research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of trimeth­yl({tris­­[(phenyl­sulfan­yl)meth­yl]sil­yl}meth­­oxy)silane and Hirshfeld surface analysis of 3-bromo-2,2-bis­­(bromo­meth­yl)propan-1-ol

crossmark logo

aTechnische Universität Dortmund, Fakultät Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 28 February 2023; accepted 8 March 2023; online 15 March 2023)

Trimeth­yl({tris­[(phenyl­sulfan­yl)meth­yl]sil­yl}meth­oxy)silane (3), C26H32OS3Si, is a new ligand for transition-metal coordination chemistry derived from 3-bromo-2,2-bis­(bromo­meth­yl)propan-1-ol (1), C5H9Br3O, through silylation and following exchange of bromine groups with NaSPh. Silylated thio­ether ligand 3 crystallizes in the centrosymmetric space group C2/c. Bromo­methyl­alcohol 1 crystallizes in the space group P[\overline{1}] in the triclinic crystal system with four mol­ecules in the asymmetric unit. Analysis of the Hirshfeld surface shows structure-defining inter­actions for bromo­methyl­alcohol 1, resulting in inter­molecular hydrogen bonds between the hydroxyl groups along the a-axis direction.

1. Chemical context

Thio­ether ligands offer an attractive alternative to known phosphine or amine ligands. As a result of the soft property of thio­ethers, they coordinate to transition metals (Awaleh et al., 2008[Awaleh, M. O., Baril-Robert, F., Reber, C., Badia, A. & Brisse, F. (2008). Inorg. Chem. 47, 2964-2974.]; Knaust & Keller, 2003[Knaust, J. M. & Keller, S. W. (2003). CrystEngComm, 5, 459-465.]; Knorr et al., 2012[Knorr, M., Guyon, F., Khatyr, A., Strohmann, C., Allain, M., Aly, S. M., Lapprand, A., Fortin, D. & Harvey, P. D. (2012). Inorg. Chem. 51, 9917-9934.], 2014[Knorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373-5387.]; Schlachter et al., 2022[Schlachter, A., Scheel, R., Fortin, D., Strohmann, C., Knorr, M. & Harvey, P. D. (2022). Inorg. Chem. 61, 11306-11318.]). Furthermore, because of its two lone pairs, sulfur can act as a bridging ligand between two metal centres and thus favour coordination polymers (Awaleh et al., 2010[Awaleh, M. O., Brisse, F., Soubaneh, Y. D., Maris, T. & Dirieh, E. S. (2010). J. Inorg. Organomet. Polym. 20, 816-824.]; Peindy et al., 2009[Peindy, H. N., Guyon, F., Khatyr, A., Knorr, M., Gessner, V. H. & Strohmann, C. (2009). Z. Anorg. Allg. Chem. 635, 2099-2105.]; Schlachter et al., 2018[Schlachter, A., Viau, L., Fortin, D., Knauer, L., Strohmann, C., Knorr, M. & Harvey, P. D. (2018). Inorg. Chem. 57, 13564-13576.], 2020[Schlachter, A., Lapprand, A., Fortin, D., Strohmann, C., Harvey, P. D. & Knorr, M. (2020). Inorg. Chem. 59, 3686-3708.], 2021[Schlachter, A., Tanner, K., Scheel, R., Karsenti, P.-L., Strohmann, C., Knorr, M. & Harvey, P. D. (2021). Inorg. Chem. 60, 13528-13538.]; Viau et al., 2022[Viau, L., Knorr, M., Knauer, L., Brieger, L. & Strohmann, C. (2022). Dalton Trans. 51, 7581-7606.]).

In addition, thio­ether ligands are increasingly gaining inter­est for redox catalysis, as their stabilizing effect towards the metal centres differ from those of the common phosphine or amine ligands, and thus new catalytic accesses can be created (Petuker et al., 2017[Petuker, A., Gerschel, P., Piontek, S., Ritterskamp, N., Wittkamp, F., Iffland, L., Miller, R., van Gastel, M. & Apfel, U.-P. (2017). Dalton Trans. 46, 13251-13262.]).

[Scheme 1]

Furthermore, the solubility of ligands in polar and non-polar solvents plays a major role. Polar hydroxyl groups, such as bromo­methyl­alcohol 1, will reduce solubility in non-polar solvents and can cause problems like the reduced formation of catalytic species in the process. To prevent this, the hydroxyl group was silylated via conditions known from the literature, thus increasing the lipophilicity of ligand 3.

In the following, the structure of bromo­methyl­alcohol 1 and silylated thio­ether ligand 3, as well as the surface inter­actions of 1 are discussed in terms of Hirshfeld surface analysis.

2. Structural commentary

Bromo­methyl­alcohol 1 crystallizes at 243.15 K from diethyl ether in the centrosymmetric space group P[\overline{1}] with four mol­ecules present in the asymmetric unit (Z′ = 4, Z = 2). The mol­ecular structure of bromo­methyl­alcohol 1 is shown in Fig. 1[link] and selected bond lengths and angles are given in Table 1[link].

Table 1
Selected geometric parameters (Å, °) for 1[link]

Br1—C3 1.948 (3) Br8—C14 1.947 (3)
Br2—C4 1.952 (3) Br9—C15 1.951 (3)
Br3—C5 1.950 (3) Br10—C18 1.957 (3)
Br4—C8 1.956 (3) Br11—C19 1.955 (3)
Br5—C9 1.956 (3) Br12—C20 1.955 (3)
Br6—C10 1.954 (3) O1—C2 1.432 (3)
Br7—C13 1.951 (3)    
       
C1—C3—Br1 112.99 (18) C1—C5—Br3 113.21 (19)
C1—C4—Br2 113.48 (18) O1—C2—C1 111.6 (2)
[Figure 1]
Figure 1
The mol­ecular structure of bromo­methyl­alcohol 1 with displacement ellipsoids drawn at the 50% probability level.

The bond lengths to be expected for a C(alk­yl)–Br bond are in the range 1.880–1.940 Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, 12, 1-19.]). The C(alk­yl)—Br bonds listed in Table 1[link] are located in the upper range of these bond lengths. The O1—C2 bond length of 1.432 (3) Å corresponds to an expected length for a C(alk­yl)—OH bond of between 1.393–1.456 Å. Furthermore, the bond angles C1—C3—Br1, C1—C4—Br2 and C1—C5—Br3 are similar and in general comparable in size with similar structural motifs (Bukowska-Strzyżewska & Skoweranda, 1980[Bukowska-Strzyżewska, M. & Skoweranda, J. (1980). Acta Cryst. B36, 886-889.]).

The mol­ecular structure of silylated thio­ether ligand 3 is shown in Fig. 2[link] and selected bond lengths and angles are given in Table 2[link].

Table 2
Selected geometric parameters (Å, °) for 3[link]

S1—C7 1.8244 (10) O1—C23 1.384 (15)
S1—C1 1.7661 (11) O1′—C23 1.479 (14)
S2—C10 1.7625 (12) O1—Si1 1.632 (12)
S3—C16 1.8214 (11) O1′—Si1′ 1.672 (13)
S3—C17 1.7742 (13)    
       
C1—S1—C7 105.85 (5) C23—O1′—Si1′ 123.7 (7)
C10—S2—C9 103.65 (5) C23—O1—Si1 123.6 (7)
C17—S3—C16 104.74 (5)    
[Figure 2]
Figure 2
The mol­ecular structure of silylated thio­ether ligand 3 with displacement ellipsoids drawn at the 50% probability level.

The S—C(alk­yl) bonds are of comparable lengths to each other and correspond to the expected bond lengths for alk­yl–sulfur bonds (1.778–1.856 Å; Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, 12, 1-19.]). The S—C(Ph) bonds, on the other hand, are significantly shorter than the S—C(alk­yl) bonds, but are within the range of expected bond lengths (1.700–1.802 Å). Comparing the bond angles at sulfur to similar structural motifs, the angles are quite similar (Tinant et al., 1987[Tinant, B., Declercq, J.-P. & Van Meerssche, M. (1987). Acta Cryst. C43, 2343-2345.]; Crundwell et al., 1999[Crundwell, G., Kessler, J., Kaller, M., McCoy, M., Bayne, C., Hardinger, S. A. & Kantardjieff, K. (1999). Acta Cryst. C55, IUC9900088.]). The length of the C—O bond of the ether from silylated thio­ether ligand 3 lies in a comparable range to the -C–O bond from bromo­methyl­alcohol 1. The occupancies at the disordered TMSO group are 50.9 (3)% for O1/Si1/C24–C26 and 49.1 (3)% for O1′/Si1′/C24′–C26′. The disorder at the TMSO group also shows a shorter O1—C23 [1.384 (15) Å] bond length than O1′—C23 [1.479 (14) Å]. The expected bond length for a C—O—Si bond is between 1.365 and 1.467 Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, 12, 1-19.]). Furthermore, the bond lengths O1—Si1 [1.632 (12) Å] and O1′—Si1′ [1.672 (13) Å] are similar, as are the bond angles between C23—O1—Si1 [123.6°(7)] and C23—O1′—Si1′ [123.7°(7)].

3. Supra­molecular features

The crystal packing of bromo­methyl­alcohol 1 is shown in Fig. 3[link] and is defined by inter­molecular hydrogen bonds along the a-axis direction, which are given in Table 3[link]. Here, the contacts between O1—H1⋯O2 [2.712 (3) Å] and O3—H3⋯O4 [2.729 (3) Å] are slightly shorter than those between O2—H2⋯O3 [2.766 (3) Å] and O4—H4⋯O1i [2.773 (3) Å]. Moreover, the angles are approximately linear at 175 (4)° (O3—H3⋯O4) and 168 (4)° (O1—H1⋯O2). These hydrogen bonds can be assigned the graph-set symbol D11(2). This means that a hydrogen bond between two adjacent hydroxyl groups, O1—H1⋯O2, is established. The contact between O4—H4⋯O1 is created via the symmetry operation (i) x − 1, y, z.

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.75 (4) 2.04 (4) 2.766 (3) 162 (5)
O4—H4⋯O1i 0.75 (5) 2.05 (5) 2.773 (3) 161 (5)
O3—H3⋯O4 0.74 (4) 1.99 (4) 2.729 (3) 175 (4)
O1—H1⋯O2 0.72 (4) 2.00 (4) 2.712 (3) 168 (4)
Symmetry code: (i) [x-1, y, z].
[Figure 3]
Figure 3
Crystal packing of bromo­methyl­alcohol 1 Hydrogen bonds are shown as dashed lines. Hydrogen bonds a, b and c have the graph-set motif D11(2).

To gain further insight into the supra­molecular packing inter­actions, a Hirshfeld surface analysis was performed (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The Hirshfeld surfaces and fingerprint plots were generated and analysed using the program CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surface was mapped over dnorm in the range −0.66 to 1.14 a.u. (Fig. 4[link]). The contributions of the different inter­molecular inter­actions for 1 are shown in the two-dimensional fingerprint plots (Fig. 5[link]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The different strength of the inter­actions is reflected here by the colouring of the surface. The red dots represent close contacts, whereas blue areas represent no contact. The fingerprint plots show that the O⋯H/H⋯O inter­actions account for only 8.9% of the total surface area, although they are probably the strongest contributors to the inter­molecular inter­actions. The largest contribution to the surface inter­actions comes from the Br⋯H/H⋯Br contacts at 50.4%. This is followed by the contributions of the H⋯H/H⋯H contacts (27.7%). There is no contribution to the surface inter­actions by C⋯H/H⋯C contacts, which is mainly due to the fact that the carbon atoms of the CH2 groups in question are shielded from the outside by the terminal Br and OH groups so that they cannot make any contribution. The smallest contribution to the surface inter­actions is made by the Br⋯O/O⋯Br contacts (0.4%), which is due to the spatial arrangement of the bromine substituents in relation to the hydroxyl group.

[Figure 4]
Figure 4
Hirshfeld surface analysis of 1 showing close contacts in the crystal. The hydrogen bonds between H1⋯O2 and H2⋯O3 are labelled.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots for bromo­methyl­alcohol 1 showing close contacts for (a) all contributions in the crystal and those delineated into (b) Br⋯Br, (c) H⋯H, (d) Br⋯O/O⋯Br, (e) Br⋯H/H⋯Br and (f) O⋯H/H⋯O-inter­actions.

The crystal packing of silylated thio­ether ligand 3 is shown in Fig. 6[link] and is characterized by propagation along the b-axis direction. For silylated thio­ether ligand 3, apart from the packing effects, there are no overriding inter­molecular inter­actions between the mol­ecules that influences the arrangement of the mol­ecules.

[Figure 6]
Figure 6
Crystal packing of silylated thio­ether ligand 3 shown along the b-axis. Mol­ecules are coloured by their symmetry relationship to the asymmetric unit. The relationships between colour and symmetry are as follows: grey – identity; light green – twofold rotation axis; dark green – twofold screw axis; golden yellow – inversion centre; magenta – glide plane.

4. Database survey

A search of the Cambridge crystallographic database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; WebCSD January 2023) for 1,3-di­bromo-2-(bro­mo­meth­yl)propanes revealed the following mol­ecules structurally related to bromo­methyl­alcohol 1: 4-[3-bromo-2,2-bis(bromo­meth­yl)prop­oxy]benzene-1,2-dicarbo­nitrile (VUJ­BOU; Canımkurbey et al., 2020[Canımkurbey, B., Taşkan, M. C., Demir, S., Duygulu, E., Atilla, D. & Yuksel, F. (2020). New J. Chem. 44, 7424-7435.]), 3-[3-bromo-2,2-bis­(bromo­meth­yl)prop­oxy]benzene-1,2-dicarbo­nitrile (VUJBUA; Canımkurbey et al., 2020[Canımkurbey, B., Taşkan, M. C., Demir, S., Duygulu, E., Atilla, D. & Yuksel, F. (2020). New J. Chem. 44, 7424-7435.]) and dimethyl 5-[3-bromo-2,2-bis(bromo­meth­yl)prop­oxy]benzene-1,3-di­carboxyl­ate (BAN­YOI; Najafi Khosroshahi et al., 2021[Najafi Khosroshahi, F., Feng, Y., Ma, L., Manring, S., Rold, T. L., Gallazzi, F. A., Kelley, S. P., Embree, M. F., Hennkens, H. M., Hoffman, T. J. & Jurisson, S. S. (2021). Bioconjugate Chem. 32, 1364-1373.]). For the C—Br bond lengths, similar values are found as in bromo­methyl­alcohol 1. Furthermore, the C—CH2—Br angles observed in 1 corres­pond to the angles in the selected structures.

A search for 1,3-bis­(phenyl­thio)-2-[(phenyl­thio)­meth­yl]propan-2-ol yielded no hits in the WebCSD. By replacing the quaternary carbon with a silicon atom, the comparable structural motif of catena-[[μ2-tetra­kis­(methyl­thio­meth­yl)silane]di­bromo­mercury(II)] (WAMYUF; Peindy et al., 2005[Peindy, H. N., Guyon, F., Knorr, M., Smith, A. B., Farouq, J. A., Islas, S. A., Rabinovich, D., Golen, J. A. & Strohmann, C. (2005). Inorg. Chem. Commun. 8, 479-482.]) was obtained. Here, the C(alk­yl)—S bonds are shorter than in silylated thio­ether ligand 3. The same applies to the related structure of di­bromo­[tetra­kis­(phenyl­thio­meth­yl)silane-S,S′]mercury(II) (WAMZAM; Peindy et al., 2005[Peindy, H. N., Guyon, F., Knorr, M., Smith, A. B., Farouq, J. A., Islas, S. A., Rabinovich, D., Golen, J. A. & Strohmann, C. (2005). Inorg. Chem. Commun. 8, 479-482.]).

Another related structure motif could be found where the thio­ether groups act as bridging ligands between Cu2I2 rhomboids (Schlachter et al., 2022[Schlachter, A., Scheel, R., Fortin, D., Strohmann, C., Knorr, M. & Harvey, P. D. (2022). Inorg. Chem. 61, 11306-11318.]).

5. Synthesis and crystallization

Bromo­methyl­alcohol 1 is commercially available and was crystallized at 243.15 K from diethyl ether as clear and colourless plates.

Methyl­lithium (1.6 M in n-hexane, 16.93 mmol) was dropped into diethyl ether (50 mL) at 273.15 K to 1 (15.39 mmol). The solution was stirred for 1 h at room temperature and then chloro­tri­methyl­silane (16.93 mmol) was added at 273.15 K. It was stirred again for 1 h at room temperature, then the reaction solution was quenched with water. The aqueous phase was extracted three times with di­chloro­methane and the combined organic layers were dried over magnesium sulfate. The volatiles were removed to give compound 2 crude.

1H NMR (600 MHz, C6D6) δ = 3.33 (s, 2H; OCH2C), 3.18 (s, 6H; CCH2Br), 0.03 (s, 9H; Si(CH3)3) ppm.

{1H}13C NMR (151 MHz, C6D6) δ = 61.6 (1C; OCH2C), 44.3 [1C; (C(CH2)4], 34.6 (3C; CCH2Br), −0.7 [3C; Si(CH3)3] ppm.

Thio­phenol (5.83 mmol) was then added to sodium hydride (5.83 mmol) in DMF (5 mL) at 273.15 K and stirred for 10 minutes. The NaSPh solution was added to 2 in DMF (10 mL) at 273.15 K and stirred for 10 minutes. The reaction solution was irradiated with microwaves (150 W, 323.15 K, 1 h) and then quenched with water. The aqueous phase was extracted three times with di­chloro­methane, the combined organic layers were dried over magnesium sulfate and the volatiles were removed. The residue was separated by fractional distillation under reduced pressure. Crystallization from diethyl ether at 243.15 K provided silylated thio­ether ligand 3 as clear and colourless blocks.

1H NMR (600 MHz, CDCl3) δ = 7.38–7.34 (m, 6H; CHortho), 7.30–7.23 (m, 6H; CHmeta), 7.19–7.15 (m, 3H; CHpara), 3.60 (s, 2H; OCH2C), 3.22 (s, 6H; SCH2C), 0.04 [s, 9H; Si(CH3)3] ppm.

{1H}13C NMR (151 MHz, CDCl3) δ = 137.2 (3C; Cipso), 129.8 (3C; Cortho), 128.9 (3C; Cmeta), 126.2 (3C; Cpara), 64.1 (1C; OCH2C), 46.0 (1C; (C(CH2)4), 38.7 (3C; SCH2C), −0.6 [3C; Si(CH3)3] ppm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) for CH2 and CH hydrogen atoms and Uiso(H) = 1.5Ueq(C) for CH3 hydrogen atoms. Hydrogen atoms H1, H2, H3 and H4 for compound 1 were refined independently. The TMSO group in 3 is disordered with occupancies converging to 50.9 (3)% for O1/Si1/C24–C26 and 49.1 (3)% for O1′/Si1′/C24′–C26′.

Table 4
Experimental details

  1 3
Crystal data
Chemical formula 4C5H9Br3O C26H32OS3Si
Mr 1299.35 484.78
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, C2/c
Temperature (K) 100 100
a, b, c (Å) 8.7763 (2), 9.4409 (3), 21.2951 (6) 27.0415 (12), 6.9329 (3), 27.7963 (14)
α, β, γ (°) 96.762 (1), 92.198 (1), 90.552 (1) 90, 96.939 (2), 90
V3) 1750.69 (8) 5173.0 (4)
Z 2 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 13.75 0.35
Crystal size (mm) 0.19 × 0.14 × 0.1 0.62 × 0.56 × 0.46
 
Data collection
Diffractometer Bruker D8 VENTURE Bruker D8 VENTURE
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.337, 0.565 0.671, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 61804, 10208, 8756 40629, 8253, 6927
Rint 0.049 0.035
(sin θ/λ)max−1) 0.703 0.726
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.069, 1.02 0.032, 0.077, 1.03
No. of reflections 10208 8253
No. of parameters 341 340
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.30, −1.02 0.36, −0.24
Computer programs: SAINT (Bruker, 2016[Bruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.], 2018[Bruker (2018). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Cell refinement: SAINT V8.40B (Bruker, 2016) for (1); SAINT V8.38A (Bruker, 2018) for (3). Data reduction: SAINT V8.40B (Bruker, 2016) for (1); SAINT V8.38A (Bruker, 2018) for (3). For both structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Olex2 1.3 (Dolomanov et al., 2009). Software used to prepare material for publication: CrystalExplorer21 (Spackman et al., 2021), Mercury (Macrae et al., 2020), publCIF (Westrip, 2010) for (1); Olex2 1.3 (Dolomanov et al., 2009) for (3).

3-Bromo-2,2-bis(bromomethyl)propan-1-ol (1) top
Crystal data top
4C5H9Br3OZ = 2
Mr = 1299.35F(000) = 1216
Triclinic, P1Dx = 2.465 Mg m3
a = 8.7763 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4409 (3) ÅCell parameters from 7029 reflections
c = 21.2951 (6) Åθ = 2.3–15.9°
α = 96.762 (1)°µ = 13.75 mm1
β = 92.198 (1)°T = 100 K
γ = 90.552 (1)°Block, clear colourless
V = 1750.69 (8) Å30.19 × 0.14 × 0.1 mm
Data collection top
Bruker D8 VENTURE
diffractometer
10208 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs8756 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.049
Detector resolution: 10.4167 pixels mm-1θmax = 30.0°, θmin = 1.9°
ω and φ scansh = 1212
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1313
Tmin = 0.337, Tmax = 0.565l = 2929
61804 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0285P)2 + 2.5017P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
10208 reflectionsΔρmax = 1.30 e Å3
341 parametersΔρmin = 1.02 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br60.30125 (3)0.63039 (3)0.93269 (2)0.02037 (6)
Br40.86961 (3)0.53671 (3)0.92653 (2)0.02067 (6)
Br120.19710 (3)0.09408 (3)0.93843 (2)0.02543 (7)
Br80.16003 (3)0.66948 (3)0.52163 (2)0.02341 (6)
Br110.01625 (3)0.18319 (3)0.81305 (2)0.02304 (6)
Br50.51228 (3)0.84879 (3)0.81175 (2)0.02386 (7)
Br100.36938 (3)0.18854 (3)0.93546 (2)0.02617 (7)
Br20.65686 (3)0.15652 (3)0.52219 (2)0.02328 (6)
Br90.57548 (3)0.49690 (3)0.59268 (2)0.02586 (7)
Br31.07850 (3)0.04690 (3)0.59305 (2)0.02689 (7)
Br70.05124 (3)0.56946 (3)0.67027 (2)0.02622 (7)
Br10.45074 (3)0.02393 (3)0.67092 (2)0.02651 (7)
O20.6078 (3)0.3698 (2)0.78090 (11)0.0242 (5)
O40.1096 (3)0.2803 (2)0.78670 (12)0.0251 (5)
O30.3270 (3)0.4014 (2)0.72095 (10)0.0210 (4)
O10.8317 (3)0.2138 (2)0.72320 (10)0.0204 (4)
C100.4056 (3)0.5476 (3)0.85794 (13)0.0179 (5)
H10A0.38920.44290.85280.022*
H10B0.35910.58460.82020.022*
C110.2610 (3)0.5306 (3)0.63072 (13)0.0145 (5)
C10.7645 (3)0.0382 (3)0.63190 (13)0.0147 (5)
C60.5773 (3)0.5793 (3)0.86066 (13)0.0156 (5)
C40.7044 (3)0.0353 (3)0.56350 (14)0.0188 (5)
H4A0.78160.07980.53910.023*
H4B0.61110.09340.56280.023*
C140.2011 (3)0.4988 (3)0.56232 (14)0.0183 (5)
H14A0.10590.44130.56130.022*
H14B0.27680.44080.53780.022*
C200.0922 (3)0.1385 (3)0.86366 (14)0.0198 (5)
H20A0.13900.08080.82590.024*
H20B0.10810.24030.85850.024*
C160.0793 (3)0.1105 (3)0.86637 (13)0.0175 (5)
C90.6137 (3)0.7389 (3)0.87314 (14)0.0186 (5)
H9A0.72530.75370.87200.022*
H9B0.58200.77520.91610.022*
C80.6491 (3)0.5059 (3)0.91482 (14)0.0184 (5)
H8A0.62760.40210.90640.022*
H8B0.60010.54180.95460.022*
C70.6409 (3)0.5181 (3)0.79682 (14)0.0196 (5)
H7A0.59720.57100.76310.024*
H7B0.75290.53320.79860.024*
C130.1613 (3)0.6329 (3)0.67193 (14)0.0186 (5)
H13A0.16590.72830.65710.022*
H13B0.20280.64240.71610.022*
C30.6604 (3)0.0418 (3)0.67253 (14)0.0189 (5)
H3A0.70160.02960.71680.023*
H3B0.66120.14490.65710.023*
C170.1445 (3)0.1412 (3)0.80276 (14)0.0203 (5)
H17A0.25660.13090.80510.024*
H17B0.10310.06930.76870.024*
C180.1501 (3)0.2131 (3)0.92103 (15)0.0217 (6)
H18A0.09780.19920.96030.026*
H18B0.13190.31220.91210.026*
C150.4154 (3)0.6086 (3)0.63522 (14)0.0184 (5)
H15A0.44670.63300.68040.022*
H15B0.40420.69900.61630.022*
C120.2713 (3)0.3858 (3)0.65646 (13)0.0173 (5)
H12A0.16910.33970.65340.021*
H12B0.34030.32330.63030.021*
C20.7795 (3)0.1961 (3)0.65817 (13)0.0174 (5)
H2A0.85220.24410.63290.021*
H2B0.67920.24210.65420.021*
C190.1148 (3)0.0427 (3)0.87699 (14)0.0199 (5)
H19A0.08080.05980.91930.024*
H19B0.22650.05580.87660.024*
C50.9158 (3)0.0390 (3)0.63634 (15)0.0202 (5)
H5A0.90090.13950.61780.024*
H5B0.94720.03870.68150.024*
H20.535 (5)0.361 (5)0.761 (2)0.034 (12)*
H40.036 (5)0.280 (5)0.768 (2)0.046 (14)*
H30.264 (5)0.369 (5)0.737 (2)0.031 (11)*
H10.766 (5)0.245 (4)0.7388 (19)0.027 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br60.01720 (12)0.02772 (14)0.01664 (13)0.00405 (10)0.00425 (10)0.00301 (10)
Br40.01508 (12)0.02315 (13)0.02331 (14)0.00189 (10)0.00250 (10)0.00171 (11)
Br120.02147 (14)0.03204 (15)0.02229 (15)0.00074 (11)0.00614 (11)0.00048 (12)
Br80.02755 (15)0.02032 (13)0.02272 (15)0.00141 (11)0.00450 (11)0.00575 (11)
Br110.02468 (14)0.01963 (13)0.02347 (15)0.00413 (10)0.00482 (11)0.00391 (11)
Br50.02543 (14)0.02445 (14)0.02381 (15)0.00620 (11)0.00529 (11)0.00985 (11)
Br100.01955 (14)0.02889 (15)0.02851 (16)0.00311 (11)0.00459 (11)0.00105 (12)
Br20.02747 (15)0.01877 (13)0.02193 (15)0.00285 (10)0.00348 (11)0.00290 (10)
Br90.01620 (13)0.02863 (15)0.03546 (18)0.00502 (10)0.00516 (12)0.01344 (13)
Br30.01618 (13)0.02337 (14)0.03854 (18)0.00393 (10)0.00650 (12)0.00860 (12)
Br70.01773 (13)0.02374 (14)0.03600 (18)0.00242 (10)0.00665 (12)0.00308 (12)
Br10.01738 (13)0.02924 (15)0.03493 (18)0.00410 (11)0.00650 (12)0.01025 (13)
O20.0205 (11)0.0261 (11)0.0239 (12)0.0031 (8)0.0009 (9)0.0056 (9)
O40.0208 (11)0.0281 (11)0.0277 (12)0.0036 (9)0.0004 (9)0.0091 (9)
O30.0220 (10)0.0240 (10)0.0173 (10)0.0044 (8)0.0020 (8)0.0042 (8)
O10.0198 (10)0.0219 (10)0.0181 (10)0.0044 (8)0.0016 (8)0.0027 (8)
C100.0176 (12)0.0222 (13)0.0136 (13)0.0003 (10)0.0011 (10)0.0003 (10)
C110.0145 (11)0.0134 (11)0.0151 (12)0.0010 (9)0.0008 (9)0.0008 (9)
C10.0159 (12)0.0124 (11)0.0160 (13)0.0000 (9)0.0002 (10)0.0026 (9)
C60.0142 (11)0.0185 (12)0.0140 (12)0.0006 (9)0.0017 (9)0.0013 (9)
C40.0217 (13)0.0135 (11)0.0208 (14)0.0008 (10)0.0018 (11)0.0011 (10)
C140.0203 (13)0.0154 (12)0.0182 (13)0.0004 (9)0.0040 (10)0.0002 (10)
C200.0199 (13)0.0228 (13)0.0164 (13)0.0013 (10)0.0017 (10)0.0006 (10)
C160.0172 (12)0.0174 (12)0.0173 (13)0.0002 (9)0.0018 (10)0.0012 (10)
C90.0187 (12)0.0199 (12)0.0184 (13)0.0012 (10)0.0015 (10)0.0063 (10)
C80.0135 (12)0.0228 (13)0.0191 (13)0.0005 (10)0.0006 (10)0.0029 (10)
C70.0178 (13)0.0242 (13)0.0167 (13)0.0002 (10)0.0019 (10)0.0018 (10)
C130.0168 (12)0.0168 (12)0.0210 (14)0.0016 (9)0.0004 (10)0.0026 (10)
C30.0170 (12)0.0190 (12)0.0214 (14)0.0009 (10)0.0009 (10)0.0053 (10)
C170.0205 (13)0.0222 (13)0.0181 (14)0.0016 (10)0.0011 (10)0.0014 (10)
C180.0179 (13)0.0246 (14)0.0207 (14)0.0008 (10)0.0011 (11)0.0040 (11)
C150.0161 (12)0.0152 (11)0.0238 (14)0.0021 (9)0.0003 (10)0.0026 (10)
C120.0198 (13)0.0145 (11)0.0171 (13)0.0008 (9)0.0003 (10)0.0001 (10)
C20.0203 (13)0.0144 (11)0.0170 (13)0.0019 (9)0.0007 (10)0.0005 (10)
C190.0215 (13)0.0184 (12)0.0186 (14)0.0002 (10)0.0017 (11)0.0025 (10)
C50.0164 (12)0.0175 (12)0.0259 (15)0.0025 (10)0.0009 (11)0.0004 (11)
Geometric parameters (Å, º) top
Br1—C31.948 (3)C4—H4A0.9900
Br2—C41.952 (3)C4—H4B0.9900
Br3—C51.950 (3)C14—H14A0.9900
Br4—C81.956 (3)C14—H14B0.9900
Br5—C91.956 (3)C20—H20A0.9900
Br6—C101.954 (3)C20—H20B0.9900
Br7—C131.951 (3)C20—C161.531 (4)
Br8—C141.947 (3)C16—C171.548 (4)
Br9—C151.951 (3)C16—C181.532 (4)
Br10—C181.957 (3)C16—C191.523 (4)
Br11—C191.955 (3)C9—H9A0.9900
Br12—C201.955 (3)C9—H9B0.9900
O2—C71.426 (4)C8—H8A0.9900
O2—H20.75 (4)C8—H8B0.9900
O4—C171.428 (4)C7—H7A0.9900
O4—H40.75 (5)C7—H7B0.9900
O3—C121.431 (3)C13—H13A0.9900
O3—H30.74 (4)C13—H13B0.9900
O1—C21.432 (3)C3—H3A0.9900
O1—H10.72 (4)C3—H3B0.9900
C10—H10A0.9900C17—H17A0.9900
C10—H10B0.9900C17—H17B0.9900
C10—C61.531 (4)C18—H18A0.9900
C11—C141.524 (4)C18—H18B0.9900
C11—C131.531 (4)C15—H15A0.9900
C11—C151.530 (4)C15—H15B0.9900
C11—C121.534 (4)C12—H12A0.9900
C1—C41.527 (4)C12—H12B0.9900
C1—C31.535 (4)C2—H2A0.9900
C1—C21.532 (4)C2—H2B0.9900
C1—C51.526 (4)C19—H19A0.9900
C6—C91.528 (4)C19—H19B0.9900
C6—C81.532 (4)C5—H5A0.9900
C6—C71.540 (4)C5—H5B0.9900
C7—O2—H2109 (3)H8A—C8—H8B107.7
C17—O4—H4111 (4)O2—C7—C6113.0 (2)
C12—O3—H3102 (3)O2—C7—H7A109.0
C2—O1—H1102 (3)O2—C7—H7B109.0
Br6—C10—H10A108.8C6—C7—H7A109.0
Br6—C10—H10B108.8C6—C7—H7B109.0
H10A—C10—H10B107.7H7A—C7—H7B107.8
C6—C10—Br6113.95 (19)Br7—C13—H13A109.0
C6—C10—H10A108.8Br7—C13—H13B109.0
C6—C10—H10B108.8C11—C13—Br7112.91 (18)
C14—C11—C13113.7 (2)C11—C13—H13A109.0
C14—C11—C15111.6 (2)C11—C13—H13B109.0
C14—C11—C12105.9 (2)H13A—C13—H13B107.8
C13—C11—C12110.9 (2)Br1—C3—H3A109.0
C15—C11—C13103.0 (2)Br1—C3—H3B109.0
C15—C11—C12111.9 (2)C1—C3—Br1112.99 (18)
C4—C1—C3113.2 (2)C1—C4—Br2113.48 (18)
C4—C1—C2105.9 (2)C1—C3—H3A109.0
C2—C1—C3110.8 (2)C1—C3—H3B109.0
C5—C1—C4111.9 (2)H3A—C3—H3B107.8
C5—C1—C3103.2 (2)O4—C17—C16113.3 (2)
C5—C1—C2112.0 (2)O4—C17—H17A108.9
C10—C6—C8107.7 (2)O4—C17—H17B108.9
C10—C6—C7107.9 (2)C16—C17—H17A108.9
C9—C6—C10112.4 (2)C16—C17—H17B108.9
C9—C6—C8108.6 (2)H17A—C17—H17B107.7
C9—C6—C7109.6 (2)Br10—C18—H18A108.8
C8—C6—C7110.7 (2)Br10—C18—H18B108.8
Br2—C4—H4A108.9C16—C18—Br10113.95 (19)
Br2—C4—H4B108.9C16—C18—H18A108.8
C1—C4—H4A108.9C16—C18—H18B108.8
C1—C4—H4B108.9H18A—C18—H18B107.7
H4A—C4—H4B107.7Br9—C15—H15A108.9
Br8—C14—H14A108.9Br9—C15—H15B108.9
Br8—C14—H14B108.9C11—C15—Br9113.19 (18)
C11—C14—Br8113.49 (18)C11—C15—H15A108.9
C11—C14—H14A108.9C11—C15—H15B108.9
C11—C14—H14B108.9H15A—C15—H15B107.8
H14A—C14—H14B107.7O3—C12—C11111.4 (2)
Br12—C20—H20A108.8O3—C12—H12A109.4
Br12—C20—H20B108.8O3—C12—H12B109.4
H20A—C20—H20B107.7C11—C12—H12A109.4
C16—C20—Br12114.0 (2)C11—C12—H12B109.4
C16—C20—H20A108.8H12A—C12—H12B108.0
C16—C20—H20B108.8O1—C2—H2A109.3
C20—C16—C17108.1 (2)O1—C2—H2B109.3
C20—C16—C18107.3 (2)C1—C2—H2A109.3
C18—C16—C17110.4 (2)C1—C2—H2B109.3
C19—C16—C20112.4 (2)H2A—C2—H2B108.0
C19—C16—C17109.0 (2)Br11—C19—H19A109.0
C19—C16—C18109.7 (2)Br11—C19—H19B109.0
Br5—C9—H9A109.0C16—C19—Br11112.9 (2)
Br5—C9—H9B109.0C16—C19—H19A109.0
C6—C9—Br5113.0 (2)C16—C19—H19B109.0
C6—C9—H9A109.0H19A—C19—H19B107.8
C6—C9—H9B109.0Br3—C5—H5A108.9
H9A—C9—H9B107.8Br3—C5—H5B108.9
Br4—C8—H8A108.8C1—C5—Br3113.21 (19)
Br4—C8—H8B108.8O1—C2—C1111.6 (2)
C6—C8—Br4113.72 (19)C1—C5—H5A108.9
C6—C8—H8A108.8C1—C5—H5B108.9
C6—C8—H8B108.8H5A—C5—H5B107.7
Br6—C10—C6—C954.5 (3)C13—C11—C14—Br852.6 (3)
Br6—C10—C6—C865.0 (3)C13—C11—C15—Br9175.11 (19)
Br6—C10—C6—C7175.47 (18)C13—C11—C12—O356.3 (3)
Br12—C20—C16—C17176.50 (18)C3—C1—C4—Br252.8 (3)
Br12—C20—C16—C1864.5 (3)C3—C1—C2—O155.4 (3)
Br12—C20—C16—C1956.1 (3)C3—C1—C5—Br3176.37 (18)
C10—C6—C9—Br555.4 (3)C17—C16—C18—Br1065.2 (3)
C10—C6—C8—Br4179.21 (18)C17—C16—C19—Br1163.5 (3)
C10—C6—C7—O255.7 (3)C18—C16—C17—O462.8 (3)
C4—C1—C3—Br154.4 (3)C18—C16—C19—Br11175.64 (19)
C4—C1—C2—O1178.5 (2)C15—C11—C14—Br863.4 (3)
C4—C1—C5—Br361.6 (3)C15—C11—C13—Br7175.29 (18)
C14—C11—C13—Br754.3 (3)C15—C11—C12—O358.1 (3)
C14—C11—C15—Br962.5 (3)C12—C11—C14—Br8174.59 (18)
C14—C11—C12—O3179.9 (2)C12—C11—C13—Br764.9 (3)
C20—C16—C17—O454.2 (3)C12—C11—C15—Br956.0 (3)
C20—C16—C18—Br10177.22 (19)C2—C1—C4—Br2174.38 (18)
C20—C16—C19—Br1156.4 (3)C2—C1—C3—Br164.4 (3)
C9—C6—C8—Br457.3 (3)C2—C1—C5—Br357.1 (3)
C9—C6—C7—O2178.4 (2)C19—C16—C17—O4176.7 (2)
C8—C6—C9—Br5174.45 (17)C19—C16—C18—Br1054.8 (3)
C8—C6—C7—O261.9 (3)C5—C1—C4—Br263.4 (3)
C7—C6—C9—Br564.5 (3)C5—C1—C3—Br1175.56 (18)
C7—C6—C8—Br463.0 (3)C5—C1—C2—O159.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.75 (4)2.04 (4)2.766 (3)162 (5)
O4—H4···O1i0.75 (5)2.05 (5)2.773 (3)161 (5)
O3—H3···O40.74 (4)1.99 (4)2.729 (3)175 (4)
O1—H1···O20.72 (4)2.00 (4)2.712 (3)168 (4)
Symmetry code: (i) x1, y, z.
Trimethyl({tris[(phenylsulfanyl)methyl]silyl}methoxy)silane (3) top
Crystal data top
C26H32OS3SiF(000) = 2064
Mr = 484.78Dx = 1.245 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.0415 (12) ÅCell parameters from 9874 reflections
b = 6.9329 (3) Åθ = 2.2–31.0°
c = 27.7963 (14) ŵ = 0.35 mm1
β = 96.939 (2)°T = 100 K
V = 5173.0 (4) Å3Block, clear colourless
Z = 80.62 × 0.56 × 0.46 mm
Data collection top
Bruker D8 VENTURE
diffractometer
8253 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs6927 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.035
Detector resolution: 10.4167 pixels mm-1θmax = 31.1°, θmin = 2.2°
φ and ω scansh = 3939
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1010
Tmin = 0.671, Tmax = 0.746l = 4040
40629 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0273P)2 + 3.6217P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
8253 reflectionsΔρmax = 0.36 e Å3
340 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.29397 (2)0.49136 (4)0.53826 (2)0.01817 (6)
S20.20238 (2)0.78150 (4)0.58269 (2)0.02262 (6)
S30.31216 (2)1.14605 (4)0.66285 (2)0.02538 (7)
C80.30483 (4)0.80744 (14)0.60358 (4)0.01565 (18)
C70.30656 (4)0.74642 (14)0.55036 (4)0.01713 (18)
H7A0.33990.77750.54120.021*
H7B0.28190.82380.52940.021*
C90.25831 (4)0.72995 (14)0.62389 (4)0.01716 (18)
H9A0.25560.79040.65570.021*
H9B0.26150.58890.62880.021*
C160.30594 (4)1.02993 (15)0.60364 (4)0.0201 (2)
H16A0.27491.07680.58480.024*
H16B0.33401.07240.58640.024*
C10.34951 (4)0.39457 (15)0.52076 (4)0.0198 (2)
C230.34988 (4)0.72598 (16)0.63568 (4)0.01953 (19)
C150.16005 (4)0.70047 (17)0.66701 (4)0.0246 (2)
H150.19140.65030.68050.029*
C20.34409 (5)0.23215 (16)0.49074 (4)0.0250 (2)
H20.31170.18570.47930.030*
C60.39722 (4)0.46279 (18)0.53680 (4)0.0277 (2)
H60.40140.57280.55730.033*
C170.25090 (5)1.14867 (15)0.67960 (4)0.0255 (2)
C100.15440 (4)0.77326 (17)0.62029 (4)0.0230 (2)
C220.24394 (5)1.07987 (17)0.72557 (4)0.0300 (3)
H220.27121.02580.74590.036*
C180.21056 (5)1.22418 (17)0.64960 (5)0.0307 (3)
H180.21501.27120.61830.037*
C140.12017 (5)0.7002 (2)0.69433 (5)0.0330 (3)
H140.12450.65150.72650.040*
C30.38577 (5)0.13854 (18)0.47757 (5)0.0332 (3)
H30.38180.02720.45760.040*
C210.19743 (6)1.09037 (19)0.74155 (5)0.0375 (3)
H210.19301.04550.77300.045*
C50.43855 (5)0.3689 (2)0.52267 (5)0.0371 (3)
H50.47100.41670.53320.044*
C110.10797 (4)0.8453 (2)0.60058 (5)0.0355 (3)
H110.10360.89620.56860.043*
C40.43306 (5)0.2064 (2)0.49342 (5)0.0377 (3)
H40.46150.14220.48430.045*
C200.15751 (6)1.16595 (19)0.71180 (6)0.0414 (3)
H200.12571.17380.72290.050*
C190.16397 (5)1.23047 (19)0.66560 (6)0.0384 (3)
H190.13631.27920.64490.046*
C130.07437 (5)0.7706 (3)0.67479 (6)0.0442 (4)
H130.04710.77010.69340.053*
C120.06846 (5)0.8419 (3)0.62797 (6)0.0482 (4)
H120.03680.88920.61440.058*
Si1'0.44785 (2)0.8553 (2)0.64956 (3)0.0190 (2)0.491 (3)
Si10.44762 (2)0.7677 (2)0.65917 (3)0.0212 (2)0.509 (3)
C26'0.49264 (14)0.8897 (5)0.60512 (14)0.0309 (7)0.491 (3)
H26A0.49500.77050.58660.046*0.491 (3)
H26B0.52540.92180.62220.046*0.491 (3)
H26C0.48120.99490.58300.046*0.491 (3)
C250.45259 (9)0.5178 (4)0.68366 (9)0.0302 (6)0.509 (3)
H25A0.42630.49590.70440.045*0.509 (3)
H25B0.48520.50030.70270.045*0.509 (3)
H25C0.44890.42540.65680.045*0.509 (3)
C260.49628 (13)0.8198 (6)0.61941 (14)0.0355 (7)0.509 (3)
H26D0.49530.72120.59410.053*0.509 (3)
H26E0.52910.81900.63870.053*0.509 (3)
H26F0.49020.94690.60440.053*0.509 (3)
C240.44964 (10)0.9441 (4)0.70963 (9)0.0321 (6)0.509 (3)
H24A0.48190.93480.72980.048*0.509 (3)
H24B0.42280.91570.72930.048*0.509 (3)
H24C0.44531.07480.69640.048*0.509 (3)
C24'0.44206 (10)1.0777 (4)0.68546 (11)0.0341 (7)0.491 (3)
H24D0.43071.18410.66370.051*0.491 (3)
H24E0.47451.11010.70320.051*0.491 (3)
H24F0.41791.05650.70850.051*0.491 (3)
C25'0.46508 (10)0.6452 (4)0.68981 (11)0.0346 (7)0.491 (3)
H25D0.44250.63800.71480.052*0.491 (3)
H25E0.49940.66070.70530.052*0.491 (3)
H25F0.46250.52640.67060.052*0.491 (3)
O1'0.3933 (5)0.813 (2)0.6162 (5)0.0183 (11)0.491 (3)
O10.3954 (5)0.788 (2)0.6234 (5)0.0193 (11)0.509 (3)
H23A0.3479 (5)0.7632 (18)0.6703 (5)0.021 (3)*
H23B0.3497 (5)0.5849 (19)0.6332 (5)0.019 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01888 (11)0.01749 (11)0.01825 (12)0.00061 (9)0.00277 (9)0.00230 (9)
S20.01735 (11)0.03543 (15)0.01493 (12)0.00120 (10)0.00136 (9)0.00211 (10)
S30.03324 (15)0.02129 (12)0.02207 (13)0.00472 (11)0.00528 (11)0.00615 (10)
C80.0167 (4)0.0162 (4)0.0140 (4)0.0005 (3)0.0020 (3)0.0005 (3)
C70.0191 (4)0.0170 (4)0.0153 (4)0.0002 (4)0.0022 (3)0.0002 (3)
C90.0182 (4)0.0189 (4)0.0145 (4)0.0010 (4)0.0025 (3)0.0002 (3)
C160.0264 (5)0.0174 (4)0.0174 (5)0.0018 (4)0.0058 (4)0.0006 (4)
C10.0234 (5)0.0207 (5)0.0156 (5)0.0035 (4)0.0030 (4)0.0004 (4)
C230.0178 (4)0.0226 (5)0.0177 (5)0.0000 (4)0.0004 (4)0.0010 (4)
C150.0225 (5)0.0276 (5)0.0244 (5)0.0024 (4)0.0061 (4)0.0026 (4)
C20.0308 (6)0.0227 (5)0.0225 (5)0.0004 (4)0.0063 (4)0.0040 (4)
C60.0228 (5)0.0340 (6)0.0255 (6)0.0040 (5)0.0001 (4)0.0091 (5)
C170.0377 (6)0.0157 (4)0.0246 (5)0.0008 (4)0.0103 (5)0.0049 (4)
C100.0180 (5)0.0295 (5)0.0219 (5)0.0023 (4)0.0039 (4)0.0065 (4)
C220.0471 (7)0.0225 (5)0.0218 (6)0.0035 (5)0.0095 (5)0.0062 (4)
C180.0409 (7)0.0192 (5)0.0336 (7)0.0043 (5)0.0113 (5)0.0003 (4)
C140.0299 (6)0.0432 (7)0.0281 (6)0.0080 (5)0.0129 (5)0.0038 (5)
C30.0426 (7)0.0280 (6)0.0306 (6)0.0054 (5)0.0102 (5)0.0072 (5)
C210.0580 (9)0.0275 (6)0.0313 (7)0.0067 (6)0.0229 (6)0.0097 (5)
C50.0230 (6)0.0510 (8)0.0368 (7)0.0078 (6)0.0021 (5)0.0108 (6)
C110.0206 (5)0.0593 (9)0.0259 (6)0.0044 (6)0.0005 (4)0.0050 (6)
C40.0347 (7)0.0446 (7)0.0347 (7)0.0163 (6)0.0080 (5)0.0067 (6)
C200.0495 (8)0.0259 (6)0.0546 (9)0.0009 (6)0.0302 (7)0.0126 (6)
C190.0403 (7)0.0246 (6)0.0522 (9)0.0087 (5)0.0130 (6)0.0040 (6)
C130.0212 (6)0.0742 (11)0.0396 (8)0.0059 (6)0.0136 (5)0.0133 (7)
C120.0183 (6)0.0866 (12)0.0394 (8)0.0053 (7)0.0028 (5)0.0113 (8)
Si1'0.0157 (3)0.0224 (5)0.0190 (3)0.0008 (3)0.0016 (2)0.0026 (3)
Si10.0166 (3)0.0259 (6)0.0208 (3)0.0004 (3)0.0014 (2)0.0031 (3)
C26'0.0251 (13)0.0358 (18)0.0338 (18)0.0041 (13)0.0118 (12)0.0020 (13)
C250.0293 (12)0.0294 (13)0.0315 (13)0.0064 (10)0.0017 (10)0.0022 (10)
C260.0256 (13)0.042 (2)0.041 (2)0.0075 (14)0.0115 (13)0.0063 (14)
C240.0323 (12)0.0354 (13)0.0272 (12)0.0013 (10)0.0024 (9)0.0072 (10)
C24'0.0216 (11)0.0366 (14)0.0437 (16)0.0031 (10)0.0021 (10)0.0184 (12)
C25'0.0277 (12)0.0378 (16)0.0373 (15)0.0041 (11)0.0003 (10)0.0125 (12)
O1'0.0127 (13)0.025 (3)0.016 (3)0.0020 (18)0.0013 (17)0.0021 (18)
O10.0191 (16)0.022 (3)0.016 (3)0.0006 (15)0.0003 (18)0.0033 (17)
Geometric parameters (Å, º) top
S1—C71.8244 (10)C21—H210.9500
S1—C11.7661 (11)C21—C201.381 (2)
S2—C91.8188 (10)C5—H50.9500
S2—C101.7625 (12)C5—C41.3864 (19)
S3—C161.8214 (11)C11—H110.9500
S3—C171.7742 (13)C11—C121.3850 (19)
C8—C71.5446 (14)C4—H40.9500
C8—C91.5367 (14)C20—H200.9500
C8—C161.5428 (14)C20—C191.391 (2)
C8—C231.5286 (14)C19—H190.9500
C7—H7A0.9900C13—H130.9500
C7—H7B0.9900C13—C121.383 (2)
C9—H9A0.9900C12—H120.9500
C9—H9B0.9900Si1'—C26'1.847 (4)
C16—H16A0.9900Si1'—C24'1.853 (3)
C16—H16B0.9900Si1'—C25'1.861 (3)
C1—C21.3986 (15)O1—Si11.632 (12)
C1—C61.3957 (15)O1'—Si1'1.672 (13)
O1—C231.384 (15)Si1—C251.861 (3)
O1'—C231.479 (14)Si1—C261.853 (4)
C23—H23A1.004 (14)Si1—C241.856 (3)
C23—H23B0.981 (13)C26'—H26A0.9800
C15—H150.9500C26'—H26B0.9800
C15—C101.3845 (16)C26'—H26C0.9800
C15—C141.3918 (16)C25—H25A0.9800
C2—H20.9500C25—H25B0.9800
C2—C31.3875 (17)C25—H25C0.9800
C6—H60.9500C26—H26D0.9800
C6—C51.3905 (17)C26—H26E0.9800
C17—C221.3977 (17)C26—H26F0.9800
C17—C181.3925 (18)C24—H24A0.9800
C10—C111.3998 (16)C24—H24B0.9800
C22—H220.9500C24—H24C0.9800
C22—C211.3856 (19)C24'—H24D0.9800
C18—H180.9500C24'—H24E0.9800
C18—C191.3865 (19)C24'—H24F0.9800
C14—H140.9500C25'—H25D0.9800
C14—C131.380 (2)C25'—H25E0.9800
C3—H30.9500C25'—H25F0.9800
C3—C41.384 (2)
C1—S1—C7105.85 (5)C4—C5—C6120.88 (12)
C10—S2—C9103.65 (5)C4—C5—H5119.6
C17—S3—C16104.74 (5)C10—C11—H11120.2
C9—C8—C7112.14 (8)C12—C11—C10119.60 (13)
C9—C8—C16111.46 (8)C12—C11—H11120.2
C16—C8—C7105.78 (8)C3—C4—C5119.50 (12)
C23—C8—C7110.11 (8)C3—C4—H4120.3
C23—C8—C9106.65 (8)C5—C4—H4120.3
C23—C8—C16110.77 (8)C21—C20—H20120.1
S1—C7—H7A108.6C21—C20—C19119.90 (13)
S1—C7—H7B108.6C19—C20—H20120.1
C8—C7—S1114.55 (7)C18—C19—C20120.43 (14)
C8—C7—H7A108.6C18—C19—H19119.8
C8—C7—H7B108.6C20—C19—H19119.8
H7A—C7—H7B107.6C14—C13—H13120.2
S2—C9—H9A109.5C14—C13—C12119.53 (12)
S2—C9—H9B109.5C12—C13—H13120.2
C8—C9—S2110.82 (7)C11—C12—H12119.5
C8—C9—H9A109.5C13—C12—C11120.94 (13)
C8—C9—H9B109.5C13—C12—H12119.5
H9A—C9—H9B108.1C26'—Si1'—C24'110.96 (16)
S3—C16—H16A108.2C26'—Si1'—C25'111.49 (15)
S3—C16—H16B108.2C24'—Si1'—C25'111.01 (15)
C8—C16—S3116.27 (7)O1'—Si1'—C26'104.9 (5)
C8—C16—H16A108.2O1'—Si1'—C24'108.7 (6)
C8—C16—H16B108.2O1'—Si1'—C25'109.6 (4)
H16A—C16—H16B107.4C26—Si1—C25112.00 (15)
C2—C1—S1116.04 (8)C26—Si1—C24111.33 (15)
C6—C1—S1124.56 (8)C24—Si1—C25110.04 (13)
C6—C1—C2119.31 (10)O1—Si1—C25108.8 (5)
C8—C23—H23A109.5 (7)O1—Si1—C26104.2 (5)
C8—C23—H23B109.2 (7)O1—Si1—C24110.4 (6)
O1'—C23—C8104.4 (4)Si1'—C26'—H26A109.5
O1'—C23—H23A112.6 (10)Si1'—C26'—H26B109.5
O1'—C23—H23B112.1 (10)Si1'—C26'—H26C109.5
O1—C23—C8114.3 (4)H26A—C26'—H26B109.5
O1—C23—H23A108.0 (10)H26A—C26'—H26C109.5
O1—C23—H23B106.8 (10)H26B—C26'—H26C109.5
H23A—C23—H23B108.9 (11)Si1—C25—H25A109.5
C10—C15—H15119.8Si1—C25—H25B109.5
C10—C15—C14120.49 (11)Si1—C25—H25C109.5
C14—C15—H15119.8H25A—C25—H25B109.5
C1—C2—H2119.9H25A—C25—H25C109.5
C3—C2—C1120.28 (11)H25B—C25—H25C109.5
C3—C2—H2119.9Si1—C26—H26D109.5
C1—C6—H6120.2Si1—C26—H26E109.5
C5—C6—C1119.65 (11)Si1—C26—H26F109.5
C5—C6—H6120.2H26D—C26—H26E109.5
C22—C17—S3118.00 (10)H26D—C26—H26F109.5
C18—C17—S3122.37 (10)H26E—C26—H26F109.5
C18—C17—C22119.57 (12)Si1—C24—H24A109.5
C15—C10—S2124.22 (9)Si1—C24—H24B109.5
C15—C10—C11119.28 (11)Si1—C24—H24C109.5
C11—C10—S2116.50 (10)H24A—C24—H24B109.5
C17—C22—H22119.9H24A—C24—H24C109.5
C21—C22—C17120.19 (13)H24B—C24—H24C109.5
C21—C22—H22119.9Si1'—C24'—H24D109.5
C17—C18—H18120.1Si1'—C24'—H24E109.5
C19—C18—C17119.75 (13)Si1'—C24'—H24F109.5
C19—C18—H18120.1H24D—C24'—H24E109.5
C15—C14—H14119.9H24D—C24'—H24F109.5
C13—C14—C15120.15 (13)H24E—C24'—H24F109.5
C13—C14—H14119.9Si1'—C25'—H25D109.5
C2—C3—H3119.8Si1'—C25'—H25E109.5
C4—C3—C2120.38 (12)Si1'—C25'—H25F109.5
C4—C3—H3119.8H25D—C25'—H25E109.5
C22—C21—H21119.9H25D—C25'—H25F109.5
C20—C21—C22120.13 (13)H25E—C25'—H25F109.5
C20—C21—H21119.9C23—O1'—Si1'123.7 (7)
C6—C5—H5119.6C23—O1—Si1123.6 (7)
S1—C1—C2—C3175.92 (10)C23—C8—C7—S171.19 (9)
S1—C1—C6—C5176.56 (10)C23—C8—C9—S2169.94 (7)
S2—C10—C11—C12179.49 (12)C23—C8—C16—S353.29 (11)
S3—C17—C22—C21175.84 (9)C15—C10—C11—C120.3 (2)
S3—C17—C18—C19176.99 (9)C15—C14—C13—C120.2 (2)
C8—C23—O1'—Si1'151.5 (9)C2—C1—C6—C50.14 (18)
C8—C23—O1—Si1163.9 (8)C2—C3—C4—C50.1 (2)
C7—S1—C1—C2153.61 (8)C6—C1—C2—C30.80 (18)
C7—S1—C1—C629.86 (11)C6—C5—C4—C30.9 (2)
C7—C8—C9—S249.35 (10)C17—S3—C16—C881.99 (9)
C7—C8—C16—S3172.59 (7)C17—C22—C21—C201.09 (18)
C7—C8—C23—O1'60.9 (7)C17—C18—C19—C201.48 (19)
C7—C8—C23—O160.3 (8)C10—S2—C9—C8157.51 (7)
C9—S2—C10—C1512.64 (11)C10—C15—C14—C130.8 (2)
C9—S2—C10—C11167.62 (10)C10—C11—C12—C130.9 (2)
C9—C8—C7—S147.38 (10)C22—C17—C18—C190.02 (17)
C9—C8—C16—S365.28 (10)C22—C21—C20—C190.4 (2)
C9—C8—C23—O1'177.2 (7)C18—C17—C22—C211.30 (17)
C9—C8—C23—O1177.8 (8)C14—C15—C10—S2179.72 (10)
C16—S3—C17—C22129.90 (9)C14—C15—C10—C110.55 (18)
C16—S3—C17—C1853.05 (11)C14—C13—C12—C110.6 (3)
C16—C8—C7—S1169.08 (7)C21—C20—C19—C181.7 (2)
C16—C8—C9—S269.04 (9)C26'—Si1'—O1'—C23163.0 (10)
C16—C8—C23—O1'55.8 (7)C25—Si1—O1—C2347.9 (13)
C16—C8—C23—O156.3 (8)C26—Si1—O1—C23167.5 (11)
C1—S1—C7—C8115.70 (7)C24—Si1—O1—C2372.9 (12)
C1—C2—C3—C40.9 (2)C24'—Si1'—O1'—C2378.3 (11)
C1—C6—C5—C41.0 (2)C25'—Si1'—O1'—C2343.2 (13)
Selected geometric parameters for bromomethylalcohol 1 (Å, °). top
Br1–C31.948 (3)C1–C3–Br1112.99 (18)
Br2–C41.952 (3)C1–C4–Br2113.48 (18)
Br3–C51.950 (3)C1–C5–Br3113.21 (19)
O1–C21.432 (3)O1–C2–C1111.6 (2)
Selected geometric parameters for silylated thioether ligand 3 (Å, °). top
S1–C71.8242 (11)C1–S1–C7105.84 (5)
S1–C11.7661 (11)C10–S2–C16103.67 (5)
S2–C91.8183 (11)C17–S3–C16104.74 (5)
S2–C101.7621 (12)C23–O1–Si1123.3 (8)
S3–C161.8211 (11)C23–O1'–Si1'123.8 (8)
S3–C171.7739 (13)
O1–C231.385 (17)
O1'–C231.480 (15)
O1–Si11.636 (14)
O1'–Si1'1.669 (15)

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, 12, 1–19.  Google Scholar
First citationAwaleh, M. O., Baril-Robert, F., Reber, C., Badia, A. & Brisse, F. (2008). Inorg. Chem. 47, 2964–2974.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAwaleh, M. O., Brisse, F., Soubaneh, Y. D., Maris, T. & Dirieh, E. S. (2010). J. Inorg. Organomet. Polym. 20, 816–824.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBukowska-Strzyżewska, M. & Skoweranda, J. (1980). Acta Cryst. B36, 886–889.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationCanımkurbey, B., Taşkan, M. C., Demir, S., Duygulu, E., Atilla, D. & Yuksel, F. (2020). New J. Chem. 44, 7424–7435.  Google Scholar
First citationCrundwell, G., Kessler, J., Kaller, M., McCoy, M., Bayne, C., Hardinger, S. A. & Kantardjieff, K. (1999). Acta Cryst. C55, IUC9900088.  CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKnaust, J. M. & Keller, S. W. (2003). CrystEngComm, 5, 459–465.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnorr, M., Guyon, F., Khatyr, A., Strohmann, C., Allain, M., Aly, S. M., Lapprand, A., Fortin, D. & Harvey, P. D. (2012). Inorg. Chem. 51, 9917–9934.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKnorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373–5387.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNajafi Khosroshahi, F., Feng, Y., Ma, L., Manring, S., Rold, T. L., Gallazzi, F. A., Kelley, S. P., Embree, M. F., Hennkens, H. M., Hoffman, T. J. & Jurisson, S. S. (2021). Bioconjugate Chem. 32, 1364–1373.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeindy, H. N., Guyon, F., Khatyr, A., Knorr, M., Gessner, V. H. & Strohmann, C. (2009). Z. Anorg. Allg. Chem. 635, 2099–2105.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeindy, H. N., Guyon, F., Knorr, M., Smith, A. B., Farouq, J. A., Islas, S. A., Rabinovich, D., Golen, J. A. & Strohmann, C. (2005). Inorg. Chem. Commun. 8, 479–482.  Web of Science CSD CrossRef CAS Google Scholar
First citationPetuker, A., Gerschel, P., Piontek, S., Ritterskamp, N., Wittkamp, F., Iffland, L., Miller, R., van Gastel, M. & Apfel, U.-P. (2017). Dalton Trans. 46, 13251–13262.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchlachter, A., Lapprand, A., Fortin, D., Strohmann, C., Harvey, P. D. & Knorr, M. (2020). Inorg. Chem. 59, 3686–3708.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchlachter, A., Scheel, R., Fortin, D., Strohmann, C., Knorr, M. & Harvey, P. D. (2022). Inorg. Chem. 61, 11306–11318.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchlachter, A., Tanner, K., Scheel, R., Karsenti, P.-L., Strohmann, C., Knorr, M. & Harvey, P. D. (2021). Inorg. Chem. 60, 13528–13538.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchlachter, A., Viau, L., Fortin, D., Knauer, L., Strohmann, C., Knorr, M. & Harvey, P. D. (2018). Inorg. Chem. 57, 13564–13576.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTinant, B., Declercq, J.-P. & Van Meerssche, M. (1987). Acta Cryst. C43, 2343–2345.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationViau, L., Knorr, M., Knauer, L., Brieger, L. & Strohmann, C. (2022). Dalton Trans. 51, 7581–7606.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds