research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [2-({[2-(di­methylamino-κN)ethyl]imino-κN}methyl)phenolato-κO](1,10-phen­anthroline-κ2N,N′)copper(II) perchlorate

crossmark logo

aDepartment of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur - 610 005, India, bDepartment of Chemistry, North Eastern Hill University, Shillong - 793 022, India, and cSchool of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur - 613 401, Tamil Nadu, India
*Correspondence e-mail: rajendiran@cutn.ac.in

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela (Received 12 December 2022; accepted 25 February 2023; online 7 March 2023)

The title compound, [Cu(C11H15N2O)(C12H8N2)]ClO4 or [Cu(L)(phen)](ClO4) {where L refers to the deprotonated form of 2-[(2-di­methyl­amino­ethyl­imino)­meth­yl]phenol} and phen is 1,10-phenanthroline) is a mononuclear mixed ligand copper(II) complex. The CuII atom is coordinated by two N and one O atoms of the tridentate Schiff base ligand (HL) and two N atoms of the 1,10-phenanthroline ligand, resulting in a five-coordinate complex. The asymmetric unit of the title complex contains two crystallographically independent complex cations (a and b) with a slightly different geometry around the CuII ion. The value of the trigonality index τ, indicates that in both cations a and b, the CuII atoms display a square-pyramidal distorted trigonal–bipyramidal (SPDTBP) geometry, although the distortion is greater for cation a.

1. Chemical context

The design and synthesis of mixed ligand copper(II) complexes have received much attention as they exhibit promising anti­cancer and nuclease activities compared to simple 1:1 complexes. Palaniandavar and co-workers (Sharma et al., 2020[Sharma, M., Ganeshpandian, M., Majumder, M., Tamilarasan, A., Sharma, M., Mukhopadhyay, R., Islam, N. S. & Palaniandavar, M. (2020). Dalton Trans. 49, 8282-8297.]; Rajendiran et al., 2007[Rajendiran, V., Karthik, R., Palaniandavar, M., Stoeckli-Evans, H., Periasamy, V. S., Akbarsha, M. A., Srinag, B. S. & Krishnamurthy, H. (2007). Inorg. Chem. 46, 8208-8221.]; Selvakumar et al., 2006[Selvakumar, B., Rajendiran, V., Uma Maheswari, P., Stoeckli-Evans, H. & Palaniandavar, M. (2006). J. Inorg. Biochem. 100, 316-330.]) and Chakravarty and co-workers (Goswami et al., 2012[Goswami, T. K., Gadadhar, S., Roy, M., Nethaji, M., Karande, A. A. & Chakravarty, A. R. (2012). Organometallics, 31, 3010-3021.]) have reported the X-ray crystal structures of several mixed ligand copper(II) complexes that have biological activity. Recently, our group has reported a series of mixed ligand copper(II) complexes and their biological applications (Karpagam et al., 2019[Karpagam, S., Kartikeyan, R., Paravai Nachiyar, P., Velusamy, M., Kannan, M., Krishnan, M., Chitgupi, U., Lovell, J. F., Abdulkader Akbarsha, M. & Rajendiran, V. (2019). J. Coord. Chem. 72, 3102-3127.], 2022[Karpagam, S., Mamindla, A., Kumar Sali, V., Niranjana, R. S., Periasamy, V. S., Alshatwi, A. A., Akbarsha, M. A. & Rajendiran, V. (2022). Inorg. Chim. Acta, 531, 120729-120740.]; Radhakrishnan et al., 2021[Radhakrishnan, K., Khamrang, T., Sambantham, K., Sali, V. K., Chitgupi, U., Lovell, J. F., Mohammad, A. A. & Venugopal, R. (2021). Polyhedron, 194, 114886-114899.]). Palaniandavar and co-workers (Jaividhya et al., 2012[Jaividhya, P., Dhivya, R., Akbarsha, M. A. & Palaniandavar, M. (2012). J. Inorg. Biochem. 114, 94-105.]) prepared the title complex I and investigated its DNA binding, cleavage, and anti­cancer activity. It exhibits good cytotoxicity against MCF7 breast cancer cells with an IC50 value of 1.20 ± 0.10 µM and against the ME180 human cervical epidermoid carcinoma cells with an IC50 value of 24.6 ± 0.10 µM at 48 h incubation (Jaividhya et al., 2012[Jaividhya, P., Dhivya, R., Akbarsha, M. A. & Palaniandavar, M. (2012). J. Inorg. Biochem. 114, 94-105.]). However, the crystal structure of complex I was not reported. In this work we report the crystal structure of this mixed ligand copper(II) complex.

2. Structural commentary

The title compound I is of the type {[Cu(L)(phen)](ClO4)} {where L is the deprotonated form of 2-[(2-di­methyl­amino­ethyl­imino)­meth­yl]phenol and phen is 1,10-phenanthroline} is a mononuclear mixed ligand copper(II) complex. The metal atom is coordinated to the tridentate Schiff base ligand (HL) through two N and one O atoms and to two N atoms of the 1,10-phenanthroline ligand, resulting in a five-coordinate complex.

[Scheme 1]

Complex I (Fig. 1[link]) crystallizes in the ortho­rhom­bic crystal system in the Pbca space group. The asymmetric unit contains two crystallographically independent complex cations (a and b) with a slightly different geometry around the CuII ion. Selected geometrical parameters are listed in Table 1[link]. The value of the trigonality index τ suggests that both cations, a and b, display a square-pyramidal distorted trigonal–bipyramidal (SPDTBP) geometry, with cation a being more distorted than cation b.

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.915 (3) Cu2—N8 2.238 (3)
Cu1—N1 1.923 (3) Cl1—O4 1.407 (8)
Cu1—N3 2.019 (3) Cl1—O5 1.409 (8)
Cu1—N2 2.148 (3) Cl1—O3 1.415 (8)
Cu1—N4 2.251 (3) Cl1—O6 1.417 (8)
Cu2—O2 1.913 (3) Cl2—O9 1.367 (4)
Cu2—N5 1.919 (3) Cl2—O8 1.373 (4)
Cu2—N7 2.030 (3) Cl2—O10 1.385 (5)
Cu2—N6 2.121 (3) Cl2—O7 1.393 (4)
       
O1—Cu1—N1 93.32 (12) O2—Cu2—N5 93.37 (13)
O1—Cu1—N3 89.55 (12) O2—Cu2—N7 89.04 (12)
N1—Cu1—N3 175.79 (13) N5—Cu2—N7 176.36 (14)
O1—Cu1—N2 143.82 (12) O2—Cu2—N6 152.70 (12)
N1—Cu1—N2 82.91 (13) N5—Cu2—N6 84.08 (14)
N3—Cu1—N2 96.57 (12) N7—Cu2—N6 95.01 (13)
O1—Cu1—N4 114.99 (12) O2—Cu2—N8 107.27 (12)
N1—Cu1—N4 98.12 (12) N5—Cu2—N8 98.80 (13)
N3—Cu1—N4 77.86 (12) N7—Cu2—N8 77.87 (12)
N2—Cu1—N4 101.14 (12) N6—Cu2—N8 99.97 (12)
[Figure 1]
Figure 1
Mol­ecular structures of the crystallographically independent complex cations and the two perchlorate counter-ions with ellipsoids drawn at the 50% probability level; hydrogen atoms have been omitted for clarity.

In cation a, the Cu1 atom is coordinated by the two nitro­gen atoms (N1, N2) and the phenolate oxygen atom (O1) of the Schiff base primary ligand, and to two nitro­gen (N3, N4) atoms of the phen co-ligand. The value of the trigonality index τ = 0.53 [τ = (β − α)/60, where β = N1—Cu1—N3 = 175.79 (13)° and α = N2—Cu1—O1 = 143.82 (12)°; τ is 0 for a square-pyramidal geometry and 1 for trigonal–bipyramidal] reveals that the coordination environment around Cu1 is best described as having a square-pyramidal distorted trigonal-bipyramidal (SPDTBP) geometry (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]; Selvakumar et al., 2006[Selvakumar, B., Rajendiran, V., Uma Maheswari, P., Stoeckli-Evans, H. & Palaniandavar, M. (2006). J. Inorg. Biochem. 100, 316-330.]). The amine nitro­gen atoms (N1, N2) and the phenolate oxygen atom (O1) of the meridionally coordinated Schiff base ligand and one of the imine nitro­gen atoms of phen (N3) occupy the corners of the (Cu1)N3O basal plane of this geometry. The other nitro­gen (N4) of the phen ligand occupies the axial position at a distance of 2.251 (3) Å, longer than the equatorial distances [Cu1—O1 = 1.915 (3) Å, Cu1—N1 = 1.923 (3) Å, Cu1—N2 = 2.148 (3) Å, Cu1—N3 = 2.019 (3) Å], which is due to the presence of two electrons in the dz2 orbital of copper(II). The Cu1—N2amine bond is longer than the Cu1—N1imine bond formed by the Schiff base ligand, which is expected of sp3 and sp2 hybridizations of the amine (N2) and imine (N1) nitro­gen atoms, respectively. The Cu1—Nimine bond distance is shorter than that of trans Cu1—Nphen; this may be attributed to the fact that the azomethine nitro­gen is a stronger base compared with the pyridyl nitro­gen. The bond angles deviate from the ideal trigonal–bipyramidal angles of 90 and 120°, respectively, revealing the presence of significant distortion in the Cu1 coordination geometry.

In cation b, the Cu2 ion is coordinated by the two nitro­gen atoms (N5, N6), the phenolate oxygen atom (O2) of the Schiff base primary ligand, and by the two nitro­gen (N7, N8) atoms of the phen co-ligand. As for a, cation b also exhibits square-pyramidal distorted trigonal–bipyramidal (SPDTBP) geometry (Murphy, Nagle et al., 1997[Murphy, G., Nagle, P., Murphy, B. & Hathaway, B. (1997). J. Chem. Soc. Dalton Trans. pp. 2645-2652.]; Murphy, Murphy et al., 1997[Murphy, G., Murphy, C., Murphy, B. & Hathaway, B. (1997). J. Chem. Soc. Dalton Trans. pp. 2653-2660.]; Nagle et al., 1990[Nagle, P., O'Sullivan, E., Hathaway, B. J. & Muller, E. (1990). J. Chem. Soc. Dalton Trans. pp. 3399-3406.]; Rajarajeswari et al., 2014[Rajarajeswari, C., Ganeshpandian, M., Palaniandavar, M., Riyasdeen, A. & Akbarsha, M. A. (2014). J. Inorg. Biochem. 140, 255-268.]; Jaividhya et al., 2012[Jaividhya, P., Dhivya, R., Akbarsha, M. A. & Palaniandavar, M. (2012). J. Inorg. Biochem. 114, 94-105.]; Radhakrishnan et al., 2021[Radhakrishnan, K., Khamrang, T., Sambantham, K., Sali, V. K., Chitgupi, U., Lovell, J. F., Mohammad, A. A. & Venugopal, R. (2021). Polyhedron, 194, 114886-114899.]), but the value of the trigonality index τ is slightly smaller at 0.40 [τ = (β − α)/60, where β = N5—Cu2—N7= 176.38 (14)° and α = O2—Cu2—N6 = 152.71 (12)°], indicating that it is less distorted than cation a. Similar to cation a, the amine nitro­gen atoms (N5, N6) and the phenolate oxygen atom (O2) of the meridionally coordinated Schiff base ligand and one of the imine nitro­gen atoms of phen occupy the corners of the (Cu2)N3O basal plane of this geometry. The other nitro­gen (N8) of the phen ligand occupies the axial position at a distance of 2.238 (3) Å, again longer than the bonds to the equatorial donor atoms [Cu2—O2 = 1.913 (3) Å, Cu2—N5 = 1.919 (3) Å, Cu2—N6 = 2.121 (3) Å, Cu2—N7 = 2.030 (3) Å) but shorter than the axial bond Cu1—N4 of cation a. As a result of a slight axial compression of the axial phen nitro­gen in cation b, a slight increase of the equatorial phen nitro­gen bond length (Cu2—N7) is observed. On the other hand, the other equatorial bonds in b are shorter than in cation a. Similar to cation a, the Cu2—N6amine bond is longer than the Cu2—N5imine bond formed by the Schiff base ligand, as expected for sp3 and sp2 hybridizations of the amine (N6) and imine (N5) nitro­gen atoms, respectively. The Cu2—Nimine bond distance is shorter than the trans Cu2—Nphen bond; this is also attributed to stronger basicity of the azomethine nitro­gen compared to the pyridyl nitro­gen. The deviations in the values of the bond angles with respect to the ideal square-pyramidal angles of 90 and 180°, respectively, again reveal a significant distortion in the Cu2 coordination geometry.

3. Supra­molecular features

The two crystallographically independent complex cations stack along the c-axis direction with a slightly different packing arrangement. The layered structures formed by complex cations a (coloured in blue) and b (coloured in green) are shown on the left in Fig. 2[link]. In this complex, layers parallel to the ab plane formed by a cations alternate along the c-axis with layers of b cations. The cations in the supra­molecular structure are linked by weak C—H⋯O hydrogen bonds (Table 2[link]) mediated by the oxygen atoms of the perchlorate anions. Extensive ππ inter­actions of moderate-to-weak strength are present in the structure, with centroid–centroid distances in the range 3.881 (2) to 4.121 (2) ÅÅ. In addition, C—H⋯π inter­actions (Table 3[link]) provide enhanced stability to the packing arrangement.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O10i 0.93 2.51 3.293 (7) 142
C7—H7⋯O4ii 0.93 2.59 3.368 (13) 141
C14—H14⋯O2 0.93 2.33 3.191 (5) 153
C22—H22⋯O3Aiii 0.93 2.56 3.411 (14) 152
C27—H27⋯O5Aiv 0.93 2.41 3.296 (13) 158
C31—H31A⋯O7 0.97 2.59 3.530 (7) 165
C36—H36⋯O6Aiii 0.93 2.50 3.143 (16) 127
C43—H43⋯O9v 0.93 2.53 3.417 (6) 160
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Table 3
Geometric parameters (Å, °) of C—H⋯π contacts

Parameters as defined in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). Cg1, Cg2, Cg3 and Cg4 are the centroids of the N4/C17–C21, C1–C6, N8/C35–C39 and C24–C29 rings, respectively.

C—H⋯Cg H⋯Cg C⋯Cg C—H⋯Cg Symmetry
C11—H11BCg2 2.78 3.447 (5) 128 [{3\over 2}] − x, [{1\over 2}] + y, z
C23—H23⋯Cg3 2.80 2.337 (5) 118 x, y, z
C34—H34CCg4 2.80 2.434 (6) 124 [{3\over 2}] − x, [{1\over 2}] + y, z
C44—H44⋯Cg1 2.78 3.369 (5) 122 [{3\over 2}] − x, [{1\over 2}] + y, z
[Figure 2]
Figure 2
The layered packing arrangement onto the ab plane. Complex cations a (blue) and b (green) are shown on the left side of the figure. The two perchlorate ions are coloured in yellow and red. The relative arrangement of the two layers is shown on the right side of the image.

4. Database survey

The Cambridge Structural Database (CSD, Version 5.27, updated in November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains no entries with the exact structure of the title compound, [Cu(L)(phen)]ClO4. However, a few reports are available for similar mixed ligand CuII complexes containing L and di­imine ligands, for example [Cu(L)(bpy)]ClO4 (Ko et al., 2012[Ko, B., Chang, C., Lai, S., Lai, F. & Lin, C. (2012). Polyhedron, 45, 49-54.]), [Cu(L)(dpq)]ClO4 and [Cu(L)(dmdppz)]ClO4 (Jaividhya et al., 2012[Jaividhya, P., Dhivya, R., Akbarsha, M. A. & Palaniandavar, M. (2012). J. Inorg. Biochem. 114, 94-105.]) where bpy is 2,2′-bi­pyridine, dpq is dipyrido[3,2-f:2′,3′-h]quinoxaline and dmdppz = 11,12-di­methyl­dipyrido[3,2-a:2′,3′-c]phenazine. Similar to the title compound, in these complexes the N,N,O-tridentate Schiff base ligand is coordinated meridionally to the CuII ion and one of the di­imine nitro­gen atoms is coordinated in an axial position. The value of the trigonality index of the bpy complex (τ = 0.13) is less than for the dpq (τ = 0.37) and dmdppz (τ = 0.39) complexes, as well as the title complex with phen (a, τ = 0.53; b, τ = 0.40), which exhibits the largest distortion. In addition to these di­imine complexes, there are a few reports on five-coordinate mixed ligand copper(II) complexes bearing L and an N,N-donor ligand such as benzimidazole and an O,O-donor ligand such as salicyl­aldehyde (Sathya & Murali, 2018[Sathya, V. & Murali, M. (2018). Inorg. Chem. Commun. 92, 55-59.]). The N,N,O-tridentate Schiff base ligand is coordinated to the CuII ion in a meridional fashion and the pyridine nitro­gen of the benzimidazole ligand occupies the axial position, whereas in the salicyl­aldehyde complex, the carbonyl oxygen occupies the axial position. The former complex is distorted from a square-pyramidal geometry and shows a trigonality index τ of 0.25 but the latter complex exhibits only a slight distortion from an ideal square-pyramidal geometry. Similarly, Tadokaro et al. (1995[Tadokoro, M., Toyoda, J., Isobe, K., Itoh, T., Miyazaki, A., Enoki, T. & Nakasuji, K. (1995). Chem. Lett. 24, 613-614.]) reported the mol­ecular structure of a mixed ligand complex with L and bidentate mono-deprotonated 2,2′-biimidazolate (N,N-donor) ligands and discussed the existence of a capped-type dimeric hydrogen bond between the mol­ecules. In another case, the authors attempted to synthesize an octa­hedral bis­(N-b-di­methyl­amino­ethyl­salicyl­adiminato)copper(II) complex (Chieh & Palenik, 1972[Chieh, P. C. & Palenik, G. J. (1972). Inorg. Chem. 11, 816-819.]). They expected both the tridentate N,N,O-Schiff base ligands to coordinate to the CuII ion and form an octa­hedral coordination geometry. However, the crystal structure revealed that the CuII ion is penta­coordinate with one of the di­methyl­amino groups of the ligand not bonded to it. The resulting complex is highly distorted but appears closer to a trigonal–bipyramidal geometry rather than square pyramidal.

5. Synthesis and crystallization

The Schiff base-type ligand 2-[(2-di­methyl­amino­ethyl­imino)­meth­yl]phenol (HL) was prepared using the synthetic procedure reported by Jaividhya et al. (2012[Jaividhya, P., Dhivya, R., Akbarsha, M. A. & Palaniandavar, M. (2012). J. Inorg. Biochem. 114, 94-105.]). Complex I was prepared by addition of a methano­lic solution (10 mL) of 1,10-phenanthroline (0.1802 g, 1 mmol) and HL (0.1949 g, 1 mmol) pretreated with tri­ethyl­amine (139 µL, 1 mmol) to remove the phenolic hydrogen, to a solution of copper(II) perchlorate hexa­hydrate (0.37 g, 1 mmol) in methanol (15 mL) and then stirring at 313 K for 2 h. The green solid obtained was collected by suction filtration, washed with diethyl ether, and then dried under vacuum. A crystal suitable for X-ray diffraction analysis was obtained by dissolving the complex in methanol and allowing it to crystallize.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms were placed in idealized positions and constrained to ride on their parent atoms, with d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic, 0.97 Å, Uiso(H) = 1.2Ueq(C) for CH2 and 0.96 Å, Uiso(H) = 1.5Ueq(C) for CH3 atoms. The hydrogens bound to carbon were refined using standard riding models. The perchlorate ions are disordered. The first, Cl1/O3–O6, was successfully refined with two disorder components which refined to a ratio of 0.611 (15):0.389 (15). Attempts to model the second perchlorate ion (Cl2/O7–O10) did not improve the disagreement factors.

Table 4
Experimental details

Crystal data
Chemical formula [Cu(C11H15N2O)(C12H8N2)]ClO4
Mr 534.44
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 293
a, b, c (Å) 17.8598 (8), 15.0255 (7), 33.920 (2)
V3) 9102.6 (9)
Z 16
Radiation type Mo Kα
μ (mm−1) 1.12
Crystal size (mm) 0.05 × 0.04 × 0.03
 
Data collection
Diffractometer Xcalibur, Eos, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.792, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 28151, 9292, 6329
Rint 0.046
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.130, 1.05
No. of reflections 9292
No. of parameters 663
No. of restraints 154
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.94, −0.42
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 (Dolomanov et al., 2009), enCIFer (Allen et al., 2004), publCIF (Westrip, 2012) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009), enCIFer (Allen et al., 2004), publCIF (Westrip, 2012), PLATON (Spek, 2020).

[2-({[2-(Dimethylamino-κN)ethyl]imino-κN}methyl)phenolato-κO](1,10-phenanthroline-κ2N,N')copper(II) perchlorate top
Crystal data top
[Cu(C11H15N2O)(C12H8N2)]ClO4Dx = 1.560 Mg m3
Mr = 534.44Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 28155 reflections
a = 17.8598 (8) Åθ = 3.2–26.4°
b = 15.0255 (7) ŵ = 1.12 mm1
c = 33.920 (2) ÅT = 293 K
V = 9102.6 (9) Å3Needle, green
Z = 160.05 × 0.04 × 0.03 mm
F(000) = 4400
Data collection top
Xcalibur, Eos, Gemini
diffractometer
9292 independent reflections
Radiation source: Enhance (Mo) X-ray Source6329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 8.0640 pixels mm-1θmax = 26.4°, θmin = 3.2°
ω scansh = 2220
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2013)
k = 1718
Tmin = 0.792, Tmax = 1.000l = 4042
28151 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0401P)2 + 10.7563P]
where P = (Fo2 + 2Fc2)/3
9292 reflections(Δ/σ)max = 0.001
663 parametersΔρmax = 0.94 e Å3
154 restraintsΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data collection: A crystal of complex I was mounted on a glass fiber. Data were collected on an Oxford Diffraction Xcalibur EOS Gemini Diffractometer at ambient temperature using graphite-monochromated Mo Kα radiation (λ = 0.7107 Å). The structure was solved with SHELXT (Sheldrick, 2015a) and refined with SHELXL (Sheldrick, 2015b). The graphic interface package PLATON (Spek, 2020), ORTEP (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2020) were used for analysis and generation of images. Non-hydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.81742 (3)0.43972 (3)0.24313 (2)0.03202 (13)
Cu20.83369 (3)0.67803 (3)0.47565 (2)0.03479 (14)
O10.87548 (16)0.33345 (18)0.24931 (8)0.0417 (7)
O20.88228 (16)0.56677 (18)0.46583 (8)0.0428 (7)
N10.80139 (17)0.4198 (2)0.18778 (9)0.0329 (7)
N20.82238 (17)0.5766 (2)0.22508 (9)0.0340 (7)
N30.82613 (17)0.4625 (2)0.30162 (9)0.0320 (7)
N40.69757 (17)0.4291 (2)0.26310 (9)0.0354 (7)
N50.8188 (2)0.6527 (2)0.53054 (10)0.0431 (9)
N60.83297 (17)0.8127 (2)0.49442 (10)0.0382 (8)
N70.84254 (17)0.7071 (2)0.41738 (9)0.0345 (7)
N80.71511 (18)0.6647 (2)0.45510 (9)0.0363 (8)
C10.8861 (2)0.2715 (2)0.22294 (11)0.0337 (9)
C20.9272 (2)0.1952 (3)0.23366 (14)0.0442 (10)
H20.9474120.1915650.2588770.053*
C30.9382 (2)0.1260 (3)0.20769 (15)0.0482 (12)
H30.9642740.0757340.2159210.058*
C40.9110 (2)0.1301 (3)0.16951 (14)0.0486 (11)
H40.9185530.0830300.1521420.058*
C50.8730 (2)0.2043 (3)0.15776 (13)0.0430 (10)
H50.8555200.2077980.1319780.052*
C60.8596 (2)0.2757 (2)0.18367 (11)0.0337 (9)
C70.8202 (2)0.3509 (3)0.16796 (11)0.0330 (9)
H70.8073160.3494620.1413970.040*
C80.7694 (3)0.4979 (3)0.16863 (12)0.0446 (11)
H8A0.7178260.5064490.1767370.054*
H8B0.7709380.4914940.1401890.054*
C90.8169 (3)0.5746 (3)0.18160 (13)0.0501 (12)
H9A0.8665500.5691020.1702870.060*
H9B0.7950800.6298730.1722470.060*
C100.8941 (3)0.6170 (3)0.23719 (16)0.0595 (13)
H10A0.9348120.5832640.2262810.089*
H10B0.8976430.6167650.2654320.089*
H10C0.8965680.6771170.2277370.089*
C110.7615 (3)0.6296 (3)0.24258 (14)0.0537 (12)
H11A0.7639680.6255870.2707950.081*
H11B0.7141110.6071640.2336430.081*
H11C0.7666750.6906880.2347070.081*
C120.8900 (2)0.4684 (3)0.32089 (12)0.0414 (10)
H120.9345210.4620170.3069580.050*
C130.8933 (3)0.4838 (3)0.36151 (13)0.0490 (11)
H130.9393740.4889780.3740700.059*
C140.8291 (3)0.4912 (3)0.38247 (12)0.0465 (11)
H140.8307550.5024180.4094220.056*
C150.7599 (2)0.4819 (2)0.36316 (11)0.0368 (9)
C160.7609 (2)0.4667 (2)0.32245 (11)0.0301 (8)
C170.6921 (2)0.4504 (2)0.30172 (11)0.0329 (9)
C180.6353 (2)0.4067 (3)0.24435 (12)0.0427 (10)
H180.6382940.3912190.2178540.051*
C190.5647 (2)0.4055 (3)0.26280 (15)0.0528 (12)
H190.5222110.3885470.2488590.063*
C200.5598 (2)0.4294 (3)0.30130 (15)0.0495 (11)
H200.5133440.4305130.3136780.059*
C210.6242 (2)0.4524 (3)0.32249 (12)0.0395 (10)
C220.6243 (3)0.4718 (3)0.36356 (13)0.0477 (11)
H220.5791330.4757570.3771020.057*
C230.6889 (3)0.4844 (3)0.38292 (13)0.0471 (11)
H230.6877060.4949760.4099200.057*
C240.8926 (2)0.5020 (3)0.49110 (13)0.0417 (10)
C250.9310 (3)0.4249 (3)0.47817 (15)0.0526 (12)
H250.9499040.4224180.4526500.063*
C260.9405 (3)0.3534 (3)0.5032 (2)0.0691 (16)
H260.9646490.3026540.4939540.083*
C270.9149 (3)0.3554 (4)0.5416 (2)0.0746 (18)
H270.9215240.3063290.5579550.090*
C280.8802 (3)0.4293 (3)0.55532 (15)0.0618 (14)
H280.8637680.4308820.5813230.074*
C290.8686 (2)0.5037 (3)0.53095 (13)0.0440 (11)
C300.8346 (2)0.5799 (3)0.54829 (12)0.0450 (11)
H300.8228470.5765480.5749520.054*
C310.7896 (3)0.7301 (3)0.55210 (13)0.0547 (12)
H31A0.7957140.7220620.5802930.066*
H31B0.7369460.7389360.5464020.066*
C320.8350 (3)0.8079 (3)0.53790 (13)0.0564 (13)
H32A0.8149900.8625150.5489540.068*
H32B0.8863900.8016640.5467230.068*
C330.8999 (3)0.8603 (3)0.47925 (15)0.0572 (13)
H33A0.9441350.8268730.4855090.086*
H33B0.9029150.9180630.4912730.086*
H33C0.8959410.8668400.4511770.086*
C340.7662 (3)0.8622 (3)0.48093 (14)0.0536 (12)
H34A0.7642770.8616850.4526520.080*
H34B0.7689470.9225720.4901010.080*
H34C0.7218930.8345360.4912950.080*
C350.6536 (2)0.6372 (3)0.47315 (13)0.0450 (10)
H350.6572340.6186320.4992380.054*
C360.5840 (2)0.6347 (3)0.45499 (15)0.0510 (12)
H360.5426010.6124440.4683750.061*
C370.5769 (2)0.6653 (3)0.41728 (15)0.0513 (12)
H370.5301970.6664570.4051940.062*
C380.6404 (2)0.6951 (3)0.39685 (13)0.0407 (10)
C390.7089 (2)0.6920 (2)0.41710 (11)0.0332 (9)
C400.7771 (2)0.7126 (2)0.39697 (11)0.0304 (8)
C410.7759 (2)0.7336 (2)0.35643 (11)0.0362 (9)
C420.7043 (3)0.7409 (3)0.33722 (13)0.0485 (12)
H420.7022560.7579480.3108850.058*
C430.6401 (3)0.7234 (3)0.35672 (13)0.0479 (11)
H430.5946670.7299950.3436850.058*
C440.8442 (3)0.7446 (3)0.33738 (12)0.0431 (10)
H440.8453310.7579610.3106170.052*
C450.9090 (3)0.7359 (3)0.35772 (13)0.0475 (11)
H450.9548310.7420110.3450030.057*
C460.9061 (2)0.7176 (3)0.39810 (13)0.0440 (10)
H460.9508140.7125440.4119470.053*
Cl10.5801 (4)0.5616 (5)0.5795 (2)0.0407 (13)0.611 (15)
O30.5685 (6)0.4918 (7)0.6068 (3)0.090 (3)0.611 (15)
O40.6566 (5)0.5808 (9)0.5742 (3)0.078 (3)0.611 (15)
O50.5446 (5)0.6364 (7)0.5961 (4)0.101 (3)0.611 (15)
O60.5472 (7)0.5411 (8)0.5426 (3)0.074 (3)0.611 (15)
Cl1A0.5833 (7)0.5590 (9)0.5804 (4)0.054 (2)0.389 (15)
O3A0.5637 (8)0.5389 (14)0.6192 (3)0.084 (4)0.389 (15)
O4A0.6590 (8)0.5378 (11)0.5739 (6)0.071 (4)0.389 (15)
O5A0.5740 (10)0.6517 (7)0.5773 (5)0.092 (4)0.389 (15)
O6A0.5382 (12)0.5148 (11)0.5527 (5)0.079 (4)0.389 (15)
Cl20.92437 (6)0.67480 (8)0.64438 (3)0.0492 (3)
O70.8485 (2)0.6921 (4)0.65003 (14)0.1193 (18)
O80.9511 (3)0.6909 (4)0.60710 (12)0.127 (2)
O90.9674 (2)0.7083 (4)0.67422 (14)0.141 (2)
O100.9281 (4)0.5837 (3)0.6502 (2)0.168 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0357 (3)0.0363 (3)0.0241 (2)0.0039 (2)0.00180 (19)0.0029 (2)
Cu20.0392 (3)0.0375 (3)0.0277 (3)0.0001 (2)0.0040 (2)0.0033 (2)
O10.0471 (17)0.0458 (16)0.0322 (15)0.0151 (14)0.0085 (13)0.0061 (13)
O20.0531 (18)0.0402 (16)0.0352 (16)0.0081 (14)0.0035 (13)0.0010 (13)
N10.0387 (18)0.0376 (18)0.0224 (16)0.0038 (15)0.0015 (14)0.0024 (14)
N20.0305 (17)0.0343 (18)0.0371 (19)0.0007 (14)0.0021 (14)0.0012 (14)
N30.0337 (17)0.0334 (17)0.0288 (17)0.0014 (14)0.0011 (14)0.0000 (14)
N40.0340 (18)0.0419 (19)0.0303 (18)0.0046 (15)0.0016 (14)0.0001 (15)
N50.055 (2)0.044 (2)0.0304 (19)0.0036 (17)0.0049 (16)0.0001 (16)
N60.0331 (18)0.0407 (19)0.041 (2)0.0023 (16)0.0041 (15)0.0014 (16)
N70.0359 (18)0.0358 (18)0.0319 (18)0.0018 (15)0.0020 (14)0.0013 (15)
N80.0356 (18)0.0420 (19)0.0313 (18)0.0037 (15)0.0006 (15)0.0022 (15)
C10.028 (2)0.037 (2)0.036 (2)0.0013 (17)0.0017 (17)0.0009 (18)
C20.038 (2)0.042 (2)0.052 (3)0.0057 (19)0.005 (2)0.004 (2)
C30.035 (2)0.032 (2)0.078 (4)0.0079 (19)0.001 (2)0.000 (2)
C40.048 (3)0.039 (2)0.059 (3)0.002 (2)0.007 (2)0.013 (2)
C50.046 (2)0.042 (2)0.041 (2)0.001 (2)0.002 (2)0.0111 (19)
C60.031 (2)0.033 (2)0.038 (2)0.0021 (17)0.0046 (17)0.0028 (17)
C70.034 (2)0.040 (2)0.025 (2)0.0055 (18)0.0011 (16)0.0026 (17)
C80.052 (3)0.045 (2)0.037 (2)0.013 (2)0.010 (2)0.0051 (19)
C90.066 (3)0.046 (3)0.039 (3)0.007 (2)0.000 (2)0.011 (2)
C100.049 (3)0.052 (3)0.077 (4)0.008 (2)0.005 (3)0.009 (3)
C110.055 (3)0.041 (2)0.066 (3)0.013 (2)0.002 (2)0.002 (2)
C120.039 (2)0.045 (2)0.039 (2)0.001 (2)0.0029 (19)0.0027 (19)
C130.054 (3)0.055 (3)0.037 (2)0.004 (2)0.011 (2)0.002 (2)
C140.076 (3)0.039 (2)0.025 (2)0.000 (2)0.012 (2)0.0084 (18)
C150.056 (3)0.028 (2)0.027 (2)0.0008 (19)0.0047 (19)0.0028 (16)
C160.040 (2)0.0236 (18)0.027 (2)0.0008 (16)0.0028 (17)0.0014 (15)
C170.037 (2)0.029 (2)0.033 (2)0.0017 (17)0.0038 (17)0.0013 (16)
C180.039 (2)0.053 (3)0.036 (2)0.004 (2)0.0068 (19)0.003 (2)
C190.040 (3)0.055 (3)0.063 (3)0.008 (2)0.011 (2)0.018 (2)
C200.033 (2)0.049 (3)0.066 (3)0.001 (2)0.008 (2)0.016 (2)
C210.041 (2)0.035 (2)0.042 (2)0.0032 (19)0.0109 (19)0.0041 (18)
C220.052 (3)0.044 (3)0.047 (3)0.005 (2)0.022 (2)0.000 (2)
C230.077 (3)0.033 (2)0.031 (2)0.004 (2)0.015 (2)0.0030 (18)
C240.038 (2)0.037 (2)0.051 (3)0.0039 (19)0.017 (2)0.001 (2)
C250.049 (3)0.045 (3)0.063 (3)0.002 (2)0.016 (2)0.003 (2)
C260.058 (3)0.040 (3)0.109 (5)0.003 (2)0.035 (3)0.003 (3)
C270.077 (4)0.053 (3)0.094 (5)0.009 (3)0.040 (4)0.028 (3)
C280.070 (3)0.057 (3)0.059 (3)0.010 (3)0.024 (3)0.024 (3)
C290.044 (2)0.045 (2)0.043 (3)0.011 (2)0.019 (2)0.009 (2)
C300.050 (3)0.056 (3)0.029 (2)0.014 (2)0.0082 (19)0.010 (2)
C310.071 (3)0.062 (3)0.031 (2)0.003 (3)0.006 (2)0.003 (2)
C320.080 (4)0.051 (3)0.038 (3)0.003 (3)0.005 (2)0.013 (2)
C330.055 (3)0.047 (3)0.070 (3)0.009 (2)0.004 (3)0.006 (2)
C340.054 (3)0.042 (2)0.065 (3)0.009 (2)0.001 (2)0.002 (2)
C350.044 (3)0.046 (2)0.045 (3)0.001 (2)0.010 (2)0.003 (2)
C360.037 (2)0.053 (3)0.063 (3)0.005 (2)0.009 (2)0.012 (2)
C370.031 (2)0.053 (3)0.070 (3)0.006 (2)0.007 (2)0.018 (2)
C380.039 (2)0.036 (2)0.046 (3)0.0068 (19)0.0100 (19)0.0081 (19)
C390.037 (2)0.029 (2)0.034 (2)0.0042 (17)0.0028 (17)0.0019 (17)
C400.037 (2)0.0246 (18)0.030 (2)0.0041 (16)0.0060 (17)0.0011 (16)
C410.054 (3)0.0238 (19)0.030 (2)0.0039 (19)0.0037 (19)0.0013 (16)
C420.074 (3)0.038 (2)0.034 (2)0.012 (2)0.021 (2)0.0017 (19)
C430.048 (3)0.048 (3)0.048 (3)0.012 (2)0.021 (2)0.004 (2)
C440.066 (3)0.033 (2)0.031 (2)0.003 (2)0.006 (2)0.0029 (18)
C450.053 (3)0.046 (3)0.043 (3)0.004 (2)0.020 (2)0.004 (2)
C460.038 (2)0.047 (3)0.047 (3)0.001 (2)0.002 (2)0.002 (2)
Cl10.037 (2)0.049 (2)0.036 (2)0.003 (2)0.0024 (19)0.005 (2)
O30.097 (5)0.086 (6)0.087 (6)0.013 (5)0.011 (5)0.037 (5)
O40.049 (4)0.125 (7)0.059 (4)0.028 (5)0.005 (3)0.003 (6)
O50.098 (6)0.093 (5)0.111 (6)0.003 (5)0.027 (5)0.037 (5)
O60.072 (5)0.100 (7)0.051 (4)0.018 (5)0.020 (4)0.003 (4)
Cl1A0.052 (4)0.064 (4)0.046 (4)0.009 (4)0.017 (3)0.006 (4)
O3A0.078 (6)0.124 (9)0.049 (6)0.021 (7)0.019 (5)0.007 (6)
O4A0.048 (6)0.085 (8)0.078 (7)0.006 (6)0.003 (5)0.002 (8)
O5A0.113 (8)0.054 (6)0.109 (8)0.003 (6)0.009 (7)0.004 (6)
O6A0.088 (7)0.077 (8)0.070 (8)0.027 (6)0.020 (7)0.010 (6)
Cl20.0434 (6)0.0572 (7)0.0469 (6)0.0083 (5)0.0026 (5)0.0063 (5)
O70.050 (2)0.205 (6)0.103 (4)0.011 (3)0.000 (2)0.023 (4)
O80.106 (3)0.213 (6)0.062 (3)0.061 (4)0.011 (2)0.034 (3)
O90.076 (3)0.261 (7)0.085 (3)0.056 (4)0.011 (3)0.061 (4)
O100.222 (7)0.074 (3)0.207 (7)0.021 (4)0.078 (5)0.029 (4)
Geometric parameters (Å, º) top
Cu1—O11.915 (3)C18—H180.9300
Cu1—N11.923 (3)C19—C201.358 (6)
Cu1—N32.019 (3)C19—H190.9300
Cu1—N22.148 (3)C20—C211.400 (6)
Cu1—N42.251 (3)C20—H200.9300
Cu2—O21.913 (3)C21—C221.423 (6)
Cu2—N51.919 (3)C22—C231.342 (6)
Cu2—N72.030 (3)C22—H220.9300
Cu2—N62.121 (3)C23—H230.9300
Cu2—N82.238 (3)C24—C251.416 (6)
O1—C11.305 (4)C24—C291.418 (6)
O2—C241.310 (5)C25—C261.379 (7)
N1—C71.280 (5)C25—H250.9300
N1—C81.457 (5)C26—C271.382 (8)
N2—C111.473 (5)C26—H260.9300
N2—C101.476 (5)C27—C281.354 (8)
N2—C91.479 (5)C27—H270.9300
N3—C121.317 (5)C28—C291.406 (6)
N3—C161.365 (5)C28—H280.9300
N4—C181.325 (5)C29—C301.423 (6)
N4—C171.352 (5)C30—H300.9300
N5—C301.280 (5)C31—C321.502 (6)
N5—C311.468 (5)C31—H31A0.9700
N6—C321.477 (5)C31—H31B0.9700
N6—C341.479 (5)C32—H32A0.9700
N6—C331.485 (5)C32—H32B0.9700
N7—C461.319 (5)C33—H33A0.9600
N7—C401.361 (5)C33—H33B0.9600
N8—C351.324 (5)C33—H33C0.9600
N8—C391.357 (5)C34—H34A0.9600
C1—C21.408 (5)C34—H34B0.9600
C1—C61.415 (5)C34—H34C0.9600
C2—C31.378 (6)C35—C361.388 (6)
C2—H20.9300C35—H350.9300
C3—C41.384 (6)C36—C371.365 (6)
C3—H30.9300C36—H360.9300
C4—C51.365 (6)C37—C381.402 (6)
C4—H40.9300C37—H370.9300
C5—C61.407 (5)C38—C391.403 (5)
C5—H50.9300C38—C431.426 (6)
C6—C71.434 (5)C39—C401.431 (5)
C7—H70.9300C40—C411.411 (5)
C8—C91.497 (6)C41—C441.389 (6)
C8—H8A0.9700C41—C421.440 (6)
C8—H8B0.9700C42—C431.349 (6)
C9—H9A0.9700C42—H420.9300
C9—H9B0.9700C43—H430.9300
C10—H10A0.9600C44—C451.354 (6)
C10—H10B0.9600C44—H440.9300
C10—H10C0.9600C45—C461.398 (6)
C11—H11A0.9600C45—H450.9300
C11—H11B0.9600C46—H460.9300
C11—H11C0.9600Cl1—O41.407 (8)
C12—C131.399 (6)Cl1—O51.409 (8)
C12—H120.9300Cl1—O31.415 (8)
C13—C141.354 (6)Cl1—O61.417 (8)
C13—H130.9300Cl1A—O3A1.396 (12)
C14—C151.406 (6)Cl1A—O6A1.403 (12)
C14—H140.9300Cl1A—O4A1.406 (12)
C15—C161.400 (5)Cl1A—O5A1.408 (12)
C15—C231.434 (6)Cl2—O91.367 (4)
C16—C171.436 (5)Cl2—O81.373 (4)
C17—C211.403 (5)Cl2—O101.385 (5)
C18—C191.407 (6)Cl2—O71.393 (4)
O1—Cu1—N193.32 (12)N4—C18—H18118.6
O1—Cu1—N389.55 (12)C19—C18—H18118.6
N1—Cu1—N3175.79 (13)C20—C19—C18118.8 (4)
O1—Cu1—N2143.82 (12)C20—C19—H19120.6
N1—Cu1—N282.91 (13)C18—C19—H19120.6
N3—Cu1—N296.57 (12)C19—C20—C21120.4 (4)
O1—Cu1—N4114.99 (12)C19—C20—H20119.8
N1—Cu1—N498.12 (12)C21—C20—H20119.8
N3—Cu1—N477.86 (12)C20—C21—C17116.6 (4)
N2—Cu1—N4101.14 (12)C20—C21—C22123.7 (4)
O2—Cu2—N593.37 (13)C17—C21—C22119.7 (4)
O2—Cu2—N789.04 (12)C23—C22—C21120.6 (4)
N5—Cu2—N7176.36 (14)C23—C22—H22119.7
O2—Cu2—N6152.70 (12)C21—C22—H22119.7
N5—Cu2—N684.08 (14)C22—C23—C15121.9 (4)
N7—Cu2—N695.01 (13)C22—C23—H23119.1
O2—Cu2—N8107.27 (12)C15—C23—H23119.1
N5—Cu2—N898.80 (13)O2—C24—C25118.2 (4)
N7—Cu2—N877.87 (12)O2—C24—C29124.6 (4)
N6—Cu2—N899.97 (12)C25—C24—C29117.2 (4)
C1—O1—Cu1126.8 (2)C26—C25—C24120.4 (5)
C24—O2—Cu2126.8 (3)C26—C25—H25119.8
C7—N1—C8121.3 (3)C24—C25—H25119.8
C7—N1—Cu1126.9 (3)C25—C26—C27121.5 (5)
C8—N1—Cu1111.6 (2)C25—C26—H26119.2
C11—N2—C10107.9 (3)C27—C26—H26119.2
C11—N2—C9111.3 (3)C28—C27—C26119.6 (5)
C10—N2—C9110.1 (3)C28—C27—H27120.2
C11—N2—Cu1111.9 (2)C26—C27—H27120.2
C10—N2—Cu1110.5 (3)C27—C28—C29121.2 (5)
C9—N2—Cu1105.2 (2)C27—C28—H28119.4
C12—N3—C16118.7 (3)C29—C28—H28119.4
C12—N3—Cu1124.4 (3)C28—C29—C24120.1 (4)
C16—N3—Cu1116.8 (2)C28—C29—C30117.4 (4)
C18—N4—C17117.7 (3)C24—C29—C30122.5 (4)
C18—N4—Cu1132.2 (3)N5—C30—C29126.0 (4)
C17—N4—Cu1110.1 (2)N5—C30—H30117.0
C30—N5—C31121.4 (4)C29—C30—H30117.0
C30—N5—Cu2126.5 (3)N5—C31—C32105.4 (4)
C31—N5—Cu2112.1 (3)N5—C31—H31A110.7
C32—N6—C34110.7 (4)C32—C31—H31A110.7
C32—N6—C33110.5 (3)N5—C31—H31B110.7
C34—N6—C33107.4 (3)C32—C31—H31B110.7
C32—N6—Cu2104.7 (3)H31A—C31—H31B108.8
C34—N6—Cu2113.1 (3)N6—C32—C31110.2 (4)
C33—N6—Cu2110.5 (3)N6—C32—H32A109.6
C46—N7—C40118.6 (3)C31—C32—H32A109.6
C46—N7—Cu2125.1 (3)N6—C32—H32B109.6
C40—N7—Cu2116.2 (2)C31—C32—H32B109.6
C35—N8—C39117.7 (4)H32A—C32—H32B108.1
C35—N8—Cu2132.0 (3)N6—C33—H33A109.5
C39—N8—Cu2110.3 (2)N6—C33—H33B109.5
O1—C1—C2118.6 (4)H33A—C33—H33B109.5
O1—C1—C6124.3 (3)N6—C33—H33C109.5
C2—C1—C6117.0 (4)H33A—C33—H33C109.5
C3—C2—C1121.6 (4)H33B—C33—H33C109.5
C3—C2—H2119.2N6—C34—H34A109.5
C1—C2—H2119.2N6—C34—H34B109.5
C2—C3—C4121.0 (4)H34A—C34—H34B109.5
C2—C3—H3119.5N6—C34—H34C109.5
C4—C3—H3119.5H34A—C34—H34C109.5
C5—C4—C3118.9 (4)H34B—C34—H34C109.5
C5—C4—H4120.5N8—C35—C36123.1 (4)
C3—C4—H4120.5N8—C35—H35118.4
C4—C5—C6121.7 (4)C36—C35—H35118.4
C4—C5—H5119.2C37—C36—C35119.3 (4)
C6—C5—H5119.2C37—C36—H36120.3
C5—C6—C1119.8 (4)C35—C36—H36120.3
C5—C6—C7116.9 (4)C36—C37—C38119.7 (4)
C1—C6—C7123.4 (3)C36—C37—H37120.1
N1—C7—C6124.8 (3)C38—C37—H37120.1
N1—C7—H7117.6C37—C38—C39116.9 (4)
C6—C7—H7117.6C37—C38—C43124.3 (4)
N1—C8—C9105.5 (3)C39—C38—C43118.7 (4)
N1—C8—H8A110.6N8—C39—C38123.1 (4)
C9—C8—H8A110.6N8—C39—C40116.6 (3)
N1—C8—H8B110.6C38—C39—C40120.1 (4)
C9—C8—H8B110.6N7—C40—C41121.5 (4)
H8A—C8—H8B108.8N7—C40—C39118.4 (3)
N2—C9—C8110.2 (3)C41—C40—C39120.0 (3)
N2—C9—H9A109.6C44—C41—C40117.8 (4)
C8—C9—H9A109.6C44—C41—C42124.0 (4)
N2—C9—H9B109.6C40—C41—C42118.1 (4)
C8—C9—H9B109.6C43—C42—C41121.2 (4)
H9A—C9—H9B108.1C43—C42—H42119.4
N2—C10—H10A109.5C41—C42—H42119.4
N2—C10—H10B109.5C42—C43—C38121.5 (4)
H10A—C10—H10B109.5C42—C43—H43119.2
N2—C10—H10C109.5C38—C43—H43119.2
H10A—C10—H10C109.5C45—C44—C41120.1 (4)
H10B—C10—H10C109.5C45—C44—H44120.0
N2—C11—H11A109.5C41—C44—H44120.0
N2—C11—H11B109.5C44—C45—C46119.1 (4)
H11A—C11—H11B109.5C44—C45—H45120.4
N2—C11—H11C109.5C46—C45—H45120.4
H11A—C11—H11C109.5N7—C46—C45122.8 (4)
H11B—C11—H11C109.5N7—C46—H46118.6
N3—C12—C13122.4 (4)C45—C46—H46118.6
N3—C12—H12118.8O4—Cl1—O5109.0 (7)
C13—C12—H12118.8O4—Cl1—O3112.2 (7)
C14—C13—C12119.7 (4)O5—Cl1—O3105.2 (6)
C14—C13—H13120.2O4—Cl1—O6109.6 (7)
C12—C13—H13120.2O5—Cl1—O6109.9 (8)
C13—C14—C15119.5 (4)O3—Cl1—O6110.9 (7)
C13—C14—H14120.3O3A—Cl1A—O6A112.6 (12)
C15—C14—H14120.3O3A—Cl1A—O4A109.9 (13)
C16—C15—C14117.7 (4)O6A—Cl1A—O4A109.9 (13)
C16—C15—C23118.4 (4)O3A—Cl1A—O5A104.8 (11)
C14—C15—C23123.8 (4)O6A—Cl1A—O5A110.5 (12)
N3—C16—C15121.9 (4)O4A—Cl1A—O5A109.0 (11)
N3—C16—C17118.0 (3)O9—Cl2—O8115.0 (3)
C15—C16—C17120.0 (4)O9—Cl2—O10103.4 (4)
N4—C17—C21123.6 (4)O8—Cl2—O10106.7 (4)
N4—C17—C16116.9 (3)O9—Cl2—O7112.1 (3)
C21—C17—C16119.3 (4)O8—Cl2—O7115.6 (3)
N4—C18—C19122.8 (4)O10—Cl2—O7102.3 (4)
Cu1—O1—C1—C2176.3 (3)Cu2—O2—C24—C25179.2 (3)
Cu1—O1—C1—C64.2 (5)Cu2—O2—C24—C290.0 (6)
O1—C1—C2—C3177.6 (4)O2—C24—C25—C26177.3 (4)
C6—C1—C2—C32.9 (6)C29—C24—C25—C263.4 (6)
C1—C2—C3—C42.0 (7)C24—C25—C26—C271.8 (7)
C2—C3—C4—C50.1 (7)C25—C26—C27—C280.5 (8)
C3—C4—C5—C61.2 (6)C26—C27—C28—C291.0 (8)
C4—C5—C6—C10.2 (6)C27—C28—C29—C240.8 (7)
C4—C5—C6—C7179.0 (4)C27—C28—C29—C30177.3 (4)
O1—C1—C6—C5178.8 (4)O2—C24—C29—C28177.8 (4)
C2—C1—C6—C51.8 (5)C25—C24—C29—C282.9 (6)
O1—C1—C6—C72.5 (6)O2—C24—C29—C304.1 (6)
C2—C1—C6—C7176.9 (3)C25—C24—C29—C30175.1 (4)
C8—N1—C7—C6172.5 (4)C31—N5—C30—C29174.6 (4)
Cu1—N1—C7—C62.2 (6)Cu2—N5—C30—C291.9 (6)
C5—C6—C7—N1177.6 (4)C28—C29—C30—N5178.8 (4)
C1—C6—C7—N13.7 (6)C24—C29—C30—N53.1 (7)
C7—N1—C8—C9126.6 (4)C30—N5—C31—C32132.7 (4)
Cu1—N1—C8—C948.9 (4)Cu2—N5—C31—C3244.2 (4)
C11—N2—C9—C889.4 (4)C34—N6—C32—C3185.7 (4)
C10—N2—C9—C8151.0 (4)C33—N6—C32—C31155.4 (4)
Cu1—N2—C9—C832.0 (4)Cu2—N6—C32—C3136.4 (4)
N1—C8—C9—N252.8 (4)N5—C31—C32—N653.2 (5)
C16—N3—C12—C133.8 (6)C39—N8—C35—C360.3 (6)
Cu1—N3—C12—C13179.7 (3)Cu2—N8—C35—C36179.3 (3)
N3—C12—C13—C141.5 (7)N8—C35—C36—C372.8 (7)
C12—C13—C14—C151.0 (7)C35—C36—C37—C382.8 (7)
C13—C14—C15—C161.1 (6)C36—C37—C38—C390.4 (6)
C13—C14—C15—C23176.9 (4)C36—C37—C38—C43176.1 (4)
C12—N3—C16—C153.6 (5)C35—N8—C39—C382.3 (6)
Cu1—N3—C16—C15179.8 (3)Cu2—N8—C39—C38177.0 (3)
C12—N3—C16—C17173.3 (3)C35—N8—C39—C40173.7 (3)
Cu1—N3—C16—C173.0 (4)Cu2—N8—C39—C407.1 (4)
C14—C15—C16—N31.2 (5)C37—C38—C39—N82.2 (6)
C23—C15—C16—N3179.3 (3)C43—C38—C39—N8179.0 (4)
C14—C15—C16—C17175.6 (3)C37—C38—C39—C40173.6 (4)
C23—C15—C16—C172.5 (5)C43—C38—C39—C403.1 (6)
C18—N4—C17—C211.7 (6)C46—N7—C40—C413.3 (5)
Cu1—N4—C17—C21178.2 (3)Cu2—N7—C40—C41179.1 (3)
C18—N4—C17—C16174.6 (3)C46—N7—C40—C39173.5 (3)
Cu1—N4—C17—C165.5 (4)Cu2—N7—C40—C394.1 (4)
N3—C16—C17—N42.2 (5)N8—C39—C40—N72.6 (5)
C15—C16—C17—N4174.7 (3)C38—C39—C40—N7178.7 (3)
N3—C16—C17—C21178.7 (3)N8—C39—C40—C41174.2 (3)
C15—C16—C17—C211.8 (5)C38—C39—C40—C411.8 (5)
C17—N4—C18—C190.7 (6)N7—C40—C41—C442.9 (5)
Cu1—N4—C18—C19179.2 (3)C39—C40—C41—C44173.9 (3)
N4—C18—C19—C201.0 (7)N7—C40—C41—C42178.1 (3)
C18—C19—C20—C211.8 (7)C39—C40—C41—C425.2 (5)
C19—C20—C21—C170.9 (6)C44—C41—C42—C43175.4 (4)
C19—C20—C21—C22175.2 (4)C40—C41—C42—C433.6 (6)
N4—C17—C21—C200.9 (6)C41—C42—C43—C381.4 (6)
C16—C17—C21—C20175.3 (3)C37—C38—C43—C42171.7 (4)
N4—C17—C21—C22177.1 (4)C39—C38—C43—C424.8 (6)
C16—C17—C21—C220.9 (6)C40—C41—C44—C450.5 (6)
C20—C21—C22—C23173.0 (4)C42—C41—C44—C45179.5 (4)
C17—C21—C22—C232.9 (6)C41—C44—C45—C461.3 (6)
C21—C22—C23—C152.1 (6)C40—N7—C46—C451.4 (6)
C16—C15—C23—C220.6 (6)Cu2—N7—C46—C45178.7 (3)
C14—C15—C23—C22177.4 (4)C44—C45—C46—N70.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O10i0.932.513.293 (7)142
C7—H7···O4ii0.932.593.368 (13)141
C14—H14···O20.932.333.191 (5)153
C22—H22···O3Aiii0.932.563.411 (14)152
C27—H27···O5Aiv0.932.413.296 (13)158
C31—H31A···O70.972.593.530 (7)165
C36—H36···O6Aiii0.932.503.143 (16)127
C43—H43···O9v0.932.533.417 (6)160
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+3/2, y+1, z1/2; (iii) x+1, y+1, z+1; (iv) x+3/2, y1/2, z; (v) x1/2, y+3/2, z+1.
Geometric parameters (Å, °) of C—H···π contacts top
Parameters as defined in PLATON (Spek, 2020). Cg1, Cg2, Cg3 and Cg4 are the centroids of the N4/C17–C21, C1–C6, N8/C35–C39 and C24–C29 rings, respectively.
C—H···CgH···CgC···CgC—H···CgSymmetry
C11—H11B···Cg22.783.447 (5)1283/2 - x, 1/2 + y, z
C23—H23···Cg32.802.337 (5)118x, y, z
C34—H34C···Cg42.802.434 (6)1243/2 - x, 1/2 + y, z
C44—H44···Cg12.783.369 (5)1223/2 - x, 1/2 + y, z
 

Acknowledgements

The authors acknowledge the Central University of Tamil Nadu, India, for providing an instrumentation facility. UV acknowledges support from SASTRA Deemed University, Thanjavur, Tamilnadu, India.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChieh, P. C. & Palenik, G. J. (1972). Inorg. Chem. 11, 816–819.  CSD CrossRef CAS Web of Science Google Scholar
First citationGoswami, T. K., Gadadhar, S., Roy, M., Nethaji, M., Karande, A. A. & Chakravarty, A. R. (2012). Organometallics, 31, 3010–3021.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJaividhya, P., Dhivya, R., Akbarsha, M. A. & Palaniandavar, M. (2012). J. Inorg. Biochem. 114, 94–105.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKarpagam, S., Kartikeyan, R., Paravai Nachiyar, P., Velusamy, M., Kannan, M., Krishnan, M., Chitgupi, U., Lovell, J. F., Abdulkader Akbarsha, M. & Rajendiran, V. (2019). J. Coord. Chem. 72, 3102–3127.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarpagam, S., Mamindla, A., Kumar Sali, V., Niranjana, R. S., Periasamy, V. S., Alshatwi, A. A., Akbarsha, M. A. & Rajendiran, V. (2022). Inorg. Chim. Acta, 531, 120729–120740.  Web of Science CrossRef CAS Google Scholar
First citationKo, B., Chang, C., Lai, S., Lai, F. & Lin, C. (2012). Polyhedron, 45, 49–54.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMurphy, G., Murphy, C., Murphy, B. & Hathaway, B. (1997). J. Chem. Soc. Dalton Trans. pp. 2653–2660.  CSD CrossRef Web of Science Google Scholar
First citationMurphy, G., Nagle, P., Murphy, B. & Hathaway, B. (1997). J. Chem. Soc. Dalton Trans. pp. 2645–2652.  CSD CrossRef Web of Science Google Scholar
First citationNagle, P., O'Sullivan, E., Hathaway, B. J. & Muller, E. (1990). J. Chem. Soc. Dalton Trans. pp. 3399–3406.  CSD CrossRef Web of Science Google Scholar
First citationRadhakrishnan, K., Khamrang, T., Sambantham, K., Sali, V. K., Chitgupi, U., Lovell, J. F., Mohammad, A. A. & Venugopal, R. (2021). Polyhedron, 194, 114886–114899.  Web of Science CSD CrossRef CAS Google Scholar
First citationRajarajeswari, C., Ganeshpandian, M., Palaniandavar, M., Riyasdeen, A. & Akbarsha, M. A. (2014). J. Inorg. Biochem. 140, 255–268.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRajendiran, V., Karthik, R., Palaniandavar, M., Stoeckli-Evans, H., Periasamy, V. S., Akbarsha, M. A., Srinag, B. S. & Krishnamurthy, H. (2007). Inorg. Chem. 46, 8208–8221.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSathya, V. & Murali, M. (2018). Inorg. Chem. Commun. 92, 55–59.  Web of Science CSD CrossRef CAS Google Scholar
First citationSelvakumar, B., Rajendiran, V., Uma Maheswari, P., Stoeckli-Evans, H. & Palaniandavar, M. (2006). J. Inorg. Biochem. 100, 316–330.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSharma, M., Ganeshpandian, M., Majumder, M., Tamilarasan, A., Sharma, M., Mukhopadhyay, R., Islam, N. S. & Palaniandavar, M. (2020). Dalton Trans. 49, 8282–8297.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTadokoro, M., Toyoda, J., Isobe, K., Itoh, T., Miyazaki, A., Enoki, T. & Nakasuji, K. (1995). Chem. Lett. 24, 613–614.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds