research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [tBuMgCl]2[MgCl2(Et2O)2]2

crossmark logo

aInstitut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: lerner@chemie.uni-frankfurt.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 23 February 2023; accepted 7 March 2023; online 15 March 2023)

The title compound, di-μ3-chlorido-tetra-μ2-chlorido-tetra­kis­(diethyl ether-κO)bis­(1,1-di­methyl­eth­yl)tetra­magnesium, [Mg4(C4H9)2Cl6(C4H10O)4], features an Mg4Cl6 open-cube cluster. The two four-coordinate Mg2+ ions show an almost tetra­hedral coordination, whereas the two six-coordinate Mg2+ ions have their ligands in an octa­hedral environment. The Mg—Cl bond lengths differ depending on the coordination number (2 or 3) of the bridging μ-Cl ligands. There are few comparable structures deposited in the Cambridge Structural Database.

1. Chemical context

Grignard reagents (RMgX) are among the most commonly used organometallic reagents in synthesis. However, their mol­ecular structures are highly diverse and therefore subject to ongoing research (Elschenbroich, 2008[Elschenbroich, C. (2008). Organometallchemie, p. 64. Wiesbaden: Teubner.]; Peltzer et al., 2020[Peltzer, R. M., Gauss, J., Eisenstein, O. & Cascella, M. (2020). J. Am. Chem. Soc. 142, 2984-2994.]; Curtis et al., 2020[Curtis, E. R., Hannigan, M. D., Vitek, A. K. & Zimmerman, P. M. (2020). J. Phys. Chem. A, 124, 1480-1488.]). The structures of RMgX in solution depend on the nature of the solvent, the bulkiness of the organic moiety R, and the choice of the halide X (Peltzer et al., 2017[Peltzer, R. M., Eisenstein, O., Nova, A. & Cascella, M. (2017). J. Phys. Chem. B, 121, 4226-4237.]). Moreover, the Schlenk equilibrium can convert RMgX into MgR2 and MgX2 (Schlenk & Schlenk jun., 1929[Schlenk, W. & Schlenk jun, W. (1929). Ber. Dtsch. Chem. Ges. B, 62, 920-924.]). The formation of halide bridges between the Lewis-acidic Mg2+ ions (Mg—X—Mg) allows for dimeric and oligomeric structures that are in equilibrium with their monomeric units (Fig. 1[link]). Further coordination sites at Mg2+ are often saturated by donor-solvent mol­ecules (Seyferth, 2009[Seyferth, D. (2009). Organometallics, 28, 1598-1605.]).

[Figure 1]
Figure 1
Original and generalized Schlenk equilibrium (solvent mol­ecules neglected; Peltzer et al., 2017[Peltzer, R. M., Eisenstein, O., Nova, A. & Cascella, M. (2017). J. Phys. Chem. B, 121, 4226-4237.]).

Since the analysis of Grignard reagents in solution is challenging, X-ray crystallography has emerged as an alternative, frequently used method to investigate their mol­ecular compositions. A recurring structural motif in the solid state is the open-cube cluster [RMgCl(THF)]2[MgCl2(THF)2]2 (I; R = Me, Et, iPr, nBu, tBu). Toney & Stucky (1971[Toney, J. & Stucky, G. D. (1971). J. Organomet. Chem. 28, 5-20.]), Sakamoto et al. (2001[Sakamoto, S., Imamoto, T. & Yamaguchi, K. (2001). Org. Lett. 3, 1793-1795.]), as well as our group (Blasberg et al., 2012[Blasberg, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2012). Organometallics, 31, 1001-1005.]) provided evidence for such structures obtained by crystallization of RMgCl from THF. According to the Schlenk equilibrium, the formation of I can be rationalized by assuming aggregation of two RMgCl·MgCl2 entities. The two independent Mg2+ ions in I exhibit five- and six-coordination, respectively. We now report [tBuMgCl]2[MgCl2(Et2O)2]2 (II) as the first example of such open-cube clusters obtained from Et2O. It is noteworthy that, unlike those in I, the reactive Mg2+ ions in the title compound II are four-coordinate and, surprisingly, no solvent coordinates to these tBuMgCl3 entities. Subtle changes such as exchanging THF for the weaker donor Et2O seem to have a significant effect on the observed structural motifs (Fig. 2[link]).

[Scheme 1]
[Figure 2]
Figure 2
Open-cube structures like I (R = tBu) are obtained by crystallization of tBuMgCl from THF solutions, whereas the less-solvated title compound II crystallizes from Et2O solutions of tBuMgCl.

2. Structural commentary

The title compound II features an open-cube cluster consisting of Mg2+ and Cl ions (Fig. 3[link]). The Mg2+ ions (Mg1, Mg3) in the Mg2Cl2 plane are six-coordinate with four Cl ligands and the O atoms of two Et2O mol­ecules in an almost perfect octa­hedral mode. The Mg—Cl distances to the three-coordinate μ3-Cl ligands (Cl1, Cl4) are significantly longer [2.6204 (7)–2.6629 (7) Å] than the Mg—Cl distances to the two-coordinate μ2-Cl ligands (Cl2, Cl3, Cl5, Cl6) [2.4555 (7)–2.4676 (7) Å]. The other two Mg2+ ions (Mg2, Mg4) are four-coordinate with three Cl ligands and one tert-butyl group featuring a distorted tetra­hedron. As a result of the geometric strain in these MgCl entities, the Cl—Mg—Cl angles are smaller than the Cl—Mg—C angles. Again, a difference in the Mg—Cl bond lengths can be observed: as expected, the bonds between Mg2+ and the μ3-Cl ligands are longer [2.4687 (7) and 2.4689 (7) Å] than the bonds between Mg2+ and the μ2-Cl ligands [2.3785 (7)–2.3905 (7) Å].

[Figure 3]
Figure 3
Mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

3. Supra­molecular features

There are two short C—H⋯Cl contacts bridging adjacent mol­ecules of the title compound II. These hydrogen bonds (Table 1[link]) lead to the formation of chains extending parallel to [010]. A packing diagram showing one unit cell is depicted in Fig. 4[link]. There are no other remarkable inter­molecular inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32A⋯Cl3i 0.98 2.96 3.876 (2) 155
C34—H34A⋯Cl6ii 0.98 2.92 3.602 (2) 127
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 4]
Figure 4
Packing diagram of the title compound II showing the C—H⋯Cl hydrogen bonds (cyan) between adjacent mol­ecules of II. H atoms not involved in hydrogen bonding are omitted for clarity.

4. Database survey

Six comparable structures with a similar Mg4Cl6 open-cube cluster have been found in the Cambridge Structural Database (version 5.43, update of September 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), viz., [EtMgCl(THF)]2[MgCl2(THF)2]2 (MGCLTF; Toney & Stucky, 1971[Toney, J. & Stucky, G. D. (1971). J. Organomet. Chem. 28, 5-20.]), [MeMgCl(THF)]2[MgCl2(THF)2]2 (QUJSUJ; Sakamoto et al., 2001[Sakamoto, S., Imamoto, T. & Yamaguchi, K. (2001). Org. Lett. 3, 1793-1795.]), [tBuMgCl(THF)]2[MgCl2(THF)2]2 (QUJTAQ; Sakamoto et al., 2001[Sakamoto, S., Imamoto, T. & Yamaguchi, K. (2001). Org. Lett. 3, 1793-1795.]), [benzylMgCl(THF)]2[MgCl2(THF)2]2 (QUJTEU; Sakamoto et al., 2001[Sakamoto, S., Imamoto, T. & Yamaguchi, K. (2001). Org. Lett. 3, 1793-1795.]), [iPrMgCl(THF)]2[MgCl2(THF)2]2 (SEJZUE; Blasberg et al., 2012[Blasberg, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2012). Organometallics, 31, 1001-1005.]), and [Me2NCH2CH2CH2MgCl]2[MgCl2(THF)2]2 (WILMIN; Casellato & Ossola, 1994[Casellato, U. & Ossola, F. (1994). Organometallics, 13, 4105-4108.]). A seventh structure [nBuMg3Cl5(THF)4]2 (ZIHQEO; Pirinen et al., 2013[Pirinen, S., Koshevoy, I. O., Denifl, P. & Pakkanen, T. T. (2013). Organometallics, 32, 4208-4213.]) also features an open-cube cluster; however, here the reactive Mg2+ ions are not part of the cubes. The latter structure is therefore not included in the comparison. Inter­estingly, all the above structures from the database show crystallographic centrosymmetry, with all of them being located at a center of inversion. The title compound, on the other hand, does not show any crystallographic symmetry, although it would be possible for II to comply with a crystallographic inversion center. A fundamental difference between the structure of the title compound and the published structures is the coordination sphere of the reactive Mg2+ ions. In all structures retrieved from the CSD, these Mg2+ ions are five-coordinate and the ligands form a distorted trigonal bipyramid. The calculated geometry indices τ5 (0.65–0.84) show a varying degree of deviation from the ideal trigonal bipyramidal geometry (τ5 = 1; Addison et al., 1984[Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. 7, 1349-1356.]). The Mg⋯Cl distances to the μ3-Cl ligands in the central Mg2Cl2 plane (Table 2[link]) are significantly longer (mean value 2.806 Å) than in II (mean value 2.4688 Å), but in between the sum of van der Waals radii (Σr(vdW)[Mg,Cl] = 3.48 Å) and effective ionic radii (Σr(ion)[Mg2+,Cl] = 2.47 Å) (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). Nevertheless, the sums of equatorial angles Σθeq (mean value 358.6°) indicate that the Mg2+ ions are five-coordinate in a trigonal bipyramidal mode and that inter­actions with the μ3-Cl ions in the Mg2Cl2 planes exist. Structures with other halogens than Cl were not found.

Table 2
Comparison of Mg⋯Cl distances (Å) and sums of equatorial angles Σθeq (°) of the five-coordinate Mg2+ ions in the literature phases

There are two rows for the title compound because it does not show any symmetry, whereas all structures retrieved from the database are located at a center of inversion. Mg⋯μ2-Cl: bond lengths are between the five-coordinate Mg2+ ions and the μ2-Cl ions. Mg⋯μ3-Cl: bond lengths are between the five-coordinate Mg2+ ion and the μ3-Cl ion in the central Mg2Cl2 plane.

Structure Mg⋯μ3-Cl Mg⋯μ2-Cl Mg⋯μ2-Cl Σθeq
Title compound 2.4687 (7) 2.3825 (7) 2.3905 (8)
Title compound 2.4689 (7) 2.3785 (7) 2.3796 (7)
MGCLTF 2.789 2.398 2.405 359.6
QUJSUJ 2.888 2.405 2.406 358.0
QUJTAG 2.819 2.415 2.429 358.4
QUJTEU 2.834 2.389 2.393 356.6
SEJZUE 2.727 2.404 2.431 359.2
WILMIN 2.779 2.397 2.402 359.5

5. Synthesis and crystallization

Magnesium turnings (9.74 g, 401 mmol, 1.7 eq.) were placed in a Schlenk flask and dried under vacuum by heating. Dry Et2O (40 ml) was added to the flask and a solution of tBuCl (21.3 g, 230 mmol, 1.0 eq.) in Et2O (20 ml) was added dropwise at such a rate as to maintain a gentle reflux (approx. 1 h). After cooling to room temperature, the Grignard solution was separated from residual Mg turnings by cannula transfer into a new Schlenk flask. Upon concentration of the solution at room temperature, colorless crystals of [tBuMgCl]2[MgCl2(Et2O)2]2 formed, which were suitable for single-crystal X-ray structure determination.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3[link]. H atoms were geometrically positioned and refined using a riding model with Cmethyl­ene—H = 0.99 Å and U(H) = 1.2Ueq(C) or with Cmeth­yl—H = 0.98 Å and U(H) = 1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Mg4(C4H9)2Cl6(C4H10O)4]
Mr 720.64
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 11.5663 (5), 15.4045 (8), 22.8256 (11)
β (°) 99.209 (4)
V3) 4014.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.52
Crystal size (mm) 0.26 × 0.24 × 0.19
 
Data collection
Diffractometer STOE IPDS II two-circle-diffractometer
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.762, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20835, 7482, 5674
Rint 0.033
(sin θ/λ)max−1) 0.608
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.066, 0.93
No. of reflections 7482
No. of parameters 343
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.18
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Di-µ3-chlorido-tetra-µ2-chlorido-tetrakis(diethyl ether-κO)bis(1,1-dimethylethyl)tetramagnesium top
Crystal data top
[Mg4(C4H9)2Cl6(C4H10O)4]F(000) = 1536
Mr = 720.64Dx = 1.192 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.5663 (5) ÅCell parameters from 19794 reflections
b = 15.4045 (8) Åθ = 3.2–25.9°
c = 22.8256 (11) ŵ = 0.52 mm1
β = 99.209 (4)°T = 173 K
V = 4014.5 (3) Å3Block, colourless
Z = 40.26 × 0.24 × 0.19 mm
Data collection top
STOE IPDS II two-circle-
diffractometer
5674 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.033
ω scansθmax = 25.6°, θmin = 3.2°
Absorption correction: multi-scan
(X-Area; Stoe & Cie, 2001)
h = 1314
Tmin = 0.762, Tmax = 1.000k = 1818
20835 measured reflectionsl = 2727
7482 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0337P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.001
7482 reflectionsΔρmax = 0.23 e Å3
343 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.85944 (5)0.39400 (4)0.67934 (3)0.02116 (13)
Mg20.55207 (5)0.36837 (4)0.63418 (3)0.02481 (14)
Mg30.63926 (5)0.34063 (4)0.79150 (3)0.02032 (13)
Mg40.94919 (5)0.36222 (4)0.83447 (3)0.02314 (13)
Cl10.70075 (4)0.27496 (3)0.69305 (2)0.02311 (10)
Cl20.69752 (4)0.47151 (3)0.61844 (2)0.02928 (11)
Cl31.00678 (4)0.30899 (3)0.74566 (2)0.02581 (10)
Cl40.79900 (4)0.45596 (3)0.77698 (2)0.02215 (9)
Cl50.80093 (4)0.26496 (3)0.85501 (2)0.02837 (10)
Cl60.48646 (4)0.41593 (3)0.72299 (2)0.02612 (10)
C10.42463 (17)0.32648 (13)0.56138 (9)0.0304 (4)
C20.3138 (2)0.38179 (17)0.55809 (12)0.0535 (6)
H2A0.2831620.3771240.5955810.080*
H2B0.3326480.4425540.5510860.080*
H2C0.2546750.3610900.5254810.080*
C30.4687 (2)0.33588 (19)0.50227 (11)0.0567 (7)
H3A0.4918520.3962480.4971000.085*
H3B0.5363810.2977560.5018150.085*
H3C0.4062230.3196930.4698620.085*
C40.3894 (2)0.23210 (15)0.56802 (12)0.0520 (6)
H4A0.3607490.2246220.6058460.078*
H4B0.3273700.2164660.5352670.078*
H4C0.4575280.1945280.5672200.078*
C51.08079 (16)0.40856 (12)0.90376 (9)0.0289 (4)
C61.20470 (18)0.38137 (15)0.89651 (11)0.0417 (5)
H6A1.2099560.3178740.8964600.063*
H6B1.2228610.4040820.8589190.063*
H6C1.2607800.4047000.9294900.063*
C71.0590 (2)0.37540 (19)0.96411 (10)0.0529 (6)
H7A1.0611540.3117990.9644200.079*
H7B1.1198480.3978620.9952600.079*
H7C0.9820520.3952480.9713620.079*
C81.0774 (3)0.50716 (15)0.90356 (13)0.0589 (7)
H8A1.0912950.5287010.8648950.088*
H8B1.0003790.5268780.9108700.088*
H8C1.1381750.5294920.9347680.088*
O10.97092 (10)0.49894 (8)0.67575 (6)0.0256 (3)
O20.90985 (12)0.33409 (8)0.60605 (6)0.0304 (3)
O30.52786 (10)0.23817 (7)0.80081 (6)0.0224 (3)
O40.59432 (11)0.41160 (8)0.86184 (6)0.0271 (3)
C111.09484 (16)0.48893 (13)0.67206 (10)0.0327 (4)
H11A1.1146370.5267100.6400010.039*
H11B1.1098280.4280900.6614730.039*
C121.1731 (2)0.51158 (17)0.72924 (12)0.0499 (6)
H12A1.2551560.5038040.7244390.075*
H12B1.1599480.5721570.7395160.075*
H12C1.1551390.4735160.7609930.075*
C130.93368 (18)0.58886 (12)0.67816 (10)0.0358 (5)
H13A0.9917910.6208170.7067720.043*
H13B0.8578460.5907290.6930060.043*
C140.9204 (2)0.63357 (14)0.61938 (12)0.0505 (6)
H14A0.8952730.6936500.6237550.076*
H14B0.9956190.6332380.6047990.076*
H14C0.8615910.6031320.5910240.076*
C210.94137 (19)0.24253 (13)0.60446 (10)0.0379 (5)
H21A0.9021280.2167800.5667290.045*
H21B0.9126180.2118300.6374140.045*
C221.0726 (2)0.22900 (15)0.60974 (12)0.0460 (6)
H22A1.0894830.1667410.6084590.069*
H22B1.1013170.2582290.5767340.069*
H22C1.1118070.2532780.6474190.069*
C230.9223 (2)0.38232 (16)0.55274 (9)0.0417 (5)
H23A1.0009600.3710570.5425660.050*
H23B0.9167380.4451780.5608980.050*
C240.8313 (3)0.3590 (2)0.50044 (11)0.0675 (8)
H24A0.8439590.3934170.4659230.101*
H24B0.8374020.2971140.4914830.101*
H24C0.7531320.3712770.5098250.101*
C310.40608 (16)0.24950 (13)0.80824 (10)0.0308 (4)
H31A0.3910100.3119670.8138770.037*
H31B0.3925370.2185100.8445340.037*
C320.3211 (2)0.21645 (17)0.75634 (13)0.0540 (7)
H32A0.2408420.2256930.7637250.081*
H32B0.3327340.2477930.7203790.081*
H32C0.3342630.1542920.7510510.081*
C330.56613 (17)0.14798 (11)0.80251 (8)0.0264 (4)
H33A0.6416650.1443050.7874810.032*
H33B0.5079780.1131770.7758020.032*
C340.58083 (18)0.10973 (12)0.86411 (9)0.0330 (4)
H34A0.6065510.0492370.8628430.049*
H34B0.6395970.1431180.8905860.049*
H34C0.5058820.1119840.8789040.049*
C410.57470 (18)0.50510 (12)0.85886 (10)0.0318 (4)
H41A0.5977550.5276160.8217780.038*
H41B0.6255840.5330610.8926090.038*
C420.4488 (2)0.53006 (14)0.86053 (11)0.0431 (5)
H42A0.4409500.5933790.8584040.065*
H42B0.3979740.5037680.8267030.065*
H42C0.4258200.5092160.8975770.065*
C430.57826 (19)0.37161 (14)0.91760 (9)0.0338 (4)
H43A0.5848390.3078270.9139590.041*
H43B0.4983450.3847820.9254180.041*
C440.6661 (3)0.40219 (19)0.96956 (11)0.0620 (7)
H44A0.6510580.3731781.0058060.093*
H44B0.7453800.3881420.9625860.093*
H44C0.6588390.4651380.9740510.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0192 (3)0.0236 (3)0.0206 (3)0.0005 (2)0.0030 (2)0.0011 (2)
Mg20.0200 (3)0.0326 (3)0.0209 (3)0.0027 (2)0.0005 (2)0.0008 (3)
Mg30.0190 (3)0.0215 (3)0.0204 (3)0.0005 (2)0.0032 (2)0.0020 (2)
Mg40.0193 (3)0.0290 (3)0.0206 (3)0.0014 (2)0.0016 (2)0.0004 (2)
Cl10.0219 (2)0.02278 (19)0.0247 (2)0.00015 (16)0.00402 (16)0.00018 (17)
Cl20.0214 (2)0.0340 (2)0.0312 (3)0.00148 (17)0.00056 (18)0.01139 (19)
Cl30.0240 (2)0.0295 (2)0.0241 (2)0.00730 (17)0.00460 (17)0.00182 (18)
Cl40.0214 (2)0.02222 (19)0.0231 (2)0.00049 (15)0.00457 (16)0.00038 (17)
Cl50.0212 (2)0.0320 (2)0.0306 (3)0.00177 (17)0.00012 (18)0.01217 (19)
Cl60.0246 (2)0.0295 (2)0.0242 (2)0.00760 (17)0.00389 (17)0.00337 (18)
C10.0279 (10)0.0358 (10)0.0259 (10)0.0027 (8)0.0004 (8)0.0018 (8)
C20.0400 (13)0.0587 (15)0.0559 (16)0.0074 (11)0.0106 (11)0.0109 (13)
C30.0619 (17)0.0775 (18)0.0307 (13)0.0147 (14)0.0071 (12)0.0069 (12)
C40.0538 (15)0.0444 (13)0.0549 (16)0.0087 (11)0.0003 (12)0.0011 (12)
C50.0244 (10)0.0361 (10)0.0247 (10)0.0025 (8)0.0008 (8)0.0037 (8)
C60.0265 (11)0.0512 (13)0.0453 (14)0.0048 (9)0.0005 (9)0.0040 (11)
C70.0470 (14)0.0851 (18)0.0252 (12)0.0094 (13)0.0014 (10)0.0011 (12)
C80.0718 (18)0.0395 (13)0.0577 (17)0.0032 (12)0.0127 (14)0.0152 (12)
O10.0195 (6)0.0238 (6)0.0339 (8)0.0012 (5)0.0058 (5)0.0012 (5)
O20.0332 (7)0.0340 (7)0.0252 (7)0.0026 (6)0.0083 (6)0.0053 (6)
O30.0175 (6)0.0210 (6)0.0294 (7)0.0000 (5)0.0058 (5)0.0000 (5)
O40.0331 (7)0.0260 (6)0.0235 (7)0.0016 (5)0.0085 (5)0.0020 (5)
C110.0211 (10)0.0391 (11)0.0395 (12)0.0020 (8)0.0095 (8)0.0051 (9)
C120.0276 (12)0.0617 (15)0.0572 (16)0.0121 (11)0.0033 (10)0.0053 (12)
C130.0338 (11)0.0224 (9)0.0506 (14)0.0012 (8)0.0046 (10)0.0013 (9)
C140.0425 (13)0.0361 (12)0.0695 (18)0.0088 (10)0.0009 (12)0.0204 (12)
C210.0367 (12)0.0360 (11)0.0426 (13)0.0063 (9)0.0109 (9)0.0163 (9)
C220.0395 (13)0.0475 (13)0.0536 (15)0.0014 (10)0.0148 (11)0.0190 (11)
C230.0416 (13)0.0609 (14)0.0247 (11)0.0049 (10)0.0119 (9)0.0027 (10)
C240.0683 (19)0.104 (2)0.0274 (13)0.0037 (16)0.0001 (12)0.0077 (14)
C310.0188 (9)0.0338 (10)0.0422 (12)0.0014 (7)0.0125 (8)0.0012 (9)
C320.0231 (11)0.0653 (16)0.0713 (19)0.0060 (10)0.0009 (11)0.0117 (13)
C330.0317 (10)0.0200 (8)0.0273 (10)0.0011 (7)0.0045 (8)0.0035 (7)
C340.0384 (11)0.0270 (10)0.0327 (11)0.0036 (8)0.0033 (9)0.0045 (8)
C410.0363 (11)0.0225 (9)0.0377 (12)0.0029 (8)0.0096 (9)0.0068 (8)
C420.0415 (13)0.0384 (12)0.0521 (15)0.0049 (9)0.0152 (11)0.0074 (10)
C430.0396 (12)0.0409 (11)0.0222 (10)0.0051 (9)0.0092 (9)0.0017 (9)
C440.0760 (19)0.0776 (19)0.0286 (13)0.0134 (15)0.0031 (12)0.0065 (13)
Geometric parameters (Å, º) top
Mg1—O22.0742 (14)O3—C311.456 (2)
Mg1—O12.0776 (13)O3—C331.457 (2)
Mg1—Cl22.4560 (7)O4—C431.453 (2)
Mg1—Cl32.4668 (7)O4—C411.458 (2)
Mg1—Cl42.6204 (7)C11—C121.506 (3)
Mg1—Cl12.6483 (7)C11—H11A0.9900
Mg1—Mg43.5608 (9)C11—H11B0.9900
Mg1—Mg23.5615 (8)C12—H12A0.9800
Mg2—C12.137 (2)C12—H12B0.9800
Mg2—Cl22.3825 (7)C12—H12C0.9800
Mg2—Cl62.3905 (8)C13—C141.494 (3)
Mg2—Cl12.4687 (7)C13—H13A0.9900
Mg2—Mg33.5967 (9)C13—H13B0.9900
Mg3—O32.0698 (13)C14—H14A0.9800
Mg3—O42.0761 (14)C14—H14B0.9800
Mg3—Cl62.4555 (7)C14—H14C0.9800
Mg3—Cl52.4676 (7)C21—C221.518 (3)
Mg3—Cl42.6222 (7)C21—H21A0.9900
Mg3—Cl12.6629 (7)C21—H21B0.9900
Mg3—Mg43.5774 (8)C22—H22A0.9800
Mg4—C52.135 (2)C22—H22B0.9800
Mg4—Cl32.3785 (7)C22—H22C0.9800
Mg4—Cl52.3796 (7)C23—C241.503 (3)
Mg4—Cl42.4689 (7)C23—H23A0.9900
C1—C31.524 (3)C23—H23B0.9900
C1—C41.524 (3)C24—H24A0.9800
C1—C21.531 (3)C24—H24B0.9800
C2—H2A0.9800C24—H24C0.9800
C2—H2B0.9800C31—C321.502 (3)
C2—H2C0.9800C31—H31A0.9900
C3—H3A0.9800C31—H31B0.9900
C3—H3B0.9800C32—H32A0.9800
C3—H3C0.9800C32—H32B0.9800
C4—H4A0.9800C32—H32C0.9800
C4—H4B0.9800C33—C341.509 (3)
C4—H4C0.9800C33—H33A0.9900
C5—C81.519 (3)C33—H33B0.9900
C5—C71.527 (3)C34—H34A0.9800
C5—C61.527 (3)C34—H34B0.9800
C6—H6A0.9800C34—H34C0.9800
C6—H6B0.9800C41—C421.513 (3)
C6—H6C0.9800C41—H41A0.9900
C7—H7A0.9800C41—H41B0.9900
C7—H7B0.9800C42—H42A0.9800
C7—H7C0.9800C42—H42B0.9800
C8—H8A0.9800C42—H42C0.9800
C8—H8B0.9800C43—C441.508 (3)
C8—H8C0.9800C43—H43A0.9900
O1—C131.454 (2)C43—H43B0.9900
O1—C111.457 (2)C44—H44A0.9800
O2—C231.452 (2)C44—H44B0.9800
O2—C211.459 (2)C44—H44C0.9800
O2—Mg1—O193.33 (5)C5—C6—H6A109.5
O2—Mg1—Cl292.70 (5)C5—C6—H6B109.5
O1—Mg1—Cl291.22 (4)H6A—C6—H6B109.5
O2—Mg1—Cl390.17 (4)C5—C6—H6C109.5
O1—Mg1—Cl393.73 (4)H6A—C6—H6C109.5
Cl2—Mg1—Cl3174.12 (3)H6B—C6—H6C109.5
O2—Mg1—Cl4174.73 (5)C5—C7—H7A109.5
O1—Mg1—Cl490.10 (4)C5—C7—H7B109.5
Cl2—Mg1—Cl491.21 (2)H7A—C7—H7B109.5
Cl3—Mg1—Cl485.61 (2)C5—C7—H7C109.5
O2—Mg1—Cl194.41 (4)H7A—C7—H7C109.5
O1—Mg1—Cl1171.76 (4)H7B—C7—H7C109.5
Cl2—Mg1—Cl185.61 (2)C5—C8—H8A109.5
Cl3—Mg1—Cl189.07 (2)C5—C8—H8B109.5
Cl4—Mg1—Cl182.38 (2)H8A—C8—H8B109.5
O2—Mg1—Mg4131.76 (5)C5—C8—H8C109.5
O1—Mg1—Mg493.56 (4)H8A—C8—H8C109.5
Cl2—Mg1—Mg4134.76 (3)H8B—C8—H8C109.5
Cl3—Mg1—Mg441.745 (17)C13—O1—C11113.76 (14)
Cl4—Mg1—Mg443.883 (16)C13—O1—Mg1123.38 (11)
Cl1—Mg1—Mg483.37 (2)C11—O1—Mg1122.84 (11)
O2—Mg1—Mg296.53 (4)C23—O2—C21114.54 (16)
O1—Mg1—Mg2132.21 (4)C23—O2—Mg1121.76 (13)
Cl2—Mg1—Mg241.808 (17)C21—O2—Mg1123.63 (12)
Cl3—Mg1—Mg2132.72 (2)C31—O3—C33113.99 (13)
Cl4—Mg1—Mg284.07 (2)C31—O3—Mg3123.39 (10)
Cl1—Mg1—Mg243.851 (16)C33—O3—Mg3122.58 (10)
Mg4—Mg1—Mg2113.03 (2)C43—O4—C41114.78 (15)
C1—Mg2—Cl2120.00 (6)C43—O4—Mg3122.50 (11)
C1—Mg2—Cl6118.61 (6)C41—O4—Mg3122.72 (11)
Cl2—Mg2—Cl6104.54 (3)O1—C11—C12112.69 (18)
C1—Mg2—Cl1125.52 (6)O1—C11—H11A109.1
Cl2—Mg2—Cl191.35 (2)C12—C11—H11A109.1
Cl6—Mg2—Cl190.28 (3)O1—C11—H11B109.1
C1—Mg2—Mg1142.27 (6)C12—C11—H11B109.1
Cl2—Mg2—Mg143.408 (17)H11A—C11—H11B107.8
Cl6—Mg2—Mg199.10 (2)C11—C12—H12A109.5
Cl1—Mg2—Mg148.005 (17)C11—C12—H12B109.5
C1—Mg2—Mg3142.07 (6)H12A—C12—H12B109.5
Cl2—Mg2—Mg397.92 (2)C11—C12—H12C109.5
Cl6—Mg2—Mg342.779 (17)H12A—C12—H12C109.5
Cl1—Mg2—Mg347.751 (17)H12B—C12—H12C109.5
Mg1—Mg2—Mg367.468 (17)O1—C13—C14113.18 (19)
O3—Mg3—O494.89 (5)O1—C13—H13A108.9
O3—Mg3—Cl691.67 (4)C14—C13—H13A108.9
O4—Mg3—Cl690.00 (4)O1—C13—H13B108.9
O3—Mg3—Cl590.29 (4)C14—C13—H13B108.9
O4—Mg3—Cl593.12 (4)H13A—C13—H13B107.8
Cl6—Mg3—Cl5176.16 (3)C13—C14—H14A109.5
O3—Mg3—Cl4172.94 (4)C13—C14—H14B109.5
O4—Mg3—Cl490.55 (4)H14A—C14—H14B109.5
Cl6—Mg3—Cl492.83 (2)C13—C14—H14C109.5
Cl5—Mg3—Cl484.91 (2)H14A—C14—H14C109.5
O3—Mg3—Cl192.96 (4)H14B—C14—H14C109.5
O4—Mg3—Cl1170.55 (4)O2—C21—C22112.44 (16)
Cl6—Mg3—Cl184.50 (2)O2—C21—H21A109.1
Cl5—Mg3—Cl192.10 (2)C22—C21—H21A109.1
Cl4—Mg3—Cl182.07 (2)O2—C21—H21B109.1
O3—Mg3—Mg4130.97 (4)C22—C21—H21B109.1
O4—Mg3—Mg495.91 (4)H21A—C21—H21B107.8
Cl6—Mg3—Mg4135.91 (3)C21—C22—H22A109.5
Cl5—Mg3—Mg441.493 (17)C21—C22—H22B109.5
Cl4—Mg3—Mg443.636 (16)H22A—C22—H22B109.5
Cl1—Mg3—Mg482.84 (2)C21—C22—H22C109.5
O3—Mg3—Mg296.51 (4)H22A—C22—H22C109.5
O4—Mg3—Mg2130.14 (4)H22B—C22—H22C109.5
Cl6—Mg3—Mg241.392 (17)O2—C23—C24113.1 (2)
Cl5—Mg3—Mg2135.04 (3)O2—C23—H23A109.0
Cl4—Mg3—Mg283.34 (2)C24—C23—H23A109.0
Cl1—Mg3—Mg243.334 (16)O2—C23—H23B109.0
Mg4—Mg3—Mg2111.79 (2)C24—C23—H23B109.0
C5—Mg4—Cl3118.88 (6)H23A—C23—H23B107.8
C5—Mg4—Cl5121.03 (6)C23—C24—H24A109.5
Cl3—Mg4—Cl5105.06 (3)C23—C24—H24B109.5
C5—Mg4—Cl4123.76 (6)H24A—C24—H24B109.5
Cl3—Mg4—Cl491.02 (2)C23—C24—H24C109.5
Cl5—Mg4—Cl490.29 (2)H24A—C24—H24C109.5
C5—Mg4—Mg1138.64 (6)H24B—C24—H24C109.5
Cl3—Mg4—Mg143.673 (17)O3—C31—C32112.99 (17)
Cl5—Mg4—Mg1100.25 (2)O3—C31—H31A109.0
Cl4—Mg4—Mg147.368 (17)C32—C31—H31A109.0
C5—Mg4—Mg3142.99 (6)O3—C31—H31B109.0
Cl3—Mg4—Mg398.01 (2)C32—C31—H31B109.0
Cl5—Mg4—Mg343.395 (17)H31A—C31—H31B107.8
Cl4—Mg4—Mg347.132 (17)C31—C32—H32A109.5
Mg1—Mg4—Mg367.685 (17)C31—C32—H32B109.5
Mg2—Cl1—Mg188.14 (2)H32A—C32—H32B109.5
Mg2—Cl1—Mg388.92 (2)C31—C32—H32C109.5
Mg1—Cl1—Mg396.92 (2)H32A—C32—H32C109.5
Mg2—Cl2—Mg194.78 (3)H32B—C32—H32C109.5
Mg4—Cl3—Mg194.58 (2)O3—C33—C34112.69 (15)
Mg4—Cl4—Mg188.75 (2)O3—C33—H33A109.1
Mg4—Cl4—Mg389.23 (2)C34—C33—H33A109.1
Mg1—Cl4—Mg398.63 (2)O3—C33—H33B109.1
Mg4—Cl5—Mg395.11 (2)C34—C33—H33B109.1
Mg2—Cl6—Mg395.83 (2)H33A—C33—H33B107.8
C3—C1—C4108.14 (19)C33—C34—H34A109.5
C3—C1—C2107.4 (2)C33—C34—H34B109.5
C4—C1—C2107.51 (19)H34A—C34—H34B109.5
C3—C1—Mg2111.90 (15)C33—C34—H34C109.5
C4—C1—Mg2111.89 (15)H34A—C34—H34C109.5
C2—C1—Mg2109.76 (14)H34B—C34—H34C109.5
C1—C2—H2A109.5O4—C41—C42113.16 (16)
C1—C2—H2B109.5O4—C41—H41A108.9
H2A—C2—H2B109.5C42—C41—H41A108.9
C1—C2—H2C109.5O4—C41—H41B108.9
H2A—C2—H2C109.5C42—C41—H41B108.9
H2B—C2—H2C109.5H41A—C41—H41B107.8
C1—C3—H3A109.5C41—C42—H42A109.5
C1—C3—H3B109.5C41—C42—H42B109.5
H3A—C3—H3B109.5H42A—C42—H42B109.5
C1—C3—H3C109.5C41—C42—H42C109.5
H3A—C3—H3C109.5H42A—C42—H42C109.5
H3B—C3—H3C109.5H42B—C42—H42C109.5
C1—C4—H4A109.5O4—C43—C44113.08 (18)
C1—C4—H4B109.5O4—C43—H43A109.0
H4A—C4—H4B109.5C44—C43—H43A109.0
C1—C4—H4C109.5O4—C43—H43B109.0
H4A—C4—H4C109.5C44—C43—H43B109.0
H4B—C4—H4C109.5H43A—C43—H43B107.8
C8—C5—C7109.2 (2)C43—C44—H44A109.5
C8—C5—C6107.36 (19)C43—C44—H44B109.5
C7—C5—C6107.40 (18)H44A—C44—H44B109.5
C8—C5—Mg4108.47 (15)C43—C44—H44C109.5
C7—C5—Mg4110.82 (14)H44A—C44—H44C109.5
C6—C5—Mg4113.46 (14)H44B—C44—H44C109.5
C13—O1—C11—C1271.5 (2)C33—O3—C31—C3268.9 (2)
Mg1—O1—C11—C12107.09 (18)Mg3—O3—C31—C32113.14 (17)
C11—O1—C13—C1476.2 (2)C31—O3—C33—C3472.6 (2)
Mg1—O1—C13—C14105.27 (18)Mg3—O3—C33—C34105.41 (16)
C23—O2—C21—C2272.4 (2)C43—O4—C41—C4266.1 (2)
Mg1—O2—C21—C22104.48 (19)Mg3—O4—C41—C42112.98 (17)
C21—O2—C23—C2471.3 (3)C41—O4—C43—C4464.8 (2)
Mg1—O2—C23—C24111.7 (2)Mg3—O4—C43—C44116.12 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32A···Cl3i0.982.963.876 (2)155
C34—H34A···Cl6ii0.982.923.602 (2)127
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+3/2.
Comparison of Mg···Cl distances (Å) and sums of equatorial angles Σθeq (°) of the five-coordinate Mg2+ ions in the literature phases top
There are two columns for the title compound because it does not show any symmetry, whereas all structures retrieved from the database are located at a center of inversion. Mg···µ2-Cl: bond lengths are between the five-coordinate Mg2+ ions and the µ2-Cl- ions. Mg···µ3-Cl: bond lengths are between the five-coordinate Mg2+ ion and the µ3-Cl- ion in the central Mg2Cl2 plane.
StructureMg···µ3-ClMg···µ2-ClMg···µ2-ClΣθeq
Title compound2.4687 (7)2.3825 (7)2.3905 (8)
Title compound2.4689 (7)2.3785 (7)2.3796 (7)
MGCLTF2.7892.3982.405359.6
QUJSUJ2.8882.4052.406358.0
QUJTAO2.8192.4152.429358.4
QUJTEU2.8342.3892.393356.6
SEJZUE2.7272.4042.431359.2
WILMIN2.7792.3972.402359.5
 

References

First citationAddison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. 7, 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBlasberg, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2012). Organometallics, 31, 1001–1005.  Web of Science CSD CrossRef CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationCasellato, U. & Ossola, F. (1994). Organometallics, 13, 4105–4108.  CSD CrossRef CAS Web of Science Google Scholar
First citationCurtis, E. R., Hannigan, M. D., Vitek, A. K. & Zimmerman, P. M. (2020). J. Phys. Chem. A, 124, 1480–1488.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElschenbroich, C. (2008). Organometallchemie, p. 64. Wiesbaden: Teubner.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeltzer, R. M., Eisenstein, O., Nova, A. & Cascella, M. (2017). J. Phys. Chem. B, 121, 4226–4237.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPeltzer, R. M., Gauss, J., Eisenstein, O. & Cascella, M. (2020). J. Am. Chem. Soc. 142, 2984–2994.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPirinen, S., Koshevoy, I. O., Denifl, P. & Pakkanen, T. T. (2013). Organometallics, 32, 4208–4213.  Web of Science CSD CrossRef CAS Google Scholar
First citationSakamoto, S., Imamoto, T. & Yamaguchi, K. (2001). Org. Lett. 3, 1793–1795.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchlenk, W. & Schlenk jun, W. (1929). Ber. Dtsch. Chem. Ges. B, 62, 920–924.  CrossRef Google Scholar
First citationSeyferth, D. (2009). Organometallics, 28, 1598–1605.  Web of Science CrossRef CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationToney, J. & Stucky, G. D. (1971). J. Organomet. Chem. 28, 5–20.  CSD CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds