research communications
κN)ethyl]imino-κN}methyl)phenolato-κO](1,10-phenanthroline-κ2N,N′)copper(II) perchlorate
of [2-({[2-(dimethylamino-aDepartment of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur - 610 005, India, bDepartment of Chemistry, North Eastern Hill University, Shillong - 793 022, India, and cSchool of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur - 613 401, Tamil Nadu, India
*Correspondence e-mail: rajendiran@cutn.ac.in
The title compound, [Cu(C11H15N2O)(C12H8N2)]ClO4 or [Cu(L)(phen)](ClO4) {where L refers to the deprotonated form of 2-[(2-dimethylaminoethylimino)methyl]phenol} and phen is 1,10-phenanthroline) is a mononuclear mixed ligand copper(II) complex. The CuII atom is coordinated by two N and one O atoms of the tridentate Schiff base ligand (HL) and two N atoms of the 1,10-phenanthroline ligand, resulting in a five-coordinate complex. The of the title complex contains two crystallographically independent complex cations (a and b) with a slightly different geometry around the CuII ion. The value of the trigonality index τ, indicates that in both cations a and b, the CuII atoms display a square-pyramidal distorted trigonal–bipyramidal (SPDTBP) geometry, although the distortion is greater for cation a.
Keywords: mixed ligand copper(II) complexes; anticancer agents; crystal structure; square-pyramidal distorted trigonal–bipyramidal (SPDTBP) geometry.
CCDC reference: 2244622
1. Chemical context
The design and synthesis of mixed ligand copper(II) complexes have received much attention as they exhibit promising anticancer and nuclease activities compared to simple 1:1 complexes. Palaniandavar and co-workers (Sharma et al., 2020; Rajendiran et al., 2007; Selvakumar et al., 2006) and Chakravarty and co-workers (Goswami et al., 2012) have reported the X-ray crystal structures of several mixed ligand copper(II) complexes that have biological activity. Recently, our group has reported a series of mixed ligand copper(II) complexes and their biological applications (Karpagam et al., 2019, 2022; Radhakrishnan et al., 2021). Palaniandavar and co-workers (Jaividhya et al., 2012) prepared the title complex I and investigated its DNA binding, cleavage, and anticancer activity. It exhibits good cytotoxicity against MCF7 breast cancer cells with an IC50 value of 1.20 ± 0.10 µM and against the ME180 human cervical epidermoid carcinoma cells with an IC50 value of 24.6 ± 0.10 µM at 48 h incubation (Jaividhya et al., 2012). However, the of complex I was not reported. In this work we report the of this mixed ligand copper(II) complex.
2. Structural commentary
The title compound I is of the type {[Cu(L)(phen)](ClO4)} {where L is the deprotonated form of 2-[(2-dimethylaminoethylimino)methyl]phenol and phen is 1,10-phenanthroline} is a mononuclear mixed ligand copper(II) complex. The metal atom is coordinated to the tridentate Schiff base ligand (HL) through two N and one O atoms and to two N atoms of the 1,10-phenanthroline ligand, resulting in a five-coordinate complex.
Complex I (Fig. 1) crystallizes in the orthorhombic in the Pbca The contains two crystallographically independent complex cations (a and b) with a slightly different geometry around the CuII ion. Selected geometrical parameters are listed in Table 1. The value of the trigonality index τ suggests that both cations, a and b, display a square-pyramidal distorted trigonal–bipyramidal (SPDTBP) geometry, with cation a being more distorted than cation b.
|
In cation a, the Cu1 atom is coordinated by the two nitrogen atoms (N1, N2) and the phenolate oxygen atom (O1) of the Schiff base primary ligand, and to two nitrogen (N3, N4) atoms of the phen co-ligand. The value of the trigonality index τ = 0.53 [τ = (β − α)/60, where β = N1—Cu1—N3 = 175.79 (13)° and α = N2—Cu1—O1 = 143.82 (12)°; τ is 0 for a square-pyramidal geometry and 1 for trigonal–bipyramidal] reveals that the coordination environment around Cu1 is best described as having a square-pyramidal distorted trigonal-bipyramidal (SPDTBP) geometry (Addison et al., 1984; Selvakumar et al., 2006). The amine nitrogen atoms (N1, N2) and the phenolate oxygen atom (O1) of the meridionally coordinated Schiff base ligand and one of the imine nitrogen atoms of phen (N3) occupy the corners of the (Cu1)N3O basal plane of this geometry. The other nitrogen (N4) of the phen ligand occupies the axial position at a distance of 2.251 (3) Å, longer than the equatorial distances [Cu1—O1 = 1.915 (3) Å, Cu1—N1 = 1.923 (3) Å, Cu1—N2 = 2.148 (3) Å, Cu1—N3 = 2.019 (3) Å], which is due to the presence of two electrons in the dz2 orbital of copper(II). The Cu1—N2amine bond is longer than the Cu1—N1imine bond formed by the Schiff base ligand, which is expected of sp3 and sp2 hybridizations of the amine (N2) and imine (N1) nitrogen atoms, respectively. The Cu1—Nimine bond distance is shorter than that of trans Cu1—Nphen; this may be attributed to the fact that the azomethine nitrogen is a stronger base compared with the pyridyl nitrogen. The bond angles deviate from the ideal trigonal–bipyramidal angles of 90 and 120°, respectively, revealing the presence of significant distortion in the Cu1 coordination geometry.
In cation b, the Cu2 ion is coordinated by the two nitrogen atoms (N5, N6), the phenolate oxygen atom (O2) of the Schiff base primary ligand, and by the two nitrogen (N7, N8) atoms of the phen co-ligand. As for a, cation b also exhibits square-pyramidal distorted trigonal–bipyramidal (SPDTBP) geometry (Murphy, Nagle et al., 1997; Murphy, Murphy et al., 1997; Nagle et al., 1990; Rajarajeswari et al., 2014; Jaividhya et al., 2012; Radhakrishnan et al., 2021), but the value of the trigonality index τ is slightly smaller at 0.40 [τ = (β − α)/60, where β = N5—Cu2—N7= 176.38 (14)° and α = O2—Cu2—N6 = 152.71 (12)°], indicating that it is less distorted than cation a. Similar to cation a, the amine nitrogen atoms (N5, N6) and the phenolate oxygen atom (O2) of the meridionally coordinated Schiff base ligand and one of the imine nitrogen atoms of phen occupy the corners of the (Cu2)N3O basal plane of this geometry. The other nitrogen (N8) of the phen ligand occupies the axial position at a distance of 2.238 (3) Å, again longer than the bonds to the equatorial donor atoms [Cu2—O2 = 1.913 (3) Å, Cu2—N5 = 1.919 (3) Å, Cu2—N6 = 2.121 (3) Å, Cu2—N7 = 2.030 (3) Å) but shorter than the axial bond Cu1—N4 of cation a. As a result of a slight axial compression of the axial phen nitrogen in cation b, a slight increase of the equatorial phen nitrogen bond length (Cu2—N7) is observed. On the other hand, the other equatorial bonds in b are shorter than in cation a. Similar to cation a, the Cu2—N6amine bond is longer than the Cu2—N5imine bond formed by the Schiff base ligand, as expected for sp3 and sp2 hybridizations of the amine (N6) and imine (N5) nitrogen atoms, respectively. The Cu2—Nimine bond distance is shorter than the trans Cu2—Nphen bond; this is also attributed to stronger basicity of the azomethine nitrogen compared to the pyridyl nitrogen. The deviations in the values of the bond angles with respect to the ideal square-pyramidal angles of 90 and 180°, respectively, again reveal a significant distortion in the Cu2 coordination geometry.
3. Supramolecular features
The two crystallographically independent complex cations stack along the c-axis direction with a slightly different packing arrangement. The layered structures formed by complex cations a (coloured in blue) and b (coloured in green) are shown on the left in Fig. 2. In this complex, layers parallel to the ab plane formed by a cations alternate along the c-axis with layers of b cations. The cations in the supramolecular structure are linked by weak C—H⋯O hydrogen bonds (Table 2) mediated by the oxygen atoms of the perchlorate anions. Extensive π–π interactions of moderate-to-weak strength are present in the structure, with centroid–centroid distances in the range 3.881 (2) to 4.121 (2) ÅÅ. In addition, C—H⋯π interactions (Table 3) provide enhanced stability to the packing arrangement.
|
4. Database survey
The Cambridge Structural Database (CSD, Version 5.27, updated in November 2022; Groom et al., 2016) contains no entries with the exact structure of the title compound, [Cu(L)(phen)]ClO4. However, a few reports are available for similar mixed ligand CuII complexes containing L and diimine ligands, for example [Cu(L)(bpy)]ClO4 (Ko et al., 2012), [Cu(L)(dpq)]ClO4 and [Cu(L)(dmdppz)]ClO4 (Jaividhya et al., 2012) where bpy is 2,2′-bipyridine, dpq is dipyrido[3,2-f:2′,3′-h]quinoxaline and dmdppz = 11,12-dimethyldipyrido[3,2-a:2′,3′-c]phenazine. Similar to the title compound, in these complexes the N,N,O-tridentate Schiff base ligand is coordinated meridionally to the CuII ion and one of the diimine nitrogen atoms is coordinated in an axial position. The value of the trigonality index of the bpy complex (τ = 0.13) is less than for the dpq (τ = 0.37) and dmdppz (τ = 0.39) complexes, as well as the title complex with phen (a, τ = 0.53; b, τ = 0.40), which exhibits the largest distortion. In addition to these diimine complexes, there are a few reports on five-coordinate mixed ligand copper(II) complexes bearing L and an N,N-donor ligand such as benzimidazole and an O,O-donor ligand such as salicylaldehyde (Sathya & Murali, 2018). The N,N,O-tridentate Schiff base ligand is coordinated to the CuII ion in a meridional fashion and the pyridine nitrogen of the benzimidazole ligand occupies the axial position, whereas in the salicylaldehyde complex, the carbonyl oxygen occupies the axial position. The former complex is distorted from a square-pyramidal geometry and shows a trigonality index τ of 0.25 but the latter complex exhibits only a slight distortion from an ideal square-pyramidal geometry. Similarly, Tadokaro et al. (1995) reported the molecular structure of a mixed ligand complex with L and bidentate mono-deprotonated 2,2′-biimidazolate (N,N-donor) ligands and discussed the existence of a capped-type dimeric hydrogen bond between the molecules. In another case, the authors attempted to synthesize an octahedral bis(N-b-dimethylaminoethylsalicyladiminato)copper(II) complex (Chieh & Palenik, 1972). They expected both the tridentate N,N,O-Schiff base ligands to coordinate to the CuII ion and form an octahedral coordination geometry. However, the revealed that the CuII ion is pentacoordinate with one of the dimethylamino groups of the ligand not bonded to it. The resulting complex is highly distorted but appears closer to a trigonal–bipyramidal geometry rather than square pyramidal.
5. Synthesis and crystallization
The Schiff base-type ligand 2-[(2-dimethylaminoethylimino)methyl]phenol (HL) was prepared using the synthetic procedure reported by Jaividhya et al. (2012). Complex I was prepared by addition of a methanolic solution (10 mL) of 1,10-phenanthroline (0.1802 g, 1 mmol) and HL (0.1949 g, 1 mmol) pretreated with triethylamine (139 µL, 1 mmol) to remove the phenolic hydrogen, to a solution of copper(II) perchlorate hexahydrate (0.37 g, 1 mmol) in methanol (15 mL) and then stirring at 313 K for 2 h. The green solid obtained was collected by suction filtration, washed with diethyl ether, and then dried under vacuum. A crystal suitable for X-ray was obtained by dissolving the complex in methanol and allowing it to crystallize.
6. Refinement
Crystal data, data collection and structure . H atoms were placed in idealized positions and constrained to ride on their parent atoms, with d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic, 0.97 Å, Uiso(H) = 1.2Ueq(C) for CH2 and 0.96 Å, Uiso(H) = 1.5Ueq(C) for CH3 atoms. The hydrogens bound to carbon were refined using standard riding models. The perchlorate ions are disordered. The first, Cl1/O3–O6, was successfully refined with two disorder components which refined to a ratio of 0.611 (15):0.389 (15). Attempts to model the second perchlorate ion (Cl2/O7–O10) did not improve the disagreement factors.
details are summarized in Table 4
|
Supporting information
CCDC reference: 2244622
https://doi.org/10.1107/S2056989023001767/dj2061sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023001767/dj2061Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009), enCIFer (Allen et al., 2004), publCIF (Westrip, 2012), PLATON (Spek, 2020).[Cu(C11H15N2O)(C12H8N2)]ClO4 | Dx = 1.560 Mg m−3 |
Mr = 534.44 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 28155 reflections |
a = 17.8598 (8) Å | θ = 3.2–26.4° |
b = 15.0255 (7) Å | µ = 1.12 mm−1 |
c = 33.920 (2) Å | T = 293 K |
V = 9102.6 (9) Å3 | Needle, green |
Z = 16 | 0.05 × 0.04 × 0.03 mm |
F(000) = 4400 |
Xcalibur, Eos, Gemini diffractometer | 9292 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 6329 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
Detector resolution: 8.0640 pixels mm-1 | θmax = 26.4°, θmin = 3.2° |
ω scans | h = −22→20 |
Absorption correction: multi-scan (CrysAlisPro; Agilent, 2013) | k = −17→18 |
Tmin = 0.792, Tmax = 1.000 | l = −40→42 |
28151 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0401P)2 + 10.7563P] where P = (Fo2 + 2Fc2)/3 |
9292 reflections | (Δ/σ)max = 0.001 |
663 parameters | Δρmax = 0.94 e Å−3 |
154 restraints | Δρmin = −0.42 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Data collection: A crystal of complex I was mounted on a glass fiber. Data were collected on an Oxford Diffraction Xcalibur EOS Gemini Diffractometer at ambient temperature using graphite-monochromated Mo Kα radiation (λ = 0.7107 Å). The structure was solved with SHELXT (Sheldrick, 2015a) and refined with SHELXL (Sheldrick, 2015b). The graphic interface package PLATON (Spek, 2020), ORTEP (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2020) were used for analysis and generation of images. Non-hydrogen atoms were refined anisotropically. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.81742 (3) | 0.43972 (3) | 0.24313 (2) | 0.03202 (13) | |
Cu2 | 0.83369 (3) | 0.67803 (3) | 0.47565 (2) | 0.03479 (14) | |
O1 | 0.87548 (16) | 0.33345 (18) | 0.24931 (8) | 0.0417 (7) | |
O2 | 0.88228 (16) | 0.56677 (18) | 0.46583 (8) | 0.0428 (7) | |
N1 | 0.80139 (17) | 0.4198 (2) | 0.18778 (9) | 0.0329 (7) | |
N2 | 0.82238 (17) | 0.5766 (2) | 0.22508 (9) | 0.0340 (7) | |
N3 | 0.82613 (17) | 0.4625 (2) | 0.30162 (9) | 0.0320 (7) | |
N4 | 0.69757 (17) | 0.4291 (2) | 0.26310 (9) | 0.0354 (7) | |
N5 | 0.8188 (2) | 0.6527 (2) | 0.53054 (10) | 0.0431 (9) | |
N6 | 0.83297 (17) | 0.8127 (2) | 0.49442 (10) | 0.0382 (8) | |
N7 | 0.84254 (17) | 0.7071 (2) | 0.41738 (9) | 0.0345 (7) | |
N8 | 0.71511 (18) | 0.6647 (2) | 0.45510 (9) | 0.0363 (8) | |
C1 | 0.8861 (2) | 0.2715 (2) | 0.22294 (11) | 0.0337 (9) | |
C2 | 0.9272 (2) | 0.1952 (3) | 0.23366 (14) | 0.0442 (10) | |
H2 | 0.947412 | 0.191565 | 0.258877 | 0.053* | |
C3 | 0.9382 (2) | 0.1260 (3) | 0.20769 (15) | 0.0482 (12) | |
H3 | 0.964274 | 0.075734 | 0.215921 | 0.058* | |
C4 | 0.9110 (2) | 0.1301 (3) | 0.16951 (14) | 0.0486 (11) | |
H4 | 0.918553 | 0.083030 | 0.152142 | 0.058* | |
C5 | 0.8730 (2) | 0.2043 (3) | 0.15776 (13) | 0.0430 (10) | |
H5 | 0.855520 | 0.207798 | 0.131978 | 0.052* | |
C6 | 0.8596 (2) | 0.2757 (2) | 0.18367 (11) | 0.0337 (9) | |
C7 | 0.8202 (2) | 0.3509 (3) | 0.16796 (11) | 0.0330 (9) | |
H7 | 0.807316 | 0.349462 | 0.141397 | 0.040* | |
C8 | 0.7694 (3) | 0.4979 (3) | 0.16863 (12) | 0.0446 (11) | |
H8A | 0.717826 | 0.506449 | 0.176737 | 0.054* | |
H8B | 0.770938 | 0.491494 | 0.140189 | 0.054* | |
C9 | 0.8169 (3) | 0.5746 (3) | 0.18160 (13) | 0.0501 (12) | |
H9A | 0.866550 | 0.569102 | 0.170287 | 0.060* | |
H9B | 0.795080 | 0.629873 | 0.172247 | 0.060* | |
C10 | 0.8941 (3) | 0.6170 (3) | 0.23719 (16) | 0.0595 (13) | |
H10A | 0.934812 | 0.583264 | 0.226281 | 0.089* | |
H10B | 0.897643 | 0.616765 | 0.265432 | 0.089* | |
H10C | 0.896568 | 0.677117 | 0.227737 | 0.089* | |
C11 | 0.7615 (3) | 0.6296 (3) | 0.24258 (14) | 0.0537 (12) | |
H11A | 0.763968 | 0.625587 | 0.270795 | 0.081* | |
H11B | 0.714111 | 0.607164 | 0.233643 | 0.081* | |
H11C | 0.766675 | 0.690688 | 0.234707 | 0.081* | |
C12 | 0.8900 (2) | 0.4684 (3) | 0.32089 (12) | 0.0414 (10) | |
H12 | 0.934521 | 0.462017 | 0.306958 | 0.050* | |
C13 | 0.8933 (3) | 0.4838 (3) | 0.36151 (13) | 0.0490 (11) | |
H13 | 0.939374 | 0.488978 | 0.374070 | 0.059* | |
C14 | 0.8291 (3) | 0.4912 (3) | 0.38247 (12) | 0.0465 (11) | |
H14 | 0.830755 | 0.502418 | 0.409422 | 0.056* | |
C15 | 0.7599 (2) | 0.4819 (2) | 0.36316 (11) | 0.0368 (9) | |
C16 | 0.7609 (2) | 0.4667 (2) | 0.32245 (11) | 0.0301 (8) | |
C17 | 0.6921 (2) | 0.4504 (2) | 0.30172 (11) | 0.0329 (9) | |
C18 | 0.6353 (2) | 0.4067 (3) | 0.24435 (12) | 0.0427 (10) | |
H18 | 0.638294 | 0.391219 | 0.217854 | 0.051* | |
C19 | 0.5647 (2) | 0.4055 (3) | 0.26280 (15) | 0.0528 (12) | |
H19 | 0.522211 | 0.388547 | 0.248859 | 0.063* | |
C20 | 0.5598 (2) | 0.4294 (3) | 0.30130 (15) | 0.0495 (11) | |
H20 | 0.513344 | 0.430513 | 0.313678 | 0.059* | |
C21 | 0.6242 (2) | 0.4524 (3) | 0.32249 (12) | 0.0395 (10) | |
C22 | 0.6243 (3) | 0.4718 (3) | 0.36356 (13) | 0.0477 (11) | |
H22 | 0.579133 | 0.475757 | 0.377102 | 0.057* | |
C23 | 0.6889 (3) | 0.4844 (3) | 0.38292 (13) | 0.0471 (11) | |
H23 | 0.687706 | 0.494976 | 0.409920 | 0.057* | |
C24 | 0.8926 (2) | 0.5020 (3) | 0.49110 (13) | 0.0417 (10) | |
C25 | 0.9310 (3) | 0.4249 (3) | 0.47817 (15) | 0.0526 (12) | |
H25 | 0.949904 | 0.422418 | 0.452650 | 0.063* | |
C26 | 0.9405 (3) | 0.3534 (3) | 0.5032 (2) | 0.0691 (16) | |
H26 | 0.964649 | 0.302654 | 0.493954 | 0.083* | |
C27 | 0.9149 (3) | 0.3554 (4) | 0.5416 (2) | 0.0746 (18) | |
H27 | 0.921524 | 0.306329 | 0.557955 | 0.090* | |
C28 | 0.8802 (3) | 0.4293 (3) | 0.55532 (15) | 0.0618 (14) | |
H28 | 0.863768 | 0.430882 | 0.581323 | 0.074* | |
C29 | 0.8686 (2) | 0.5037 (3) | 0.53095 (13) | 0.0440 (11) | |
C30 | 0.8346 (2) | 0.5799 (3) | 0.54829 (12) | 0.0450 (11) | |
H30 | 0.822847 | 0.576548 | 0.574952 | 0.054* | |
C31 | 0.7896 (3) | 0.7301 (3) | 0.55210 (13) | 0.0547 (12) | |
H31A | 0.795714 | 0.722062 | 0.580293 | 0.066* | |
H31B | 0.736946 | 0.738936 | 0.546402 | 0.066* | |
C32 | 0.8350 (3) | 0.8079 (3) | 0.53790 (13) | 0.0564 (13) | |
H32A | 0.814990 | 0.862515 | 0.548954 | 0.068* | |
H32B | 0.886390 | 0.801664 | 0.546723 | 0.068* | |
C33 | 0.8999 (3) | 0.8603 (3) | 0.47925 (15) | 0.0572 (13) | |
H33A | 0.944135 | 0.826873 | 0.485509 | 0.086* | |
H33B | 0.902915 | 0.918063 | 0.491273 | 0.086* | |
H33C | 0.895941 | 0.866840 | 0.451177 | 0.086* | |
C34 | 0.7662 (3) | 0.8622 (3) | 0.48093 (14) | 0.0536 (12) | |
H34A | 0.764277 | 0.861685 | 0.452652 | 0.080* | |
H34B | 0.768947 | 0.922572 | 0.490101 | 0.080* | |
H34C | 0.721893 | 0.834536 | 0.491295 | 0.080* | |
C35 | 0.6536 (2) | 0.6372 (3) | 0.47315 (13) | 0.0450 (10) | |
H35 | 0.657234 | 0.618632 | 0.499238 | 0.054* | |
C36 | 0.5840 (2) | 0.6347 (3) | 0.45499 (15) | 0.0510 (12) | |
H36 | 0.542601 | 0.612444 | 0.468375 | 0.061* | |
C37 | 0.5769 (2) | 0.6653 (3) | 0.41728 (15) | 0.0513 (12) | |
H37 | 0.530197 | 0.666457 | 0.405194 | 0.062* | |
C38 | 0.6404 (2) | 0.6951 (3) | 0.39685 (13) | 0.0407 (10) | |
C39 | 0.7089 (2) | 0.6920 (2) | 0.41710 (11) | 0.0332 (9) | |
C40 | 0.7771 (2) | 0.7126 (2) | 0.39697 (11) | 0.0304 (8) | |
C41 | 0.7759 (2) | 0.7336 (2) | 0.35643 (11) | 0.0362 (9) | |
C42 | 0.7043 (3) | 0.7409 (3) | 0.33722 (13) | 0.0485 (12) | |
H42 | 0.702256 | 0.757948 | 0.310885 | 0.058* | |
C43 | 0.6401 (3) | 0.7234 (3) | 0.35672 (13) | 0.0479 (11) | |
H43 | 0.594667 | 0.729995 | 0.343685 | 0.058* | |
C44 | 0.8442 (3) | 0.7446 (3) | 0.33738 (12) | 0.0431 (10) | |
H44 | 0.845331 | 0.757961 | 0.310617 | 0.052* | |
C45 | 0.9090 (3) | 0.7359 (3) | 0.35772 (13) | 0.0475 (11) | |
H45 | 0.954831 | 0.742011 | 0.345003 | 0.057* | |
C46 | 0.9061 (2) | 0.7176 (3) | 0.39810 (13) | 0.0440 (10) | |
H46 | 0.950814 | 0.712544 | 0.411947 | 0.053* | |
Cl1 | 0.5801 (4) | 0.5616 (5) | 0.5795 (2) | 0.0407 (13) | 0.611 (15) |
O3 | 0.5685 (6) | 0.4918 (7) | 0.6068 (3) | 0.090 (3) | 0.611 (15) |
O4 | 0.6566 (5) | 0.5808 (9) | 0.5742 (3) | 0.078 (3) | 0.611 (15) |
O5 | 0.5446 (5) | 0.6364 (7) | 0.5961 (4) | 0.101 (3) | 0.611 (15) |
O6 | 0.5472 (7) | 0.5411 (8) | 0.5426 (3) | 0.074 (3) | 0.611 (15) |
Cl1A | 0.5833 (7) | 0.5590 (9) | 0.5804 (4) | 0.054 (2) | 0.389 (15) |
O3A | 0.5637 (8) | 0.5389 (14) | 0.6192 (3) | 0.084 (4) | 0.389 (15) |
O4A | 0.6590 (8) | 0.5378 (11) | 0.5739 (6) | 0.071 (4) | 0.389 (15) |
O5A | 0.5740 (10) | 0.6517 (7) | 0.5773 (5) | 0.092 (4) | 0.389 (15) |
O6A | 0.5382 (12) | 0.5148 (11) | 0.5527 (5) | 0.079 (4) | 0.389 (15) |
Cl2 | 0.92437 (6) | 0.67480 (8) | 0.64438 (3) | 0.0492 (3) | |
O7 | 0.8485 (2) | 0.6921 (4) | 0.65003 (14) | 0.1193 (18) | |
O8 | 0.9511 (3) | 0.6909 (4) | 0.60710 (12) | 0.127 (2) | |
O9 | 0.9674 (2) | 0.7083 (4) | 0.67422 (14) | 0.141 (2) | |
O10 | 0.9281 (4) | 0.5837 (3) | 0.6502 (2) | 0.168 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0357 (3) | 0.0363 (3) | 0.0241 (2) | 0.0039 (2) | −0.00180 (19) | −0.0029 (2) |
Cu2 | 0.0392 (3) | 0.0375 (3) | 0.0277 (3) | −0.0001 (2) | −0.0040 (2) | 0.0033 (2) |
O1 | 0.0471 (17) | 0.0458 (16) | 0.0322 (15) | 0.0151 (14) | −0.0085 (13) | −0.0061 (13) |
O2 | 0.0531 (18) | 0.0402 (16) | 0.0352 (16) | 0.0081 (14) | −0.0035 (13) | 0.0010 (13) |
N1 | 0.0387 (18) | 0.0376 (18) | 0.0224 (16) | 0.0038 (15) | −0.0015 (14) | 0.0024 (14) |
N2 | 0.0305 (17) | 0.0343 (18) | 0.0371 (19) | 0.0007 (14) | −0.0021 (14) | −0.0012 (14) |
N3 | 0.0337 (17) | 0.0334 (17) | 0.0288 (17) | −0.0014 (14) | −0.0011 (14) | 0.0000 (14) |
N4 | 0.0340 (18) | 0.0419 (19) | 0.0303 (18) | −0.0046 (15) | 0.0016 (14) | 0.0001 (15) |
N5 | 0.055 (2) | 0.044 (2) | 0.0304 (19) | −0.0036 (17) | −0.0049 (16) | 0.0001 (16) |
N6 | 0.0331 (18) | 0.0407 (19) | 0.041 (2) | −0.0023 (16) | −0.0041 (15) | −0.0014 (16) |
N7 | 0.0359 (18) | 0.0358 (18) | 0.0319 (18) | 0.0018 (15) | −0.0020 (14) | 0.0013 (15) |
N8 | 0.0356 (18) | 0.0420 (19) | 0.0313 (18) | −0.0037 (15) | 0.0006 (15) | 0.0022 (15) |
C1 | 0.028 (2) | 0.037 (2) | 0.036 (2) | 0.0013 (17) | 0.0017 (17) | 0.0009 (18) |
C2 | 0.038 (2) | 0.042 (2) | 0.052 (3) | 0.0057 (19) | −0.005 (2) | 0.004 (2) |
C3 | 0.035 (2) | 0.032 (2) | 0.078 (4) | 0.0079 (19) | 0.001 (2) | 0.000 (2) |
C4 | 0.048 (3) | 0.039 (2) | 0.059 (3) | −0.002 (2) | 0.007 (2) | −0.013 (2) |
C5 | 0.046 (2) | 0.042 (2) | 0.041 (2) | −0.001 (2) | 0.002 (2) | −0.0111 (19) |
C6 | 0.031 (2) | 0.033 (2) | 0.038 (2) | −0.0021 (17) | 0.0046 (17) | −0.0028 (17) |
C7 | 0.034 (2) | 0.040 (2) | 0.025 (2) | −0.0055 (18) | −0.0011 (16) | −0.0026 (17) |
C8 | 0.052 (3) | 0.045 (2) | 0.037 (2) | 0.013 (2) | −0.010 (2) | 0.0051 (19) |
C9 | 0.066 (3) | 0.046 (3) | 0.039 (3) | 0.007 (2) | 0.000 (2) | 0.011 (2) |
C10 | 0.049 (3) | 0.052 (3) | 0.077 (4) | −0.008 (2) | −0.005 (3) | 0.009 (3) |
C11 | 0.055 (3) | 0.041 (2) | 0.066 (3) | 0.013 (2) | 0.002 (2) | −0.002 (2) |
C12 | 0.039 (2) | 0.045 (2) | 0.039 (2) | −0.001 (2) | −0.0029 (19) | −0.0027 (19) |
C13 | 0.054 (3) | 0.055 (3) | 0.037 (2) | −0.004 (2) | −0.011 (2) | −0.002 (2) |
C14 | 0.076 (3) | 0.039 (2) | 0.025 (2) | 0.000 (2) | −0.012 (2) | −0.0084 (18) |
C15 | 0.056 (3) | 0.028 (2) | 0.027 (2) | 0.0008 (19) | 0.0047 (19) | −0.0028 (16) |
C16 | 0.040 (2) | 0.0236 (18) | 0.027 (2) | 0.0008 (16) | 0.0028 (17) | 0.0014 (15) |
C17 | 0.037 (2) | 0.029 (2) | 0.033 (2) | 0.0017 (17) | 0.0038 (17) | 0.0013 (16) |
C18 | 0.039 (2) | 0.053 (3) | 0.036 (2) | −0.004 (2) | −0.0068 (19) | 0.003 (2) |
C19 | 0.040 (3) | 0.055 (3) | 0.063 (3) | −0.008 (2) | −0.011 (2) | 0.018 (2) |
C20 | 0.033 (2) | 0.049 (3) | 0.066 (3) | 0.001 (2) | 0.008 (2) | 0.016 (2) |
C21 | 0.041 (2) | 0.035 (2) | 0.042 (2) | 0.0032 (19) | 0.0109 (19) | 0.0041 (18) |
C22 | 0.052 (3) | 0.044 (3) | 0.047 (3) | 0.005 (2) | 0.022 (2) | 0.000 (2) |
C23 | 0.077 (3) | 0.033 (2) | 0.031 (2) | 0.004 (2) | 0.015 (2) | −0.0030 (18) |
C24 | 0.038 (2) | 0.037 (2) | 0.051 (3) | −0.0039 (19) | −0.017 (2) | −0.001 (2) |
C25 | 0.049 (3) | 0.045 (3) | 0.063 (3) | 0.002 (2) | −0.016 (2) | −0.003 (2) |
C26 | 0.058 (3) | 0.040 (3) | 0.109 (5) | 0.003 (2) | −0.035 (3) | 0.003 (3) |
C27 | 0.077 (4) | 0.053 (3) | 0.094 (5) | −0.009 (3) | −0.040 (4) | 0.028 (3) |
C28 | 0.070 (3) | 0.057 (3) | 0.059 (3) | −0.010 (3) | −0.024 (3) | 0.024 (3) |
C29 | 0.044 (2) | 0.045 (2) | 0.043 (3) | −0.011 (2) | −0.019 (2) | 0.009 (2) |
C30 | 0.050 (3) | 0.056 (3) | 0.029 (2) | −0.014 (2) | −0.0082 (19) | 0.010 (2) |
C31 | 0.071 (3) | 0.062 (3) | 0.031 (2) | 0.003 (3) | 0.006 (2) | −0.003 (2) |
C32 | 0.080 (4) | 0.051 (3) | 0.038 (3) | −0.003 (3) | −0.005 (2) | −0.013 (2) |
C33 | 0.055 (3) | 0.047 (3) | 0.070 (3) | −0.009 (2) | 0.004 (3) | −0.006 (2) |
C34 | 0.054 (3) | 0.042 (2) | 0.065 (3) | 0.009 (2) | 0.001 (2) | 0.002 (2) |
C35 | 0.044 (3) | 0.046 (2) | 0.045 (3) | 0.001 (2) | 0.010 (2) | −0.003 (2) |
C36 | 0.037 (2) | 0.053 (3) | 0.063 (3) | −0.005 (2) | 0.009 (2) | −0.012 (2) |
C37 | 0.031 (2) | 0.053 (3) | 0.070 (3) | 0.006 (2) | −0.007 (2) | −0.018 (2) |
C38 | 0.039 (2) | 0.036 (2) | 0.046 (3) | 0.0068 (19) | −0.0100 (19) | −0.0081 (19) |
C39 | 0.037 (2) | 0.029 (2) | 0.034 (2) | 0.0042 (17) | −0.0028 (17) | −0.0019 (17) |
C40 | 0.037 (2) | 0.0246 (18) | 0.030 (2) | 0.0041 (16) | −0.0060 (17) | −0.0011 (16) |
C41 | 0.054 (3) | 0.0238 (19) | 0.030 (2) | 0.0039 (19) | −0.0037 (19) | −0.0013 (16) |
C42 | 0.074 (3) | 0.038 (2) | 0.034 (2) | 0.012 (2) | −0.021 (2) | 0.0017 (19) |
C43 | 0.048 (3) | 0.048 (3) | 0.048 (3) | 0.012 (2) | −0.021 (2) | −0.004 (2) |
C44 | 0.066 (3) | 0.033 (2) | 0.031 (2) | 0.003 (2) | 0.006 (2) | 0.0029 (18) |
C45 | 0.053 (3) | 0.046 (3) | 0.043 (3) | 0.004 (2) | 0.020 (2) | 0.004 (2) |
C46 | 0.038 (2) | 0.047 (3) | 0.047 (3) | 0.001 (2) | 0.002 (2) | 0.002 (2) |
Cl1 | 0.037 (2) | 0.049 (2) | 0.036 (2) | −0.003 (2) | 0.0024 (19) | 0.005 (2) |
O3 | 0.097 (5) | 0.086 (6) | 0.087 (6) | −0.013 (5) | −0.011 (5) | 0.037 (5) |
O4 | 0.049 (4) | 0.125 (7) | 0.059 (4) | −0.028 (5) | 0.005 (3) | 0.003 (6) |
O5 | 0.098 (6) | 0.093 (5) | 0.111 (6) | 0.003 (5) | 0.027 (5) | −0.037 (5) |
O6 | 0.072 (5) | 0.100 (7) | 0.051 (4) | −0.018 (5) | −0.020 (4) | 0.003 (4) |
Cl1A | 0.052 (4) | 0.064 (4) | 0.046 (4) | −0.009 (4) | −0.017 (3) | −0.006 (4) |
O3A | 0.078 (6) | 0.124 (9) | 0.049 (6) | −0.021 (7) | 0.019 (5) | 0.007 (6) |
O4A | 0.048 (6) | 0.085 (8) | 0.078 (7) | 0.006 (6) | −0.003 (5) | −0.002 (8) |
O5A | 0.113 (8) | 0.054 (6) | 0.109 (8) | 0.003 (6) | 0.009 (7) | 0.004 (6) |
O6A | 0.088 (7) | 0.077 (8) | 0.070 (8) | −0.027 (6) | −0.020 (7) | −0.010 (6) |
Cl2 | 0.0434 (6) | 0.0572 (7) | 0.0469 (6) | −0.0083 (5) | 0.0026 (5) | 0.0063 (5) |
O7 | 0.050 (2) | 0.205 (6) | 0.103 (4) | 0.011 (3) | 0.000 (2) | 0.023 (4) |
O8 | 0.106 (3) | 0.213 (6) | 0.062 (3) | −0.061 (4) | 0.011 (2) | 0.034 (3) |
O9 | 0.076 (3) | 0.261 (7) | 0.085 (3) | −0.056 (4) | 0.011 (3) | −0.061 (4) |
O10 | 0.222 (7) | 0.074 (3) | 0.207 (7) | 0.021 (4) | 0.078 (5) | 0.029 (4) |
Cu1—O1 | 1.915 (3) | C18—H18 | 0.9300 |
Cu1—N1 | 1.923 (3) | C19—C20 | 1.358 (6) |
Cu1—N3 | 2.019 (3) | C19—H19 | 0.9300 |
Cu1—N2 | 2.148 (3) | C20—C21 | 1.400 (6) |
Cu1—N4 | 2.251 (3) | C20—H20 | 0.9300 |
Cu2—O2 | 1.913 (3) | C21—C22 | 1.423 (6) |
Cu2—N5 | 1.919 (3) | C22—C23 | 1.342 (6) |
Cu2—N7 | 2.030 (3) | C22—H22 | 0.9300 |
Cu2—N6 | 2.121 (3) | C23—H23 | 0.9300 |
Cu2—N8 | 2.238 (3) | C24—C25 | 1.416 (6) |
O1—C1 | 1.305 (4) | C24—C29 | 1.418 (6) |
O2—C24 | 1.310 (5) | C25—C26 | 1.379 (7) |
N1—C7 | 1.280 (5) | C25—H25 | 0.9300 |
N1—C8 | 1.457 (5) | C26—C27 | 1.382 (8) |
N2—C11 | 1.473 (5) | C26—H26 | 0.9300 |
N2—C10 | 1.476 (5) | C27—C28 | 1.354 (8) |
N2—C9 | 1.479 (5) | C27—H27 | 0.9300 |
N3—C12 | 1.317 (5) | C28—C29 | 1.406 (6) |
N3—C16 | 1.365 (5) | C28—H28 | 0.9300 |
N4—C18 | 1.325 (5) | C29—C30 | 1.423 (6) |
N4—C17 | 1.352 (5) | C30—H30 | 0.9300 |
N5—C30 | 1.280 (5) | C31—C32 | 1.502 (6) |
N5—C31 | 1.468 (5) | C31—H31A | 0.9700 |
N6—C32 | 1.477 (5) | C31—H31B | 0.9700 |
N6—C34 | 1.479 (5) | C32—H32A | 0.9700 |
N6—C33 | 1.485 (5) | C32—H32B | 0.9700 |
N7—C46 | 1.319 (5) | C33—H33A | 0.9600 |
N7—C40 | 1.361 (5) | C33—H33B | 0.9600 |
N8—C35 | 1.324 (5) | C33—H33C | 0.9600 |
N8—C39 | 1.357 (5) | C34—H34A | 0.9600 |
C1—C2 | 1.408 (5) | C34—H34B | 0.9600 |
C1—C6 | 1.415 (5) | C34—H34C | 0.9600 |
C2—C3 | 1.378 (6) | C35—C36 | 1.388 (6) |
C2—H2 | 0.9300 | C35—H35 | 0.9300 |
C3—C4 | 1.384 (6) | C36—C37 | 1.365 (6) |
C3—H3 | 0.9300 | C36—H36 | 0.9300 |
C4—C5 | 1.365 (6) | C37—C38 | 1.402 (6) |
C4—H4 | 0.9300 | C37—H37 | 0.9300 |
C5—C6 | 1.407 (5) | C38—C39 | 1.403 (5) |
C5—H5 | 0.9300 | C38—C43 | 1.426 (6) |
C6—C7 | 1.434 (5) | C39—C40 | 1.431 (5) |
C7—H7 | 0.9300 | C40—C41 | 1.411 (5) |
C8—C9 | 1.497 (6) | C41—C44 | 1.389 (6) |
C8—H8A | 0.9700 | C41—C42 | 1.440 (6) |
C8—H8B | 0.9700 | C42—C43 | 1.349 (6) |
C9—H9A | 0.9700 | C42—H42 | 0.9300 |
C9—H9B | 0.9700 | C43—H43 | 0.9300 |
C10—H10A | 0.9600 | C44—C45 | 1.354 (6) |
C10—H10B | 0.9600 | C44—H44 | 0.9300 |
C10—H10C | 0.9600 | C45—C46 | 1.398 (6) |
C11—H11A | 0.9600 | C45—H45 | 0.9300 |
C11—H11B | 0.9600 | C46—H46 | 0.9300 |
C11—H11C | 0.9600 | Cl1—O4 | 1.407 (8) |
C12—C13 | 1.399 (6) | Cl1—O5 | 1.409 (8) |
C12—H12 | 0.9300 | Cl1—O3 | 1.415 (8) |
C13—C14 | 1.354 (6) | Cl1—O6 | 1.417 (8) |
C13—H13 | 0.9300 | Cl1A—O3A | 1.396 (12) |
C14—C15 | 1.406 (6) | Cl1A—O6A | 1.403 (12) |
C14—H14 | 0.9300 | Cl1A—O4A | 1.406 (12) |
C15—C16 | 1.400 (5) | Cl1A—O5A | 1.408 (12) |
C15—C23 | 1.434 (6) | Cl2—O9 | 1.367 (4) |
C16—C17 | 1.436 (5) | Cl2—O8 | 1.373 (4) |
C17—C21 | 1.403 (5) | Cl2—O10 | 1.385 (5) |
C18—C19 | 1.407 (6) | Cl2—O7 | 1.393 (4) |
O1—Cu1—N1 | 93.32 (12) | N4—C18—H18 | 118.6 |
O1—Cu1—N3 | 89.55 (12) | C19—C18—H18 | 118.6 |
N1—Cu1—N3 | 175.79 (13) | C20—C19—C18 | 118.8 (4) |
O1—Cu1—N2 | 143.82 (12) | C20—C19—H19 | 120.6 |
N1—Cu1—N2 | 82.91 (13) | C18—C19—H19 | 120.6 |
N3—Cu1—N2 | 96.57 (12) | C19—C20—C21 | 120.4 (4) |
O1—Cu1—N4 | 114.99 (12) | C19—C20—H20 | 119.8 |
N1—Cu1—N4 | 98.12 (12) | C21—C20—H20 | 119.8 |
N3—Cu1—N4 | 77.86 (12) | C20—C21—C17 | 116.6 (4) |
N2—Cu1—N4 | 101.14 (12) | C20—C21—C22 | 123.7 (4) |
O2—Cu2—N5 | 93.37 (13) | C17—C21—C22 | 119.7 (4) |
O2—Cu2—N7 | 89.04 (12) | C23—C22—C21 | 120.6 (4) |
N5—Cu2—N7 | 176.36 (14) | C23—C22—H22 | 119.7 |
O2—Cu2—N6 | 152.70 (12) | C21—C22—H22 | 119.7 |
N5—Cu2—N6 | 84.08 (14) | C22—C23—C15 | 121.9 (4) |
N7—Cu2—N6 | 95.01 (13) | C22—C23—H23 | 119.1 |
O2—Cu2—N8 | 107.27 (12) | C15—C23—H23 | 119.1 |
N5—Cu2—N8 | 98.80 (13) | O2—C24—C25 | 118.2 (4) |
N7—Cu2—N8 | 77.87 (12) | O2—C24—C29 | 124.6 (4) |
N6—Cu2—N8 | 99.97 (12) | C25—C24—C29 | 117.2 (4) |
C1—O1—Cu1 | 126.8 (2) | C26—C25—C24 | 120.4 (5) |
C24—O2—Cu2 | 126.8 (3) | C26—C25—H25 | 119.8 |
C7—N1—C8 | 121.3 (3) | C24—C25—H25 | 119.8 |
C7—N1—Cu1 | 126.9 (3) | C25—C26—C27 | 121.5 (5) |
C8—N1—Cu1 | 111.6 (2) | C25—C26—H26 | 119.2 |
C11—N2—C10 | 107.9 (3) | C27—C26—H26 | 119.2 |
C11—N2—C9 | 111.3 (3) | C28—C27—C26 | 119.6 (5) |
C10—N2—C9 | 110.1 (3) | C28—C27—H27 | 120.2 |
C11—N2—Cu1 | 111.9 (2) | C26—C27—H27 | 120.2 |
C10—N2—Cu1 | 110.5 (3) | C27—C28—C29 | 121.2 (5) |
C9—N2—Cu1 | 105.2 (2) | C27—C28—H28 | 119.4 |
C12—N3—C16 | 118.7 (3) | C29—C28—H28 | 119.4 |
C12—N3—Cu1 | 124.4 (3) | C28—C29—C24 | 120.1 (4) |
C16—N3—Cu1 | 116.8 (2) | C28—C29—C30 | 117.4 (4) |
C18—N4—C17 | 117.7 (3) | C24—C29—C30 | 122.5 (4) |
C18—N4—Cu1 | 132.2 (3) | N5—C30—C29 | 126.0 (4) |
C17—N4—Cu1 | 110.1 (2) | N5—C30—H30 | 117.0 |
C30—N5—C31 | 121.4 (4) | C29—C30—H30 | 117.0 |
C30—N5—Cu2 | 126.5 (3) | N5—C31—C32 | 105.4 (4) |
C31—N5—Cu2 | 112.1 (3) | N5—C31—H31A | 110.7 |
C32—N6—C34 | 110.7 (4) | C32—C31—H31A | 110.7 |
C32—N6—C33 | 110.5 (3) | N5—C31—H31B | 110.7 |
C34—N6—C33 | 107.4 (3) | C32—C31—H31B | 110.7 |
C32—N6—Cu2 | 104.7 (3) | H31A—C31—H31B | 108.8 |
C34—N6—Cu2 | 113.1 (3) | N6—C32—C31 | 110.2 (4) |
C33—N6—Cu2 | 110.5 (3) | N6—C32—H32A | 109.6 |
C46—N7—C40 | 118.6 (3) | C31—C32—H32A | 109.6 |
C46—N7—Cu2 | 125.1 (3) | N6—C32—H32B | 109.6 |
C40—N7—Cu2 | 116.2 (2) | C31—C32—H32B | 109.6 |
C35—N8—C39 | 117.7 (4) | H32A—C32—H32B | 108.1 |
C35—N8—Cu2 | 132.0 (3) | N6—C33—H33A | 109.5 |
C39—N8—Cu2 | 110.3 (2) | N6—C33—H33B | 109.5 |
O1—C1—C2 | 118.6 (4) | H33A—C33—H33B | 109.5 |
O1—C1—C6 | 124.3 (3) | N6—C33—H33C | 109.5 |
C2—C1—C6 | 117.0 (4) | H33A—C33—H33C | 109.5 |
C3—C2—C1 | 121.6 (4) | H33B—C33—H33C | 109.5 |
C3—C2—H2 | 119.2 | N6—C34—H34A | 109.5 |
C1—C2—H2 | 119.2 | N6—C34—H34B | 109.5 |
C2—C3—C4 | 121.0 (4) | H34A—C34—H34B | 109.5 |
C2—C3—H3 | 119.5 | N6—C34—H34C | 109.5 |
C4—C3—H3 | 119.5 | H34A—C34—H34C | 109.5 |
C5—C4—C3 | 118.9 (4) | H34B—C34—H34C | 109.5 |
C5—C4—H4 | 120.5 | N8—C35—C36 | 123.1 (4) |
C3—C4—H4 | 120.5 | N8—C35—H35 | 118.4 |
C4—C5—C6 | 121.7 (4) | C36—C35—H35 | 118.4 |
C4—C5—H5 | 119.2 | C37—C36—C35 | 119.3 (4) |
C6—C5—H5 | 119.2 | C37—C36—H36 | 120.3 |
C5—C6—C1 | 119.8 (4) | C35—C36—H36 | 120.3 |
C5—C6—C7 | 116.9 (4) | C36—C37—C38 | 119.7 (4) |
C1—C6—C7 | 123.4 (3) | C36—C37—H37 | 120.1 |
N1—C7—C6 | 124.8 (3) | C38—C37—H37 | 120.1 |
N1—C7—H7 | 117.6 | C37—C38—C39 | 116.9 (4) |
C6—C7—H7 | 117.6 | C37—C38—C43 | 124.3 (4) |
N1—C8—C9 | 105.5 (3) | C39—C38—C43 | 118.7 (4) |
N1—C8—H8A | 110.6 | N8—C39—C38 | 123.1 (4) |
C9—C8—H8A | 110.6 | N8—C39—C40 | 116.6 (3) |
N1—C8—H8B | 110.6 | C38—C39—C40 | 120.1 (4) |
C9—C8—H8B | 110.6 | N7—C40—C41 | 121.5 (4) |
H8A—C8—H8B | 108.8 | N7—C40—C39 | 118.4 (3) |
N2—C9—C8 | 110.2 (3) | C41—C40—C39 | 120.0 (3) |
N2—C9—H9A | 109.6 | C44—C41—C40 | 117.8 (4) |
C8—C9—H9A | 109.6 | C44—C41—C42 | 124.0 (4) |
N2—C9—H9B | 109.6 | C40—C41—C42 | 118.1 (4) |
C8—C9—H9B | 109.6 | C43—C42—C41 | 121.2 (4) |
H9A—C9—H9B | 108.1 | C43—C42—H42 | 119.4 |
N2—C10—H10A | 109.5 | C41—C42—H42 | 119.4 |
N2—C10—H10B | 109.5 | C42—C43—C38 | 121.5 (4) |
H10A—C10—H10B | 109.5 | C42—C43—H43 | 119.2 |
N2—C10—H10C | 109.5 | C38—C43—H43 | 119.2 |
H10A—C10—H10C | 109.5 | C45—C44—C41 | 120.1 (4) |
H10B—C10—H10C | 109.5 | C45—C44—H44 | 120.0 |
N2—C11—H11A | 109.5 | C41—C44—H44 | 120.0 |
N2—C11—H11B | 109.5 | C44—C45—C46 | 119.1 (4) |
H11A—C11—H11B | 109.5 | C44—C45—H45 | 120.4 |
N2—C11—H11C | 109.5 | C46—C45—H45 | 120.4 |
H11A—C11—H11C | 109.5 | N7—C46—C45 | 122.8 (4) |
H11B—C11—H11C | 109.5 | N7—C46—H46 | 118.6 |
N3—C12—C13 | 122.4 (4) | C45—C46—H46 | 118.6 |
N3—C12—H12 | 118.8 | O4—Cl1—O5 | 109.0 (7) |
C13—C12—H12 | 118.8 | O4—Cl1—O3 | 112.2 (7) |
C14—C13—C12 | 119.7 (4) | O5—Cl1—O3 | 105.2 (6) |
C14—C13—H13 | 120.2 | O4—Cl1—O6 | 109.6 (7) |
C12—C13—H13 | 120.2 | O5—Cl1—O6 | 109.9 (8) |
C13—C14—C15 | 119.5 (4) | O3—Cl1—O6 | 110.9 (7) |
C13—C14—H14 | 120.3 | O3A—Cl1A—O6A | 112.6 (12) |
C15—C14—H14 | 120.3 | O3A—Cl1A—O4A | 109.9 (13) |
C16—C15—C14 | 117.7 (4) | O6A—Cl1A—O4A | 109.9 (13) |
C16—C15—C23 | 118.4 (4) | O3A—Cl1A—O5A | 104.8 (11) |
C14—C15—C23 | 123.8 (4) | O6A—Cl1A—O5A | 110.5 (12) |
N3—C16—C15 | 121.9 (4) | O4A—Cl1A—O5A | 109.0 (11) |
N3—C16—C17 | 118.0 (3) | O9—Cl2—O8 | 115.0 (3) |
C15—C16—C17 | 120.0 (4) | O9—Cl2—O10 | 103.4 (4) |
N4—C17—C21 | 123.6 (4) | O8—Cl2—O10 | 106.7 (4) |
N4—C17—C16 | 116.9 (3) | O9—Cl2—O7 | 112.1 (3) |
C21—C17—C16 | 119.3 (4) | O8—Cl2—O7 | 115.6 (3) |
N4—C18—C19 | 122.8 (4) | O10—Cl2—O7 | 102.3 (4) |
Cu1—O1—C1—C2 | −176.3 (3) | Cu2—O2—C24—C25 | −179.2 (3) |
Cu1—O1—C1—C6 | 4.2 (5) | Cu2—O2—C24—C29 | 0.0 (6) |
O1—C1—C2—C3 | 177.6 (4) | O2—C24—C25—C26 | −177.3 (4) |
C6—C1—C2—C3 | −2.9 (6) | C29—C24—C25—C26 | 3.4 (6) |
C1—C2—C3—C4 | 2.0 (7) | C24—C25—C26—C27 | −1.8 (7) |
C2—C3—C4—C5 | 0.1 (7) | C25—C26—C27—C28 | −0.5 (8) |
C3—C4—C5—C6 | −1.2 (6) | C26—C27—C28—C29 | 1.0 (8) |
C4—C5—C6—C1 | 0.2 (6) | C27—C28—C29—C24 | 0.8 (7) |
C4—C5—C6—C7 | 179.0 (4) | C27—C28—C29—C30 | −177.3 (4) |
O1—C1—C6—C5 | −178.8 (4) | O2—C24—C29—C28 | 177.8 (4) |
C2—C1—C6—C5 | 1.8 (5) | C25—C24—C29—C28 | −2.9 (6) |
O1—C1—C6—C7 | 2.5 (6) | O2—C24—C29—C30 | −4.1 (6) |
C2—C1—C6—C7 | −176.9 (3) | C25—C24—C29—C30 | 175.1 (4) |
C8—N1—C7—C6 | 172.5 (4) | C31—N5—C30—C29 | −174.6 (4) |
Cu1—N1—C7—C6 | −2.2 (6) | Cu2—N5—C30—C29 | 1.9 (6) |
C5—C6—C7—N1 | 177.6 (4) | C28—C29—C30—N5 | −178.8 (4) |
C1—C6—C7—N1 | −3.7 (6) | C24—C29—C30—N5 | 3.1 (7) |
C7—N1—C8—C9 | −126.6 (4) | C30—N5—C31—C32 | 132.7 (4) |
Cu1—N1—C8—C9 | 48.9 (4) | Cu2—N5—C31—C32 | −44.2 (4) |
C11—N2—C9—C8 | −89.4 (4) | C34—N6—C32—C31 | 85.7 (4) |
C10—N2—C9—C8 | 151.0 (4) | C33—N6—C32—C31 | −155.4 (4) |
Cu1—N2—C9—C8 | 32.0 (4) | Cu2—N6—C32—C31 | −36.4 (4) |
N1—C8—C9—N2 | −52.8 (4) | N5—C31—C32—N6 | 53.2 (5) |
C16—N3—C12—C13 | −3.8 (6) | C39—N8—C35—C36 | 0.3 (6) |
Cu1—N3—C12—C13 | −179.7 (3) | Cu2—N8—C35—C36 | 179.3 (3) |
N3—C12—C13—C14 | 1.5 (7) | N8—C35—C36—C37 | −2.8 (7) |
C12—C13—C14—C15 | 1.0 (7) | C35—C36—C37—C38 | 2.8 (7) |
C13—C14—C15—C16 | −1.1 (6) | C36—C37—C38—C39 | −0.4 (6) |
C13—C14—C15—C23 | 176.9 (4) | C36—C37—C38—C43 | 176.1 (4) |
C12—N3—C16—C15 | 3.6 (5) | C35—N8—C39—C38 | 2.3 (6) |
Cu1—N3—C16—C15 | 179.8 (3) | Cu2—N8—C39—C38 | −177.0 (3) |
C12—N3—C16—C17 | −173.3 (3) | C35—N8—C39—C40 | −173.7 (3) |
Cu1—N3—C16—C17 | 3.0 (4) | Cu2—N8—C39—C40 | 7.1 (4) |
C14—C15—C16—N3 | −1.2 (5) | C37—C38—C39—N8 | −2.2 (6) |
C23—C15—C16—N3 | −179.3 (3) | C43—C38—C39—N8 | −179.0 (4) |
C14—C15—C16—C17 | 175.6 (3) | C37—C38—C39—C40 | 173.6 (4) |
C23—C15—C16—C17 | −2.5 (5) | C43—C38—C39—C40 | −3.1 (6) |
C18—N4—C17—C21 | −1.7 (6) | C46—N7—C40—C41 | −3.3 (5) |
Cu1—N4—C17—C21 | 178.2 (3) | Cu2—N7—C40—C41 | 179.1 (3) |
C18—N4—C17—C16 | 174.6 (3) | C46—N7—C40—C39 | 173.5 (3) |
Cu1—N4—C17—C16 | −5.5 (4) | Cu2—N7—C40—C39 | −4.1 (4) |
N3—C16—C17—N4 | 2.2 (5) | N8—C39—C40—N7 | −2.6 (5) |
C15—C16—C17—N4 | −174.7 (3) | C38—C39—C40—N7 | −178.7 (3) |
N3—C16—C17—C21 | 178.7 (3) | N8—C39—C40—C41 | 174.2 (3) |
C15—C16—C17—C21 | 1.8 (5) | C38—C39—C40—C41 | −1.8 (5) |
C17—N4—C18—C19 | 0.7 (6) | N7—C40—C41—C44 | 2.9 (5) |
Cu1—N4—C18—C19 | −179.2 (3) | C39—C40—C41—C44 | −173.9 (3) |
N4—C18—C19—C20 | 1.0 (7) | N7—C40—C41—C42 | −178.1 (3) |
C18—C19—C20—C21 | −1.8 (7) | C39—C40—C41—C42 | 5.2 (5) |
C19—C20—C21—C17 | 0.9 (6) | C44—C41—C42—C43 | 175.4 (4) |
C19—C20—C21—C22 | −175.2 (4) | C40—C41—C42—C43 | −3.6 (6) |
N4—C17—C21—C20 | 0.9 (6) | C41—C42—C43—C38 | −1.4 (6) |
C16—C17—C21—C20 | −175.3 (3) | C37—C38—C43—C42 | −171.7 (4) |
N4—C17—C21—C22 | 177.1 (4) | C39—C38—C43—C42 | 4.8 (6) |
C16—C17—C21—C22 | 0.9 (6) | C40—C41—C44—C45 | −0.5 (6) |
C20—C21—C22—C23 | 173.0 (4) | C42—C41—C44—C45 | −179.5 (4) |
C17—C21—C22—C23 | −2.9 (6) | C41—C44—C45—C46 | −1.3 (6) |
C21—C22—C23—C15 | 2.1 (6) | C40—N7—C46—C45 | 1.4 (6) |
C16—C15—C23—C22 | 0.6 (6) | Cu2—N7—C46—C45 | 178.7 (3) |
C14—C15—C23—C22 | −177.4 (4) | C44—C45—C46—N7 | 0.9 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O10i | 0.93 | 2.51 | 3.293 (7) | 142 |
C7—H7···O4ii | 0.93 | 2.59 | 3.368 (13) | 141 |
C14—H14···O2 | 0.93 | 2.33 | 3.191 (5) | 153 |
C22—H22···O3Aiii | 0.93 | 2.56 | 3.411 (14) | 152 |
C27—H27···O5Aiv | 0.93 | 2.41 | 3.296 (13) | 158 |
C31—H31A···O7 | 0.97 | 2.59 | 3.530 (7) | 165 |
C36—H36···O6Aiii | 0.93 | 2.50 | 3.143 (16) | 127 |
C43—H43···O9v | 0.93 | 2.53 | 3.417 (6) | 160 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+3/2, −y+1, z−1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+3/2, y−1/2, z; (v) x−1/2, −y+3/2, −z+1. |
Parameters as defined in PLATON (Spek, 2020). Cg1, Cg2, Cg3 and Cg4 are the centroids of the N4/C17–C21, C1–C6, N8/C35–C39 and C24–C29 rings, respectively. |
C—H···Cg | H···Cg | C···Cg | C—H···Cg | Symmetry |
C11—H11B···Cg2 | 2.78 | 3.447 (5) | 128 | 3/2 - x, 1/2 + y, z |
C23—H23···Cg3 | 2.80 | 2.337 (5) | 118 | x, y, z |
C34—H34C···Cg4 | 2.80 | 2.434 (6) | 124 | 3/2 - x, 1/2 + y, z |
C44—H44···Cg1 | 2.78 | 3.369 (5) | 122 | 3/2 - x, 1/2 + y, z |
Acknowledgements
The authors acknowledge the Central University of Tamil Nadu, India, for providing an instrumentation facility. UV acknowledges support from SASTRA Deemed University, Thanjavur, Tamilnadu, India.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Chieh, P. C. & Palenik, G. J. (1972). Inorg. Chem. 11, 816–819. CSD CrossRef CAS Web of Science Google Scholar
Goswami, T. K., Gadadhar, S., Roy, M., Nethaji, M., Karande, A. A. & Chakravarty, A. R. (2012). Organometallics, 31, 3010–3021. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jaividhya, P., Dhivya, R., Akbarsha, M. A. & Palaniandavar, M. (2012). J. Inorg. Biochem. 114, 94–105. Web of Science CrossRef CAS PubMed Google Scholar
Karpagam, S., Kartikeyan, R., Paravai Nachiyar, P., Velusamy, M., Kannan, M., Krishnan, M., Chitgupi, U., Lovell, J. F., Abdulkader Akbarsha, M. & Rajendiran, V. (2019). J. Coord. Chem. 72, 3102–3127. Web of Science CSD CrossRef CAS Google Scholar
Karpagam, S., Mamindla, A., Kumar Sali, V., Niranjana, R. S., Periasamy, V. S., Alshatwi, A. A., Akbarsha, M. A. & Rajendiran, V. (2022). Inorg. Chim. Acta, 531, 120729–120740. Web of Science CrossRef CAS Google Scholar
Ko, B., Chang, C., Lai, S., Lai, F. & Lin, C. (2012). Polyhedron, 45, 49–54. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Murphy, G., Murphy, C., Murphy, B. & Hathaway, B. (1997). J. Chem. Soc. Dalton Trans. pp. 2653–2660. CSD CrossRef Web of Science Google Scholar
Murphy, G., Nagle, P., Murphy, B. & Hathaway, B. (1997). J. Chem. Soc. Dalton Trans. pp. 2645–2652. CSD CrossRef Web of Science Google Scholar
Nagle, P., O'Sullivan, E., Hathaway, B. J. & Muller, E. (1990). J. Chem. Soc. Dalton Trans. pp. 3399–3406. CSD CrossRef Web of Science Google Scholar
Radhakrishnan, K., Khamrang, T., Sambantham, K., Sali, V. K., Chitgupi, U., Lovell, J. F., Mohammad, A. A. & Venugopal, R. (2021). Polyhedron, 194, 114886–114899. Web of Science CSD CrossRef CAS Google Scholar
Rajarajeswari, C., Ganeshpandian, M., Palaniandavar, M., Riyasdeen, A. & Akbarsha, M. A. (2014). J. Inorg. Biochem. 140, 255–268. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rajendiran, V., Karthik, R., Palaniandavar, M., Stoeckli-Evans, H., Periasamy, V. S., Akbarsha, M. A., Srinag, B. S. & Krishnamurthy, H. (2007). Inorg. Chem. 46, 8208–8221. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sathya, V. & Murali, M. (2018). Inorg. Chem. Commun. 92, 55–59. Web of Science CSD CrossRef CAS Google Scholar
Selvakumar, B., Rajendiran, V., Uma Maheswari, P., Stoeckli-Evans, H. & Palaniandavar, M. (2006). J. Inorg. Biochem. 100, 316–330. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sharma, M., Ganeshpandian, M., Majumder, M., Tamilarasan, A., Sharma, M., Mukhopadhyay, R., Islam, N. S. & Palaniandavar, M. (2020). Dalton Trans. 49, 8282–8297. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tadokoro, M., Toyoda, J., Isobe, K., Itoh, T., Miyazaki, A., Enoki, T. & Nakasuji, K. (1995). Chem. Lett. 24, 613–614. CSD CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.