research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of di-μ-chlorido-bis­­({(E)-5-(ethyl­amino)-4-methyl-2-[(pyridin-2-yl)diazen­yl]phen­o­lato}copper(II)) and chlorido­bis­­(1,10-phen­anthroline)copper(II) chloride tetra­hydrate

crossmark logo

aDepartment of Chemistry, The University of Kansas, Lawrence, KS 66045, USA, bX-ray Crystallography Laboratory, The University of Kansas, Lawrence, KS 66045, USA, and cProtein Structure Laboratory, The University of Kansas, Lawrence, KS66047, USA
*Correspondence e-mail: mmure@ku.edu

Edited by A. S. Batsanov, University of Durham, United Kingdom (Received 21 September 2022; accepted 15 February 2023; online 21 February 2023)

The dark-red title complex crystallized from an equimolar methanol solution of (E)-5-(ethyl­amino)-4-methyl-2-[(pyridin-2-yl)diazen­yl]phenol and CuCl2(phen) (phen = 1,10-phenanthroline) as a centrosymmetric dimer, [CuCl(C14H15N4O)]2. The Cu atoms are bridged by two Cl ligands and have a slightly distorted square-pyramidal coordination, where two N atoms from the azo and the pyridine moieties, a phenolic O and a Cl atom comprise the base and the other Cl occupies the apex position. The apical Cu—Cl bond, 2.6192 (4) Å, is longer than the basal one, 2.2985 (3) Å, due to Jahn–Teller distortion. The dimers are associated via weak inter­molecular hydrogen bonds and ππ stacking inter­actions between phenyl and pyridine rings. A monomeric by-product of the same reaction, [CuCl(phen)2]Cl·4H2O, has a trigonal–bipyramidal coordination of Cu with equatorial Cl ligand, and extensive outer-sphere disorder. In the structure of 4, the packing of cations leaves continuous channels containing disordered Cl anions and solvent mol­ecules. The identity of the solvent (water or a water/methanol mixture) was not certain. The disordered anion/solvent regions comprise 28% of the unit-cell volume. The disorder was approximated by five partly occupied positions of the Cl anion and ten positions of O atoms with a total occupancy of 3, giving a total of 48 electrons per asymmetric unit, in agreement with the integral electron density of 47.8 electrons in the disordered region, as was estimated using the BYPASS-type solvent-masking program [van der Sluis & Spek (1990). Acta Cryst. A46, 194–201].

1. Chemical context

The (E)-5-(ethyl­amino)-4-methyl-2-[(pyridin-2-yl)diazen­yl]phenol ligand (1) was synthesized from a coupling reaction of pyridine-2-diazo­tate and 3-ethyl­amino-p-cresol as a model for the lysine tyrosyl­quinone (LTQ) cofactor (Fig. 1[link]) of lysyl oxidase-like 2 (LOXL2) that is inhibited by 2-hydrazino­pyridine (2HP). LOXL2 is a member of the lysyl oxidase family of proteins, and its upregulation has been closely associated with fibrosis and tumor metastasis (Moon et al. 2014[Moon, H. J., Finney, J., Ronnebaum, T. & Mure, M. (2014). Bioorg. Chem. 57, 231-241.]; Mahjour et al., 2019[Mahjour, F., Dambal, V., Shrestha, N., Singh, V., Noonan, V., Kantarci, A. & Trackman, P. C. (2019). Oncogenesis, 8, 34.]; Wei et al., 2021[Wei, Y., Dong, W., Jackson, J., Ho, T. C., Le Saux, C. J., Brumwell, A., Li, X., Klesney-Tait, J., Cohen, M. L., Wolters, P. J. & Chapman, H. A. (2021). Thorax, 76, 729-732.]). We have recently identified 2HP-modified LTQ, LTQ-2HP (Fig. 1[link]) in 2HP-inhibited LOXL2 by mass spectrometry-based peptide mapping (Meier, Go et al., 2022[Meier, A. A., Go, E. P., Moon, H. J., Desaire, H. & Mure, M. (2022). Int. J. Mol. Sci. 23, 5879.]). Since there is no structural information of a catalytically competent form of LOXL2, we conducted comparative spectroscopic studies of 2HP-inhibited LOXL2 and the corresponding model compound in solution, in order to understand the spatial arrangement of the LTQ cofactor and the active site CuII (Meier, Moon et al., 2022[Meier, A. A., Moon, H.-J., Sabuncu, S., Singh, P., Ronnebaum, T. R., Ou, S., Douglas, J. T., Jackson, T. A., Moenne-Loccoz, P. & Mure, M. (2022). Int. J. Mol. Sci. 23, 13966.]). The UV–vis spectroscopic feature of 2HP-inhibited LOXL2 indicated the ligation of LTQ-2HP to the active site CuII (Fig. 2[link]).

[Scheme 1]
[Figure 1]
Figure 1
(a) The covalent modification of the LTQ cofactor of LOXL2 by 2HP. After the tautomerization of the hydrazone to the azo form, LTQ-2HP ligates to the active site Cu2+. The 2HP-modified LTQ (LTQ-2HP) containing the peptide was detected by mass spectrometry (Meier, Go, et al., 2022[Meier, A. A., Go, E. P., Moon, H. J., Desaire, H. & Mure, M. (2022). Int. J. Mol. Sci. 23, 5879.]). Based on the close resemblances of UV–vis and resonance Raman spectra of 2HP-inhibited LOXL2 and the model compound 2, we hypothesize that LTQ-2HP serves as a tridentate ligand to the active site CuII in LOXL2 (Meier, Moon et al., 2022[Meier, A. A., Moon, H.-J., Sabuncu, S., Singh, P., Ronnebaum, T. R., Ou, S., Douglas, J. T., Jackson, T. A., Moenne-Loccoz, P. & Mure, M. (2022). Int. J. Mol. Sci. 23, 13966.]). The +2 charge of CuII is expected to be canceled out by the 4-oxoanion of LTQ-2HP and a nearby acidic residue or a water mol­ecule (Meier, Kuczera et al., 2022[Meier, A. A., Kuczera, K. & Mure, M. (2022). Int. J. Mol. Sci. 23, 13385.]). (b) During the recrystallization of the dark red solids (2) isolated from an equimolar mixture of the LTQ-2HP model compound (1) and CuCl2(phen) in anhydrous methanol, we first isolated dark-red crystals (3), then also isolated (4) from the mother liquor that was left for a week at room temperature.
[Figure 2]
Figure 2
Mol­ecular structure of 3 in different aspects (a, c), showing the coordination polyhedra of Cu (b) and intra­molecular hydrogen bonds (a). Atomic displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by inversion, symmetry operation 1 − x, 1 − y, −z.

In order to model the LTQ-2HP ligated to the active site CuII, 1 was mixed with an equimolar amount of di­chloro(phen)Cu (phen = 1,10-phenanthroline) in anhydrous methanol to isolate dark-red solids (2), where the phen ligand was used to mimic two of the three His ligands of the active site CuII in LOXL2 (Meier, Kuczera et al., 2022[Meier, A. A., Kuczera, K. & Mure, M. (2022). Int. J. Mol. Sci. 23, 13385.]). Upon slow evaporation of methanol solution of 2, dark-red crystals (3) were isolated and characterized as a dimeric complex [CuCl(C14H15N4O)]2 (Fig. 1[link]).

After isolation of 3, green prismatic crystals (4) were isolated from the mother liquor and identified as a monomeric complex, [CuCl(phen)2] Cl+·4H2O (Fig. 1[link]). Herein we report the crystal structures of 3 and 4.

2. Structural commentary

The mol­ecule of 3 (Fig. 2[link]) has a crystallographic inversion center. Each Cu atom is penta-coordinated by N1, N3, and the deprotonated O1 of the oxoanion 1, as well as two inversion-related bridging chloride ligands, Cl and Cl'. Atoms N1, N3, O1 and Cl are nearly coplanar and comprise the base of a distorted square pyramid while Cl' occupies the apical position. The apical Cu—Cl bond is ca 0.32 Å longer than the basal one due to the Jahn–Teller effect (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The Addison parameter, τ = (βα)/60° = 0.007 (where α = 160.67° and β = 161.00° are the widest bond angles) indicates a small distortion from an ideal square-pyramidal geometry (τ = 0) towards a trigonal–bipyramidal geometry (τ = 1). The coord­ination polyhedra of the two Cu atoms share one base-to-apex edge (Fig. 1[link]b), while their basal planes are rigorously parallel to each other (with an inter­planar separation of 1.789 Å), in a type II arrangement as classified by Rodriguez et al. (1999[Rodríguez, M., Llobet, A., Corbella, M., Martell, A. E. & Reibenspies, J. (1999). Inorg. Chem. 38, 2328-2334.]). The Cu2Cl2 plane is perpendicular to the basal planes. The geometry agrees with that in other Cu2(μ-Cl)2 centers (Sasmal et al., 2013[Sasmal, A., Saha, S., Gómez-García, C. J., Desplanches, C., Garribba, E., Bauzá, A., Frontera, A., Scott, R., Butcher, R. J. & Mitra, S. (2013). Chem. Commun. 49, 7806-7808.]; Rodriguez et al., 1999[Rodríguez, M., Llobet, A., Corbella, M., Martell, A. E. & Reibenspies, J. (1999). Inorg. Chem. 38, 2328-2334.]). In the ligand 1, the aromatic phenyl and pyridine rings are conjugated through the N=N (azo) bond of 1.301 (2) Å and adopt a E, or trans, configuration about this bond, with a C—N=N—C torsion angle of −179.0 (1)°. The dimer also contains two pairs of weak intra­molecular hydrogen bonds, C11—H11⋯Cl and C11—H11⋯O1 (Table 1[link]).

Table 1
Hydrogen bonds (Å, °) in the crystal of 3

D—H⋯A d(D—H) d(H⋯A) d(DA) <(DHA)
Intra­molecular        
C11—H11⋯O1i 0.92 (2) 2.60 (2) 3.4083 (18) 146.5 (19)
C11—H11⋯Cla 0.92 (2) 2.93 (2) 3.4825 (15) 120.2 (17)
Inter­molecular        
C9—H9⋯O1ii 0.92 (3) 2.59 (3) 3.1592 (18) 120.2 (17)
C9—H9⋯Clii,a 0.92 (3) 2.91 (3) 3.6514 (14) 138 (2)
C12—H12B⋯O1iii 0.96 (3) 2.85 (3) 3.4542 (15) 111.9 (17)
C12—H12C⋯Cliv,a 0.93 (2) 3.00 (2) 3.790 (2) 169 (2)
C14—H14B⋯Clv,a 0.97 (3) 2.94 (3) 3.6821 (16) 134.8 (19)
Symmetry transformations used to generate equivalent atoms: (i) −x + 1, −y, −z; (ii) x, y + 1, z; (iii) −x, 1 − y, 1 − z; (iv) 1 − x, 1 − y, 1 − z; (v) x − 1, y, z + 1. Note: (a) Very weak, if any, at the borderline of a hydrogen bond (Grabowski, 2021[Grabowski, S. J. (2021). Understanding Hydrogen Bonds: Theoretical and Experimental Views. Cambridge. The Royal Society of Chemistry.]).

The asymmetric unit in the structure of 4 contains one monomeric cation (Fig. 3[link]) in which the CuII atom has a distorted trigonal–bipyramidal coordination (τ = 0.848) with two chelating 1,10-phenanthroline ligands and one Cl atom, the latter in an equatorial position. A similar coordination geometry was observed in monomeric CuII complexes [Cu(CN)(phen)2]NO3 (Anderson, 1974) and [CuCl(5,6-di­methyl-1,10-phenanthroline)2]PF6 (Yamada, 2002[Yamada, Y., Sakurai, H., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2002). Polyhedron, 21, 2143-2147.]), although the Cu—Cl bond in the latter [2.257 (1) Å] is much shorter than in 4 [2.3527 (6) Å].

[Figure 3]
Figure 3
The cation and ordered water mol­ecule in the structure of 4. Atomic displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The crystal packing of 3 is shown in Fig. 4[link]. Each mol­ecule forms ten weak inter­molecular hydrogen bonds C—H⋯X, where X = Cl or O (Grabowski, 2021[Grabowski, S. J. (2021). Understanding Hydrogen Bonds: Theoretical and Experimental Views. Cambridge. The Royal Society of Chemistry.]). The Cl atom is engaged in four such inter­actions and the O atom in two (supporting Fig. 1A). Additional stabilization is provided by off-center parallel ππ stacking inter­actions (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]; Martinez & Iverson, 2012[Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191-2201.]) between two phenyl rings, between two pyridine rings, or between a phenyl and a pyridine ring (Fig. 4[link] and supporting Fig. 1B,C). The distances between ring centers (centroid–centroid distances), the distances between the ring center and the plane of the ring (plane-plane distances) and the α angle between the ring normal and the center of the opposite ring of the three modes of ππ inter­actions are summarized in Table 2[link]. Remarkably, the amino-H atom is not engaged in any hydrogen bond, probably due to screening by two adjacent methyl groups.

Table 2
Distances and α angle (Å, °) of inter­molecular π–π inter­actions in 3

  Phen­yl–phen­yl phen­yl–pyridine pyridine–pyridine
Centroid–centroid distance 3.910 (1) 4.266 (1) 4.220 (1)
Plane–plane distance 3.433 (1) 3.534 (1) 3.499 (1)
α 28.60 34.06 33.99
[Figure 4]
Figure 4
Crystal packing of 3 (a), showing inter­molecular hydrogen bonds (b) and phen­yl–phenyl ππ stacking inter­actions (c) (α is the angle between the ring normal and centroid–centroid vector, d is the displacement between the rings).

In the structure of 4 (supplemental Fig. 2), the packing of cations leaves continuous channels containing disordered Cl anions and solvent mol­ecules. Of the latter, one water mol­ecule per asymmetric unit is ordered, being `anchored' by an O1—H1A⋯Cl1 hydrogen bond with the cation [O1⋯Cl1 = 3.173 (3), H1A⋯Cl1 = 2.34 Å]. The rest of the solvent is intensely disordered and its identity (water or a water/methanol mixture) was not certain. The disordered anion/solvent regions comprise 28% of the unit-cell volume. The disorder was approximated by five partly occupied positions of the Cl anion and ten positions of O atoms with a total occupancy of 3 – presumably water mol­ecules whose hydrogen atoms could not be located. This gives a total of 48 electrons per asymmetric unit, in agreement with the integral electron density of 47.8 electrons in the disordered region, as was estimated using the BYPASS-type solvent-masking program (van der Sluis & Spek, 1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]) on the OLEX2 platform (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

4. Database survey

Several crystal structures of penta-coordinated centrosymmetric CuII dimers with the Cu atoms bridged by two Cl ligands and bonded to ligands with N and O atoms, have been deposited in the Cambridge Structural Database (CSD, Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), viz. FEWFAO (Rodriguez et al., 1999[Rodríguez, M., Llobet, A., Corbella, M., Martell, A. E. & Reibenspies, J. (1999). Inorg. Chem. 38, 2328-2334.]), MUNWIB, MUNWOH (Kapoor et al., 2002[Kapoor, P., Pathak, A., Kapoor, R., Venugopalan, P., Corbella, M., Rodríguez, M., Robles, J. & Llobet, A. (2002). Inorg. Chem. 41, 6153-6160.]), YECGUK (Das et al., 2012[Das, K., Datta, A., Sinha, C., Huang, J. H., Garribba, E., Hsiao, C. S. & Hsu, C. L. (2012). ChemistryOpen, 1, 80-89.]), SIDQED (Sasmal et al., 2013[Sasmal, A., Saha, S., Gómez-García, C. J., Desplanches, C., Garribba, E., Bauzá, A., Frontera, A., Scott, R., Butcher, R. J. & Mitra, S. (2013). Chem. Commun. 49, 7806-7808.]), and POJKOQ (Smolentsev et al., 2014[Smolentsev, A., Lider, E. V., Lavrenova, L. G., Sheludyakova, L. A., Bogomyakov, A. S. & Vasilevsky, S. F. (2014). Polyhedron, 77, 81-88.]). However, no complexes with ligand 1 were found. To our knowledge, 3 is the first example of a penta-coordinated centrosymmetric CuII dimer in which the Cu atoms are bridged by two Cl ligands and are bonded each to two N atoms (pyridine N and aromatic –N=N–) and a phen­oxy-O atom. There are multiple structures of phen and its derivatives complexed with CuII, the two structures closely related to 4 being PENCUN (Anderson, 1975[Anderson, O. P. (1975). Inorg. Chem. 14, 730-734.]) and XUMZOU (Yamada et al., 2002[Yamada, Y., Sakurai, H., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2002). Polyhedron, 21, 2143-2147.]), see Section 2.

5. Synthesis and crystallization

5.1. Synthesis of pyridine-2-diazo­tate

Isoamyl nitrite (4.03 ml, 30 mmol) was added to a slurry of 2-amino­pyridine (2.82 g, 30 mmol) and sodium amide (1.29 g, 33 mmol) in 30 ml of anhydrous THF and the reaction mixture was refluxed for 2 h (Bunton et al., 1974[Bunton, C. A., Minch, M. J. & Wolfe, B. B. (1974). J. Am. Chem. Soc. 96, 3267-3275.]). After cooling to room temperature, precipitates were isolated by vacuum filtration, washed with tetra­hydro­furan (THF) and dried under vacuum. Pyridine-2-diazo­ate was isolated as a pale-yellow solid (2 g, 63%) 1H NMR (400 MHz, DMSO-d6) δ 8.26 (d, J = 3.7 Hz, 1H), 7.55 (dd, J = 7.7 Hz, 1H), 7.39 (d, J = 8.2 Hz, 1H), 6.91 (dd, J = 7.7 Hz, 1H).

5.2. Synthesis of (E)-5-(ethyl­amino)-4-methyl-2-[(pyridin-2-yl)diazen­yl]phenol, 1

3-Ethyl­amino-p-cresol (5.3 g, 35.1 mmol) was added to the suspension of pyridine-2-diazo­tate (7.5 g, 70.8 mmol) in 100 ml of ethanol and the pH of the reaction mixture was adjusted to 8 by aqueous HCl (Nakagawa & Wada, 1962[Nakagawa, G. & Wada, H. (1962). Nippon Kagaku Zasshi, 83, 1098-1102.]). After refluxing for 2 h, the solvent was removed under reduced pressure. The resulting solids were washed with water and dried in vacuo. (E)-5-(Ethyl­amino)-4-methyl-2-[(pyridin-2-yl)diazen­yl]phenol, 1, was isolated as a dark-red solid (4.59 g, 51%). 1H NMR (400 MHz, chloro­form-d) δ 16.05 (s, 1H), 8.40 (d, J = 4.1 Hz, 2H), 7.75–7.66 (m, 2H), 7.55 (d, J = 8.3 Hz, 2H), 7.06–6.98 (m, 2H), 6.92 (s, 2H), 5.74 (s, 2H), 4.63 (s, 1H), 3.28 (dt, J = 13.4, 7.2 Hz, 4H), 2.10 (s, 5H), 1.33 (t, J = 7.2 Hz, 6H). 13C NMR (101 MHz, chloro­form-d) δ 175.67, 156.20, 155.56, 148.78, 138.06, 133.91, 133.11, 121.71, 119.72, 110.42, 97.71, 38.17, 16.51, 14.08. HRMS (ESI+) C14H18N4O (M+ + 1) calculated: 257.1402, observed 257.1419.

5.3. Crystallization

Compound 1 was purified by recrystallization from methanol by slow evaporation. Dark-yellow needle-like crystals of 1 were obtained after a week at room temperature. CuCl2(phen) (123 mg, 0.39 mmol) was added to a suspension of 1 (100 mg, 0.39 mmol) in 5 ml of methanol. The reaction mixture was sonicated to completely dissolve solids and subjected to slow evaporation of methanol at room temperature. Dark-red single crystals of 3, suitable for X-ray crystallography, were obtained within a day. After removing the crystals of 3, small green crystals of 4 were formed from the mother liquor. Recrystallization of 3 by slow evaporation of an equimolar mixture of 1 in methanol and CuCl2 in a minimal amount of water at room temperature gave dark-red crystals within a couple of days (Fig. 1[link]). The UV–vis spectra of crystalline 3 obtained by two methods are identical and superimposable to the visible region of the UV–vis spectrum of 2HP-inhibited LOXL2 (Fig. 5[link]). These results strongly support our hypothesis that 2HP-inhibited LOXL2 contains LTQ-2HP that is ligated to the active site Cu2+ and the LTQ cofactor resides in the vicinity of the Cu2+ center (Meier, Moon et al., 2022[Meier, A. A., Moon, H.-J., Sabuncu, S., Singh, P., Ronnebaum, T. R., Ou, S., Douglas, J. T., Jackson, T. A., Moenne-Loccoz, P. & Mure, M. (2022). Int. J. Mol. Sci. 23, 13966.]; Meier, Kuczera et al., 2022[Meier, A. A., Kuczera, K. & Mure, M. (2022). Int. J. Mol. Sci. 23, 13385.]).

[Figure 5]
Figure 5
UV–vis spectra of 2HP-inhibited LOXL2 (LOXL2–2HP) (in black) (Meier, Moon et al., 2022[Meier, A. A., Moon, H.-J., Sabuncu, S., Singh, P., Ronnebaum, T. R., Ou, S., Douglas, J. T., Jackson, T. A., Moenne-Loccoz, P. & Mure, M. (2022). Int. J. Mol. Sci. 23, 13966.]), crystalline 3 isolated from a 1:1 mixture of 2 with CuCl2(phen) (in blue), and crystalline 3 isolated from a 1:1 mixture of 2 with CuCl2 (in red). All spectra were recorded in 50 mM HEPBS buffer (pH 8.0).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. In 3, all H atoms were refined in isotropic approximation. In 4, the H atoms of the disordered water mol­ecules were ignored, H1A was refined in an isotropic approximation, other H atoms were placed in idealized positions (C—H = 0.95, O—H = 0.84 Å) and refined as riding on their carrier atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). The treatment of the disorder is described in the Supra­molecular features section.

Table 3
Experimental details

  3 4
Crystal data
Chemical formula [Cu2Cl2(C14H15N4O)2] [CuCl(C12H8N2)2]Cl·4H2O
Mr 708.58 566.91
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, C2/c
Temperature (K) 100 100
a, b, c (Å) 8.6965 (3), 8.7974 (4), 9.5574 (4) 23.1874 (7), 30.2708 (9), 7.2839 (2)
α, β, γ (°) 88.6165 (17), 79.3644 (16), 73.0017 (15) 90, 97.235 (1), 90
V3) 686.90 (5) 5071.9 (3)
Z 1 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.79 1.11
Crystal size (mm) 0.1 × 0.05 × 0.02 0.2 × 0.1 × 0.05
 
Data collection
Diffractometer Bruker D8 Venture Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.89, 0.94 0.89, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 120912, 7366, 6202 67930, 6173, 5840
Rint 0.047 0.029
(sin θ/λ)max−1) 0.862 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.03 0.045, 0.130, 1.05
No. of reflections 7366 6173
No. of parameters 250 364
H-atom treatment All H-atom parameters refined H atoms treated by a mixture of independent and constrained refinement
     
Δρmax, Δρmin (e Å−3) 0.75, −0.87 1.06, −0.48
Computer programs: APEX4 (Bruker, 2021[Bruker (2021). APEX4. Bruker Nano Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT. Bruker Nano Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX4 v2021.4-0 (Bruker, 2021); cell refinement: SAINT V8.40B (Bruker, 2016); data reduction: SAINT V8.40B (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

Di-µ-chlorido-bis({(E)-5-(ethylamino)-4-methyl-2-[(pyridin-2-\ yl)diazenyl]phenolato}copper(II)) (3) top
Crystal data top
[Cu2Cl2(C14H15N4O)2]Z = 1
Mr = 708.58F(000) = 362
Triclinic, P1Dx = 1.713 Mg m3
a = 8.6965 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7974 (4) ÅCell parameters from 9951 reflections
c = 9.5574 (4) Åθ = 2.4–37.9°
α = 88.6165 (17)°µ = 1.79 mm1
β = 79.3644 (16)°T = 100 K
γ = 73.0017 (15)°Plate, clear dark red
V = 686.90 (5) Å30.1 × 0.05 × 0.02 mm
Data collection top
Bruker D8 Venture
diffractometer
6202 reflections with I > 2σ(I)
φ and ω scansRint = 0.047
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 37.8°, θmin = 2.2°
Tmin = 0.89, Tmax = 0.94h = 1414
120912 measured reflectionsk = 1515
7366 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.090All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.036P)2 + 0.8401P]
where P = (Fo2 + 2Fc2)/3
7366 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.87 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50615 (2)0.52883 (2)0.17788 (2)0.01407 (4)
Cl0.69781 (4)0.37524 (4)0.00149 (3)0.01526 (6)
O10.40583 (13)0.36521 (12)0.25883 (10)0.01722 (17)
N10.40360 (14)0.63488 (13)0.36379 (11)0.01349 (17)
N20.41967 (14)0.77150 (13)0.39617 (12)0.01471 (18)
N30.57379 (14)0.72690 (14)0.16097 (12)0.01486 (18)
N40.04781 (15)0.28003 (15)0.67389 (12)0.01713 (19)
H40.004 (3)0.314 (3)0.747 (3)0.029 (6)*
C10.13310 (16)0.51697 (16)0.66217 (13)0.01461 (19)
C20.13569 (16)0.36764 (15)0.59774 (13)0.01418 (19)
C30.22722 (16)0.31670 (16)0.46195 (13)0.0150 (2)
H30.228 (3)0.226 (3)0.421 (3)0.024 (6)*
C40.32015 (16)0.40792 (15)0.38531 (13)0.01372 (19)
C50.31703 (15)0.55528 (15)0.45068 (13)0.01324 (18)
C60.22484 (16)0.60569 (16)0.58941 (13)0.0148 (2)
H60.228 (3)0.703 (3)0.629 (2)0.017 (5)*
C70.51507 (16)0.82151 (15)0.28082 (13)0.01416 (19)
C80.54550 (18)0.96791 (16)0.28910 (15)0.0172 (2)
H80.503 (3)1.033 (3)0.375 (3)0.023 (6)*
C90.63549 (18)1.01756 (17)0.17109 (16)0.0191 (2)
H90.653 (3)1.115 (3)0.180 (3)0.032 (7)*
C100.69318 (19)0.92108 (18)0.04851 (16)0.0207 (2)
H100.750 (3)0.952 (3)0.035 (3)0.032 (7)*
C110.65869 (18)0.77677 (17)0.04711 (15)0.0188 (2)
H110.685 (3)0.710 (3)0.032 (2)0.021 (5)*
C120.02602 (18)0.57081 (19)0.80418 (14)0.0187 (2)
H12A0.060 (3)0.489 (3)0.876 (3)0.027 (6)*
H12B0.086 (3)0.582 (3)0.802 (3)0.032 (6)*
H12C0.033 (3)0.668 (3)0.835 (3)0.026 (6)*
C130.03874 (19)0.12852 (17)0.62425 (15)0.0186 (2)
H13A0.146 (3)0.055 (3)0.590 (2)0.022 (5)*
H13B0.020 (3)0.149 (3)0.549 (3)0.022 (5)*
C140.0508 (2)0.05186 (18)0.74318 (16)0.0210 (2)
H14A0.056 (3)0.046 (3)0.710 (2)0.021 (5)*
H14B0.160 (3)0.118 (3)0.781 (3)0.031 (6)*
H14C0.007 (3)0.025 (3)0.821 (2)0.015 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01659 (8)0.01450 (7)0.01084 (6)0.00724 (5)0.00253 (5)0.00021 (5)
Cl0.01503 (12)0.01630 (12)0.01354 (11)0.00511 (9)0.00058 (9)0.00025 (9)
O10.0209 (4)0.0173 (4)0.0123 (4)0.0080 (3)0.0040 (3)0.0005 (3)
N10.0132 (4)0.0147 (4)0.0128 (4)0.0055 (3)0.0010 (3)0.0019 (3)
N20.0164 (5)0.0154 (4)0.0126 (4)0.0071 (4)0.0006 (3)0.0004 (3)
N30.0157 (4)0.0162 (4)0.0124 (4)0.0066 (4)0.0012 (3)0.0014 (3)
N40.0190 (5)0.0194 (5)0.0134 (4)0.0094 (4)0.0018 (4)0.0022 (4)
C10.0137 (5)0.0191 (5)0.0106 (4)0.0059 (4)0.0006 (4)0.0014 (4)
C20.0136 (5)0.0168 (5)0.0122 (4)0.0057 (4)0.0009 (4)0.0033 (4)
C30.0155 (5)0.0164 (5)0.0129 (4)0.0066 (4)0.0011 (4)0.0013 (4)
C40.0142 (5)0.0148 (5)0.0120 (4)0.0053 (4)0.0002 (4)0.0020 (3)
C50.0132 (5)0.0157 (5)0.0109 (4)0.0060 (4)0.0003 (3)0.0019 (3)
C60.0152 (5)0.0176 (5)0.0116 (4)0.0064 (4)0.0002 (4)0.0012 (4)
C70.0145 (5)0.0142 (5)0.0132 (4)0.0050 (4)0.0002 (4)0.0009 (4)
C80.0196 (6)0.0150 (5)0.0171 (5)0.0070 (4)0.0004 (4)0.0007 (4)
C90.0197 (6)0.0162 (5)0.0216 (6)0.0082 (4)0.0001 (5)0.0027 (4)
C100.0230 (6)0.0201 (6)0.0190 (5)0.0108 (5)0.0030 (5)0.0034 (4)
C110.0209 (6)0.0196 (5)0.0152 (5)0.0091 (5)0.0036 (4)0.0010 (4)
C120.0181 (6)0.0255 (6)0.0128 (5)0.0096 (5)0.0019 (4)0.0007 (4)
C130.0214 (6)0.0187 (5)0.0165 (5)0.0097 (5)0.0011 (4)0.0020 (4)
C140.0233 (6)0.0206 (6)0.0201 (6)0.0112 (5)0.0011 (5)0.0035 (5)
Geometric parameters (Å, º) top
Cu1—Cli2.6192 (4)C4—C51.4436 (18)
Cu1—Cl2.2985 (3)C5—C61.4233 (17)
Cu1—O11.9654 (10)C6—H60.96 (2)
Cu1—N11.9574 (11)C7—C81.3954 (18)
Cu1—N31.9897 (11)C8—H80.96 (2)
O1—C41.2974 (15)C8—C91.3876 (19)
N1—N21.3008 (15)C9—H90.92 (3)
N1—C51.3402 (16)C9—C101.388 (2)
N2—C71.3963 (16)C10—H100.94 (3)
N3—C71.3591 (17)C10—C111.388 (2)
N3—C111.3385 (17)C11—H110.92 (2)
N4—H40.77 (3)C12—H12A1.00 (3)
N4—C21.3490 (16)C12—H12B0.96 (3)
N4—C131.4539 (19)C12—H12C0.93 (2)
C1—C21.4567 (19)C13—H13A0.97 (2)
C1—C61.3647 (17)C13—H13B0.94 (2)
C1—C121.4967 (18)C13—C141.5154 (19)
C2—C31.3989 (18)C14—H14A0.94 (2)
C3—H30.90 (2)C14—H14B0.97 (3)
C3—C41.4021 (17)C14—H14C0.96 (2)
Cl—Cu1—Cli90.307 (12)C1—C6—C5120.28 (12)
O1—Cu1—Cli93.88 (3)C1—C6—H6121.2 (13)
O1—Cu1—Cl98.20 (3)C5—C6—H6118.5 (13)
O1—Cu1—N3160.67 (4)N3—C7—N2118.82 (11)
N1—Cu1—Cli108.61 (3)N3—C7—C8121.30 (11)
N1—Cu1—Cl161.00 (4)C8—C7—N2119.86 (12)
N1—Cu1—O182.69 (4)C7—C8—H8120.2 (14)
N1—Cu1—N377.99 (4)C9—C8—C7118.74 (13)
N3—Cu1—Cl99.86 (3)C9—C8—H8121.0 (14)
N3—Cu1—Cli92.90 (4)C8—C9—H9116.4 (16)
Cu1—Cl—Cu1i89.693 (12)C8—C9—C10119.56 (13)
C4—O1—Cu1111.30 (8)C10—C9—H9124.0 (17)
N2—N1—Cu1121.35 (8)C9—C10—H10122.3 (16)
N2—N1—C5124.44 (11)C9—C10—C11118.88 (12)
C5—N1—Cu1114.21 (9)C11—C10—H10118.7 (16)
N1—N2—C7109.40 (10)N3—C11—C10122.01 (13)
C7—N3—Cu1112.44 (8)N3—C11—H11113.9 (14)
C11—N3—Cu1127.97 (10)C10—C11—H11124.0 (14)
C11—N3—C7119.48 (12)C1—C12—H12A109.4 (14)
C2—N4—H4118.0 (19)C1—C12—H12B111.7 (16)
C2—N4—C13124.10 (12)C1—C12—H12C112.1 (15)
C13—N4—H4117.8 (19)H12A—C12—H12B107 (2)
C2—C1—C12119.00 (11)H12A—C12—H12C109 (2)
C6—C1—C2118.99 (11)H12B—C12—H12C108 (2)
C6—C1—C12121.99 (12)N4—C13—H13A112.4 (14)
N4—C2—C1117.71 (11)N4—C13—H13B107.4 (14)
N4—C2—C3121.30 (12)N4—C13—C14110.26 (12)
C3—C2—C1120.99 (11)H13A—C13—H13B108.9 (19)
C2—C3—H3121.3 (15)C14—C13—H13A108.5 (14)
C2—C3—C4120.54 (12)C14—C13—H13B109.2 (14)
C4—C3—H3118.2 (15)C13—C14—H14A109.6 (14)
O1—C4—C3122.38 (12)C13—C14—H14B112.8 (16)
O1—C4—C5119.72 (11)C13—C14—H14C112.1 (13)
C3—C4—C5117.89 (11)H14A—C14—H14B109 (2)
N1—C5—C4111.97 (11)H14A—C14—H14C104.7 (19)
N1—C5—C6126.70 (12)H14B—C14—H14C108 (2)
C6—C5—C4121.28 (11)
Cu1—O1—C4—C3175.56 (10)C2—C1—C6—C52.1 (2)
Cu1—O1—C4—C53.62 (15)C2—C3—C4—O1179.58 (13)
Cu1—N1—N2—C70.45 (15)C2—C3—C4—C50.39 (19)
Cu1—N1—C5—C40.01 (14)C3—C4—C5—N1176.72 (12)
Cu1—N1—C5—C6177.55 (11)C3—C4—C5—C60.98 (19)
Cu1—N3—C7—N20.24 (15)C4—C5—C6—C11.9 (2)
Cu1—N3—C7—C8178.40 (11)C5—N1—N2—C7179.00 (12)
Cu1—N3—C11—C10177.82 (12)C6—C1—C2—N4178.01 (12)
O1—C4—C5—N12.50 (18)C6—C1—C2—C31.5 (2)
O1—C4—C5—C6179.81 (12)C7—N3—C11—C101.9 (2)
N1—N2—C7—N30.44 (17)C7—C8—C9—C100.2 (2)
N1—N2—C7—C8178.23 (12)C8—C9—C10—C110.2 (2)
N1—C5—C6—C1175.44 (13)C9—C10—C11—N31.1 (2)
N2—N1—C5—C4179.48 (12)C11—N3—C7—N2176.77 (13)
N2—N1—C5—C61.9 (2)C11—N3—C7—C81.9 (2)
N2—C7—C8—C9177.61 (13)C12—C1—C2—N43.82 (19)
N3—C7—C8—C91.0 (2)C12—C1—C2—C3176.62 (13)
N4—C2—C3—C4178.88 (13)C12—C1—C6—C5175.99 (13)
C1—C2—C3—C40.7 (2)C13—N4—C2—C1179.80 (13)
C2—N4—C13—C14172.24 (13)C13—N4—C2—C30.2 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Clii0.92 (3)2.91 (3)3.6514 (14)138 (2)
C9—H9···O1ii0.92 (3)2.59 (3)3.1592 (18)120 (2)
C11—H11···Cl0.92 (2)2.93 (2)3.4825 (15)120.2 (17)
C11—H11···O1i0.92 (2)2.60 (2)3.4083 (18)146.5 (19)
C12—H12B···O1iii0.96 (3)2.85 (3)3.7902 (19)169 (2)
C12—H12C···Cliv0.93 (2)3.00 (2)3.4542 (15)111.9 (17)
C14—H14B···Clv0.97 (3)2.94 (3)3.6821 (16)134.8 (19)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x1, y, z+1.
Chloridobis(1,10-phenanthroline)copper(II) chloride tetrahydrate (4) top
Crystal data top
[CuCl(C12H8N2)2]Cl·4H2OF(000) = 2328
Mr = 566.91Dx = 1.485 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 23.1874 (7) ÅCell parameters from 9891 reflections
b = 30.2708 (9) Åθ = 2.7–33.0°
c = 7.2839 (2) ŵ = 1.11 mm1
β = 97.235 (1)°T = 100 K
V = 5071.9 (3) Å3Plate, clear greenish green
Z = 80.2 × 0.1 × 0.05 mm
Data collection top
Bruker D8 Venture
diffractometer
5840 reflections with I > 2σ(I)
θ and ω scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 3.5°
Tmin = 0.89, Tmax = 0.95h = 3029
67930 measured reflectionsk = 4040
6173 independent reflectionsl = 99
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0642P)2 + 16.2399P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
6173 reflectionsΔρmax = 1.06 e Å3
364 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.27540 (2)0.11858 (2)0.34073 (4)0.02177 (10)
Cl10.29111 (3)0.14735 (2)0.05112 (7)0.02655 (13)
N10.22658 (8)0.15474 (6)0.5111 (3)0.0219 (4)
N20.33904 (9)0.15480 (6)0.4699 (3)0.0249 (4)
N30.20905 (8)0.08317 (6)0.2241 (3)0.0237 (4)
N40.31053 (8)0.05547 (6)0.3980 (2)0.0215 (3)
C20.11535 (11)0.07030 (9)0.0549 (4)0.0339 (5)
H20.0804210.0821860.0081530.041*
C30.12262 (11)0.02558 (9)0.0713 (3)0.0320 (5)
H30.0926690.0061790.0197720.038*
C40.17442 (10)0.00847 (8)0.1643 (3)0.0262 (4)
C50.21693 (10)0.03886 (7)0.2389 (3)0.0223 (4)
C60.18679 (12)0.03787 (8)0.1861 (3)0.0294 (5)
H60.1583920.0588450.1376800.035*
C70.23830 (12)0.05215 (8)0.2746 (3)0.0299 (5)
H70.2453510.0829760.2873920.036*
C80.28242 (11)0.02157 (7)0.3493 (3)0.0248 (4)
C90.27151 (9)0.02397 (7)0.3316 (3)0.0215 (4)
C100.33706 (11)0.03444 (8)0.4395 (3)0.0288 (5)
H100.3465890.0648630.4541680.035*
C110.37645 (11)0.00274 (8)0.5063 (3)0.0288 (5)
H110.4135500.0109930.5670090.035*
C120.36138 (10)0.04220 (8)0.4839 (3)0.0253 (4)
H120.3887850.0638780.5323600.030*
C130.17066 (10)0.15345 (7)0.5335 (3)0.0254 (4)
H130.1471000.1307090.4736770.030*
C140.14494 (11)0.18425 (8)0.6418 (3)0.0302 (5)
H140.1049560.1818070.6568230.036*
C150.17792 (12)0.21793 (8)0.7258 (3)0.0311 (5)
H150.1607820.2394490.7968760.037*
C160.23741 (11)0.22029 (7)0.7056 (3)0.0265 (5)
C170.25979 (10)0.18725 (7)0.5984 (3)0.0223 (4)
C180.32006 (10)0.18741 (7)0.5757 (3)0.0237 (4)
C190.35695 (11)0.22065 (8)0.6583 (3)0.0289 (5)
C200.33264 (12)0.25421 (8)0.7643 (3)0.0329 (5)
H200.3570960.2769520.8200680.040*
C210.27566 (12)0.25416 (8)0.7864 (3)0.0319 (5)
H210.2607100.2769530.8566550.038*
C220.41563 (12)0.21906 (9)0.6275 (4)0.0359 (6)
H220.4421800.2409510.6794550.043*
C230.43414 (12)0.18584 (10)0.5223 (4)0.0381 (6)
H230.4738110.1842580.5025410.046*
C240.39459 (11)0.15413 (9)0.4438 (4)0.0313 (5)
H240.4079520.1314270.3696170.038*
C270.15990 (10)0.09837 (8)0.1320 (3)0.0297 (5)
H270.1548500.1293830.1180710.036*
Cl20.46154 (12)0.28339 (11)0.0469 (4)0.0402 (6)0.25
Cl30.5000000.3448 (2)0.7500000.0671 (14)0.25
Cl40.45206 (18)0.41920 (18)0.5363 (8)0.1083 (15)0.35
Cl50.5000000.0804 (2)0.2500000.0353 (12)*0.15
Cl60.4700 (2)0.33053 (15)0.8319 (8)0.0601 (11)0.2
O10.42362 (11)0.17008 (13)0.0286 (4)0.0799 (10)
H1A0.3876730.1669660.0297870.087 (16)*
H1B0.4427130.1478160.0839070.131*
O20.45025 (16)0.25165 (18)0.1188 (6)0.0775 (13)0.75
O30.5000000.37225 (18)0.2500000.0705 (14)0.8
O40.5355 (7)0.3708 (6)0.890 (2)0.051 (4)*0.15
O50.4383 (4)0.3247 (3)0.9597 (13)0.062 (2)*0.3
O60.5000000.4802 (5)0.7500000.078 (6)0.3
O70.5000000.5117 (8)0.7500000.143 (8)0.5
O80.5000000.0553 (2)0.2500000.073 (3)0.5
O90.4821 (6)0.0907 (4)0.0297 (18)0.057 (3)*0.2
O100.5421 (3)0.0980 (3)0.6321 (11)0.0487 (17)*0.3
O110.4997 (5)0.0460 (3)0.6952 (12)0.069 (3)*0.3
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02256 (16)0.01895 (15)0.02420 (16)0.00082 (9)0.00442 (10)0.00141 (9)
Cl10.0350 (3)0.0203 (2)0.0253 (3)0.00274 (19)0.0076 (2)0.00302 (18)
N10.0266 (9)0.0171 (8)0.0227 (8)0.0038 (7)0.0052 (7)0.0018 (6)
N20.0261 (9)0.0222 (9)0.0266 (9)0.0002 (7)0.0038 (7)0.0006 (7)
N30.0249 (9)0.0235 (9)0.0233 (9)0.0011 (7)0.0055 (7)0.0010 (7)
N40.0252 (9)0.0209 (8)0.0195 (8)0.0024 (7)0.0071 (7)0.0006 (7)
C20.0250 (11)0.0440 (14)0.0327 (12)0.0025 (10)0.0028 (9)0.0055 (11)
C30.0281 (11)0.0416 (13)0.0273 (11)0.0072 (10)0.0073 (9)0.0083 (10)
C40.0307 (11)0.0300 (11)0.0199 (10)0.0055 (9)0.0114 (8)0.0042 (8)
C50.0268 (10)0.0236 (10)0.0182 (9)0.0014 (8)0.0094 (8)0.0012 (7)
C60.0405 (13)0.0265 (11)0.0234 (10)0.0101 (9)0.0131 (9)0.0054 (8)
C70.0476 (14)0.0211 (10)0.0240 (11)0.0051 (9)0.0159 (10)0.0020 (8)
C80.0372 (12)0.0204 (10)0.0194 (10)0.0008 (8)0.0130 (9)0.0010 (7)
C90.0287 (10)0.0205 (10)0.0171 (9)0.0005 (8)0.0100 (8)0.0002 (7)
C100.0414 (13)0.0217 (10)0.0257 (11)0.0069 (9)0.0134 (9)0.0047 (8)
C110.0329 (12)0.0289 (11)0.0258 (11)0.0088 (9)0.0085 (9)0.0054 (9)
C120.0265 (10)0.0266 (11)0.0235 (10)0.0035 (8)0.0066 (8)0.0013 (8)
C130.0272 (11)0.0222 (10)0.0278 (11)0.0043 (8)0.0070 (8)0.0030 (8)
C140.0306 (11)0.0323 (12)0.0288 (11)0.0111 (9)0.0079 (9)0.0033 (9)
C150.0404 (13)0.0295 (11)0.0232 (10)0.0167 (10)0.0038 (9)0.0000 (9)
C160.0381 (12)0.0203 (10)0.0196 (9)0.0092 (9)0.0016 (9)0.0024 (8)
C170.0293 (11)0.0177 (9)0.0194 (9)0.0047 (8)0.0008 (8)0.0029 (7)
C180.0294 (11)0.0188 (9)0.0220 (10)0.0024 (8)0.0000 (8)0.0036 (8)
C190.0351 (12)0.0216 (10)0.0275 (11)0.0000 (9)0.0060 (9)0.0041 (8)
C200.0461 (14)0.0206 (10)0.0280 (11)0.0020 (9)0.0113 (10)0.0005 (9)
C210.0495 (15)0.0198 (10)0.0236 (10)0.0101 (10)0.0065 (10)0.0020 (8)
C220.0333 (12)0.0306 (12)0.0407 (14)0.0069 (10)0.0069 (10)0.0035 (10)
C230.0258 (12)0.0409 (14)0.0468 (15)0.0038 (10)0.0019 (10)0.0046 (12)
C240.0266 (11)0.0315 (12)0.0365 (13)0.0001 (9)0.0065 (9)0.0012 (10)
C270.0267 (11)0.0313 (12)0.0310 (12)0.0043 (9)0.0035 (9)0.0020 (9)
Cl20.0320 (12)0.0532 (16)0.0341 (12)0.0030 (11)0.0004 (10)0.0101 (12)
Cl30.080 (4)0.062 (3)0.056 (3)0.0000.006 (3)0.000
Cl40.072 (2)0.118 (3)0.141 (4)0.034 (2)0.037 (2)0.002 (3)
Cl60.057 (2)0.042 (2)0.081 (3)0.0021 (18)0.008 (2)0.001 (2)
O10.0370 (13)0.150 (3)0.0549 (15)0.0042 (16)0.0139 (11)0.0370 (18)
O20.0407 (18)0.115 (4)0.074 (3)0.020 (2)0.0037 (17)0.031 (3)
O30.069 (3)0.065 (3)0.072 (3)0.0000.011 (3)0.000
O60.034 (7)0.077 (9)0.132 (17)0.0000.050 (8)0.000
O70.029 (4)0.37 (3)0.034 (4)0.0000.006 (3)0.000
O80.019 (3)0.046 (4)0.141 (8)0.0000.043 (4)0.000
Geometric parameters (Å, º) top
Cu1—Cl12.3527 (6)C11—H110.9500
Cu1—N12.0914 (18)C11—C121.409 (3)
Cu1—N21.979 (2)C12—H120.9500
Cu1—N31.977 (2)C13—H130.9500
Cu1—N42.0979 (18)C13—C141.402 (3)
N1—C131.328 (3)C14—H140.9500
N1—C171.357 (3)C14—C151.371 (4)
N2—C181.359 (3)C15—H150.9500
N2—C241.326 (3)C15—C161.407 (4)
N3—C51.356 (3)C16—C171.407 (3)
N3—C271.330 (3)C16—C211.433 (4)
N4—C91.361 (3)C17—C181.428 (3)
N4—C121.326 (3)C18—C191.406 (3)
C2—H20.9500C19—C201.434 (4)
C2—C31.367 (4)C19—C221.408 (4)
C2—C271.400 (4)C20—H200.9500
C3—H30.9500C20—C211.351 (4)
C3—C41.402 (4)C21—H210.9500
C4—C51.407 (3)C22—H220.9500
C4—C61.437 (3)C22—C231.366 (4)
C5—C91.430 (3)C23—H230.9500
C6—H60.9500C23—C241.399 (4)
C6—C71.354 (4)C24—H240.9500
C7—H70.9500C27—H270.9500
C7—C81.435 (3)Cl3—Cl61.063 (6)
C8—C91.405 (3)O1—H1A0.8400
C8—C101.407 (4)O1—H1B0.8759
C10—H100.9500O11—O11i0.797 (18)
C10—C111.371 (4)
N1—Cu1—Cl1119.65 (5)C11—C10—H10120.2
N1—Cu1—N4125.75 (7)C10—C11—H11120.3
N2—Cu1—Cl191.76 (6)C10—C11—C12119.4 (2)
N2—Cu1—N181.65 (8)C12—C11—H11120.3
N2—Cu1—N499.35 (8)N4—C12—C11122.7 (2)
N3—Cu1—Cl190.89 (6)N4—C12—H12118.7
N3—Cu1—N195.07 (8)C11—C12—H12118.7
N3—Cu1—N2176.52 (8)N1—C13—H13118.6
N3—Cu1—N481.58 (8)N1—C13—C14122.8 (2)
N4—Cu1—Cl1114.55 (5)C14—C13—H13118.6
C13—N1—Cu1131.88 (16)C13—C14—H14120.3
C13—N1—C17117.96 (19)C15—C14—C13119.5 (2)
C17—N1—Cu1109.88 (14)C15—C14—H14120.3
C18—N2—Cu1113.38 (15)C14—C15—H15120.3
C24—N2—Cu1127.10 (17)C14—C15—C16119.3 (2)
C24—N2—C18118.8 (2)C16—C15—H15120.3
C5—N3—Cu1114.35 (15)C15—C16—C17117.2 (2)
C27—N3—Cu1126.91 (17)C15—C16—C21123.9 (2)
C27—N3—C5118.7 (2)C17—C16—C21119.0 (2)
C9—N4—Cu1110.08 (14)N1—C17—C16123.2 (2)
C12—N4—Cu1132.06 (16)N1—C17—C18116.99 (19)
C12—N4—C9117.87 (19)C16—C17—C18119.8 (2)
C3—C2—H2120.4N2—C18—C17117.1 (2)
C3—C2—C27119.3 (2)N2—C18—C19122.6 (2)
C27—C2—H2120.4C19—C18—C17120.3 (2)
C2—C3—H3120.1C18—C19—C20118.6 (2)
C2—C3—C4119.8 (2)C18—C19—C22117.1 (2)
C4—C3—H3120.1C22—C19—C20124.3 (2)
C3—C4—C5117.5 (2)C19—C20—H20119.3
C3—C4—C6124.2 (2)C21—C20—C19121.3 (2)
C5—C4—C6118.4 (2)C21—C20—H20119.3
N3—C5—C4122.4 (2)C16—C21—H21119.5
N3—C5—C9116.8 (2)C20—C21—C16121.0 (2)
C4—C5—C9120.8 (2)C20—C21—H21119.5
C4—C6—H6119.5C19—C22—H22120.2
C7—C6—C4121.1 (2)C23—C22—C19119.5 (2)
C7—C6—H6119.5C23—C22—H22120.2
C6—C7—H7119.4C22—C23—H23120.1
C6—C7—C8121.2 (2)C22—C23—C24119.9 (3)
C8—C7—H7119.4C24—C23—H23120.1
C9—C8—C7119.1 (2)N2—C24—C23122.0 (2)
C9—C8—C10117.1 (2)N2—C24—H24119.0
C10—C8—C7123.8 (2)C23—C24—H24119.0
N4—C9—C5117.14 (19)N3—C27—C2122.3 (2)
N4—C9—C8123.5 (2)N3—C27—H27118.8
C8—C9—C5119.4 (2)C2—C27—H27118.8
C8—C10—H10120.2H1A—O1—H1B110.7
C11—C10—C8119.5 (2)
Cu1—N1—C13—C14172.78 (17)C8—C10—C11—C120.3 (3)
Cu1—N1—C17—C16172.37 (17)C9—N4—C12—C110.9 (3)
Cu1—N1—C17—C186.7 (2)C9—C8—C10—C110.4 (3)
Cu1—N2—C18—C178.1 (2)C10—C8—C9—N40.5 (3)
Cu1—N2—C18—C19170.92 (17)C10—C8—C9—C5179.20 (19)
Cu1—N2—C24—C23170.0 (2)C10—C11—C12—N41.0 (3)
Cu1—N3—C5—C4179.97 (16)C12—N4—C9—C5179.83 (18)
Cu1—N3—C5—C91.2 (2)C12—N4—C9—C80.1 (3)
Cu1—N3—C27—C2179.82 (18)C13—N1—C17—C162.3 (3)
Cu1—N4—C9—C50.5 (2)C13—N1—C17—C18178.66 (19)
Cu1—N4—C9—C8179.83 (16)C13—C14—C15—C161.6 (3)
Cu1—N4—C12—C11179.50 (16)C14—C15—C16—C170.0 (3)
N1—C13—C14—C151.5 (4)C14—C15—C16—C21179.6 (2)
N1—C17—C18—N20.6 (3)C15—C16—C17—N12.1 (3)
N1—C17—C18—C19178.50 (19)C15—C16—C17—C18178.9 (2)
N2—C18—C19—C20178.7 (2)C15—C16—C21—C20179.0 (2)
N2—C18—C19—C220.1 (3)C16—C17—C18—N2179.67 (19)
N3—C5—C9—N40.5 (3)C16—C17—C18—C190.6 (3)
N3—C5—C9—C8179.28 (18)C17—N1—C13—C140.4 (3)
C2—C3—C4—C50.5 (3)C17—C16—C21—C201.4 (3)
C2—C3—C4—C6178.8 (2)C17—C18—C19—C200.3 (3)
C3—C2—C27—N31.2 (4)C17—C18—C19—C22179.0 (2)
C3—C4—C5—N30.3 (3)C18—N2—C24—C230.2 (4)
C3—C4—C5—C9178.41 (19)C18—C19—C20—C210.4 (3)
C3—C4—C6—C7178.7 (2)C18—C19—C22—C230.6 (4)
C4—C5—C9—N4179.26 (18)C19—C20—C21—C160.4 (4)
C4—C5—C9—C80.5 (3)C19—C22—C23—C241.0 (4)
C4—C6—C7—C80.2 (3)C20—C19—C22—C23179.2 (2)
C5—N3—C27—C22.0 (3)C21—C16—C17—N1177.6 (2)
C5—C4—C6—C70.7 (3)C21—C16—C17—C181.5 (3)
C6—C4—C5—N3179.7 (2)C22—C19—C20—C21179.0 (2)
C6—C4—C5—C91.0 (3)C22—C23—C24—N20.8 (4)
C6—C7—C8—C90.7 (3)C24—N2—C18—C17179.3 (2)
C6—C7—C8—C10178.8 (2)C24—N2—C18—C190.2 (3)
C7—C8—C9—N4179.92 (19)C27—N3—C5—C41.6 (3)
C7—C8—C9—C50.4 (3)C27—N3—C5—C9177.2 (2)
C7—C8—C10—C11179.9 (2)C27—C2—C3—C40.2 (4)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O110.952.723.354 (11)125
C12—H12···O110.952.753.380 (12)125
C13—H13···O4ii0.952.583.261 (17)129
C23—H23···O1iii0.952.463.399 (4)172
C27—H27···O5iv0.952.573.267 (10)130
O1—H1A···Cl10.842.343.173 (3)171
O1—H1B···O90.882.022.758 (14)142
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z+1/2; (iv) x+1/2, y+1/2, z+1.
Hydrogen bonds (Å, °) in the crystal of 3 top
D—H···Ad(D—H)d(H···A)d(D···A)<(DHA)
Intramolecular
C11—H11···O1i0.92 (2)2.60 (2)3.4083 (18)146.5 (19)
C11—H11···Cla0.92 (2)2.93 (2)3.4825 (15)120.2 (17)
Intermolecular
C9—H9···O1ii0.92 (3)2.59 (3)3.1592 (18)120.2 (17)
C9—H9···Clii,a0.92 (3)2.91 (3)3.6514 (14)138 (2)
C12—H12B···O1iii0.96 (3)2.85 (3)3.4542 (15)111.9 (17)
C12—H12C···Cliv,a0.93 (2)3.00 (2)3.790 (2)169 (2)
C14—H14B···Clv,a0.97 (3)2.94 (3)3.6821 (16)134.8 (19)
Symmetry transformations used to generate equivalent atoms: (i) -x + 1, -y, -z; (ii) x, y + 1, z; (iii) -x, 1 - y, 1 - z; (iv) 1 - x, 1 - y, 1 - z; (v) x - 1, y, z + 1. Note: (a) Very weak, if any, at the borderline of a hydrogen bond (Grabowski, 2021).
Distances and α angle (Å, °) of intermolecular ππ interactions in 3 top
Phenyl–phenylphenyl–pyridinepyridine–pyridine
Centroid–centroid distance3.910 (1)4.266 (1)4.220 (1)
Plane–plane distance3.433 (1)3.534 (1)3.499 (1)
α28.6034.0633.99
 

Acknowledgements

The National Institutes of Health (NIH) Grant R01GM113101, the Kansas Masonic Cancer Research Institute Pilot Research Program of the University of Kansas Cancer Center, P30CA168524, and the COBRE-PSF P30 GM110761 Pilot Project, the University of Kansas, Department of Chemistry (to MM) provided funding for this research. AM was supported by National Institutes of Health NIGMS Biotechnology Predoctoral Training Program (T32-GM008359), the J. K. Lee Summer Scholar Program and Chaffee Fellowship from the Department of Chemistry, the University of Kansas. The National Science Foundation (NSF) Major Research Instrumentation Program (NSF-MRI) Grant CHE-0923449 supported the purchase of the X-ray diffractometer for the Mol­ecular Structure Group at University of Kansas and software used in this study.

Funding information

Funding for this research was provided by: National Institutes of Health (grant No. R01GM113101 to Minae Mure); Kansas Masonic Foundation (grant No. P30CA168524 to Minae Mure); National Institutes of Health (grant No. P30 GM110761 to Minae Mure); National Institutes of Health, National Institute of General Medical Sciences (award No. T32-GM008359); National Science Foundation (grant No. CHE-0923449).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAnderson, O. P. (1975). Inorg. Chem. 14, 730–734.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). SAINT. Bruker Nano Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2021). APEX4. Bruker Nano Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunton, C. A., Minch, M. J. & Wolfe, B. B. (1974). J. Am. Chem. Soc. 96, 3267–3275.  CrossRef CAS Google Scholar
First citationDas, K., Datta, A., Sinha, C., Huang, J. H., Garribba, E., Hsiao, C. S. & Hsu, C. L. (2012). ChemistryOpen, 1, 80-89.  CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrabowski, S. J. (2021). Understanding Hydrogen Bonds: Theoretical and Experimental Views. Cambridge. The Royal Society of Chemistry.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKapoor, P., Pathak, A., Kapoor, R., Venugopalan, P., Corbella, M., Rodríguez, M., Robles, J. & Llobet, A. (2002). Inorg. Chem. 41, 6153–6160.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMahjour, F., Dambal, V., Shrestha, N., Singh, V., Noonan, V., Kantarci, A. & Trackman, P. C. (2019). Oncogenesis, 8, 34.  CrossRef PubMed Google Scholar
First citationMartinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191–2201.  Web of Science CrossRef CAS Google Scholar
First citationMeier, A. A., Go, E. P., Moon, H. J., Desaire, H. & Mure, M. (2022). Int. J. Mol. Sci. 23, 5879.  CrossRef PubMed Google Scholar
First citationMeier, A. A., Kuczera, K. & Mure, M. (2022). Int. J. Mol. Sci. 23, 13385.  CrossRef PubMed Google Scholar
First citationMeier, A. A., Moon, H.-J., Sabuncu, S., Singh, P., Ronnebaum, T. R., Ou, S., Douglas, J. T., Jackson, T. A., Moenne-Loccoz, P. & Mure, M. (2022). Int. J. Mol. Sci. 23, 13966.  CrossRef PubMed Google Scholar
First citationMoon, H. J., Finney, J., Ronnebaum, T. & Mure, M. (2014). Bioorg. Chem. 57, 231–241.  CrossRef CAS PubMed Google Scholar
First citationNakagawa, G. & Wada, H. (1962). Nippon Kagaku Zasshi, 83, 1098-1102.  CrossRef CAS Google Scholar
First citationRodríguez, M., Llobet, A., Corbella, M., Martell, A. E. & Reibenspies, J. (1999). Inorg. Chem. 38, 2328–2334.  Google Scholar
First citationSasmal, A., Saha, S., Gómez-García, C. J., Desplanches, C., Garribba, E., Bauzá, A., Frontera, A., Scott, R., Butcher, R. J. & Mitra, S. (2013). Chem. Commun. 49, 7806–7808.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationSmolentsev, A., Lider, E. V., Lavrenova, L. G., Sheludyakova, L. A., Bogomyakov, A. S. & Vasilevsky, S. F. (2014). Polyhedron, 77, 81–88.  CSD CrossRef CAS Google Scholar
First citationWei, Y., Dong, W., Jackson, J., Ho, T. C., Le Saux, C. J., Brumwell, A., Li, X., Klesney-Tait, J., Cohen, M. L., Wolters, P. J. & Chapman, H. A. (2021). Thorax, 76, 729–732.  CrossRef PubMed Google Scholar
First citationYamada, Y., Sakurai, H., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2002). Polyhedron, 21, 2143–2147.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds