research communications
tBuMgCl]2[MgCl2(Et2O)2]2
of [aInstitut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: lerner@chemie.uni-frankfurt.de
The title compound, di-μ3-chlorido-tetra-μ2-chlorido-tetrakis(diethyl ether-κO)bis(1,1-dimethylethyl)tetramagnesium, [Mg4(C4H9)2Cl6(C4H10O)4], features an Mg4Cl6 open-cube cluster. The two four-coordinate Mg2+ ions show an almost tetrahedral coordination, whereas the two six-coordinate Mg2+ ions have their ligands in an octahedral environment. The Mg—Cl bond lengths differ depending on the (2 or 3) of the bridging μ-Cl− ligands. There are few comparable structures deposited in the Cambridge Structural Database.
Keywords: crystal structure; Grignard reagent; open-cube cluster.
CCDC reference: 2246966
1. Chemical context
(RMgX) are among the most commonly used organometallic reagents in synthesis. However, their molecular structures are highly diverse and therefore subject to ongoing research (Elschenbroich, 2008; Peltzer et al., 2020; Curtis et al., 2020). The structures of RMgX in solution depend on the nature of the solvent, the bulkiness of the organic moiety R, and the choice of the halide X (Peltzer et al., 2017). Moreover, the Schlenk equilibrium can convert RMgX into MgR2 and MgX2 (Schlenk & Schlenk jun., 1929). The formation of halide bridges between the Lewis-acidic Mg2+ ions (Mg—X—Mg) allows for dimeric and oligomeric structures that are in equilibrium with their monomeric units (Fig. 1). Further coordination sites at Mg2+ are often saturated by donor-solvent molecules (Seyferth, 2009).
Since the analysis of RMgCl(THF)]2[MgCl2(THF)2]2 (I; R = Me, Et, iPr, nBu, tBu). Toney & Stucky (1971), Sakamoto et al. (2001), as well as our group (Blasberg et al., 2012) provided evidence for such structures obtained by crystallization of RMgCl from THF. According to the Schlenk equilibrium, the formation of I can be rationalized by assuming aggregation of two RMgCl·MgCl2 entities. The two independent Mg2+ ions in I exhibit five- and six-coordination, respectively. We now report [tBuMgCl]2[MgCl2(Et2O)2]2 (II) as the first example of such open-cube clusters obtained from Et2O. It is noteworthy that, unlike those in I, the reactive Mg2+ ions in the title compound II are four-coordinate and, surprisingly, no solvent coordinates to these tBuMgCl3 entities. Subtle changes such as exchanging THF for the weaker donor Et2O seem to have a significant effect on the observed structural motifs (Fig. 2).
in solution is challenging, X-ray crystallography has emerged as an alternative, frequently used method to investigate their molecular compositions. A recurring structural motif in the solid state is the open-cube cluster [2. Structural commentary
The title compound II features an open-cube cluster consisting of Mg2+ and Cl− ions (Fig. 3). The Mg2+ ions (Mg1, Mg3) in the Mg2Cl2 plane are six-coordinate with four Cl− ligands and the O atoms of two Et2O molecules in an almost perfect octahedral mode. The Mg—Cl distances to the three-coordinate μ3-Cl− ligands (Cl1, Cl4) are significantly longer [2.6204 (7)–2.6629 (7) Å] than the Mg—Cl distances to the two-coordinate μ2-Cl− ligands (Cl2, Cl3, Cl5, Cl6) [2.4555 (7)–2.4676 (7) Å]. The other two Mg2+ ions (Mg2, Mg4) are four-coordinate with three Cl− ligands and one tert-butyl group featuring a distorted tetrahedron. As a result of the geometric strain in these MgCl entities, the Cl—Mg—Cl angles are smaller than the Cl—Mg—C angles. Again, a difference in the Mg—Cl bond lengths can be observed: as expected, the bonds between Mg2+ and the μ3-Cl− ligands are longer [2.4687 (7) and 2.4689 (7) Å] than the bonds between Mg2+ and the μ2-Cl− ligands [2.3785 (7)–2.3905 (7) Å].
3. Supramolecular features
There are two short C—H⋯Cl contacts bridging adjacent molecules of the title compound II. These hydrogen bonds (Table 1) lead to the formation of chains extending parallel to [010]. A packing diagram showing one is depicted in Fig. 4. There are no other remarkable intermolecular interactions.
4. Database survey
Six comparable structures with a similar Mg4Cl6 open-cube cluster have been found in the Cambridge Structural Database (version 5.43, update of September 2022; Groom et al., 2016), viz., [EtMgCl(THF)]2[MgCl2(THF)2]2 (MGCLTF; Toney & Stucky, 1971), [MeMgCl(THF)]2[MgCl2(THF)2]2 (QUJSUJ; Sakamoto et al., 2001), [tBuMgCl(THF)]2[MgCl2(THF)2]2 (QUJTAQ; Sakamoto et al., 2001), [benzylMgCl(THF)]2[MgCl2(THF)2]2 (QUJTEU; Sakamoto et al., 2001), [iPrMgCl(THF)]2[MgCl2(THF)2]2 (SEJZUE; Blasberg et al., 2012), and [Me2NCH2CH2CH2MgCl]2[MgCl2(THF)2]2 (WILMIN; Casellato & Ossola, 1994). A seventh structure [nBuMg3Cl5(THF)4]2 (ZIHQEO; Pirinen et al., 2013) also features an open-cube cluster; however, here the reactive Mg2+ ions are not part of the cubes. The latter structure is therefore not included in the comparison. Interestingly, all the above structures from the database show crystallographic centrosymmetry, with all of them being located at a center of inversion. The title compound, on the other hand, does not show any although it would be possible for II to comply with a crystallographic inversion center. A fundamental difference between the structure of the title compound and the published structures is the coordination sphere of the reactive Mg2+ ions. In all structures retrieved from the CSD, these Mg2+ ions are five-coordinate and the ligands form a distorted trigonal bipyramid. The calculated geometry indices τ5 (0.65–0.84) show a varying degree of deviation from the ideal trigonal bipyramidal geometry (τ5 = 1; Addison et al., 1984). The Mg⋯Cl distances to the μ3-Cl− ligands in the central Mg2Cl2 plane (Table 2) are significantly longer (mean value 2.806 Å) than in II (mean value 2.4688 Å), but in between the sum of van der Waals radii (Σr(vdW)[Mg,Cl] = 3.48 Å) and effective ionic radii (Σr(ion)[Mg2+,Cl−] = 2.47 Å) (Bondi, 1964; Shannon, 1976). Nevertheless, the sums of equatorial angles Σθeq (mean value 358.6°) indicate that the Mg2+ ions are five-coordinate in a trigonal bipyramidal mode and that interactions with the μ3-Cl− ions in the Mg2Cl2 planes exist. Structures with other halogens than Cl were not found.
|
5. Synthesis and crystallization
Magnesium turnings (9.74 g, 401 mmol, 1.7 eq.) were placed in a Schlenk flask and dried under vacuum by heating. Dry Et2O (40 ml) was added to the flask and a solution of tBuCl (21.3 g, 230 mmol, 1.0 eq.) in Et2O (20 ml) was added dropwise at such a rate as to maintain a gentle reflux (approx. 1 h). After cooling to room temperature, the Grignard solution was separated from residual Mg turnings by cannula transfer into a new Schlenk flask. Upon concentration of the solution at room temperature, colorless crystals of [tBuMgCl]2[MgCl2(Et2O)2]2 formed, which were suitable for single-crystal X-ray structure determination.
6. Refinement
Crystal data, data collection, and structure . H atoms were geometrically positioned and refined using a riding model with Cmethylene—H = 0.99 Å and U(H) = 1.2Ueq(C) or with Cmethyl—H = 0.98 Å and U(H) = 1.5Ueq(C).
details are summarized in Table 3Supporting information
CCDC reference: 2246966
https://doi.org/10.1107/S2056989023002190/wm5675sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023002190/wm5675Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2001); cell
X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).[Mg4(C4H9)2Cl6(C4H10O)4] | F(000) = 1536 |
Mr = 720.64 | Dx = 1.192 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.5663 (5) Å | Cell parameters from 19794 reflections |
b = 15.4045 (8) Å | θ = 3.2–25.9° |
c = 22.8256 (11) Å | µ = 0.52 mm−1 |
β = 99.209 (4)° | T = 173 K |
V = 4014.5 (3) Å3 | Block, colourless |
Z = 4 | 0.26 × 0.24 × 0.19 mm |
STOE IPDS II two-circle- diffractometer | 5674 reflections with I > 2σ(I) |
Radiation source: Genix 3D IµS microfocus X-ray source | Rint = 0.033 |
ω scans | θmax = 25.6°, θmin = 3.2° |
Absorption correction: multi-scan (X-Area; Stoe & Cie, 2001) | h = −13→14 |
Tmin = 0.762, Tmax = 1.000 | k = −18→18 |
20835 measured reflections | l = −27→27 |
7482 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.066 | w = 1/[σ2(Fo2) + (0.0337P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.93 | (Δ/σ)max = 0.001 |
7482 reflections | Δρmax = 0.23 e Å−3 |
343 parameters | Δρmin = −0.18 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Mg1 | 0.85944 (5) | 0.39400 (4) | 0.67934 (3) | 0.02116 (13) | |
Mg2 | 0.55207 (5) | 0.36837 (4) | 0.63418 (3) | 0.02481 (14) | |
Mg3 | 0.63926 (5) | 0.34063 (4) | 0.79150 (3) | 0.02032 (13) | |
Mg4 | 0.94919 (5) | 0.36222 (4) | 0.83447 (3) | 0.02314 (13) | |
Cl1 | 0.70075 (4) | 0.27496 (3) | 0.69305 (2) | 0.02311 (10) | |
Cl2 | 0.69752 (4) | 0.47151 (3) | 0.61844 (2) | 0.02928 (11) | |
Cl3 | 1.00678 (4) | 0.30899 (3) | 0.74566 (2) | 0.02581 (10) | |
Cl4 | 0.79900 (4) | 0.45596 (3) | 0.77698 (2) | 0.02215 (9) | |
Cl5 | 0.80093 (4) | 0.26496 (3) | 0.85501 (2) | 0.02837 (10) | |
Cl6 | 0.48646 (4) | 0.41593 (3) | 0.72299 (2) | 0.02612 (10) | |
C1 | 0.42463 (17) | 0.32648 (13) | 0.56138 (9) | 0.0304 (4) | |
C2 | 0.3138 (2) | 0.38179 (17) | 0.55809 (12) | 0.0535 (6) | |
H2A | 0.283162 | 0.377124 | 0.595581 | 0.080* | |
H2B | 0.332648 | 0.442554 | 0.551086 | 0.080* | |
H2C | 0.254675 | 0.361090 | 0.525481 | 0.080* | |
C3 | 0.4687 (2) | 0.33588 (19) | 0.50227 (11) | 0.0567 (7) | |
H3A | 0.491852 | 0.396248 | 0.497100 | 0.085* | |
H3B | 0.536381 | 0.297756 | 0.501815 | 0.085* | |
H3C | 0.406223 | 0.319693 | 0.469862 | 0.085* | |
C4 | 0.3894 (2) | 0.23210 (15) | 0.56802 (12) | 0.0520 (6) | |
H4A | 0.360749 | 0.224622 | 0.605846 | 0.078* | |
H4B | 0.327370 | 0.216466 | 0.535267 | 0.078* | |
H4C | 0.457528 | 0.194528 | 0.567220 | 0.078* | |
C5 | 1.08079 (16) | 0.40856 (12) | 0.90376 (9) | 0.0289 (4) | |
C6 | 1.20470 (18) | 0.38137 (15) | 0.89651 (11) | 0.0417 (5) | |
H6A | 1.209956 | 0.317874 | 0.896460 | 0.063* | |
H6B | 1.222861 | 0.404082 | 0.858919 | 0.063* | |
H6C | 1.260780 | 0.404700 | 0.929490 | 0.063* | |
C7 | 1.0590 (2) | 0.37540 (19) | 0.96411 (10) | 0.0529 (6) | |
H7A | 1.061154 | 0.311799 | 0.964420 | 0.079* | |
H7B | 1.119848 | 0.397862 | 0.995260 | 0.079* | |
H7C | 0.982052 | 0.395248 | 0.971362 | 0.079* | |
C8 | 1.0774 (3) | 0.50716 (15) | 0.90356 (13) | 0.0589 (7) | |
H8A | 1.091295 | 0.528701 | 0.864895 | 0.088* | |
H8B | 1.000379 | 0.526878 | 0.910870 | 0.088* | |
H8C | 1.138175 | 0.529492 | 0.934768 | 0.088* | |
O1 | 0.97092 (10) | 0.49894 (8) | 0.67575 (6) | 0.0256 (3) | |
O2 | 0.90985 (12) | 0.33409 (8) | 0.60605 (6) | 0.0304 (3) | |
O3 | 0.52786 (10) | 0.23817 (7) | 0.80081 (6) | 0.0224 (3) | |
O4 | 0.59432 (11) | 0.41160 (8) | 0.86184 (6) | 0.0271 (3) | |
C11 | 1.09484 (16) | 0.48893 (13) | 0.67206 (10) | 0.0327 (4) | |
H11A | 1.114637 | 0.526710 | 0.640001 | 0.039* | |
H11B | 1.109828 | 0.428090 | 0.661473 | 0.039* | |
C12 | 1.1731 (2) | 0.51158 (17) | 0.72924 (12) | 0.0499 (6) | |
H12A | 1.255156 | 0.503804 | 0.724439 | 0.075* | |
H12B | 1.159948 | 0.572157 | 0.739516 | 0.075* | |
H12C | 1.155139 | 0.473516 | 0.760993 | 0.075* | |
C13 | 0.93368 (18) | 0.58886 (12) | 0.67816 (10) | 0.0358 (5) | |
H13A | 0.991791 | 0.620817 | 0.706772 | 0.043* | |
H13B | 0.857846 | 0.590729 | 0.693006 | 0.043* | |
C14 | 0.9204 (2) | 0.63357 (14) | 0.61938 (12) | 0.0505 (6) | |
H14A | 0.895273 | 0.693650 | 0.623755 | 0.076* | |
H14B | 0.995619 | 0.633238 | 0.604799 | 0.076* | |
H14C | 0.861591 | 0.603132 | 0.591024 | 0.076* | |
C21 | 0.94137 (19) | 0.24253 (13) | 0.60446 (10) | 0.0379 (5) | |
H21A | 0.902128 | 0.216780 | 0.566729 | 0.045* | |
H21B | 0.912618 | 0.211830 | 0.637414 | 0.045* | |
C22 | 1.0726 (2) | 0.22900 (15) | 0.60974 (12) | 0.0460 (6) | |
H22A | 1.089483 | 0.166741 | 0.608459 | 0.069* | |
H22B | 1.101317 | 0.258229 | 0.576734 | 0.069* | |
H22C | 1.111807 | 0.253278 | 0.647419 | 0.069* | |
C23 | 0.9223 (2) | 0.38232 (16) | 0.55274 (9) | 0.0417 (5) | |
H23A | 1.000960 | 0.371057 | 0.542566 | 0.050* | |
H23B | 0.916738 | 0.445178 | 0.560898 | 0.050* | |
C24 | 0.8313 (3) | 0.3590 (2) | 0.50044 (11) | 0.0675 (8) | |
H24A | 0.843959 | 0.393417 | 0.465923 | 0.101* | |
H24B | 0.837402 | 0.297114 | 0.491483 | 0.101* | |
H24C | 0.753132 | 0.371277 | 0.509825 | 0.101* | |
C31 | 0.40608 (16) | 0.24950 (13) | 0.80824 (10) | 0.0308 (4) | |
H31A | 0.391010 | 0.311967 | 0.813877 | 0.037* | |
H31B | 0.392537 | 0.218510 | 0.844534 | 0.037* | |
C32 | 0.3211 (2) | 0.21645 (17) | 0.75634 (13) | 0.0540 (7) | |
H32A | 0.240842 | 0.225693 | 0.763725 | 0.081* | |
H32B | 0.332734 | 0.247793 | 0.720379 | 0.081* | |
H32C | 0.334263 | 0.154292 | 0.751051 | 0.081* | |
C33 | 0.56613 (17) | 0.14798 (11) | 0.80251 (8) | 0.0264 (4) | |
H33A | 0.641665 | 0.144305 | 0.787481 | 0.032* | |
H33B | 0.507978 | 0.113177 | 0.775802 | 0.032* | |
C34 | 0.58083 (18) | 0.10973 (12) | 0.86411 (9) | 0.0330 (4) | |
H34A | 0.606551 | 0.049237 | 0.862843 | 0.049* | |
H34B | 0.639597 | 0.143118 | 0.890586 | 0.049* | |
H34C | 0.505882 | 0.111984 | 0.878904 | 0.049* | |
C41 | 0.57470 (18) | 0.50510 (12) | 0.85886 (10) | 0.0318 (4) | |
H41A | 0.597755 | 0.527616 | 0.821778 | 0.038* | |
H41B | 0.625584 | 0.533061 | 0.892609 | 0.038* | |
C42 | 0.4488 (2) | 0.53006 (14) | 0.86053 (11) | 0.0431 (5) | |
H42A | 0.440950 | 0.593379 | 0.858404 | 0.065* | |
H42B | 0.397974 | 0.503768 | 0.826703 | 0.065* | |
H42C | 0.425820 | 0.509216 | 0.897577 | 0.065* | |
C43 | 0.57826 (19) | 0.37161 (14) | 0.91760 (9) | 0.0338 (4) | |
H43A | 0.584839 | 0.307827 | 0.913959 | 0.041* | |
H43B | 0.498345 | 0.384782 | 0.925418 | 0.041* | |
C44 | 0.6661 (3) | 0.40219 (19) | 0.96956 (11) | 0.0620 (7) | |
H44A | 0.651058 | 0.373178 | 1.005806 | 0.093* | |
H44B | 0.745380 | 0.388142 | 0.962586 | 0.093* | |
H44C | 0.658839 | 0.465138 | 0.974051 | 0.093* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg1 | 0.0192 (3) | 0.0236 (3) | 0.0206 (3) | 0.0005 (2) | 0.0030 (2) | 0.0011 (2) |
Mg2 | 0.0200 (3) | 0.0326 (3) | 0.0209 (3) | −0.0027 (2) | 0.0005 (2) | 0.0008 (3) |
Mg3 | 0.0190 (3) | 0.0215 (3) | 0.0204 (3) | 0.0005 (2) | 0.0032 (2) | 0.0020 (2) |
Mg4 | 0.0193 (3) | 0.0290 (3) | 0.0206 (3) | −0.0014 (2) | 0.0016 (2) | 0.0004 (2) |
Cl1 | 0.0219 (2) | 0.02278 (19) | 0.0247 (2) | −0.00015 (16) | 0.00402 (16) | 0.00018 (17) |
Cl2 | 0.0214 (2) | 0.0340 (2) | 0.0312 (3) | −0.00148 (17) | 0.00056 (18) | 0.01139 (19) |
Cl3 | 0.0240 (2) | 0.0295 (2) | 0.0241 (2) | 0.00730 (17) | 0.00460 (17) | 0.00182 (18) |
Cl4 | 0.0214 (2) | 0.02222 (19) | 0.0231 (2) | 0.00049 (15) | 0.00457 (16) | 0.00038 (17) |
Cl5 | 0.0212 (2) | 0.0320 (2) | 0.0306 (3) | −0.00177 (17) | 0.00012 (18) | 0.01217 (19) |
Cl6 | 0.0246 (2) | 0.0295 (2) | 0.0242 (2) | 0.00760 (17) | 0.00389 (17) | 0.00337 (18) |
C1 | 0.0279 (10) | 0.0358 (10) | 0.0259 (10) | −0.0027 (8) | −0.0004 (8) | −0.0018 (8) |
C2 | 0.0400 (13) | 0.0587 (15) | 0.0559 (16) | 0.0074 (11) | −0.0106 (11) | −0.0109 (13) |
C3 | 0.0619 (17) | 0.0775 (18) | 0.0307 (13) | −0.0147 (14) | 0.0071 (12) | −0.0069 (12) |
C4 | 0.0538 (15) | 0.0444 (13) | 0.0549 (16) | −0.0087 (11) | 0.0003 (12) | 0.0011 (12) |
C5 | 0.0244 (10) | 0.0361 (10) | 0.0247 (10) | −0.0025 (8) | −0.0008 (8) | −0.0037 (8) |
C6 | 0.0265 (11) | 0.0512 (13) | 0.0453 (14) | −0.0048 (9) | −0.0005 (9) | −0.0040 (11) |
C7 | 0.0470 (14) | 0.0851 (18) | 0.0252 (12) | −0.0094 (13) | 0.0014 (10) | −0.0011 (12) |
C8 | 0.0718 (18) | 0.0395 (13) | 0.0577 (17) | 0.0032 (12) | −0.0127 (14) | −0.0152 (12) |
O1 | 0.0195 (6) | 0.0238 (6) | 0.0339 (8) | −0.0012 (5) | 0.0058 (5) | 0.0012 (5) |
O2 | 0.0332 (7) | 0.0340 (7) | 0.0252 (7) | −0.0026 (6) | 0.0083 (6) | −0.0053 (6) |
O3 | 0.0175 (6) | 0.0210 (6) | 0.0294 (7) | 0.0000 (5) | 0.0058 (5) | 0.0000 (5) |
O4 | 0.0331 (7) | 0.0260 (6) | 0.0235 (7) | −0.0016 (5) | 0.0085 (5) | −0.0020 (5) |
C11 | 0.0211 (10) | 0.0391 (11) | 0.0395 (12) | −0.0020 (8) | 0.0095 (8) | 0.0051 (9) |
C12 | 0.0276 (12) | 0.0617 (15) | 0.0572 (16) | −0.0121 (11) | −0.0033 (10) | 0.0053 (12) |
C13 | 0.0338 (11) | 0.0224 (9) | 0.0506 (14) | 0.0012 (8) | 0.0046 (10) | −0.0013 (9) |
C14 | 0.0425 (13) | 0.0361 (12) | 0.0695 (18) | −0.0088 (10) | −0.0009 (12) | 0.0204 (12) |
C21 | 0.0367 (12) | 0.0360 (11) | 0.0426 (13) | −0.0063 (9) | 0.0109 (9) | −0.0163 (9) |
C22 | 0.0395 (13) | 0.0475 (13) | 0.0536 (15) | 0.0014 (10) | 0.0148 (11) | −0.0190 (11) |
C23 | 0.0416 (13) | 0.0609 (14) | 0.0247 (11) | −0.0049 (10) | 0.0119 (9) | 0.0027 (10) |
C24 | 0.0683 (19) | 0.104 (2) | 0.0274 (13) | −0.0037 (16) | 0.0001 (12) | −0.0077 (14) |
C31 | 0.0188 (9) | 0.0338 (10) | 0.0422 (12) | 0.0014 (7) | 0.0125 (8) | 0.0012 (9) |
C32 | 0.0231 (11) | 0.0653 (16) | 0.0713 (19) | −0.0060 (10) | 0.0009 (11) | −0.0117 (13) |
C33 | 0.0317 (10) | 0.0200 (8) | 0.0273 (10) | 0.0011 (7) | 0.0045 (8) | −0.0035 (7) |
C34 | 0.0384 (11) | 0.0270 (10) | 0.0327 (11) | −0.0036 (8) | 0.0033 (9) | 0.0045 (8) |
C41 | 0.0363 (11) | 0.0225 (9) | 0.0377 (12) | −0.0029 (8) | 0.0096 (9) | −0.0068 (8) |
C42 | 0.0415 (13) | 0.0384 (12) | 0.0521 (15) | 0.0049 (9) | 0.0152 (11) | −0.0074 (10) |
C43 | 0.0396 (12) | 0.0409 (11) | 0.0222 (10) | −0.0051 (9) | 0.0092 (9) | −0.0017 (9) |
C44 | 0.0760 (19) | 0.0776 (19) | 0.0286 (13) | −0.0134 (15) | −0.0031 (12) | −0.0065 (13) |
Mg1—O2 | 2.0742 (14) | O3—C31 | 1.456 (2) |
Mg1—O1 | 2.0776 (13) | O3—C33 | 1.457 (2) |
Mg1—Cl2 | 2.4560 (7) | O4—C43 | 1.453 (2) |
Mg1—Cl3 | 2.4668 (7) | O4—C41 | 1.458 (2) |
Mg1—Cl4 | 2.6204 (7) | C11—C12 | 1.506 (3) |
Mg1—Cl1 | 2.6483 (7) | C11—H11A | 0.9900 |
Mg1—Mg4 | 3.5608 (9) | C11—H11B | 0.9900 |
Mg1—Mg2 | 3.5615 (8) | C12—H12A | 0.9800 |
Mg2—C1 | 2.137 (2) | C12—H12B | 0.9800 |
Mg2—Cl2 | 2.3825 (7) | C12—H12C | 0.9800 |
Mg2—Cl6 | 2.3905 (8) | C13—C14 | 1.494 (3) |
Mg2—Cl1 | 2.4687 (7) | C13—H13A | 0.9900 |
Mg2—Mg3 | 3.5967 (9) | C13—H13B | 0.9900 |
Mg3—O3 | 2.0698 (13) | C14—H14A | 0.9800 |
Mg3—O4 | 2.0761 (14) | C14—H14B | 0.9800 |
Mg3—Cl6 | 2.4555 (7) | C14—H14C | 0.9800 |
Mg3—Cl5 | 2.4676 (7) | C21—C22 | 1.518 (3) |
Mg3—Cl4 | 2.6222 (7) | C21—H21A | 0.9900 |
Mg3—Cl1 | 2.6629 (7) | C21—H21B | 0.9900 |
Mg3—Mg4 | 3.5774 (8) | C22—H22A | 0.9800 |
Mg4—C5 | 2.135 (2) | C22—H22B | 0.9800 |
Mg4—Cl3 | 2.3785 (7) | C22—H22C | 0.9800 |
Mg4—Cl5 | 2.3796 (7) | C23—C24 | 1.503 (3) |
Mg4—Cl4 | 2.4689 (7) | C23—H23A | 0.9900 |
C1—C3 | 1.524 (3) | C23—H23B | 0.9900 |
C1—C4 | 1.524 (3) | C24—H24A | 0.9800 |
C1—C2 | 1.531 (3) | C24—H24B | 0.9800 |
C2—H2A | 0.9800 | C24—H24C | 0.9800 |
C2—H2B | 0.9800 | C31—C32 | 1.502 (3) |
C2—H2C | 0.9800 | C31—H31A | 0.9900 |
C3—H3A | 0.9800 | C31—H31B | 0.9900 |
C3—H3B | 0.9800 | C32—H32A | 0.9800 |
C3—H3C | 0.9800 | C32—H32B | 0.9800 |
C4—H4A | 0.9800 | C32—H32C | 0.9800 |
C4—H4B | 0.9800 | C33—C34 | 1.509 (3) |
C4—H4C | 0.9800 | C33—H33A | 0.9900 |
C5—C8 | 1.519 (3) | C33—H33B | 0.9900 |
C5—C7 | 1.527 (3) | C34—H34A | 0.9800 |
C5—C6 | 1.527 (3) | C34—H34B | 0.9800 |
C6—H6A | 0.9800 | C34—H34C | 0.9800 |
C6—H6B | 0.9800 | C41—C42 | 1.513 (3) |
C6—H6C | 0.9800 | C41—H41A | 0.9900 |
C7—H7A | 0.9800 | C41—H41B | 0.9900 |
C7—H7B | 0.9800 | C42—H42A | 0.9800 |
C7—H7C | 0.9800 | C42—H42B | 0.9800 |
C8—H8A | 0.9800 | C42—H42C | 0.9800 |
C8—H8B | 0.9800 | C43—C44 | 1.508 (3) |
C8—H8C | 0.9800 | C43—H43A | 0.9900 |
O1—C13 | 1.454 (2) | C43—H43B | 0.9900 |
O1—C11 | 1.457 (2) | C44—H44A | 0.9800 |
O2—C23 | 1.452 (2) | C44—H44B | 0.9800 |
O2—C21 | 1.459 (2) | C44—H44C | 0.9800 |
O2—Mg1—O1 | 93.33 (5) | C5—C6—H6A | 109.5 |
O2—Mg1—Cl2 | 92.70 (5) | C5—C6—H6B | 109.5 |
O1—Mg1—Cl2 | 91.22 (4) | H6A—C6—H6B | 109.5 |
O2—Mg1—Cl3 | 90.17 (4) | C5—C6—H6C | 109.5 |
O1—Mg1—Cl3 | 93.73 (4) | H6A—C6—H6C | 109.5 |
Cl2—Mg1—Cl3 | 174.12 (3) | H6B—C6—H6C | 109.5 |
O2—Mg1—Cl4 | 174.73 (5) | C5—C7—H7A | 109.5 |
O1—Mg1—Cl4 | 90.10 (4) | C5—C7—H7B | 109.5 |
Cl2—Mg1—Cl4 | 91.21 (2) | H7A—C7—H7B | 109.5 |
Cl3—Mg1—Cl4 | 85.61 (2) | C5—C7—H7C | 109.5 |
O2—Mg1—Cl1 | 94.41 (4) | H7A—C7—H7C | 109.5 |
O1—Mg1—Cl1 | 171.76 (4) | H7B—C7—H7C | 109.5 |
Cl2—Mg1—Cl1 | 85.61 (2) | C5—C8—H8A | 109.5 |
Cl3—Mg1—Cl1 | 89.07 (2) | C5—C8—H8B | 109.5 |
Cl4—Mg1—Cl1 | 82.38 (2) | H8A—C8—H8B | 109.5 |
O2—Mg1—Mg4 | 131.76 (5) | C5—C8—H8C | 109.5 |
O1—Mg1—Mg4 | 93.56 (4) | H8A—C8—H8C | 109.5 |
Cl2—Mg1—Mg4 | 134.76 (3) | H8B—C8—H8C | 109.5 |
Cl3—Mg1—Mg4 | 41.745 (17) | C13—O1—C11 | 113.76 (14) |
Cl4—Mg1—Mg4 | 43.883 (16) | C13—O1—Mg1 | 123.38 (11) |
Cl1—Mg1—Mg4 | 83.37 (2) | C11—O1—Mg1 | 122.84 (11) |
O2—Mg1—Mg2 | 96.53 (4) | C23—O2—C21 | 114.54 (16) |
O1—Mg1—Mg2 | 132.21 (4) | C23—O2—Mg1 | 121.76 (13) |
Cl2—Mg1—Mg2 | 41.808 (17) | C21—O2—Mg1 | 123.63 (12) |
Cl3—Mg1—Mg2 | 132.72 (2) | C31—O3—C33 | 113.99 (13) |
Cl4—Mg1—Mg2 | 84.07 (2) | C31—O3—Mg3 | 123.39 (10) |
Cl1—Mg1—Mg2 | 43.851 (16) | C33—O3—Mg3 | 122.58 (10) |
Mg4—Mg1—Mg2 | 113.03 (2) | C43—O4—C41 | 114.78 (15) |
C1—Mg2—Cl2 | 120.00 (6) | C43—O4—Mg3 | 122.50 (11) |
C1—Mg2—Cl6 | 118.61 (6) | C41—O4—Mg3 | 122.72 (11) |
Cl2—Mg2—Cl6 | 104.54 (3) | O1—C11—C12 | 112.69 (18) |
C1—Mg2—Cl1 | 125.52 (6) | O1—C11—H11A | 109.1 |
Cl2—Mg2—Cl1 | 91.35 (2) | C12—C11—H11A | 109.1 |
Cl6—Mg2—Cl1 | 90.28 (3) | O1—C11—H11B | 109.1 |
C1—Mg2—Mg1 | 142.27 (6) | C12—C11—H11B | 109.1 |
Cl2—Mg2—Mg1 | 43.408 (17) | H11A—C11—H11B | 107.8 |
Cl6—Mg2—Mg1 | 99.10 (2) | C11—C12—H12A | 109.5 |
Cl1—Mg2—Mg1 | 48.005 (17) | C11—C12—H12B | 109.5 |
C1—Mg2—Mg3 | 142.07 (6) | H12A—C12—H12B | 109.5 |
Cl2—Mg2—Mg3 | 97.92 (2) | C11—C12—H12C | 109.5 |
Cl6—Mg2—Mg3 | 42.779 (17) | H12A—C12—H12C | 109.5 |
Cl1—Mg2—Mg3 | 47.751 (17) | H12B—C12—H12C | 109.5 |
Mg1—Mg2—Mg3 | 67.468 (17) | O1—C13—C14 | 113.18 (19) |
O3—Mg3—O4 | 94.89 (5) | O1—C13—H13A | 108.9 |
O3—Mg3—Cl6 | 91.67 (4) | C14—C13—H13A | 108.9 |
O4—Mg3—Cl6 | 90.00 (4) | O1—C13—H13B | 108.9 |
O3—Mg3—Cl5 | 90.29 (4) | C14—C13—H13B | 108.9 |
O4—Mg3—Cl5 | 93.12 (4) | H13A—C13—H13B | 107.8 |
Cl6—Mg3—Cl5 | 176.16 (3) | C13—C14—H14A | 109.5 |
O3—Mg3—Cl4 | 172.94 (4) | C13—C14—H14B | 109.5 |
O4—Mg3—Cl4 | 90.55 (4) | H14A—C14—H14B | 109.5 |
Cl6—Mg3—Cl4 | 92.83 (2) | C13—C14—H14C | 109.5 |
Cl5—Mg3—Cl4 | 84.91 (2) | H14A—C14—H14C | 109.5 |
O3—Mg3—Cl1 | 92.96 (4) | H14B—C14—H14C | 109.5 |
O4—Mg3—Cl1 | 170.55 (4) | O2—C21—C22 | 112.44 (16) |
Cl6—Mg3—Cl1 | 84.50 (2) | O2—C21—H21A | 109.1 |
Cl5—Mg3—Cl1 | 92.10 (2) | C22—C21—H21A | 109.1 |
Cl4—Mg3—Cl1 | 82.07 (2) | O2—C21—H21B | 109.1 |
O3—Mg3—Mg4 | 130.97 (4) | C22—C21—H21B | 109.1 |
O4—Mg3—Mg4 | 95.91 (4) | H21A—C21—H21B | 107.8 |
Cl6—Mg3—Mg4 | 135.91 (3) | C21—C22—H22A | 109.5 |
Cl5—Mg3—Mg4 | 41.493 (17) | C21—C22—H22B | 109.5 |
Cl4—Mg3—Mg4 | 43.636 (16) | H22A—C22—H22B | 109.5 |
Cl1—Mg3—Mg4 | 82.84 (2) | C21—C22—H22C | 109.5 |
O3—Mg3—Mg2 | 96.51 (4) | H22A—C22—H22C | 109.5 |
O4—Mg3—Mg2 | 130.14 (4) | H22B—C22—H22C | 109.5 |
Cl6—Mg3—Mg2 | 41.392 (17) | O2—C23—C24 | 113.1 (2) |
Cl5—Mg3—Mg2 | 135.04 (3) | O2—C23—H23A | 109.0 |
Cl4—Mg3—Mg2 | 83.34 (2) | C24—C23—H23A | 109.0 |
Cl1—Mg3—Mg2 | 43.334 (16) | O2—C23—H23B | 109.0 |
Mg4—Mg3—Mg2 | 111.79 (2) | C24—C23—H23B | 109.0 |
C5—Mg4—Cl3 | 118.88 (6) | H23A—C23—H23B | 107.8 |
C5—Mg4—Cl5 | 121.03 (6) | C23—C24—H24A | 109.5 |
Cl3—Mg4—Cl5 | 105.06 (3) | C23—C24—H24B | 109.5 |
C5—Mg4—Cl4 | 123.76 (6) | H24A—C24—H24B | 109.5 |
Cl3—Mg4—Cl4 | 91.02 (2) | C23—C24—H24C | 109.5 |
Cl5—Mg4—Cl4 | 90.29 (2) | H24A—C24—H24C | 109.5 |
C5—Mg4—Mg1 | 138.64 (6) | H24B—C24—H24C | 109.5 |
Cl3—Mg4—Mg1 | 43.673 (17) | O3—C31—C32 | 112.99 (17) |
Cl5—Mg4—Mg1 | 100.25 (2) | O3—C31—H31A | 109.0 |
Cl4—Mg4—Mg1 | 47.368 (17) | C32—C31—H31A | 109.0 |
C5—Mg4—Mg3 | 142.99 (6) | O3—C31—H31B | 109.0 |
Cl3—Mg4—Mg3 | 98.01 (2) | C32—C31—H31B | 109.0 |
Cl5—Mg4—Mg3 | 43.395 (17) | H31A—C31—H31B | 107.8 |
Cl4—Mg4—Mg3 | 47.132 (17) | C31—C32—H32A | 109.5 |
Mg1—Mg4—Mg3 | 67.685 (17) | C31—C32—H32B | 109.5 |
Mg2—Cl1—Mg1 | 88.14 (2) | H32A—C32—H32B | 109.5 |
Mg2—Cl1—Mg3 | 88.92 (2) | C31—C32—H32C | 109.5 |
Mg1—Cl1—Mg3 | 96.92 (2) | H32A—C32—H32C | 109.5 |
Mg2—Cl2—Mg1 | 94.78 (3) | H32B—C32—H32C | 109.5 |
Mg4—Cl3—Mg1 | 94.58 (2) | O3—C33—C34 | 112.69 (15) |
Mg4—Cl4—Mg1 | 88.75 (2) | O3—C33—H33A | 109.1 |
Mg4—Cl4—Mg3 | 89.23 (2) | C34—C33—H33A | 109.1 |
Mg1—Cl4—Mg3 | 98.63 (2) | O3—C33—H33B | 109.1 |
Mg4—Cl5—Mg3 | 95.11 (2) | C34—C33—H33B | 109.1 |
Mg2—Cl6—Mg3 | 95.83 (2) | H33A—C33—H33B | 107.8 |
C3—C1—C4 | 108.14 (19) | C33—C34—H34A | 109.5 |
C3—C1—C2 | 107.4 (2) | C33—C34—H34B | 109.5 |
C4—C1—C2 | 107.51 (19) | H34A—C34—H34B | 109.5 |
C3—C1—Mg2 | 111.90 (15) | C33—C34—H34C | 109.5 |
C4—C1—Mg2 | 111.89 (15) | H34A—C34—H34C | 109.5 |
C2—C1—Mg2 | 109.76 (14) | H34B—C34—H34C | 109.5 |
C1—C2—H2A | 109.5 | O4—C41—C42 | 113.16 (16) |
C1—C2—H2B | 109.5 | O4—C41—H41A | 108.9 |
H2A—C2—H2B | 109.5 | C42—C41—H41A | 108.9 |
C1—C2—H2C | 109.5 | O4—C41—H41B | 108.9 |
H2A—C2—H2C | 109.5 | C42—C41—H41B | 108.9 |
H2B—C2—H2C | 109.5 | H41A—C41—H41B | 107.8 |
C1—C3—H3A | 109.5 | C41—C42—H42A | 109.5 |
C1—C3—H3B | 109.5 | C41—C42—H42B | 109.5 |
H3A—C3—H3B | 109.5 | H42A—C42—H42B | 109.5 |
C1—C3—H3C | 109.5 | C41—C42—H42C | 109.5 |
H3A—C3—H3C | 109.5 | H42A—C42—H42C | 109.5 |
H3B—C3—H3C | 109.5 | H42B—C42—H42C | 109.5 |
C1—C4—H4A | 109.5 | O4—C43—C44 | 113.08 (18) |
C1—C4—H4B | 109.5 | O4—C43—H43A | 109.0 |
H4A—C4—H4B | 109.5 | C44—C43—H43A | 109.0 |
C1—C4—H4C | 109.5 | O4—C43—H43B | 109.0 |
H4A—C4—H4C | 109.5 | C44—C43—H43B | 109.0 |
H4B—C4—H4C | 109.5 | H43A—C43—H43B | 107.8 |
C8—C5—C7 | 109.2 (2) | C43—C44—H44A | 109.5 |
C8—C5—C6 | 107.36 (19) | C43—C44—H44B | 109.5 |
C7—C5—C6 | 107.40 (18) | H44A—C44—H44B | 109.5 |
C8—C5—Mg4 | 108.47 (15) | C43—C44—H44C | 109.5 |
C7—C5—Mg4 | 110.82 (14) | H44A—C44—H44C | 109.5 |
C6—C5—Mg4 | 113.46 (14) | H44B—C44—H44C | 109.5 |
C13—O1—C11—C12 | 71.5 (2) | C33—O3—C31—C32 | −68.9 (2) |
Mg1—O1—C11—C12 | −107.09 (18) | Mg3—O3—C31—C32 | 113.14 (17) |
C11—O1—C13—C14 | 76.2 (2) | C31—O3—C33—C34 | −72.6 (2) |
Mg1—O1—C13—C14 | −105.27 (18) | Mg3—O3—C33—C34 | 105.41 (16) |
C23—O2—C21—C22 | 72.4 (2) | C43—O4—C41—C42 | −66.1 (2) |
Mg1—O2—C21—C22 | −104.48 (19) | Mg3—O4—C41—C42 | 112.98 (17) |
C21—O2—C23—C24 | 71.3 (3) | C41—O4—C43—C44 | −64.8 (2) |
Mg1—O2—C23—C24 | −111.7 (2) | Mg3—O4—C43—C44 | 116.12 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C32—H32A···Cl3i | 0.98 | 2.96 | 3.876 (2) | 155 |
C34—H34A···Cl6ii | 0.98 | 2.92 | 3.602 (2) | 127 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z+3/2. |
There are two columns for the title compound because it does not show any symmetry, whereas all structures retrieved from the database are located at a center of inversion. Mg···µ2-Cl: bond lengths are between the five-coordinate Mg2+ ions and the µ2-Cl- ions. Mg···µ3-Cl: bond lengths are between the five-coordinate Mg2+ ion and the µ3-Cl- ion in the central Mg2Cl2 plane. |
Structure | Mg···µ3-Cl | Mg···µ2-Cl | Mg···µ2-Cl | Σθeq |
Title compound | 2.4687 (7) | 2.3825 (7) | 2.3905 (8) | – |
Title compound | 2.4689 (7) | 2.3785 (7) | 2.3796 (7) | – |
MGCLTF | 2.789 | 2.398 | 2.405 | 359.6 |
QUJSUJ | 2.888 | 2.405 | 2.406 | 358.0 |
QUJTAO | 2.819 | 2.415 | 2.429 | 358.4 |
QUJTEU | 2.834 | 2.389 | 2.393 | 356.6 |
SEJZUE | 2.727 | 2.404 | 2.431 | 359.2 |
WILMIN | 2.779 | 2.397 | 2.402 | 359.5 |
References
Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. 7, 1349–1356. CSD CrossRef Web of Science Google Scholar
Blasberg, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2012). Organometallics, 31, 1001–1005. Web of Science CSD CrossRef CAS Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Casellato, U. & Ossola, F. (1994). Organometallics, 13, 4105–4108. CSD CrossRef CAS Web of Science Google Scholar
Curtis, E. R., Hannigan, M. D., Vitek, A. K. & Zimmerman, P. M. (2020). J. Phys. Chem. A, 124, 1480–1488. Web of Science CrossRef CAS PubMed Google Scholar
Elschenbroich, C. (2008). Organometallchemie, p. 64. Wiesbaden: Teubner. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Peltzer, R. M., Eisenstein, O., Nova, A. & Cascella, M. (2017). J. Phys. Chem. B, 121, 4226–4237. Web of Science CrossRef CAS PubMed Google Scholar
Peltzer, R. M., Gauss, J., Eisenstein, O. & Cascella, M. (2020). J. Am. Chem. Soc. 142, 2984–2994. Web of Science CrossRef CAS PubMed Google Scholar
Pirinen, S., Koshevoy, I. O., Denifl, P. & Pakkanen, T. T. (2013). Organometallics, 32, 4208–4213. Web of Science CSD CrossRef CAS Google Scholar
Sakamoto, S., Imamoto, T. & Yamaguchi, K. (2001). Org. Lett. 3, 1793–1795. Web of Science CSD CrossRef PubMed CAS Google Scholar
Schlenk, W. & Schlenk jun, W. (1929). Ber. Dtsch. Chem. Ges. B, 62, 920–924. CrossRef Google Scholar
Seyferth, D. (2009). Organometallics, 28, 1598–1605. Web of Science CrossRef CAS Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Toney, J. & Stucky, G. D. (1971). J. Organomet. Chem. 28, 5–20. CSD CrossRef Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.