research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tert-butyl 3,6-di­iodo­carbazole-9-carboxyl­ate

crossmark logo

aDepartment of Chemistry, Grand Valley State University, Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry and Chemical Biology, Michigan State University, East Lansing, MI 48824, USA
*Correspondence e-mail: biross@gvsu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 28 February 2023; accepted 8 March 2023; online 15 March 2023)

The mol­ecular structure of tert-butyl 3,6-di­iodo­carbazole-9-carboxyl­ate, C17H15I2NO2, features a nearly planar 13-membered carbazole ring with C—I bond lengths of 2.092 (4) and 2.104 (4) Å. The carbamate group has key bond lengths of 1.404 (6) Å (N—C), 1.330 (5) Å (O—C), and 1.201 (6) Å (C=O). The crystal contains inter­molecular ππ inter­actions, as well as both type I and type II inter­molecular I⋯I inter­actions.

1. Chemical context

Derivatives of the carbazole ring system have been used in a wide variety of applications ranging from organic light-emitting diodes (Uoyama et al., 2012[Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. (2012). Nature, 492, 234-238.]) to cell membrane targeting fluorescent probes (Wnag et al., 2023[Wang, L., Ma, Y., Li, S. & Lin, W. (2023). Spectrochim. Acta A Mol. Biomol. Spectrosc. 290, 122280.]) to compounds that are able to influence the supra­molecular structure of G-rich DNA sequences (Debnath et al., 2016[Debnath, M., Ghosh, S., Panda, D., Bessi, I., Schwalbe, H., Bhattacharyya, K. & Dash, J. (2016). Chem. Sci. 7, 3279-3285.]). Our group's inter­est in this mol­ecular entity was inspired by the work of de Bettencourt-Dias and co-workers who have used carbazole derivatives as antennas to sensitize the luminescence of lanthanide metals (Monteiro et al., 2017[Monteiro, J. H. S. K., de Bettencourt-Dias, A. & Sigoli, F. A. (2017). Inorg. Chem. 56, 709-712.], 2018[Monteiro, J. H. S. K., Sigoli, F. A. & de Bettencourt-Dias, A. (2018). Can. J. Chem. 96, 859-864.], 2020[Monteiro, J. H. S. K., Fetto, N. R., Tucker, M. J. & de Bettencourt-Dias, A. (2020). Inorg. Chem. 59, 3193-3199.], 2022[Monteiro, J. H. S. K., Fetto, N. R., Tucker, M. J., Sigoli, F. A. & de Bettencourt-Dias, A. (2022). J. Lumin. 245, 118768.]). Our group was working to derivatize carbazole for use in related lanthanide luminescence applications when compound I, a synthetic inter­mediate in our work, serendipitously crystallized in an NMR tube.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compound I is shown in Fig. 1[link] along with the atom-numbering scheme. The structure of this substituted carbazole has C—I bond lengths of 2.092 (4) and 2.104 (4) Å. The carbamate group has bond lengths of 1.404 (6) Å for N1—C1, 1.330 (5) Å for O2—C1, and 1.201 (6) Å for the carbonyl C1=O1. The N1—C1—O2 bond angle is 110.3 (4)°, and these atoms are roughly coplanar with the atoms of the aromatic system with a C8—N1—C1—O2 torsion angle of −7.3 (7)°. The 13-membered aromatic carbazole ring approaches planarity with an r.m.s. deviation of 0.007 Å where the atom C8 deviates the most from the calculated least-squares plane by 0.019 (4) Å.

[Figure 1]
Figure 1
The mol­ecular structure of compound I, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level using standard CPK colors (I = purple).

3. Supra­molecular features

In the crystal, mol­ecules of the title compound form pillars via inter­molecular ππ inter­actions that propagate parallel to the a axis; the centroid of the five-membered ring (N1/C2/C3/C9/C8) is denoted as Cg. These inter­actions have CgCg distances of 3.484 (3) and 3.589 (3) Å with slippages of 1.028 and 1.376 Å and angles of 0.00 (3)° (Fig. 2[link]; symmetry codes: −x + 1, −y + 1, −z + 1 and −x + 2, −y + 1, −z + 1). The supra­molecular pillars are held together via both type I and type II inter­molecular I⋯I inter­actions (Pedireddi et al., 1994[Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.]; Figs. 3[link] and 4[link]). The type I halogen–halogen inter­action has a trans arrangement and exists between atoms C11—I2⋯I2(−x + 2, −y, –z + 2) with an angle of 147.68 (13)° and an I⋯I distance of 3.6630 (5) Å. The type II inter­action is found between atoms C11—I2⋯I1(x + 1, y − 1, z) with an I⋯I distance of 3.8332 (5) Å and an angle of 46.69 (13)°.

[Figure 2]
Figure 2
A depiction of the supra­molecular pillars using a ball-and-stick model with standard CPK colors (I = purple). The left portion of the figure shows the pillars with a view that is aligned with the plane of the aromatic carbazole system, the right portion of the figure shows the same mol­ecules tilted slightly along the b axis. The ππ inter­actions described in the text are depicted with purple dotted lines and the unit cell is drawn with a solid black line.
[Figure 3]
Figure 3
A figure showing the halogen–halogen inter­actions (depicted as green, dashed lines) present in the crystal of compound I using a ball-and-stick model with standard CPK colors (I = purple). The unit cell is drawn with a solid black line. [Symmetry codes: (i) −x + 1, −y + 1, −z + 2, (ii) −x + 2, −y, −z + 2, (iii) x + 1, y − 1, z.]
[Figure 4]
Figure 4
A view down the c axis showing the supra­molecular pillars found in the crystal of compound I as well as the I—I inter­actions (depicted as green, dashed lines) that hold them together using a ball-and-stick model with standard CPK colors (I = purple). The unit cell is drawn with a blue, dashed line and the ππ inter­actions are not shown for clarity.

4. Database survey

A search of the Cambridge Structure Database (CSD version 5.43 with updates through June 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures containing the carbazole ring system substituted with any halogen atom at the C5 and C11 positions (as numbered in Fig. 1[link]) returned 101 hits. The structures CEYXAI (Malecki, 2018[Malecki, J. G. (2018). Private Communication (refcode CEYXAI). CCDC, Cambridge, England.]) and FUMLIK (Radula-Janik et al., 2015[Radula-Janik, K., Kupka, T., Ejsmont, K., Daszkiewicz, Z. & Sauer, S. P. A. (2015). Struct. Chem. 26, 997-1006.]) are closely related to that of compound I with iodine atoms at the C5 and C11 positions, but where the nitro­gen atom has been alkyl­ated with either a butyl or benzyl group. Structure ECUNUM bears bromine atoms at the C5 and C11 positions with a phenyl­carbamate group on the nitro­gen atom (Duan et al., 2006[Duan, X.-M., Xie, W.-S., Huang, P.-M., Li, J.-S. & Zheng, P.-W. (2006). Acta Cryst. E62, o995-o996.]). A derivative of compound I that bears two iodine atoms in the same positions and a hydrogen atom bonded to the nitro­gen atom has been solved as structure YAYDUZ (Xie et al., 2012[Xie, Y.-Z., Jin, J.-Y. & Jin, G.-D. (2012). Acta Cryst. E68, o1242.]). Lastly, the di-iodo carbazole has been used as a ligand in a copper(I) complex as demonstrated by Kim and co-workers (ZASYUQ; Kim et al., 2017[Kim, Y.-E., Kim, J., Park, J. W., Park, K. & Lee, Y. (2017). Chem. Commun. 53, 2858-2861.]).

5. Synthesis and crystallization

The title compound was prepared according to the procedure published by Lee and co-workers (Moon et al., 2007[Moon, K.-S., Kim, H.-J., Lee, E. & Lee, M. (2007). Angew. Chem. Int. Ed. 46, 6807-6810.]). The compound was dissolved in CDCl3 and the crystals studied here grew as the solvent slowly evaporated from the NMR tube.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C) for aromatic hydrogen atoms and Uiso(H) = 1.5Ueq(C) for the hydrogen atoms of the methyl group.

Table 1
Experimental details

Crystal data
Chemical formula C17H15I2NO2
Mr 519.10
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 6.9611 (3), 11.9737 (5), 12.0697 (4)
α, β, γ (°) 65.618 (4), 78.588 (3), 74.826 (4)
V3) 879.71 (7)
Z 2
Radiation type Cu Kα
μ (mm−1) 28.13
Crystal size (mm) 0.11 × 0.06 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.756, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10800, 3717, 3209
Rint 0.038
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.08
No. of reflections 3717
No. of parameters 202
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.74, −1.17
Computer programs: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker (Palmer, 2007[Palmer, D. (2007). Crystal Maker. CrystalMaker Software, Bicester, England.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009; Bourhis et al., 2015).

tert-Butyl 3,6-diiodocarbazole-9-carboxylate top
Crystal data top
C17H15I2NO2Z = 2
Mr = 519.10F(000) = 492
Triclinic, P1Dx = 1.960 Mg m3
a = 6.9611 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.9737 (5) ÅCell parameters from 6514 reflections
c = 12.0697 (4) Åθ = 4.1–79.3°
α = 65.618 (4)°µ = 28.13 mm1
β = 78.588 (3)°T = 100 K
γ = 74.826 (4)°Irregular, colourless
V = 879.71 (7) Å30.11 × 0.06 × 0.02 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3717 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3209 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.0000 pixels mm-1θmax = 80.0°, θmin = 4.0°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlisPro; Oxford Diffraction, 2006)
k = 1515
Tmin = 0.756, Tmax = 1.000l = 1512
10800 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0414P)2 + 2.1415P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3717 reflectionsΔρmax = 0.74 e Å3
202 parametersΔρmin = 1.17 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.35523 (5)0.84654 (3)0.68070 (3)0.02553 (10)
I21.02078 (5)0.06482 (2)0.83259 (2)0.02519 (10)
O10.9081 (6)0.4713 (3)0.2038 (3)0.0308 (8)
O20.6990 (5)0.6592 (3)0.1740 (3)0.0229 (7)
N10.7721 (6)0.5314 (3)0.3644 (3)0.0176 (7)
C10.8021 (7)0.5484 (4)0.2405 (4)0.0216 (9)
C20.6704 (7)0.6182 (4)0.4183 (4)0.0177 (8)
C30.6784 (7)0.5579 (4)0.5462 (4)0.0178 (8)
C40.5909 (7)0.6212 (4)0.6236 (4)0.0199 (9)
H40.5966720.5808260.7095380.024*
C50.4954 (7)0.7448 (4)0.5712 (4)0.0189 (8)
C60.4877 (7)0.8063 (4)0.4439 (4)0.0206 (9)
H60.4231510.8917580.4103400.025*
C70.5745 (7)0.7422 (4)0.3669 (4)0.0194 (8)
H70.5679880.7825390.2810490.023*
C80.8459 (6)0.4167 (4)0.4582 (4)0.0169 (8)
C90.7881 (6)0.4311 (4)0.5706 (4)0.0176 (8)
C100.8392 (7)0.3303 (4)0.6804 (4)0.0190 (8)
H100.8028190.3382790.7572910.023*
C110.9449 (7)0.2191 (4)0.6707 (4)0.0201 (9)
C120.9994 (7)0.2046 (4)0.5597 (4)0.0207 (9)
H121.0705690.1256060.5585510.025*
C130.9521 (7)0.3030 (4)0.4505 (4)0.0204 (9)
H130.9898290.2937760.3742110.024*
C140.7063 (8)0.6986 (4)0.0389 (4)0.0244 (10)
C150.5773 (9)0.8287 (5)0.0027 (5)0.0332 (12)
H15A0.4428860.8242820.0458920.050*
H15B0.5687220.8644810.0857160.050*
H15C0.6367030.8817330.0244360.050*
C160.9203 (9)0.7015 (5)0.0200 (5)0.0336 (12)
H16A0.9801400.7485460.0092960.050*
H16B0.9204430.7421270.1090470.050*
H16C0.9983460.6157340.0018460.050*
C170.6131 (10)0.6110 (5)0.0144 (5)0.0351 (12)
H17A0.6884310.5250990.0501660.053*
H17B0.6167370.6356930.0740380.053*
H17C0.4740170.6157060.0512130.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03315 (18)0.01775 (15)0.02357 (16)0.00301 (11)0.00265 (12)0.01080 (12)
I20.03258 (18)0.01525 (15)0.01960 (16)0.00277 (11)0.00287 (11)0.00313 (11)
O10.044 (2)0.0203 (16)0.0229 (16)0.0062 (15)0.0023 (15)0.0109 (14)
O20.0316 (18)0.0177 (15)0.0150 (14)0.0022 (13)0.0047 (12)0.0053 (12)
N10.0192 (18)0.0143 (16)0.0183 (17)0.0010 (14)0.0004 (14)0.0071 (14)
C10.021 (2)0.017 (2)0.022 (2)0.0003 (17)0.0045 (17)0.0055 (18)
C20.017 (2)0.017 (2)0.019 (2)0.0053 (16)0.0010 (16)0.0066 (16)
C30.017 (2)0.016 (2)0.018 (2)0.0000 (16)0.0008 (16)0.0068 (16)
C40.021 (2)0.016 (2)0.024 (2)0.0005 (16)0.0029 (17)0.0093 (17)
C50.017 (2)0.016 (2)0.022 (2)0.0012 (16)0.0015 (16)0.0105 (17)
C60.020 (2)0.016 (2)0.023 (2)0.0018 (16)0.0012 (17)0.0066 (17)
C70.019 (2)0.016 (2)0.023 (2)0.0011 (16)0.0043 (16)0.0074 (17)
C80.0157 (19)0.0137 (19)0.019 (2)0.0014 (15)0.0013 (15)0.0054 (16)
C90.0150 (19)0.016 (2)0.021 (2)0.0013 (15)0.0015 (15)0.0076 (16)
C100.018 (2)0.0145 (19)0.020 (2)0.0001 (16)0.0010 (16)0.0048 (17)
C110.021 (2)0.0119 (19)0.023 (2)0.0024 (16)0.0087 (17)0.0025 (16)
C120.022 (2)0.0156 (19)0.023 (2)0.0000 (16)0.0016 (17)0.0087 (17)
C130.019 (2)0.017 (2)0.025 (2)0.0011 (16)0.0008 (17)0.0094 (17)
C140.035 (3)0.021 (2)0.017 (2)0.0024 (19)0.0028 (18)0.0082 (18)
C150.040 (3)0.023 (2)0.029 (3)0.006 (2)0.010 (2)0.007 (2)
C160.040 (3)0.027 (3)0.029 (3)0.003 (2)0.005 (2)0.012 (2)
C170.052 (4)0.028 (3)0.027 (3)0.009 (2)0.011 (2)0.009 (2)
Geometric parameters (Å, º) top
I1—C52.092 (4)C9—C101.408 (6)
I2—C112.104 (4)C10—H100.9500
O1—C11.201 (6)C10—C111.382 (6)
O2—C11.330 (5)C11—C121.388 (7)
O2—C141.493 (5)C12—H120.9500
N1—C11.404 (6)C12—C131.386 (6)
N1—C21.413 (6)C13—H130.9500
N1—C81.416 (6)C14—C151.512 (7)
C2—C31.414 (6)C14—C161.521 (8)
C2—C71.385 (6)C14—C171.516 (7)
C3—C41.391 (6)C15—H15A0.9800
C3—C91.446 (6)C15—H15B0.9800
C4—H40.9500C15—H15C0.9800
C4—C51.383 (6)C16—H16A0.9800
C5—C61.409 (6)C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
C6—C71.393 (6)C17—H17A0.9800
C7—H70.9500C17—H17B0.9800
C8—C91.404 (6)C17—H17C0.9800
C8—C131.400 (6)
C1—O2—C14120.3 (4)C10—C11—I2118.1 (3)
C1—N1—C2128.7 (4)C10—C11—C12122.9 (4)
C1—N1—C8122.7 (4)C12—C11—I2119.0 (3)
C2—N1—C8108.5 (3)C11—C12—H12119.4
O1—C1—O2127.0 (4)C13—C12—C11121.3 (4)
O1—C1—N1122.8 (4)C13—C12—H12119.4
O2—C1—N1110.3 (4)C8—C13—H13121.6
N1—C2—C3108.2 (4)C12—C13—C8116.7 (4)
C7—C2—N1131.2 (4)C12—C13—H13121.6
C7—C2—C3120.7 (4)O2—C14—C15101.9 (4)
C2—C3—C9107.3 (4)O2—C14—C16110.3 (4)
C4—C3—C2121.1 (4)O2—C14—C17108.4 (4)
C4—C3—C9131.6 (4)C15—C14—C16111.4 (4)
C3—C4—H4121.2C15—C14—C17111.3 (5)
C5—C4—C3117.7 (4)C17—C14—C16113.0 (5)
C5—C4—H4121.2C14—C15—H15A109.5
C4—C5—I1120.4 (3)C14—C15—H15B109.5
C4—C5—C6121.8 (4)C14—C15—H15C109.5
C6—C5—I1117.8 (3)H15A—C15—H15B109.5
C5—C6—H6119.9H15A—C15—H15C109.5
C7—C6—C5120.3 (4)H15B—C15—H15C109.5
C7—C6—H6119.9C14—C16—H16A109.5
C2—C7—C6118.5 (4)C14—C16—H16B109.5
C2—C7—H7120.8C14—C16—H16C109.5
C6—C7—H7120.8H16A—C16—H16B109.5
C9—C8—N1108.2 (4)H16A—C16—H16C109.5
C13—C8—N1129.7 (4)H16B—C16—H16C109.5
C13—C8—C9122.1 (4)C14—C17—H17A109.5
C8—C9—C3107.9 (4)C14—C17—H17B109.5
C8—C9—C10120.4 (4)C14—C17—H17C109.5
C10—C9—C3131.8 (4)H17A—C17—H17B109.5
C9—C10—H10121.7H17A—C17—H17C109.5
C11—C10—C9116.6 (4)H17B—C17—H17C109.5
C11—C10—H10121.7
I1—C5—C6—C7178.5 (3)C3—C4—C5—C60.7 (7)
I2—C11—C12—C13179.6 (4)C3—C9—C10—C11179.1 (5)
N1—C2—C3—C4179.7 (4)C4—C3—C9—C8179.1 (5)
N1—C2—C3—C90.0 (5)C4—C3—C9—C101.1 (9)
N1—C2—C7—C6179.2 (4)C4—C5—C6—C71.2 (7)
N1—C8—C9—C30.8 (5)C5—C6—C7—C21.1 (7)
N1—C8—C9—C10179.1 (4)C7—C2—C3—C40.1 (7)
N1—C8—C13—C12178.0 (4)C7—C2—C3—C9179.8 (4)
C1—O2—C14—C15177.9 (4)C8—N1—C1—O17.3 (7)
C1—O2—C14—C1659.5 (6)C8—N1—C1—O2173.0 (4)
C1—O2—C14—C1764.7 (6)C8—N1—C2—C30.5 (5)
C1—N1—C2—C3179.7 (4)C8—N1—C2—C7179.2 (5)
C1—N1—C2—C70.6 (8)C8—C9—C10—C110.7 (7)
C1—N1—C8—C9179.3 (4)C9—C3—C4—C5179.7 (5)
C1—N1—C8—C131.6 (7)C9—C8—C13—C120.5 (7)
C2—N1—C1—O1172.5 (5)C9—C10—C11—I2179.0 (3)
C2—N1—C1—O27.2 (7)C9—C10—C11—C120.3 (7)
C2—N1—C8—C90.8 (5)C10—C11—C12—C130.9 (8)
C2—N1—C8—C13178.6 (5)C11—C12—C13—C80.5 (7)
C2—C3—C4—C50.2 (7)C13—C8—C9—C3178.8 (4)
C2—C3—C9—C80.5 (5)C13—C8—C9—C101.1 (7)
C2—C3—C9—C10179.4 (5)C14—O2—C1—O10.5 (8)
C3—C2—C7—C60.6 (7)C14—O2—C1—N1179.8 (4)
C3—C4—C5—I1178.9 (3)
 

Acknowledgements

We thank the GVSU Chemistry Department Weldon Fund for financial support, as well as the GVSU Library Open Access Fund. We are grateful to Dr Susan Mendoza (GVSU CUSE) for her unwavering support as well as Dr Bruce (GVSU) for inspiring conversations. Many thanks to Dr de Bettencourt-Dias for giving us the opportunity to contribute to her work in the area of lanthanide luminescence.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. RUI CHE-2102576 to SB at GVSU; grant No. MRI CHE-1725699 to SB at GVSU; grant No. MRI CHE-1919565 to RJS at MSU); Grand Valley State University (grant No. McNair Fellowship to ENS; grant No. Kindshi Fellowship to ENS).

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDebnath, M., Ghosh, S., Panda, D., Bessi, I., Schwalbe, H., Bhattacharyya, K. & Dash, J. (2016). Chem. Sci. 7, 3279–3285.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuan, X.-M., Xie, W.-S., Huang, P.-M., Li, J.-S. & Zheng, P.-W. (2006). Acta Cryst. E62, o995–o996.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKim, Y.-E., Kim, J., Park, J. W., Park, K. & Lee, Y. (2017). Chem. Commun. 53, 2858–2861.  Web of Science CSD CrossRef CAS Google Scholar
First citationMalecki, J. G. (2018). Private Communication (refcode CEYXAI). CCDC, Cambridge, England.  Google Scholar
First citationMonteiro, J. H. S. K., de Bettencourt-Dias, A. & Sigoli, F. A. (2017). Inorg. Chem. 56, 709–712.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMonteiro, J. H. S. K., Fetto, N. R., Tucker, M. J. & de Bettencourt-Dias, A. (2020). Inorg. Chem. 59, 3193–3199.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMonteiro, J. H. S. K., Fetto, N. R., Tucker, M. J., Sigoli, F. A. & de Bettencourt-Dias, A. (2022). J. Lumin. 245, 118768.  Web of Science CrossRef PubMed Google Scholar
First citationMonteiro, J. H. S. K., Sigoli, F. A. & de Bettencourt-Dias, A. (2018). Can. J. Chem. 96, 859–864.  Web of Science CrossRef CAS Google Scholar
First citationMoon, K.-S., Kim, H.-J., Lee, E. & Lee, M. (2007). Angew. Chem. Int. Ed. 46, 6807–6810.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPalmer, D. (2007). Crystal Maker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationPedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.  CSD CrossRef Web of Science Google Scholar
First citationRadula-Janik, K., Kupka, T., Ejsmont, K., Daszkiewicz, Z. & Sauer, S. P. A. (2015). Struct. Chem. 26, 997–1006.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. (2012). Nature, 492, 234–238.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, L., Ma, Y., Li, S. & Lin, W. (2023). Spectrochim. Acta A Mol. Biomol. Spectrosc. 290, 122280.  CrossRef PubMed Google Scholar
First citationXie, Y.-Z., Jin, J.-Y. & Jin, G.-D. (2012). Acta Cryst. E68, o1242.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds