.57 | 3.267 (10) | 130 |
O1—H1A···Cl1 | 0.84 | 2.34 | 3.173 (3) | 171 |
O1—H1B···O9 | 0.88 | 2.02 | 2.758 (14) | 142 |
Symmetry codes: (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1, y, −z+1/2; (iv) −x+1/2, −y+1/2, −z+1. |
D—H···A | d(D—H) | d(H···A) | d(D···A) | <(DHA) |
Intramolecular | ||||
C11—H11···O1i | 0.92 (2) | 2.60 (2) | 3.4083 (18) | 146.5 (19) |
C11—H11···Cla | 0.92 (2) | 2.93 (2) | 3.4825 (15) | 120.2 (17) |
Intermolecular | ||||
C9—H9···O1ii | 0.92 (3) | 2.59 (3) | 3.1592 (18) | 120.2 (17) |
C9—H9···Clii,a | 0.92 (3) | 2.91 (3) | 3.6514 (14) | 138 (2) |
C12—H12B···O1iii | 0.96 (3) | 2.85 (3) | 3.4542 (15) | 111.9 (17) |
C12—H12C···Cliv,a | 0.93 (2) | 3.00 (2) | 3.790 (2) | 169 (2) |
C14—H14B···Clv,a | 0.97 (3) | 2.94 (3) | 3.6821 (16) | 134.8 (19) |
Symmetry transformations used to generate equivalent atoms: (i) -x + 1, -y, -z; (ii) x, y + 1, z; (iii) -x, 1 - y, 1 - z; (iv) 1 - x, 1 - y, 1 - z; (v) x - 1, y, z + 1. Note: (a) Very weak, if any, at the borderline of a hydrogen bond (Grabowski, 2021). |
Phenyl–phenyl | phenyl–pyridine | pyridine–pyridine | |
Centroid–centroid distance | 3.910 (1) | 4.266 (1) | 4.220 (1) |
Plane–plane distance | 3.433 (1) | 3.534 (1) | 3.499 (1) |
α | 28.60 | 34.06 | 33.99 |
Acknowledgements
The National Institutes of Health (NIH) Grant R01GM113101, the Kansas Masonic Cancer Research Institute Pilot Research Program of the University of Kansas Cancer Center, P30CA168524, and the COBRE-PSF P30 GM110761 Pilot Project, the University of Kansas, Department of Chemistry (to MM) provided funding for this research. AM was supported by National Institutes of Health NIGMS Biotechnology Predoctoral Training Program (T32-GM008359), the J. K. Lee Summer Scholar Program and Chaffee Fellowship from the Department of Chemistry, the University of Kansas. The National Science Foundation (NSF) Major Research Instrumentation Program (NSF-MRI) Grant CHE-0923449 supported the purchase of the X-ray diffractometer for the Molecular Structure Group at University of Kansas and software used in this study.
Funding information
Funding for this research was provided by: National Institutes of Health (grant No. R01GM113101 to Minae Mure); Kansas Masonic Foundation (grant No. P30CA168524 to Minae Mure); National Institutes of Health (grant No. P30 GM110761 to Minae Mure); National Institutes of Health, National Institute of General Medical Sciences (award No. T32-GM008359); National Science Foundation (grant No. CHE-0923449).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Anderson, O. P. (1975). Inorg. Chem. 14, 730–734. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2016). SAINT. Bruker Nano Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2021). APEX4. Bruker Nano Inc., Madison, Wisconsin, USA. Google Scholar
Bunton, C. A., Minch, M. J. & Wolfe, B. B. (1974). J. Am. Chem. Soc. 96, 3267–3275. CrossRef CAS Google Scholar
Das, K., Datta, A., Sinha, C., Huang, J. H., Garribba, E., Hsiao, C. S. & Hsu, C. L. (2012). ChemistryOpen, 1, 80-89. CSD CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Grabowski, S. J. (2021). Understanding Hydrogen Bonds: Theoretical and Experimental Views. Cambridge. The Royal Society of Chemistry. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Kapoor, P., Pathak, A., Kapoor, R., Venugopalan, P., Corbella, M., Rodríguez, M., Robles, J. & Llobet, A. (2002). Inorg. Chem. 41, 6153–6160. Web of Science CSD CrossRef PubMed CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mahjour, F., Dambal, V., Shrestha, N., Singh, V., Noonan, V., Kantarci, A. & Trackman, P. C. (2019). Oncogenesis, 8, 34. CrossRef PubMed Google Scholar
Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191–2201. Web of Science CrossRef CAS Google Scholar
Meier, A. A., Go, E. P., Moon, H. J., Desaire, H. & Mure, M. (2022). Int. J. Mol. Sci. 23, 5879. CrossRef PubMed Google Scholar
Meier, A. A., Kuczera, K. & Mure, M. (2022). Int. J. Mol. Sci. 23, 13385. CrossRef PubMed Google Scholar
Meier, A. A., Moon, H.-J., Sabuncu, S., Singh, P., Ronnebaum, T. R., Ou, S., Douglas, J. T., Jackson, T. A., Moenne-Loccoz, P. & Mure, M. (2022). Int. J. Mol. Sci. 23, 13966. CrossRef PubMed Google Scholar
Moon, H. J., Finney, J., Ronnebaum, T. & Mure, M. (2014). Bioorg. Chem. 57, 231–241. CrossRef CAS PubMed Google Scholar
Nakagawa, G. & Wada, H. (1962). Nippon Kagaku Zasshi, 83, 1098-1102. CrossRef CAS Google Scholar
Rodríguez, M., Llobet, A., Corbella, M., Martell, A. E. & Reibenspies, J. (1999). Inorg. Chem. 38, 2328–2334. Google Scholar
Sasmal, A., Saha, S., Gómez-García, C. J., Desplanches, C., Garribba, E., Bauzá, A., Frontera, A., Scott, R., Butcher, R. J. & Mitra, S. (2013). Chem. Commun. 49, 7806–7808. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201. CrossRef Web of Science IUCr Journals Google Scholar
Smolentsev, A., Lider, E. V., Lavrenova, L. G., Sheludyakova, L. A., Bogomyakov, A. S. & Vasilevsky, S. F. (2014). Polyhedron, 77, 81–88. CSD CrossRef CAS Google Scholar
Wei, Y., Dong, W., Jackson, J., Ho, T. C., Le Saux, C. J., Brumwell, A., Li, X., Klesney-Tait, J., Cohen, M. L., Wolters, P. J. & Chapman, H. A. (2021). Thorax, 76, 729–732. CrossRef PubMed Google Scholar
Yamada, Y., Sakurai, H., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2002). Polyhedron, 21, 2143–2147. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.