research communications
Syntheses and crystal structures of three novel oxalate coordination compounds: Rb2Co(C2O4)2·4H2O, Rb2CoCl2(C2O4) and K2Li2Cu(C2O4)3·2H2O
aDepartment of Chemistry - Ångström Laboratory, Lägerhyddsvägen 1, Box 538, 751 21, Uppsala, Sweden, and bSchool of Chemistry, University of St Andrews, KY16 9ST, Scotland, United Kingdom
*Correspondence e-mail: rebecca.clulow@kemi.uu.se
Single crystals of three novel transition-metal oxalates, dirubidium diaquadioxalatocobalt(II) dihydrate or dirubidium cobalt(II) bis(oxalate) tetrahydrate, Rb2[Co(C2O4)2(H2O)2]·2H2O, (I), catena-poly[dirubidium [[dichloridocobalt(II)]-μ-oxalato]] or dirubidium cobalt(II) dichloride oxalate, {Rb2[CoCl2(C2O4)]}n, (II), and poly[dipotassium [tri-μ-oxalato-copper(II)dilithium] dihydrate] or dipotassium dilithium copper(II) tris(oxalate) dihydrate, {K2[Li2Cu(C2O4)3]·2H2O}n, (III), have been grown under hydrothermal conditions and their crystal structures determined using single-crystal X-ray diffraction. The structure of (I) exhibits isolated octahedral [Co(C2O4)2(H2O)2] units, whereas (II) consists of trans chains of Co2+ ions bridged by bidentate oxalato ligands and (III) displays a novel tri-periodic network of Li+ and Cu2+ ions linked by oxalato bridging ligands.
1. Chemical context
Oxalate-based transition-metal complexes have long attracted interest because of their promising magnetic and electrochemical properties. Their magnetic properties are in part due to the oxalato ligand, which is known to facilitate magnetic exchange between transition-metal cations, and the compounds are known to exhibit both ferro- and antiferromagnetic interactions (Miller & Drillon, 2002; Baran, 2014). In addition to their magnetic properties, there have also been numerous studies concerning their electrochemical properties, which have shown promising results (Pramanik et al., 2022; Cai et al., 2020; Yao et al., 2019). Part of the appeal of oxalate-based coordination compounds is due to their high degree of structural diversity, as a result of the oxalate ligand, which can adopt 17 different coordination modes and act as a mono-, bi-, tri- or tetradentate ligand (Rao et al., 2004). This has led to a vast compositional area, which is yet to be fully explored. In this context, the crystal structures of three new oxalate-based coordination compounds are reported and discussed herein.
2. Structural commentary
Rb2Co(C2O4)2·4H2O (I) consists of isolated [Co(C2O4)2(H2O)2] octahedra. The Co2+ cation lies on the 2c with a of , leading to a trans disposition of the bidentate oxalato and aqua ligands (Fig. 1). The average Co—O bond length was determined as 2.080 Å, with a calculated bond-valence sum of 2.10 valence units. The Rb+ cation has a of 11, defined by oxalate O atoms and water molecules. While the water molecule involving O1 coordinates to both Rb+ and Co2+, the second water molecule involving O2 solely bonds to the alkali metal cation. The [Co(C2O4)2(H2O)2] octahedra are interlinked by hydrogen bonding of both types of water molecules, as shown in Fig. 2. The mutually trans coordinating water molecules (H3, O1, H4) form hydrogen bonds with the oxalate ligands of the neighbouring [Co(C2O4)2(H2O)2] octahedra, whilst the second type of water molecule (H1, O2, H2) forms hydrogen bonds (in part bifurcated) with the oxalate ligands of two separate [Co(C2O4)2(H2O)2] octahedra. Numerical data for the hydrogen-bonding interactions are given in Table 1.
Rb2CoCl2(C2O4) (II) consists of octahedrally coordinated Co2+ cations. They are linked by bis-bidentate oxalate ligands to form chains extending parallel to the a axis, as shown in Fig. 3. The oxalate ligands are mutually trans to one another whilst the Cl− anions cap each side of the octahedron. Co—O bond lengths are 2.0616 (17) Å and longer for the Co—Cl bond at 2.4863 (9) Å, with a calculated bond-valence sum of 2.03 valence units for Co. The Rb+ cation has a of eight and lies between the layers formed by the Co2+ chains (Fig. 4), with no direct connectivity between the chains. Each of the atoms lies on a special position within the with Wyckoff positions/site symmetries: Rb+ (4i, mm2), Co2+ (2d, mmm), Cl− (4j, mm2), O (8n,. .m) and C (4h, m2m). The presence of the oxalate-bridged Co2+ chain could allow for magnetic exchange (García-Couceiro et al., 2004), hence the magnetic properties of the compound should also be investigated in the future.
The Cu2+ and Li+ binding environments of K2Li2Cu(C2O4)3·2H2O (III) are shown in Fig. 5. The d9 Cu2+ cations display classic Jahn–Teller distortion with elongation of the axial Cu—O bonds. The equatorial Cu—O bond lengths are 1.938 (3) (O2) and 1.942 (3) (O1) Å whilst the axial bonds are significantly longer at 2.473 (4) Å (O6). The Cu2+ ion lies on a special position with and of 6b and , respectively. The Cu2+ coordination environment consists of four oxalate ligands, two of which act as bidentate bridging ligands and two of which are axially oriented and bind to four metal cations with a tricoordinate oxygen atom. The Li+ cation is tetrahedrally coordinated by three oxalate molecules, one of which is bidentate whilst the other two are monodentate. The Cu2+ and Li+-centred polyhedra are interconnected into a tri-periodic network, as shown in Fig. 6. The coordination environment of the K+ cation lies within this network and consists of eight oxygen atoms from the oxalate ligands and two water molecules. These water molecules exhibit disorder of the O7 atom, which is split into two positions. The interatomic distances between the water molecules is ∼3.7 Å, which is too far apart to facilitate hydrogen bonding.
3. Database survey
Database surveys were carried out using the Cambridge Structural Database (CSD, last update November 2022; Groom et al., 2016) for compounds with structural similarities to the three new oxalate coordination compounds reported here. For (I), a search for first-row transition metals with the same coordination environment produced numerous results for a range of transition metals. The most similar is DIHXID [dipotassium bis(oxalato)diaquacobalt(II) tetrahydrate; Chylewska et al., 2013), which has the same formula type and coordination environment as (I) although with K+ rather Rb+ cations, but is not isostructural. For (II), there are several compounds containing transition-metal oxalate chains with the same binding environment, although with quite different cations involved. For example BEJHOQ {catena-[bis(2-(5,6-dihydro-2H-[1,3]dithiolo[4,5-b][1,4]dithiin-2-ylidene)-5,6-dihydro-2H-[1,3]dithiolo[4,5-b][1,4]dithiin-1-ium) bis(μ-oxalato)tetrachlorodiiron(III) dichloromethane solvate]} and EYALIB {catena-[bis(2-(5,6-dihydro-2H-[1,3]diselenolo[4,5-b][1,4]dithiin-2-ylidene)-5,6-dihydro-2H-[1,3]diselenolo[4,5-b][1,4]dithiin-1-ium) bis(μ-oxalato)tetrachlorodiiron(III)]; Zhang, 2016, 2017). The database survey of compounds with similar binding environments to (III) focused on first-row transition metals with two bidentate and two mutually trans monodentate oxalate ligands, containing a tricoordinating oxygen atom. The search revealed evidence of only two similar compounds, viz. ADAJUL [octaammonium hexakis(μ2-oxalato-O,O,O′)bis(oxalato-O,O′)diaquatetracopper(II) tetrahydrate] and ASOXOV {bis[1,4-diazoniabicyclo(2.2.2)octane]bis(μ2-oxalato)diaquabis(oxalato)dicopper(II) tetrahydrate; Kadir et al., 2006; Keene et al., 2004}. These contain similar types of linkages, although with only one type of cation and only as discrete molecules rather than coordination polymers. Hence, (III) represents the first example of this type of binding environment.
4. Synthesis and crystallization
The samples were synthesized via hydrothermal syntheses in the temperature range 433–463 K over four days, from commercially available starting reagents. Compounds (I) and (II) were synthesized as by-products from the reaction of rubidium carbonate, sodium carbonate, cobalt chloride hexahydrate and oxalic acid dihydrate in molar ratios of 2:2:1:1.5 and 1:1.5:1:1.5 at 433 and 463 K, respectively. Compound (III) was synthesized by the reaction of potassium carbonate, lithium carbonate, copper chloride dihydrate and oxalic acid dihydrate (1:3:1:3) at 463 K. Single crystals were isolated from a mixture of products for further analysis. The resulting crystals were filtered and dried overnight at 323 K prior to analysis by X-ray diffraction.
5. Refinement
Crystal data and . The H atoms in (I) and (III) were allowed to refine freely. The disordered oxygen atom in compound III (O7) was split over two positions with their occupancies fixed at 0.5 while their atomic coordinates and Uijs were refined independently.
details of the three compounds are summarized in Table 2
|
Supporting information
https://doi.org/10.1107/S2056989023001822/wm5668sup1.cif
contains datablocks I, II, III, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023001822/wm5668Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989023001822/wm5668IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989023001822/wm5668IIIsup4.hkl
For all structures, data collection: CrystalClear (Rigaku, 2015); cell
CrystalClear (Rigaku, 2015); data reduction: CrystalClear (Rigaku, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Rb2[Co(C2O4)2(H2O)2]·2H2O | F(000) = 458 |
Mr = 477.97 | Dx = 2.687 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: -P 2yn | Cell parameters from 935 reflections |
a = 7.8434 (5) Å | θ = 1.9–27.5° |
b = 7.0795 (4) Å | µ = 9.70 mm−1 |
c = 10.9133 (7) Å | T = 173 K |
β = 102.836 (8)° | Prism, orange |
V = 590.84 (7) Å3 | 0.21 × 0.16 × 0.08 mm |
Z = 2 |
Rigaku Mercury2 (2x2 bin mode) diffractometer | 1343 independent reflections |
Radiation source: Sealed Tube | 1169 reflections with I > 2σ(I) |
Detector resolution: 13.6612 pixels mm-1 | Rint = 0.039 |
profile data from ω–scans | θmax = 27.5°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −10→10 |
Tmin = 0.681, Tmax = 1.00 | k = −9→9 |
5799 measured reflections | l = −14→13 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | All H-atom parameters refined |
wR(F2) = 0.050 | w = 1/[σ2(Fo2) + (0.0323P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max < 0.001 |
1343 reflections | Δρmax = 0.65 e Å−3 |
104 parameters | Δρmin = −0.64 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Rb1 | 0.81534 (3) | 0.66030 (3) | 0.37962 (2) | 0.01935 (9) | |
Co1 | 0.500000 | 0.000000 | 0.500000 | 0.01014 (11) | |
O1 | 0.5165 (2) | 0.2912 (2) | 0.49112 (17) | 0.0160 (3) | |
O2 | 0.8705 (2) | 0.2408 (3) | 0.39553 (17) | 0.0236 (4) | |
O3 | 0.50631 (18) | 0.0198 (2) | 0.69060 (13) | 0.0143 (3) | |
O4 | 0.77067 (18) | −0.0152 (2) | 0.57235 (13) | 0.0139 (3) | |
O5 | 0.6916 (2) | −0.0314 (2) | 0.87422 (14) | 0.0186 (3) | |
O6 | 0.96271 (19) | 0.0330 (2) | 0.75326 (14) | 0.0191 (3) | |
C1 | 0.6578 (3) | −0.0014 (3) | 0.75938 (19) | 0.0118 (4) | |
C2 | 0.8121 (3) | 0.0076 (3) | 0.69128 (19) | 0.0122 (4) | |
H1 | 0.828 (5) | 0.168 (5) | 0.449 (4) | 0.056 (11)* | |
H2 | 0.942 (6) | 0.173 (6) | 0.367 (4) | 0.079 (15)* | |
H3 | 0.594 (4) | 0.342 (4) | 0.532 (3) | 0.023 (8)* | |
H4 | 0.494 (4) | 0.345 (4) | 0.427 (3) | 0.029 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rb1 | 0.01880 (14) | 0.02412 (14) | 0.01580 (13) | 0.00190 (8) | 0.00529 (9) | 0.00010 (8) |
Co1 | 0.0105 (2) | 0.01303 (19) | 0.00658 (19) | 0.00024 (14) | 0.00112 (15) | −0.00043 (14) |
O1 | 0.0195 (9) | 0.0142 (7) | 0.0118 (8) | −0.0033 (6) | −0.0020 (7) | 0.0004 (6) |
O2 | 0.0248 (10) | 0.0268 (9) | 0.0231 (9) | −0.0002 (8) | 0.0138 (8) | 0.0007 (7) |
O3 | 0.0123 (7) | 0.0216 (7) | 0.0083 (7) | 0.0009 (6) | 0.0011 (6) | −0.0011 (6) |
O4 | 0.0121 (7) | 0.0202 (7) | 0.0093 (7) | 0.0010 (6) | 0.0024 (6) | −0.0012 (6) |
O5 | 0.0180 (8) | 0.0291 (8) | 0.0081 (7) | 0.0000 (6) | 0.0016 (6) | 0.0021 (6) |
O6 | 0.0126 (8) | 0.0305 (9) | 0.0126 (7) | −0.0007 (7) | −0.0009 (6) | 0.0005 (7) |
C1 | 0.0138 (10) | 0.0119 (9) | 0.0099 (9) | −0.0008 (7) | 0.0031 (8) | −0.0019 (8) |
C2 | 0.0134 (10) | 0.0103 (9) | 0.0130 (10) | 0.0020 (8) | 0.0032 (8) | 0.0014 (8) |
Rb1—O2 | 3.0003 (18) | Co1—O1viii | 2.0690 (16) |
Rb1—O5i | 3.0209 (16) | Co1—O1 | 2.0690 (16) |
Rb1—O3ii | 3.0819 (15) | Co1—O3viii | 2.0744 (14) |
Rb1—O2iii | 3.0856 (19) | Co1—O3 | 2.0744 (14) |
Rb1—O5ii | 3.1023 (16) | Co1—O4 | 2.0969 (14) |
Rb1—O6iv | 3.1190 (15) | Co1—O4viii | 2.0969 (14) |
Rb1—O2v | 3.1461 (19) | O3—C1 | 1.265 (2) |
Rb1—O4vi | 3.1862 (15) | O4—C2 | 1.276 (3) |
Rb1—O1vii | 3.2421 (17) | O5—C1 | 1.240 (3) |
Rb1—O6v | 3.3122 (16) | O6—C2 | 1.237 (3) |
Rb1—O3vii | 3.3497 (15) | C1—C2 | 1.556 (3) |
O2—Rb1—O5i | 62.28 (5) | O2iii—Rb1—O3vii | 58.91 (4) |
O2—Rb1—O3ii | 62.87 (4) | O5ii—Rb1—O3vii | 149.98 (4) |
O5i—Rb1—O3ii | 121.12 (4) | O6iv—Rb1—O3vii | 69.30 (4) |
O2—Rb1—O2iii | 105.67 (5) | O2v—Rb1—O3vii | 116.60 (4) |
O5i—Rb1—O2iii | 148.26 (5) | O4vi—Rb1—O3vii | 58.39 (4) |
O3ii—Rb1—O2iii | 67.65 (4) | O1vii—Rb1—O3vii | 52.51 (4) |
O2—Rb1—O5ii | 65.45 (5) | O6v—Rb1—O3vii | 84.20 (4) |
O5i—Rb1—O5ii | 95.16 (4) | O1viii—Co1—O1 | 180.0 |
O3ii—Rb1—O5ii | 42.24 (4) | O1viii—Co1—O3viii | 89.52 (6) |
O2iii—Rb1—O5ii | 106.35 (5) | O1—Co1—O3viii | 90.48 (6) |
O2—Rb1—O6iv | 72.16 (5) | O1viii—Co1—O3 | 90.48 (6) |
O5i—Rb1—O6iv | 90.38 (4) | O1—Co1—O3 | 89.52 (6) |
O3ii—Rb1—O6iv | 92.16 (4) | O3viii—Co1—O3 | 180.0 |
O2iii—Rb1—O6iv | 58.00 (5) | O1viii—Co1—O4 | 89.98 (6) |
O5ii—Rb1—O6iv | 128.06 (4) | O1—Co1—O4 | 90.02 (6) |
O2—Rb1—O2v | 95.58 (5) | O3viii—Co1—O4 | 99.83 (6) |
O5i—Rb1—O2v | 64.67 (5) | O3—Co1—O4 | 80.17 (6) |
O3ii—Rb1—O2v | 101.60 (4) | O1viii—Co1—O4viii | 90.02 (6) |
O2iii—Rb1—O2v | 146.79 (5) | O1—Co1—O4viii | 89.98 (6) |
O5ii—Rb1—O2v | 59.77 (4) | O3viii—Co1—O4viii | 80.17 (6) |
O6iv—Rb1—O2v | 155.02 (4) | O3—Co1—O4viii | 99.83 (6) |
O2—Rb1—O4vi | 135.32 (4) | O4—Co1—O4viii | 180.0 |
O5i—Rb1—O4vi | 73.17 (4) | Co1—O1—Rb1vii | 91.19 (6) |
O3ii—Rb1—O4vi | 151.80 (4) | Rb1—O2—Rb1ix | 95.49 (5) |
O2iii—Rb1—O4vi | 114.32 (4) | Rb1—O2—Rb1v | 84.42 (4) |
O5ii—Rb1—O4vi | 117.99 (4) | Rb1ix—O2—Rb1v | 156.77 (7) |
O6iv—Rb1—O4vi | 113.04 (4) | C1—O3—Co1 | 113.38 (13) |
O2v—Rb1—O4vi | 60.44 (4) | C1—O3—Rb1x | 94.92 (12) |
O2—Rb1—O1vii | 101.48 (5) | Co1—O3—Rb1x | 137.42 (6) |
O5i—Rb1—O1vii | 59.06 (4) | C1—O3—Rb1vii | 140.90 (12) |
O3ii—Rb1—O1vii | 153.07 (4) | Co1—O3—Rb1vii | 88.13 (5) |
O2iii—Rb1—O1vii | 98.78 (5) | Rb1x—O3—Rb1vii | 88.83 (4) |
O5ii—Rb1—O1vii | 153.95 (4) | C2—O4—Co1 | 112.61 (13) |
O6iv—Rb1—O1vii | 61.33 (4) | C2—O4—Rb1xi | 136.21 (12) |
O2v—Rb1—O1vii | 101.68 (5) | Co1—O4—Rb1xi | 92.24 (5) |
O4vi—Rb1—O1vii | 54.53 (4) | C1—O5—Rb1xii | 141.22 (13) |
O2—Rb1—O6v | 126.25 (5) | C1—O5—Rb1x | 94.51 (12) |
O5i—Rb1—O6v | 143.03 (4) | Rb1xii—O5—Rb1x | 84.84 (4) |
O3ii—Rb1—O6v | 66.26 (4) | C2—O6—Rb1xiii | 145.41 (13) |
O2iii—Rb1—O6v | 68.49 (4) | C2—O6—Rb1v | 112.75 (13) |
O5ii—Rb1—O6v | 65.79 (4) | Rb1xiii—O6—Rb1v | 88.88 (4) |
O6iv—Rb1—O6v | 126.49 (2) | O5—C1—O3 | 125.57 (19) |
O2v—Rb1—O6v | 78.39 (4) | O5—C1—C2 | 118.35 (18) |
O4vi—Rb1—O6v | 87.81 (4) | O3—C1—C2 | 116.07 (17) |
O1vii—Rb1—O6v | 132.20 (4) | O6—C2—O4 | 124.8 (2) |
O2—Rb1—O3vii | 140.70 (5) | O6—C2—C1 | 119.63 (18) |
O5i—Rb1—O3vii | 110.22 (4) | O4—C2—C1 | 115.52 (18) |
O3ii—Rb1—O3vii | 125.45 (2) |
Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) x+1/2, −y+1/2, z−1/2; (iii) −x+3/2, y+1/2, −z+1/2; (iv) x−1/2, −y+1/2, z−1/2; (v) −x+2, −y+1, −z+1; (vi) x, y+1, z; (vii) −x+1, −y+1, −z+1; (viii) −x+1, −y, −z+1; (ix) −x+3/2, y−1/2, −z+1/2; (x) x−1/2, −y+1/2, z+1/2; (xi) x, y−1, z; (xii) −x+3/2, y−1/2, −z+3/2; (xiii) x+1/2, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1···O4 | 0.89 (4) | 2.00 (4) | 2.880 (2) | 171 (4) |
O2—H2···O4xiv | 0.85 (5) | 2.47 (5) | 3.187 (2) | 143 (4) |
O2—H2···O6xiv | 0.85 (5) | 2.20 (5) | 3.008 (2) | 159 (4) |
O1—H3···O5i | 0.76 (3) | 1.98 (3) | 2.736 (2) | 174 (3) |
O1—H4···O6iv | 0.78 (3) | 2.05 (3) | 2.825 (2) | 172 (3) |
Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (iv) x−1/2, −y+1/2, z−1/2; (xiv) −x+2, −y, −z+1. |
Rb2[CoCl2(C2O4)] | F(000) = 358 |
Mr = 388.79 | Dx = 2.981 Mg m−3 |
Orthorhombic, Immm | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: -I 2 2 | Cell parameters from 800 reflections |
a = 5.3445 (3) Å | θ = 3.2–27.5° |
b = 6.4380 (4) Å | µ = 13.73 mm−1 |
c = 12.5866 (8) Å | T = 173 K |
V = 433.08 (5) Å3 | Prism, purple |
Z = 2 | 0.20 × 0.15 × 0.07 mm |
Rigaku Mercury2 (2x2 bin mode) diffractometer | 310 independent reflections |
Radiation source: Sealed Tube | 296 reflections with I > 2σ(I) |
Detector resolution: 13.6612 pixels mm-1 | Rint = 0.034 |
profile data from ω–scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −6→6 |
Tmin = 0.671, Tmax = 1.00 | k = −8→8 |
2218 measured reflections | l = −16→16 |
Refinement on F2 | 22 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.018 | w = 1/[σ2(Fo2) + (0.0276P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.043 | (Δ/σ)max < 0.001 |
S = 1.11 | Δρmax = 0.63 e Å−3 |
310 reflections | Δρmin = −0.53 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Rb1 | 0.500000 | 0.500000 | 0.34642 (3) | 0.01924 (15) | |
Co1 | 0.500000 | 1.000000 | 0.500000 | 0.01332 (18) | |
Cl1 | 0.500000 | 1.000000 | 0.30247 (7) | 0.0198 (2) | |
O1 | 0.7911 (3) | 0.7898 (2) | 0.500000 | 0.0154 (4) | |
C1 | 1.000000 | 0.8775 (5) | 0.500000 | 0.0123 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rb1 | 0.0230 (2) | 0.0136 (2) | 0.0211 (2) | 0.000 | 0.000 | 0.000 |
Co1 | 0.0072 (3) | 0.0105 (3) | 0.0222 (3) | 0.000 | 0.000 | 0.000 |
Cl1 | 0.0233 (4) | 0.0172 (4) | 0.0190 (4) | 0.000 | 0.000 | 0.000 |
O1 | 0.0106 (9) | 0.0106 (7) | 0.0251 (8) | −0.0006 (6) | 0.000 | 0.000 |
C1 | 0.0119 (16) | 0.0125 (16) | 0.0125 (14) | 0.000 | 0.000 | 0.000 |
Rb1—O1 | 3.1045 (13) | Co1—O1vii | 2.0616 (17) |
Rb1—O1i | 3.1045 (13) | Co1—O1i | 2.0616 (17) |
Rb1—O1ii | 3.1045 (13) | Co1—O1viii | 2.0616 (17) |
Rb1—O1iii | 3.1045 (13) | Co1—O1 | 2.0616 (17) |
Rb1—Cl1iv | 3.2639 (6) | Co1—Cl1viii | 2.4863 (9) |
Rb1—Cl1v | 3.2639 (6) | Co1—Cl1 | 2.4863 (9) |
Rb1—Cl1vi | 3.2662 (3) | O1—C1 | 1.251 (2) |
Rb1—Cl1 | 3.2662 (3) | C1—C1ix | 1.577 (6) |
O1—Rb1—O1i | 60.14 (6) | O1vii—Co1—O1 | 82.03 (9) |
O1—Rb1—O1ii | 73.89 (5) | O1i—Co1—O1 | 97.97 (9) |
O1i—Rb1—O1ii | 102.98 (4) | O1viii—Co1—O1 | 180.0 |
O1—Rb1—O1iii | 102.98 (4) | O1vii—Co1—Cl1viii | 90.0 |
O1i—Rb1—O1iii | 73.89 (5) | O1i—Co1—Cl1viii | 90.0 |
O1ii—Rb1—O1iii | 60.14 (6) | O1viii—Co1—Cl1viii | 90.0 |
O1—Rb1—Cl1iv | 140.15 (3) | O1—Co1—Cl1viii | 90.0 |
O1i—Rb1—Cl1iv | 86.98 (3) | O1vii—Co1—Cl1 | 90.0 |
O1ii—Rb1—Cl1iv | 140.15 (3) | O1i—Co1—Cl1 | 90.0 |
O1iii—Rb1—Cl1iv | 86.98 (3) | O1viii—Co1—Cl1 | 90.0 |
O1—Rb1—Cl1v | 86.98 (3) | O1—Co1—Cl1 | 90.0 |
O1i—Rb1—Cl1v | 140.15 (3) | Cl1viii—Co1—Cl1 | 180.0 |
O1ii—Rb1—Cl1v | 86.98 (3) | Co1—Cl1—Rb1iv | 125.042 (14) |
O1iii—Rb1—Cl1v | 140.15 (3) | Co1—Cl1—Rb1v | 125.042 (14) |
Cl1iv—Rb1—Cl1v | 109.92 (3) | Rb1iv—Cl1—Rb1v | 109.92 (3) |
O1—Rb1—Cl1vi | 134.25 (3) | Co1—Cl1—Rb1 | 80.247 (16) |
O1i—Rb1—Cl1vi | 134.25 (3) | Rb1iv—Cl1—Rb1 | 95.582 (8) |
O1ii—Rb1—Cl1vi | 60.86 (3) | Rb1v—Cl1—Rb1 | 95.582 (8) |
O1iii—Rb1—Cl1vi | 60.86 (3) | Co1—Cl1—Rb1x | 80.246 (16) |
Cl1iv—Rb1—Cl1vi | 84.419 (8) | Rb1iv—Cl1—Rb1x | 95.582 (8) |
Cl1v—Rb1—Cl1vi | 84.419 (8) | Rb1v—Cl1—Rb1x | 95.582 (8) |
O1—Rb1—Cl1 | 60.86 (3) | Rb1—Cl1—Rb1x | 160.49 (3) |
O1i—Rb1—Cl1 | 60.86 (3) | C1—O1—Co1 | 112.18 (16) |
O1ii—Rb1—Cl1 | 134.25 (3) | C1—O1—Rb1iii | 135.91 (8) |
O1iii—Rb1—Cl1 | 134.25 (3) | Co1—O1—Rb1iii | 90.94 (5) |
Cl1iv—Rb1—Cl1 | 84.418 (8) | C1—O1—Rb1 | 135.91 (8) |
Cl1v—Rb1—Cl1 | 84.418 (8) | Co1—O1—Rb1 | 90.94 (5) |
Cl1vi—Rb1—Cl1 | 160.49 (3) | Rb1iii—O1—Rb1 | 77.02 (4) |
O1vii—Co1—O1i | 180.0 | O1xi—C1—O1 | 126.4 (3) |
O1vii—Co1—O1viii | 97.97 (9) | O1xi—C1—C1ix | 116.81 (15) |
O1i—Co1—O1viii | 82.03 (9) | O1—C1—C1ix | 116.81 (15) |
Symmetry codes: (i) −x+1, y, −z+1; (ii) x, −y+1, z; (iii) −x+1, −y+1, −z+1; (iv) −x+1/2, −y+3/2, −z+1/2; (v) −x+3/2, −y+3/2, −z+1/2; (vi) x, y−1, z; (vii) x, −y+2, z; (viii) −x+1, −y+2, −z+1; (ix) −x+2, −y+2, −z+1; (x) x, y+1, z; (xi) −x+2, y, −z+1. |
K2[Li2Cu(C2O4)3]·2H2O | Z = 1 |
Mr = 455.71 | F(000) = 225 |
Triclinic, P1 | Dx = 2.310 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71075 Å |
a = 6.1847 (4) Å | Cell parameters from 888 reflections |
b = 7.2575 (5) Å | θ = 2.5–27.5° |
c = 8.1795 (5) Å | µ = 2.38 mm−1 |
α = 101.327 (11)° | T = 173 K |
β = 91.723 (11)° | Prism, blue |
γ = 113.563 (11)° | 0.14 × 0.14 × 0.07 mm |
V = 327.56 (5) Å3 |
Rigaku Mercury2 (2x2 bin mode) diffractometer | 1500 independent reflections |
Radiation source: Sealed Tube | 1077 reflections with I > 2σ(I) |
Detector resolution: 13.6612 pixels mm-1 | Rint = 0.095 |
profile data from ω–scans | θmax = 27.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −8→8 |
Tmin = 0.610, Tmax = 1.00 | k = −9→9 |
3403 measured reflections | l = −10→10 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | All H-atom parameters refined |
wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0439P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.94 | (Δ/σ)max < 0.001 |
1500 reflections | Δρmax = 1.03 e Å−3 |
132 parameters | Δρmin = −1.01 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 1.000000 | 1.000000 | 1.000000 | 0.0141 (2) | |
K1 | 0.53561 (17) | 0.08774 (15) | 0.80051 (12) | 0.0182 (2) | |
O1 | 1.1046 (5) | 0.7828 (4) | 0.9188 (4) | 0.0139 (6) | |
O2 | 0.6795 (5) | 0.7931 (5) | 0.9232 (4) | 0.0139 (6) | |
O3 | 0.9423 (5) | 0.4577 (5) | 0.7685 (4) | 0.0166 (7) | |
O4 | 0.5056 (5) | 0.4613 (4) | 0.7870 (4) | 0.0168 (7) | |
O5 | 0.1518 (5) | 0.2387 (4) | 0.4512 (4) | 0.0174 (7) | |
O6 | −0.0303 (6) | −0.0777 (5) | 0.2817 (4) | 0.0194 (7) | |
O7A | 0.3910 (18) | −0.2142 (15) | 0.5335 (14) | 0.028 (2) | 0.5 |
O7B | 0.3555 (18) | −0.3016 (16) | 0.5653 (14) | 0.027 (2) | 0.5 |
C1 | 0.9305 (7) | 0.6178 (6) | 0.8431 (5) | 0.0125 (8) | |
C2 | 0.6818 (7) | 0.6206 (6) | 0.8495 (5) | 0.0129 (8) | |
C3 | 0.0359 (7) | 0.0482 (6) | 0.4216 (6) | 0.0138 (8) | |
Li1 | 0.1867 (13) | 0.3767 (13) | 0.6931 (10) | 0.0205 (17) | |
H1 | 0.481 (15) | −0.288 (12) | 0.557 (10) | 0.06 (3)* | |
H2 | 0.283 (15) | −0.343 (13) | 0.491 (11) | 0.07 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0105 (4) | 0.0100 (4) | 0.0191 (4) | 0.0037 (3) | 0.0009 (3) | −0.0015 (3) |
K1 | 0.0195 (5) | 0.0173 (5) | 0.0177 (5) | 0.0079 (4) | 0.0026 (4) | 0.0031 (4) |
O1 | 0.0106 (14) | 0.0118 (14) | 0.0176 (16) | 0.0044 (11) | 0.0000 (11) | 0.0000 (12) |
O2 | 0.0119 (14) | 0.0156 (15) | 0.0133 (15) | 0.0064 (12) | 0.0018 (11) | −0.0001 (12) |
O3 | 0.0171 (15) | 0.0116 (14) | 0.0204 (17) | 0.0064 (12) | 0.0047 (13) | 0.0005 (12) |
O4 | 0.0108 (14) | 0.0102 (14) | 0.0229 (17) | 0.0003 (12) | −0.0022 (12) | −0.0014 (12) |
O5 | 0.0223 (16) | 0.0086 (14) | 0.0159 (16) | 0.0012 (12) | 0.0031 (13) | 0.0018 (12) |
O6 | 0.0236 (17) | 0.0182 (16) | 0.0121 (16) | 0.0051 (13) | 0.0001 (13) | 0.0014 (13) |
O7A | 0.026 (5) | 0.012 (4) | 0.043 (6) | 0.012 (4) | −0.003 (4) | −0.011 (4) |
O7B | 0.019 (5) | 0.014 (5) | 0.036 (6) | 0.007 (4) | −0.009 (4) | −0.017 (4) |
C1 | 0.014 (2) | 0.0117 (19) | 0.013 (2) | 0.0048 (16) | 0.0038 (16) | 0.0050 (16) |
C2 | 0.013 (2) | 0.016 (2) | 0.0092 (19) | 0.0061 (17) | 0.0011 (15) | 0.0027 (16) |
C3 | 0.016 (2) | 0.011 (2) | 0.017 (2) | 0.0089 (17) | 0.0019 (17) | 0.0034 (17) |
Li1 | 0.010 (3) | 0.029 (4) | 0.021 (4) | 0.010 (3) | 0.000 (3) | −0.002 (3) |
Cu1—O2 | 1.938 (3) | O2—C2 | 1.284 (5) |
Cu1—O2i | 1.938 (3) | O3—C1 | 1.233 (5) |
Cu1—O1i | 1.942 (3) | O3—Li1viii | 1.907 (8) |
Cu1—O1 | 1.942 (3) | O4—C2 | 1.230 (5) |
K1—O7A | 2.609 (10) | O4—Li1 | 1.901 (8) |
K1—O4 | 2.814 (3) | O5—C3 | 1.245 (5) |
K1—O2ii | 2.821 (3) | O5—Li1 | 1.997 (9) |
K1—O7B | 2.854 (10) | O6—C3 | 1.255 (5) |
K1—O1iii | 2.878 (3) | O6—Li1vii | 2.049 (9) |
K1—O3 | 2.919 (3) | O7A—H1 | 0.95 (8) |
K1—O2iv | 2.946 (3) | O7A—H2 | 0.89 (9) |
K1—O1v | 3.036 (3) | O7B—H1 | 0.75 (8) |
K1—O7Avi | 3.039 (12) | O7B—H2 | 0.68 (9) |
K1—O6vii | 3.146 (3) | C1—C2 | 1.549 (6) |
K1—O6vi | 3.178 (3) | C3—C3vii | 1.571 (9) |
O1—C1 | 1.271 (5) | ||
O2—Cu1—O2i | 180.0 | O1iii—K1—O6vi | 63.34 (8) |
O2—Cu1—O1i | 93.40 (12) | O3—K1—O6vi | 58.18 (8) |
O2i—Cu1—O1i | 86.60 (12) | O2iv—K1—O6vi | 61.26 (8) |
O2—Cu1—O1 | 86.60 (12) | O1v—K1—O6vi | 131.85 (9) |
O2i—Cu1—O1 | 93.40 (12) | O7Avi—K1—O6vi | 75.66 (19) |
O1i—Cu1—O1 | 180.00 (9) | O6vii—K1—O6vi | 155.90 (12) |
O7A—K1—O4 | 119.6 (2) | C1—O1—Cu1 | 110.8 (3) |
O7A—K1—O2ii | 134.7 (2) | C1—O1—K1iii | 137.7 (3) |
O4—K1—O2ii | 70.35 (9) | Cu1—O1—K1iii | 94.37 (11) |
O7A—K1—O7B | 13.6 (3) | C1—O1—K1ix | 133.0 (3) |
O4—K1—O7B | 131.3 (3) | Cu1—O1—K1ix | 90.46 (11) |
O2ii—K1—O7B | 127.0 (2) | K1iii—O1—K1ix | 77.56 (8) |
O7A—K1—O1iii | 133.6 (2) | C2—O2—Cu1 | 110.7 (3) |
O4—K1—O1iii | 101.72 (9) | C2—O2—K1ii | 133.6 (3) |
O2ii—K1—O1iii | 76.43 (9) | Cu1—O2—K1ii | 97.23 (11) |
O7B—K1—O1iii | 125.6 (2) | C2—O2—K1x | 132.4 (3) |
O7A—K1—O3 | 114.9 (3) | Cu1—O2—K1x | 92.37 (11) |
O4—K1—O3 | 56.61 (8) | K1ii—O2—K1x | 79.95 (8) |
O2ii—K1—O3 | 106.84 (9) | C1—O3—Li1viii | 136.6 (4) |
O7B—K1—O3 | 125.5 (2) | C1—O3—K1 | 112.5 (3) |
O1iii—K1—O3 | 70.04 (9) | Li1viii—O3—K1 | 107.9 (3) |
O7A—K1—O2iv | 80.2 (2) | C2—O4—Li1 | 139.7 (4) |
O4—K1—O2iv | 159.58 (9) | C2—O4—K1 | 116.4 (3) |
O2ii—K1—O2iv | 100.05 (8) | Li1—O4—K1 | 103.7 (3) |
O7B—K1—O2iv | 69.0 (2) | C3—O5—Li1 | 113.3 (4) |
O1iii—K1—O2iv | 57.99 (8) | C3—O6—Li1vii | 111.7 (4) |
O3—K1—O2iv | 112.41 (9) | C3—O6—K1vii | 100.4 (3) |
O7A—K1—O1v | 80.5 (3) | Li1vii—O6—K1vii | 89.8 (2) |
O4—K1—O1v | 113.85 (9) | C3—O6—K1vi | 99.4 (3) |
O2ii—K1—O1v | 57.50 (8) | Li1vii—O6—K1vi | 95.6 (2) |
O7B—K1—O1v | 70.1 (2) | K1vii—O6—K1vi | 155.90 (12) |
O1iii—K1—O1v | 102.44 (8) | K1—O7A—K1vi | 115.8 (4) |
O3—K1—O1v | 164.28 (9) | K1—O7A—H1 | 100 (5) |
O2iv—K1—O1v | 72.19 (8) | K1vi—O7A—H1 | 113 (5) |
O7A—K1—O7Avi | 64.2 (4) | K1—O7A—H2 | 144 (6) |
O4—K1—O7Avi | 64.04 (18) | K1vi—O7A—H2 | 96 (6) |
O2ii—K1—O7Avi | 132.00 (18) | H1—O7A—H2 | 81 (7) |
O7B—K1—O7Avi | 77.7 (4) | K1—O7B—H1 | 89 (6) |
O1iii—K1—O7Avi | 126.0 (2) | K1—O7B—H2 | 135 (8) |
O3—K1—O7Avi | 58.7 (2) | H1—O7B—H2 | 113 (9) |
O2iv—K1—O7Avi | 127.94 (18) | O3—C1—O1 | 126.1 (4) |
O1v—K1—O7Avi | 131.4 (2) | O3—C1—C2 | 118.0 (4) |
O7A—K1—O6vii | 82.2 (2) | O1—C1—C2 | 115.9 (4) |
O4—K1—O6vii | 61.81 (9) | O4—C2—O2 | 125.6 (4) |
O2ii—K1—O6vii | 63.59 (8) | O4—C2—C1 | 118.7 (4) |
O7B—K1—O6vii | 84.8 (2) | O2—C2—C1 | 115.7 (3) |
O1iii—K1—O6vii | 139.77 (9) | O5—C3—O6 | 128.1 (4) |
O3—K1—O6vii | 116.35 (9) | O5—C3—C3vii | 116.4 (5) |
O2iv—K1—O6vii | 131.16 (9) | O6—C3—C3vii | 115.6 (5) |
O1v—K1—O6vii | 60.12 (8) | O4—Li1—O3xi | 131.6 (5) |
O7Avi—K1—O6vii | 81.9 (2) | O4—Li1—O5 | 108.5 (4) |
O7A—K1—O6vi | 80.2 (2) | O3xi—Li1—O5 | 117.8 (4) |
O4—K1—O6vi | 114.08 (9) | O4—Li1—O6vii | 102.2 (4) |
O2ii—K1—O6vi | 139.69 (9) | O3xi—Li1—O6vii | 97.4 (4) |
O7B—K1—O6vi | 82.0 (2) | O5—Li1—O6vii | 82.4 (3) |
Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+1, −y+1, −z+2; (iii) −x+2, −y+1, −z+2; (iv) x, y−1, z; (v) x−1, y−1, z; (vi) −x+1, −y, −z+1; (vii) −x, −y, −z+1; (viii) x+1, y, z; (ix) x+1, y+1, z; (x) x, y+1, z; (xi) x−1, y, z. |
Bond | Bond distance (Å) |
Cu—O1 | 1.942 (3) |
Cu—O1i | 1.942 (3) |
Cu—O2 | 1.938 (3) |
Cu—O2i | 1.938 (3) |
Cu—O6 | 2.473 (4) |
Cu—O6i | 2.473 (4) |
Symmetry codes: (i) -x + 2, -y + 2, -z + 2. |
Funding information
The authors would like to acknowledge the EPSRC for a Doctoral studentship to RC DTG012 EP/K503162–1 and the Swedish foundation for strategic research (SSF), project contract EM-16–0039.
References
Baran, E. J. (2014). J. Coord. Chem. 67, 3734–3768. Web of Science CrossRef CAS Google Scholar
Cai, J., Lan, Y., He, H., Zhang, X., Armstrong, A. R., Yao, W., Lightfoot, P. & Tang, Y. (2020). Inorg. Chem. 59, 16936–16943. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chylewska, A., Sikorski, A., Dąbrowska, A. & Chmurzyński, L. (2013). Cent. Eur. J. Chem. 11, 8–15. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garciacute;a-Couceiro, U., Castillo, O., Luque, A., Beobide, G. & Román, P. (2004). Inorg. Chim. Acta, 357, 339–344. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kadir, K., Mohammad Ahmed, T., Noreús, D. & Eriksson, L. (2006). Acta Cryst. E62, m1139–m1141. Web of Science CSD CrossRef IUCr Journals Google Scholar
Keene, T. D., Hursthouse, M. B. & Price, D. J. (2004). Acta Cryst. E60, m378–m380. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Miller, J. S. & Drillon, M. (2002). Magnetism: Molecules to Materials IV. Weinheim: Wiley-VCH. Google Scholar
Pramanik, A., Manche, A. G., Clulow, R., Lightfoot, P. & Armstrong, A. R. (2022). Dalton Trans. 51, 12467–12475. Web of Science CrossRef CAS PubMed Google Scholar
Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496. Web of Science CrossRef CAS Google Scholar
Rigaku (2015). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Yao, W., Armstrong, A. R., Zhou, X., Sougrati, M. T., Kidkhunthod, P., Tunmee, S., Sun, C., Sattayaporn, S., Lightfoot, P., Ji, B., Jiang, C., Wu, N., Tang, Y. & Cheng, H. M. (2019). Nat. Commun. 10, 33483. https://doi.org/10.1038/s41467-019-11077-0 Google Scholar
Zhang, B. (2016). Private communication (refcode: EYALIB). CCDC, Cambridge, England. Google Scholar
Zhang, B. (2017). Private communication (refcode: BEJHOQ). CCDC, Cambridge, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.