research communications
Crystal structures of three homologues with increasing ring size: 2-methoxy-4-(thiophen-2-yl)-5,6,7,8-tetrahydroquinoline-3-carbonitrile, 2-methoxy-4-(thiophen-2-yl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine-3-carbonitrile and 2-methoxy-4-(thiophen-2-yl)-5,6,7,8,9,10-hexahydrocycloocta[b]pyridine-3-carbonitrile
aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
The title compounds, C15H14N2OS (1a), C16H16N2OS (1b), and C17H18N2OS (1c), form a homologous series in which the size of the saturated ring increases from six- to eight-membered (with four, five and six methylene groups respectively). For 1b and 1c, the central (CH2)n moieties are all displaced to the same side of their ring, and the CH2—CH2—CH2 angles are much wider than the standard sp3 value; a database search indicates that these are general features of such ring systems. For 1a, the thiophene ring lies with the sulfur atom on the opposite side of the Cthiophene—Cpyridine bond to the cyano group, in contrast to 1b and 1c. For each compound, the packing may be described in terms of two `weak' C—H⋯N hydrogen bonds, which link the molecules to form one-dimensional (1a, 1c) or three-dimensional (1b) assemblies.
Keywords: crystal structure; pyridine; thiophene; nitrile; hydrogen bond.
1. Chemical context
Recently, we started a widespread study of pyridones and related compounds and have described the synthesis of new N-substituted amino-2-pyridones (Azzam et al., 2017a,b, 2020a,b,c; see also Bolduc et al., 2022). The synthetic applications of unsaturated as reaction intermediates for the preparation of a wide range of has stimulated considerable interest in our group over the last decade (Khedr et al., 2022a,b; Abdallah & Elgemeie, 2022). Since pyridines and their fused heterocycles have been shown to constitute a new class of antimetabolites (De et al., 2022), it is of interest to evaluate synthetic methods for the preparation of their analogues and demonstrate the effects of structural modifications on their biological activity (Elgemeie & Mohamed-Ezzat, 2022a,b). Many 2-methoxypyridine derivatives have previously been shown to possess antitubercular and antibacterial activities (Bodige et al., 2019).
Some time ago we reported the synthesis of the condensed 2-methoxy-4-thienyl-3-cyanopyridines (1a–c) via the reaction of cycloalkanones with 2-(2-thienylmethylene)malononitrile in refluxing methanolic sodium hydroxide (Elgemeie et al., 1991); we also presented experimental data and a proposed mechanism. In 2015, another research group repeated our reaction and synthesized 1c using LiOEt instead of NaOEt (Maharani & Kumar, 2015). Here we are able to present the molecular structures of 1a–c determined with single crystal XRD.
2. Structural commentary
The structure determinations confirm the nature of the products 1a–c. The three molecules, which form a homologous series with increasing ring size, are shown in Figs. 1–3. The compounds all crystallize in P21/c (or its equivalent P21/n) but none of them is isotypic to any other. Bond lengths and angles may be considered normal for these compound types. For instance: the exocyclic angles N—C—C at the ring junctions are appreciably less than 120° and the CH2—CH2—CH2 angles of 1b and 1c are markedly wider than the standard value of 109.5° (see Tables 1–3). The overall form of the molecules, however, differs between 1a and the similar pair 1b/1c.
|
|
|
For convenience, the rings are designated as follows: Ring A, thiophene; ring B, pyridine-type ring; ring C, the ring containing the (CH2)n moieties (as defined in the scheme, e.g. C4A,C5–C8,C8A for 1a). The minor disorder components (see Section 6) are not considered. Tables 1–3 show the torsion angles of the rings C.
For 1a, ring C displays a standard half-chair conformation, with C6 and C7 lying 0.481 (2) and 0.293 (2) Å, respectively, in opposite directions out of the plane defined by C5, C4A, C8A and C8. The thiophene ring lies with the sulfur atom on the opposite side of the C4—C11 bond to the cyano group. The interplanar angle between rings A and B is 45.33 (4)°.
For 1b and 1c, however, the thiophene rings are differently positioned, with the sulfur atom on the same side of the C4—C12 (1b) or C4—C13 bond (1c) as the cyano group. The respective S1⋯N2 distances are 3.676 (1) and 4.070 (1) Å, too long to be considered significant interactions, and the interplanar angles A/B are 61.40 (5) and 79.67 (4)°. In the rings C, the (CH2)n moieties are all displaced to the same side of ring B, in the direction opposite to the sulfur atom (Fig. 4).
3. Supramolecular features
None of the compounds contains a classical hydrogen-bond donor, and so the molecular packing must be interpreted in terms of other `weak' interactions. The most obvious of these are `weak' C—H⋯N hydrogen bonds, mostly involving the nitrogen atom of the nitrile group; however, it is a moot point whether these represent significant interactions or simply the exposed nature of the one-coordinated nitrogen atoms. Each compound displays two such contacts.
For compound 1a, the two hydrogen bonds (Table 4), one to each of the two nitrogen atoms, combine to form a one-dimensional assembly parallel to the a axis (Fig. 5). Both operators involve inversion. Further contacts may be identified: a possible stacking of two rings B, as seen in the Figure [intercentroid distance 3.6516 (6) Å, offset 1.23 Å, operator −x + 1, −y + 1, −z + 1]; a C—H⋯π contact from H6B to the centroid (Cg) of ring A (H⋯Cg = 2.90 Å, C—H⋯Cg = 143°, operator −x + , y − , −z + ); and a possible S⋯π contact (Ringer et al., 2007; Daeffler et al., 2012; Motherwell et al., 2018) to ring B [S⋯centroid 3.5460 (5) Å, same operator −x + , y − , −z + ], although this contact is markedly one-sided, with S1⋯C2 at 3.370 (1) Å shorter than the other contact distances.
|
Similarly, for compound 1c, the two C—H⋯N hydrogen bonds, both via inversion operators but both involving the same acceptor N2 (Table 6, Fig. 7), lead to a one-dimensional structure parallel to [101]. However, whereas the H16⋯N2 interaction is quite short, the contact from the methyl hydrogen atom H11C should probably be regarded as a borderline case.
|
For compound 1b, the two C—H⋯N hydrogen bonds again both involve N2 (Table 5), but the operators are different (one inversion centre and one 21 screw axis). This leads to a complex three-dimensional structure, part of which is shown in Fig. 6. There is also a C—H⋯π contact from H7B to the centroid of ring A (H⋯Cg = 2.93 Å, C—H⋯Cg = 170°, operator x − , −y + , z + ).
4. Database survey
The searches employed the routine ConQuest (Bruno et al., 2002), part of Version 2022.3.0 of the Cambridge Database (Groom et al., 2016).
A search for the tetrahydroquinoline ring system corresponding to 1a gave 69 hits (68 compounds excluding one repeat) with no substituents at the sp3 carbon atoms. Almost all of these display a half-chair conformation of ring C; the only ordered example with a clear (five atoms approximately coplanar) was 2-amino-4-(1-methyl-1H-benzo[d]imidazol-2-yl)-5,6,7,8-tetrahydroquinoline-3-carbonitrile (refcode FIXGOL; Boulebd & Belfaitah, 2019).
A search for the cyclohepta[b]pyridine subunit of 1b, excluding ring systems with further annelation, led to 26 hits, corresponding (excluding repeats) to 23 compounds; eleven of these involve seven-membered rings with no further substituents. The hits include the natural products rupestine B (refcode SUGSAP; Su et al., 2010) and D (refcode SUGSET; Su et al., 2010, Zhang et al., 2021). An analogous search for cycloocta[b]pyridine derivatives (corresponding to 1c) gave 19 hits for 18 unique compounds; in all cases, the eight-membered rings bear no further substituents. Both searches showed that the three or four central methylene groups always lie on the same side of the plane of the pyridine-type ring (ring B in Section 2), as observed for 1b and 1c (Fig. 4). They also confirmed the general trend to wide bond angles in the (CH2)n moieties.
5. Synthesis and crystallization
Compounds 1a–c were prepared following our literature procedures (Elgemeie et al., 1991) and crystallized from ethanol.
6. Refinement
Crystal data, data collection and structure . Methyl groups were included as idealized rigid groups allowed to rotate but not tip (C—H = 0.98 Å, H—C—H = 109.5°). Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic = 0.95 Å, C—Hmethylene = 0.98 Å, C—Hmethine = 1.00 Å). The Uiso(H) values were fixed at 1.5 × Ueq of the parent carbon atoms for methyls and 1.2 × Ueq for other hydrogens.
details are summarized in Table 7The structure of 1b was refined as a two-component twin using the HKLF 5 method (Sheldrick, 2015a). The crystal was non-merohedrally twinned by 180° rotation about the vector (a + c). The scale factor (BASF, the relative volume of the smaller component) refined to 0.4982 (8). The thienyl group is disordered by ca 180° rotation about the bond C4—C12. The occupation factor of the major disorder component refined to 0.917 (2).
In the structure of 1c, the atoms C7 and C8 of the eight-membered ring are disordered over two positions; the relative occupation factors refined to 0.899 and 0.101 (3).
For both disordered structures, appropriate restraints (e.g. setting bond lengths and angles of the disorder components to be approximately equal, command SAME) were employed to improve stability of but the dimensions of disordered groups (especially the minor components) should be interpreted with caution.
Supporting information
https://doi.org/10.1107/S2056989023001883/yz2030sup1.cif
contains datablocks 1a, 1b, 1c, global. DOI:Structure factors: contains datablock 1a. DOI: https://doi.org/10.1107/S2056989023001883/yz20301asup2.hkl
Structure factors: contains datablock 1b. DOI: https://doi.org/10.1107/S2056989023001883/yz20301bsup3.hkl
Structure factors: contains datablock 1c. DOI: https://doi.org/10.1107/S2056989023001883/yz20301csup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023001883/yz20301asup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989023001883/yz20301bsup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989023001883/yz20301csup7.cml
Data collection: CrysAlis PRO 1.171.42.51a (Rigaku OD, 2022) for (1a); CrysAlis PRO 1.171.42.57a (Rigaku OD, 2022) for (1b); CrysAlis PRO 1.171.42.56a (Rigaku OD, 2022) for (1c). Cell
CrysAlis PRO 1.171.42.51a (Rigaku OD, 2022) for (1a); CrysAlis PRO 1.171.42.57a (Rigaku OD, 2022) for (1b); CrysAlis PRO 1.171.42.56a (Rigaku OD, 2022) for (1c). Data reduction: CrysAlis PRO 1.171.42.51a (Rigaku OD, 2022) for (1a); CrysAlis PRO 1.171.42.57a (Rigaku OD, 2022) for (1b); CrysAlis PRO 1.171.42.56a (Rigaku OD, 2022) for (1c). For all structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).C15H14N2OS | F(000) = 568 |
Mr = 270.34 | Dx = 1.369 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 10.85636 (13) Å | Cell parameters from 35765 reflections |
b = 9.1857 (1) Å | θ = 4.9–77.1° |
c = 13.31001 (16) Å | µ = 2.13 mm−1 |
β = 98.7757 (12)° | T = 100 K |
V = 1311.78 (3) Å3 | Irregular, colourless |
Z = 4 | 0.10 × 0.08 × 0.03 mm |
XtaLAB Synergy diffractometer | 2774 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2663 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.032 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 77.7°, θmin = 4.9° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −11→11 |
Tmin = 0.820, Tmax = 1.000 | l = −16→16 |
59253 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0343P)2 + 0.5681P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2774 reflections | Δρmax = 0.28 e Å−3 |
173 parameters | Δρmin = −0.24 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.41901 (8) | 0.65182 (10) | 0.62167 (7) | 0.01531 (18) | |
C2 | 0.49881 (9) | 0.69755 (11) | 0.56350 (8) | 0.0145 (2) | |
C3 | 0.61817 (9) | 0.63623 (11) | 0.56496 (8) | 0.0145 (2) | |
C4 | 0.65292 (9) | 0.51730 (11) | 0.62923 (8) | 0.0143 (2) | |
C4A | 0.56608 (10) | 0.46444 (11) | 0.68941 (8) | 0.0156 (2) | |
C5 | 0.59305 (10) | 0.33045 (13) | 0.75609 (8) | 0.0201 (2) | |
H5A | 0.649271 | 0.357815 | 0.818958 | 0.024* | |
H5B | 0.636738 | 0.257414 | 0.719674 | 0.024* | |
C6 | 0.47503 (11) | 0.26226 (13) | 0.78460 (9) | 0.0235 (2) | |
H6A | 0.425966 | 0.217090 | 0.723760 | 0.028* | |
H6B | 0.497721 | 0.185108 | 0.836031 | 0.028* | |
C7 | 0.39682 (12) | 0.37797 (14) | 0.82721 (9) | 0.0261 (3) | |
H7A | 0.446984 | 0.425907 | 0.886394 | 0.031* | |
H7B | 0.323728 | 0.331799 | 0.850455 | 0.031* | |
C8 | 0.35304 (10) | 0.49113 (13) | 0.74576 (9) | 0.0204 (2) | |
H8A | 0.281165 | 0.451055 | 0.699260 | 0.024* | |
H8B | 0.323737 | 0.578340 | 0.778891 | 0.024* | |
C8A | 0.45209 (10) | 0.53687 (12) | 0.68392 (8) | 0.0156 (2) | |
C9 | 0.35965 (10) | 0.89244 (12) | 0.50857 (9) | 0.0206 (2) | |
H9A | 0.350748 | 0.972299 | 0.459164 | 0.031* | |
H9B | 0.365752 | 0.932339 | 0.577434 | 0.031* | |
H9C | 0.286883 | 0.828279 | 0.495114 | 0.031* | |
O1 | 0.47092 (7) | 0.81060 (8) | 0.49971 (6) | 0.01807 (17) | |
C10 | 0.70092 (10) | 0.70570 (11) | 0.50540 (8) | 0.0164 (2) | |
N2 | 0.76402 (9) | 0.76686 (11) | 0.45769 (8) | 0.0230 (2) | |
S1 | 0.87568 (2) | 0.41082 (3) | 0.74141 (2) | 0.02107 (9) | |
C11 | 0.77753 (9) | 0.45283 (11) | 0.63009 (8) | 0.0152 (2) | |
C12 | 0.83478 (10) | 0.42163 (11) | 0.54747 (8) | 0.0171 (2) | |
H12 | 0.796800 | 0.437646 | 0.479223 | 0.021* | |
C13 | 0.95620 (10) | 0.36312 (12) | 0.57419 (9) | 0.0199 (2) | |
H13 | 1.007563 | 0.334334 | 0.525951 | 0.024* | |
C14 | 0.99099 (10) | 0.35277 (12) | 0.67641 (9) | 0.0218 (2) | |
H14 | 1.069755 | 0.317592 | 0.707976 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0144 (4) | 0.0156 (4) | 0.0161 (4) | −0.0005 (3) | 0.0031 (3) | −0.0020 (3) |
C2 | 0.0155 (5) | 0.0132 (5) | 0.0144 (5) | −0.0002 (4) | 0.0015 (4) | −0.0016 (4) |
C3 | 0.0145 (5) | 0.0147 (5) | 0.0145 (5) | −0.0006 (4) | 0.0030 (4) | −0.0014 (4) |
C4 | 0.0144 (5) | 0.0147 (5) | 0.0137 (5) | 0.0000 (4) | 0.0019 (4) | −0.0022 (4) |
C4A | 0.0172 (5) | 0.0159 (5) | 0.0140 (5) | −0.0005 (4) | 0.0034 (4) | −0.0001 (4) |
C5 | 0.0201 (5) | 0.0209 (5) | 0.0203 (5) | 0.0022 (4) | 0.0062 (4) | 0.0059 (4) |
C6 | 0.0243 (6) | 0.0227 (6) | 0.0256 (6) | 0.0013 (5) | 0.0103 (5) | 0.0083 (5) |
C7 | 0.0277 (6) | 0.0296 (6) | 0.0242 (6) | 0.0029 (5) | 0.0140 (5) | 0.0065 (5) |
C8 | 0.0191 (5) | 0.0221 (5) | 0.0220 (5) | 0.0005 (4) | 0.0095 (4) | 0.0011 (4) |
C8A | 0.0164 (5) | 0.0166 (5) | 0.0141 (5) | −0.0017 (4) | 0.0038 (4) | −0.0021 (4) |
C9 | 0.0167 (5) | 0.0167 (5) | 0.0291 (6) | 0.0046 (4) | 0.0059 (4) | 0.0036 (4) |
O1 | 0.0164 (4) | 0.0166 (4) | 0.0221 (4) | 0.0040 (3) | 0.0055 (3) | 0.0046 (3) |
C10 | 0.0159 (5) | 0.0145 (5) | 0.0187 (5) | 0.0040 (4) | 0.0025 (4) | 0.0007 (4) |
N2 | 0.0202 (5) | 0.0218 (5) | 0.0288 (5) | 0.0039 (4) | 0.0097 (4) | 0.0070 (4) |
S1 | 0.01736 (14) | 0.02812 (16) | 0.01744 (14) | 0.00374 (10) | 0.00170 (10) | 0.00578 (10) |
C11 | 0.0148 (5) | 0.0141 (5) | 0.0167 (5) | 0.0000 (4) | 0.0020 (4) | 0.0019 (4) |
C12 | 0.0164 (5) | 0.0165 (5) | 0.0188 (5) | 0.0000 (4) | 0.0036 (4) | 0.0007 (4) |
C13 | 0.0168 (5) | 0.0176 (5) | 0.0263 (6) | 0.0019 (4) | 0.0069 (4) | 0.0016 (4) |
C14 | 0.0152 (5) | 0.0212 (5) | 0.0292 (6) | 0.0029 (4) | 0.0041 (4) | 0.0072 (4) |
N1—C2 | 1.3156 (14) | C7—H7B | 0.9900 |
N1—C8A | 1.3563 (14) | C8—C8A | 1.5102 (14) |
C2—O1 | 1.3463 (13) | C8—H8A | 0.9900 |
C2—C3 | 1.4104 (14) | C8—H8B | 0.9900 |
C3—C4 | 1.4032 (14) | C9—O1 | 1.4427 (12) |
C3—C10 | 1.4353 (14) | C9—H9A | 0.9800 |
C4—C4A | 1.4130 (14) | C9—H9B | 0.9800 |
C4—C11 | 1.4752 (14) | C9—H9C | 0.9800 |
C4A—C8A | 1.3971 (15) | C10—N2 | 1.1492 (15) |
C4A—C5 | 1.5195 (14) | S1—C14 | 1.7120 (12) |
C5—C6 | 1.5252 (15) | S1—C11 | 1.7314 (11) |
C5—H5A | 0.9900 | C11—C12 | 1.3734 (15) |
C5—H5B | 0.9900 | C12—C13 | 1.4177 (15) |
C6—C7 | 1.5229 (16) | C12—H12 | 0.9500 |
C6—H6A | 0.9900 | C13—C14 | 1.3586 (17) |
C6—H6B | 0.9900 | C13—H13 | 0.9500 |
C7—C8 | 1.5246 (16) | C14—H14 | 0.9500 |
C7—H7A | 0.9900 | ||
C2—N1—C8A | 118.12 (9) | C8A—C8—C7 | 113.99 (9) |
N1—C2—O1 | 120.82 (9) | C8A—C8—H8A | 108.8 |
N1—C2—C3 | 123.40 (10) | C7—C8—H8A | 108.8 |
O1—C2—C3 | 115.75 (9) | C8A—C8—H8B | 108.8 |
C4—C3—C2 | 118.70 (9) | C7—C8—H8B | 108.8 |
C4—C3—C10 | 123.38 (9) | H8A—C8—H8B | 107.6 |
C2—C3—C10 | 117.78 (9) | N1—C8A—C4A | 123.55 (9) |
C3—C4—C4A | 118.20 (9) | N1—C8A—C8 | 113.91 (9) |
C3—C4—C11 | 118.57 (9) | C4A—C8A—C8 | 122.53 (10) |
C4A—C4—C11 | 123.23 (9) | O1—C9—H9A | 109.5 |
C8A—C4A—C4 | 117.96 (9) | O1—C9—H9B | 109.5 |
C8A—C4A—C5 | 120.43 (9) | H9A—C9—H9B | 109.5 |
C4—C4A—C5 | 121.58 (9) | O1—C9—H9C | 109.5 |
C4A—C5—C6 | 112.56 (9) | H9A—C9—H9C | 109.5 |
C4A—C5—H5A | 109.1 | H9B—C9—H9C | 109.5 |
C6—C5—H5A | 109.1 | C2—O1—C9 | 117.45 (8) |
C4A—C5—H5B | 109.1 | N2—C10—C3 | 176.95 (11) |
C6—C5—H5B | 109.1 | C14—S1—C11 | 92.23 (5) |
H5A—C5—H5B | 107.8 | C12—C11—C4 | 127.16 (10) |
C7—C6—C5 | 110.08 (10) | C12—C11—S1 | 110.13 (8) |
C7—C6—H6A | 109.6 | C4—C11—S1 | 122.68 (8) |
C5—C6—H6A | 109.6 | C11—C12—C13 | 113.28 (10) |
C7—C6—H6B | 109.6 | C11—C12—H12 | 123.4 |
C5—C6—H6B | 109.6 | C13—C12—H12 | 123.4 |
H6A—C6—H6B | 108.2 | C14—C13—C12 | 112.56 (10) |
C6—C7—C8 | 110.00 (9) | C14—C13—H13 | 123.7 |
C6—C7—H7A | 109.7 | C12—C13—H13 | 123.7 |
C8—C7—H7A | 109.7 | C13—C14—S1 | 111.79 (8) |
C6—C7—H7B | 109.7 | C13—C14—H14 | 124.1 |
C8—C7—H7B | 109.7 | S1—C14—H14 | 124.1 |
H7A—C7—H7B | 108.2 | ||
C8A—N1—C2—O1 | 179.60 (9) | C2—N1—C8A—C8 | −178.79 (9) |
C8A—N1—C2—C3 | −2.09 (15) | C4—C4A—C8A—N1 | 2.20 (16) |
N1—C2—C3—C4 | 2.08 (16) | C5—C4A—C8A—N1 | −176.07 (10) |
O1—C2—C3—C4 | −179.53 (9) | C4—C4A—C8A—C8 | −179.22 (9) |
N1—C2—C3—C10 | −173.74 (9) | C5—C4A—C8A—C8 | 2.50 (16) |
O1—C2—C3—C10 | 4.65 (14) | C7—C8—C8A—N1 | −171.09 (10) |
C2—C3—C4—C4A | 0.13 (15) | C7—C8—C8A—C4A | 10.21 (15) |
C10—C3—C4—C4A | 175.70 (9) | N1—C2—O1—C9 | 9.04 (14) |
C2—C3—C4—C11 | 179.62 (9) | C3—C2—O1—C9 | −169.39 (9) |
C10—C3—C4—C11 | −4.81 (15) | C3—C4—C11—C12 | −44.17 (16) |
C3—C4—C4A—C8A | −2.10 (15) | C4A—C4—C11—C12 | 135.29 (12) |
C11—C4—C4A—C8A | 178.44 (9) | C3—C4—C11—S1 | 133.63 (9) |
C3—C4—C4A—C5 | 176.16 (10) | C4A—C4—C11—S1 | −46.91 (14) |
C11—C4—C4A—C5 | −3.30 (16) | C14—S1—C11—C12 | 0.06 (9) |
C8A—C4A—C5—C6 | 18.12 (15) | C14—S1—C11—C4 | −178.08 (9) |
C4—C4A—C5—C6 | −160.09 (10) | C4—C11—C12—C13 | 178.59 (10) |
C4A—C5—C6—C7 | −50.80 (13) | S1—C11—C12—C13 | 0.56 (12) |
C5—C6—C7—C8 | 63.65 (13) | C11—C12—C13—C14 | −1.09 (14) |
C6—C7—C8—C8A | −42.62 (14) | C12—C13—C14—S1 | 1.11 (13) |
C2—N1—C8A—C4A | −0.11 (15) | C11—S1—C14—C13 | −0.68 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···N1i | 0.95 | 2.65 | 3.3499 (14) | 131 |
C13—H13···N2ii | 0.95 | 2.63 | 3.3503 (14) | 133 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1. |
C16H16N2OS | F(000) = 600 |
Mr = 284.37 | Dx = 1.334 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 8.68561 (17) Å | Cell parameters from 45134 reflections |
b = 13.7435 (2) Å | θ = 4.9–76.7° |
c = 12.0379 (2) Å | µ = 2.00 mm−1 |
β = 99.9254 (18)° | T = 100 K |
V = 1415.47 (5) Å3 | Plate, colourless |
Z = 4 | 0.15 × 0.08 × 0.03 mm |
XtaLAB Synergy diffractometer | 5190 measured reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 5190 independent reflections |
Mirror monochromator | 4977 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | θmax = 77.9°, θmin = 4.9° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −17→17 |
Tmin = 0.835, Tmax = 1.000 | l = −15→15 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.0429P)2 + 0.218P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
5190 reflections | Δρmax = 0.20 e Å−3 |
204 parameters | Δρmin = −0.33 e Å−3 |
51 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.62391 (11) | 0.40093 (7) | 0.55582 (8) | 0.0225 (2) | |
C2 | 0.68755 (12) | 0.44841 (8) | 0.47970 (9) | 0.0208 (2) | |
C3 | 0.64622 (12) | 0.43257 (7) | 0.36319 (9) | 0.0194 (2) | |
C4A | 0.46175 (12) | 0.31252 (8) | 0.40494 (9) | 0.0202 (2) | |
C5 | 0.33189 (13) | 0.23967 (8) | 0.37129 (9) | 0.0234 (2) | |
H5A | 0.299458 | 0.241721 | 0.288350 | 0.028* | |
H5B | 0.240830 | 0.259286 | 0.405503 | 0.028* | |
C6 | 0.37634 (15) | 0.13462 (9) | 0.40673 (11) | 0.0283 (3) | |
H6A | 0.306161 | 0.089483 | 0.357744 | 0.034* | |
H6B | 0.484451 | 0.121942 | 0.394673 | 0.034* | |
C7 | 0.36601 (15) | 0.11332 (9) | 0.52956 (11) | 0.0292 (3) | |
H7A | 0.391137 | 0.043785 | 0.544622 | 0.035* | |
H7B | 0.256606 | 0.123530 | 0.540072 | 0.035* | |
C8 | 0.47243 (15) | 0.17420 (9) | 0.61698 (11) | 0.0307 (3) | |
H8A | 0.582141 | 0.161925 | 0.608561 | 0.037* | |
H8B | 0.460131 | 0.151458 | 0.692992 | 0.037* | |
C9 | 0.44330 (14) | 0.28469 (9) | 0.61047 (9) | 0.0265 (2) | |
H9A | 0.329164 | 0.296497 | 0.597463 | 0.032* | |
H9B | 0.488083 | 0.314069 | 0.684049 | 0.032* | |
C9A | 0.51199 (12) | 0.33508 (8) | 0.51922 (9) | 0.0215 (2) | |
O1 | 0.79988 (9) | 0.51505 (6) | 0.51257 (6) | 0.02512 (18) | |
C10 | 0.85462 (14) | 0.52347 (9) | 0.63198 (9) | 0.0274 (2) | |
H10A | 0.939489 | 0.571270 | 0.645841 | 0.041* | |
H10B | 0.893140 | 0.460149 | 0.662292 | 0.041* | |
H10C | 0.768497 | 0.544735 | 0.669146 | 0.041* | |
C11 | 0.72102 (12) | 0.49002 (8) | 0.28838 (9) | 0.0206 (2) | |
N2 | 0.78244 (11) | 0.53879 (7) | 0.23194 (8) | 0.0256 (2) | |
C4 | 0.53379 (12) | 0.36142 (8) | 0.32516 (9) | 0.0191 (2) | |
C12 | 0.4956 (4) | 0.3372 (2) | 0.20351 (15) | 0.0192 (6) | 0.9165 (18) |
S1 | 0.41398 (4) | 0.42140 (3) | 0.10427 (4) | 0.02356 (11) | 0.9165 (18) |
C13 | 0.5122 (4) | 0.2478 (2) | 0.1561 (3) | 0.0241 (6) | 0.9165 (18) |
H13 | 0.554088 | 0.192012 | 0.197180 | 0.029* | 0.9165 (18) |
C14 | 0.45807 (17) | 0.24944 (12) | 0.03647 (12) | 0.0265 (3) | 0.9165 (18) |
H14 | 0.461758 | 0.194492 | −0.010884 | 0.032* | 0.9165 (18) |
C15 | 0.40077 (16) | 0.33795 (15) | −0.00242 (11) | 0.0276 (3) | 0.9165 (18) |
H15 | 0.358864 | 0.351468 | −0.079069 | 0.033* | 0.9165 (18) |
S1' | 0.4973 (14) | 0.2438 (9) | 0.1354 (9) | 0.034 (3)* | 0.0835 (18) |
C12' | 0.482 (5) | 0.349 (2) | 0.2035 (17) | 0.021 (8)* | 0.0835 (18) |
C13' | 0.416 (4) | 0.413 (2) | 0.128 (2) | 0.079 (13)* | 0.0835 (18) |
H13' | 0.391857 | 0.477403 | 0.148342 | 0.095* | 0.0835 (18) |
C14' | 0.383 (2) | 0.3797 (15) | 0.0179 (16) | 0.037 (5)* | 0.0835 (18) |
H14' | 0.339750 | 0.418697 | −0.044909 | 0.044* | 0.0835 (18) |
C15' | 0.421 (2) | 0.2852 (15) | 0.0112 (14) | 0.026 (4)* | 0.0835 (18) |
H15' | 0.404855 | 0.247901 | −0.056219 | 0.031* | 0.0835 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0234 (4) | 0.0247 (4) | 0.0197 (4) | 0.0042 (4) | 0.0047 (3) | 0.0008 (4) |
C2 | 0.0206 (5) | 0.0195 (5) | 0.0224 (5) | 0.0034 (4) | 0.0037 (4) | −0.0009 (4) |
C3 | 0.0196 (5) | 0.0183 (5) | 0.0208 (5) | 0.0025 (4) | 0.0049 (4) | 0.0014 (4) |
C4A | 0.0199 (5) | 0.0194 (5) | 0.0219 (5) | 0.0035 (4) | 0.0054 (4) | 0.0034 (4) |
C5 | 0.0236 (5) | 0.0246 (5) | 0.0226 (5) | −0.0018 (4) | 0.0063 (4) | 0.0042 (4) |
C6 | 0.0339 (6) | 0.0224 (5) | 0.0315 (6) | −0.0015 (5) | 0.0142 (5) | 0.0026 (5) |
C7 | 0.0338 (6) | 0.0237 (5) | 0.0326 (6) | 0.0041 (5) | 0.0131 (5) | 0.0094 (5) |
C8 | 0.0322 (6) | 0.0322 (7) | 0.0288 (6) | 0.0051 (5) | 0.0082 (5) | 0.0127 (5) |
C9 | 0.0292 (6) | 0.0308 (6) | 0.0211 (5) | 0.0019 (5) | 0.0085 (4) | 0.0037 (4) |
C9A | 0.0221 (5) | 0.0211 (5) | 0.0222 (5) | 0.0051 (4) | 0.0065 (4) | 0.0028 (4) |
O1 | 0.0263 (4) | 0.0268 (4) | 0.0215 (4) | −0.0032 (3) | 0.0018 (3) | −0.0030 (3) |
C10 | 0.0296 (6) | 0.0291 (6) | 0.0214 (5) | 0.0020 (5) | −0.0016 (4) | −0.0036 (4) |
C11 | 0.0204 (5) | 0.0199 (5) | 0.0213 (5) | 0.0005 (4) | 0.0028 (4) | −0.0031 (4) |
N2 | 0.0268 (5) | 0.0255 (5) | 0.0252 (5) | −0.0049 (4) | 0.0062 (4) | −0.0012 (4) |
C4 | 0.0192 (5) | 0.0184 (5) | 0.0199 (5) | 0.0036 (4) | 0.0041 (4) | 0.0020 (4) |
C12 | 0.0189 (9) | 0.0194 (9) | 0.0198 (9) | −0.0013 (7) | 0.0047 (5) | 0.0031 (5) |
S1 | 0.02551 (18) | 0.02386 (17) | 0.02084 (18) | 0.00268 (11) | 0.00265 (12) | 0.00618 (12) |
C13 | 0.0299 (11) | 0.0250 (10) | 0.0180 (12) | −0.0021 (6) | 0.0058 (9) | 0.0021 (8) |
C14 | 0.0302 (7) | 0.0276 (7) | 0.0230 (7) | −0.0086 (6) | 0.0082 (5) | −0.0050 (6) |
C15 | 0.0270 (6) | 0.0379 (10) | 0.0176 (6) | −0.0052 (6) | 0.0032 (5) | 0.0014 (6) |
N1—C2 | 1.3212 (14) | O1—C10 | 1.4387 (13) |
N1—C9A | 1.3455 (15) | C10—H10A | 0.9800 |
C2—O1 | 1.3470 (13) | C10—H10B | 0.9800 |
C2—C3 | 1.4035 (15) | C10—H10C | 0.9800 |
C3—C4 | 1.4019 (15) | C11—N2 | 1.1490 (14) |
C3—C11 | 1.4348 (14) | C4—C12' | 1.466 (19) |
C4A—C9A | 1.4043 (15) | C4—C12 | 1.482 (2) |
C4A—C4 | 1.4045 (14) | C12—C13 | 1.373 (4) |
C4A—C5 | 1.5104 (15) | C12—S1 | 1.725 (3) |
C5—C6 | 1.5358 (16) | S1—C15 | 1.7109 (18) |
C5—H5A | 0.9900 | C13—C14 | 1.436 (3) |
C5—H5B | 0.9900 | C13—H13 | 0.9500 |
C6—C7 | 1.5251 (16) | C14—C15 | 1.366 (2) |
C6—H6A | 0.9900 | C14—H14 | 0.9500 |
C6—H6B | 0.9900 | C15—H15 | 0.9500 |
C7—C8 | 1.5253 (19) | S1'—C15' | 1.630 (17) |
C7—H7A | 0.9900 | S1'—C12' | 1.67 (2) |
C7—H7B | 0.9900 | C12'—C13' | 1.33 (2) |
C8—C9 | 1.5393 (17) | C13'—C14' | 1.39 (2) |
C8—H8A | 0.9900 | C13'—H13' | 0.9500 |
C8—H8B | 0.9900 | C14'—C15' | 1.345 (19) |
C9—C9A | 1.5060 (14) | C14'—H14' | 0.9500 |
C9—H9A | 0.9900 | C15'—H15' | 0.9500 |
C9—H9B | 0.9900 | ||
C2—N1—C9A | 118.04 (10) | N1—C9A—C9 | 115.16 (10) |
N1—C2—O1 | 120.04 (10) | C4A—C9A—C9 | 121.18 (10) |
N1—C2—C3 | 123.43 (10) | C2—O1—C10 | 116.49 (9) |
O1—C2—C3 | 116.52 (9) | O1—C10—H10A | 109.5 |
C4—C3—C2 | 118.58 (10) | O1—C10—H10B | 109.5 |
C4—C3—C11 | 122.97 (10) | H10A—C10—H10B | 109.5 |
C2—C3—C11 | 118.46 (10) | O1—C10—H10C | 109.5 |
C9A—C4A—C4 | 117.67 (10) | H10A—C10—H10C | 109.5 |
C9A—C4A—C5 | 120.04 (9) | H10B—C10—H10C | 109.5 |
C4—C4A—C5 | 122.27 (10) | N2—C11—C3 | 177.19 (12) |
C4A—C5—C6 | 114.10 (9) | C3—C4—C4A | 118.54 (10) |
C4A—C5—H5A | 108.7 | C3—C4—C12' | 119.0 (16) |
C6—C5—H5A | 108.7 | C4A—C4—C12' | 122.1 (16) |
C4A—C5—H5B | 108.7 | C3—C4—C12 | 120.25 (15) |
C6—C5—H5B | 108.7 | C4A—C4—C12 | 121.19 (15) |
H5A—C5—H5B | 107.6 | C13—C12—C4 | 126.1 (2) |
C7—C6—C5 | 113.31 (10) | C13—C12—S1 | 111.88 (18) |
C7—C6—H6A | 108.9 | C4—C12—S1 | 121.9 (2) |
C5—C6—H6A | 108.9 | C15—S1—C12 | 92.11 (10) |
C7—C6—H6B | 108.9 | C12—C13—C14 | 111.3 (2) |
C5—C6—H6B | 108.9 | C12—C13—H13 | 124.4 |
H6A—C6—H6B | 107.7 | C14—C13—H13 | 124.4 |
C6—C7—C8 | 115.70 (10) | C15—C14—C13 | 113.24 (17) |
C6—C7—H7A | 108.4 | C15—C14—H14 | 123.4 |
C8—C7—H7A | 108.4 | C13—C14—H14 | 123.4 |
C6—C7—H7B | 108.4 | C14—C15—S1 | 111.49 (10) |
C8—C7—H7B | 108.4 | C14—C15—H15 | 124.3 |
H7A—C7—H7B | 107.4 | S1—C15—H15 | 124.3 |
C7—C8—C9 | 115.55 (10) | C15'—S1'—C12' | 95.4 (12) |
C7—C8—H8A | 108.4 | C13'—C12'—C4 | 129 (2) |
C9—C8—H8A | 108.4 | C13'—C12'—S1' | 107.5 (16) |
C7—C8—H8B | 108.4 | C4—C12'—S1' | 123.8 (18) |
C9—C8—H8B | 108.4 | C12'—C13'—C14' | 115 (2) |
H8A—C8—H8B | 107.5 | C12'—C13'—H13' | 122.3 |
C9A—C9—C8 | 114.11 (9) | C14'—C13'—H13' | 122.3 |
C9A—C9—H9A | 108.7 | C15'—C14'—C13' | 111.4 (18) |
C8—C9—H9A | 108.7 | C15'—C14'—H14' | 124.3 |
C9A—C9—H9B | 108.7 | C13'—C14'—H14' | 124.3 |
C8—C9—H9B | 108.7 | C14'—C15'—S1' | 110.3 (13) |
H9A—C9—H9B | 107.6 | C14'—C15'—H15' | 124.9 |
N1—C9A—C4A | 123.66 (10) | S1'—C15'—H15' | 124.9 |
C9A—N1—C2—O1 | 179.93 (9) | C9A—C4A—C4—C3 | −2.71 (14) |
C9A—N1—C2—C3 | −1.04 (16) | C5—C4A—C4—C3 | 175.84 (9) |
N1—C2—C3—C4 | −1.29 (16) | C9A—C4A—C4—C12' | −175.4 (14) |
O1—C2—C3—C4 | 177.77 (9) | C5—C4A—C4—C12' | 3.2 (14) |
N1—C2—C3—C11 | 178.70 (10) | C9A—C4A—C4—C12 | 175.80 (17) |
O1—C2—C3—C11 | −2.24 (14) | C5—C4A—C4—C12 | −5.6 (2) |
C9A—C4A—C5—C6 | −68.49 (13) | C3—C4—C12—C13 | 119.7 (3) |
C4—C4A—C5—C6 | 112.99 (11) | C4A—C4—C12—C13 | −58.8 (4) |
C4A—C5—C6—C7 | 81.19 (12) | C3—C4—C12—S1 | −63.4 (3) |
C5—C6—C7—C8 | −60.92 (14) | C4A—C4—C12—S1 | 118.13 (19) |
C6—C7—C8—C9 | 61.40 (14) | C13—C12—S1—C15 | 0.0 (2) |
C7—C8—C9—C9A | −78.94 (13) | C4—C12—S1—C15 | −177.3 (2) |
C2—N1—C9A—C4A | 1.50 (16) | C4—C12—C13—C14 | 177.7 (3) |
C2—N1—C9A—C9 | −179.26 (9) | S1—C12—C13—C14 | 0.5 (3) |
C4—C4A—C9A—N1 | 0.40 (15) | C12—C13—C14—C15 | −1.0 (3) |
C5—C4A—C9A—N1 | −178.19 (10) | C13—C14—C15—S1 | 1.0 (2) |
C4—C4A—C9A—C9 | −178.79 (10) | C12—S1—C15—C14 | −0.58 (14) |
C5—C4A—C9A—C9 | 2.62 (15) | C3—C4—C12'—C13' | −59 (3) |
C8—C9—C9A—N1 | −116.61 (11) | C4A—C4—C12'—C13' | 113 (2) |
C8—C9—C9A—C4A | 62.64 (14) | C3—C4—C12'—S1' | 122 (2) |
N1—C2—O1—C10 | 5.86 (14) | C4A—C4—C12'—S1' | −66 (3) |
C3—C2—O1—C10 | −173.24 (9) | C15'—S1'—C12'—C13' | 1.0 (16) |
C2—C3—C4—C4A | 3.15 (15) | C15'—S1'—C12'—C4 | −180 (3) |
C11—C3—C4—C4A | −176.84 (9) | C4—C12'—C13'—C14' | 179 (4) |
C2—C3—C4—C12' | 176.0 (15) | S1'—C12'—C13'—C14' | −2 (2) |
C11—C3—C4—C12' | −4.0 (15) | C12'—C13'—C14'—C15' | 3 (3) |
C2—C3—C4—C12 | −175.38 (17) | C13'—C14'—C15'—S1' | −2 (3) |
C11—C3—C4—C12 | 4.6 (2) | C12'—S1'—C15'—C14' | 1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···N2i | 0.95 | 2.60 | 3.524 (3) | 164 |
C15—H15···N2ii | 0.95 | 2.53 | 3.3941 (19) | 152 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z. |
C17H18N2OS | F(000) = 632 |
Mr = 298.39 | Dx = 1.312 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 9.87736 (14) Å | Cell parameters from 43890 reflections |
b = 12.51312 (19) Å | θ = 4.6–77.4° |
c = 12.53915 (19) Å | µ = 1.90 mm−1 |
β = 102.9861 (14)° | T = 100 K |
V = 1510.16 (4) Å3 | Block, colourless |
Z = 4 | 0.12 × 0.06 × 0.05 mm |
XtaLAB Synergy diffractometer | 3210 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3087 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.029 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 77.6°, θmin = 4.6° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −15→15 |
Tmin = 0.840, Tmax = 1.000 | l = −15→15 |
68720 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.045P)2 + 0.6567P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
3210 reflections | Δρmax = 0.28 e Å−3 |
200 parameters | Δρmin = −0.48 e Å−3 |
5 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.96546 (10) | 0.70446 (8) | 0.86883 (8) | 0.0189 (2) | |
C2 | 0.90244 (11) | 0.79770 (9) | 0.86327 (9) | 0.0178 (2) | |
C3 | 0.78613 (11) | 0.82488 (9) | 0.78055 (9) | 0.0181 (2) | |
C4 | 0.73796 (11) | 0.75056 (9) | 0.69719 (9) | 0.0177 (2) | |
C4A | 0.80433 (12) | 0.65081 (9) | 0.70138 (9) | 0.0182 (2) | |
C5 | 0.75694 (12) | 0.56848 (9) | 0.61264 (10) | 0.0212 (2) | |
H5A | 0.838085 | 0.525190 | 0.604922 | 0.025* | |
H5B | 0.721646 | 0.605961 | 0.542353 | 0.025* | |
C6 | 0.64314 (13) | 0.49310 (10) | 0.63404 (10) | 0.0258 (3) | |
H6A | 0.555045 | 0.533710 | 0.622776 | 0.031* | 0.899 (3) |
H6B | 0.629649 | 0.435362 | 0.578674 | 0.031* | 0.899 (3) |
H6C | 0.587821 | 0.464035 | 0.564337 | 0.031* | 0.101 (3) |
H6D | 0.580013 | 0.531417 | 0.672098 | 0.031* | 0.101 (3) |
C7 | 0.67033 (14) | 0.44193 (12) | 0.74716 (12) | 0.0266 (4) | 0.899 (3) |
H7A | 0.591782 | 0.393868 | 0.750517 | 0.032* | 0.899 (3) |
H7B | 0.672451 | 0.498915 | 0.802283 | 0.032* | 0.899 (3) |
C8 | 0.80578 (15) | 0.37783 (11) | 0.77828 (13) | 0.0274 (4) | 0.899 (3) |
H8A | 0.834831 | 0.358112 | 0.710285 | 0.033* | 0.899 (3) |
H8B | 0.786865 | 0.310712 | 0.814129 | 0.033* | 0.899 (3) |
C9 | 0.92878 (13) | 0.43620 (10) | 0.85552 (11) | 0.0277 (3) | |
H9A | 0.895112 | 0.465575 | 0.918164 | 0.033* | 0.899 (3) |
H9B | 1.001371 | 0.382682 | 0.885016 | 0.033* | 0.899 (3) |
H9C | 0.963248 | 0.367771 | 0.832114 | 0.033* | 0.101 (3) |
H9D | 0.962418 | 0.440989 | 0.935936 | 0.033* | 0.101 (3) |
C7' | 0.7263 (11) | 0.3951 (8) | 0.7125 (8) | 0.018 (3)* | 0.101 (3) |
H7'1 | 0.663372 | 0.332962 | 0.709291 | 0.021* | 0.101 (3) |
H7'2 | 0.807401 | 0.372112 | 0.684096 | 0.021* | 0.101 (3) |
C8' | 0.7754 (10) | 0.4312 (9) | 0.8312 (8) | 0.021 (3)* | 0.101 (3) |
H8'1 | 0.736369 | 0.502322 | 0.841452 | 0.025* | 0.101 (3) |
H8'2 | 0.744341 | 0.379823 | 0.880831 | 0.025* | 0.101 (3) |
C10 | 0.99628 (12) | 0.52748 (9) | 0.80377 (10) | 0.0215 (2) | |
H10A | 1.090157 | 0.540801 | 0.849794 | 0.026* | |
H10B | 1.007839 | 0.503787 | 0.731011 | 0.026* | |
C10A | 0.91682 (12) | 0.63133 (9) | 0.78995 (10) | 0.0185 (2) | |
O1 | 0.95029 (9) | 0.87491 (6) | 0.93712 (7) | 0.02090 (19) | |
C11 | 1.06586 (13) | 0.84862 (10) | 1.02549 (10) | 0.0239 (3) | |
H11A | 1.144124 | 0.824411 | 0.995574 | 0.036* | |
H11B | 1.038666 | 0.791551 | 1.069970 | 0.036* | |
H11C | 1.093504 | 0.911983 | 1.071124 | 0.036* | |
C12 | 0.72294 (12) | 0.92762 (9) | 0.78455 (9) | 0.0196 (2) | |
N2 | 0.67678 (11) | 1.01077 (8) | 0.79259 (9) | 0.0247 (2) | |
S1 | 0.66062 (3) | 0.86051 (3) | 0.50213 (3) | 0.03155 (12) | |
C13 | 0.62329 (12) | 0.78155 (9) | 0.60424 (9) | 0.0195 (2) | |
C14 | 0.48341 (13) | 0.75720 (10) | 0.58386 (10) | 0.0250 (3) | |
H14 | 0.441950 | 0.713919 | 0.630015 | 0.030* | |
C15 | 0.40917 (14) | 0.80518 (11) | 0.48486 (12) | 0.0320 (3) | |
H15 | 0.311650 | 0.798012 | 0.458326 | 0.038* | |
C16 | 0.49071 (15) | 0.86180 (11) | 0.43241 (12) | 0.0330 (3) | |
H16 | 0.457697 | 0.897968 | 0.364963 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0175 (4) | 0.0169 (5) | 0.0212 (5) | 0.0006 (4) | 0.0021 (4) | 0.0021 (4) |
C2 | 0.0176 (5) | 0.0161 (5) | 0.0195 (5) | −0.0015 (4) | 0.0034 (4) | 0.0008 (4) |
C3 | 0.0164 (5) | 0.0155 (5) | 0.0219 (5) | 0.0005 (4) | 0.0032 (4) | 0.0017 (4) |
C4 | 0.0157 (5) | 0.0178 (5) | 0.0192 (5) | −0.0007 (4) | 0.0029 (4) | 0.0024 (4) |
C4A | 0.0182 (5) | 0.0166 (5) | 0.0197 (5) | −0.0002 (4) | 0.0040 (4) | 0.0010 (4) |
C5 | 0.0228 (6) | 0.0189 (5) | 0.0205 (5) | 0.0023 (4) | 0.0019 (4) | −0.0010 (4) |
C6 | 0.0250 (6) | 0.0219 (6) | 0.0271 (6) | −0.0029 (5) | −0.0016 (5) | −0.0001 (5) |
C7 | 0.0208 (7) | 0.0239 (7) | 0.0341 (8) | 0.0011 (5) | 0.0044 (6) | 0.0065 (6) |
C8 | 0.0231 (7) | 0.0196 (7) | 0.0371 (8) | 0.0012 (5) | 0.0018 (6) | 0.0058 (6) |
C9 | 0.0236 (6) | 0.0237 (6) | 0.0335 (7) | 0.0041 (5) | 0.0015 (5) | 0.0086 (5) |
C10 | 0.0184 (5) | 0.0183 (6) | 0.0259 (6) | 0.0030 (4) | 0.0010 (4) | −0.0001 (4) |
C10A | 0.0173 (5) | 0.0168 (5) | 0.0213 (5) | 0.0004 (4) | 0.0043 (4) | 0.0014 (4) |
O1 | 0.0209 (4) | 0.0169 (4) | 0.0213 (4) | 0.0014 (3) | −0.0028 (3) | −0.0013 (3) |
C11 | 0.0239 (6) | 0.0211 (6) | 0.0221 (6) | 0.0006 (5) | −0.0045 (5) | −0.0002 (4) |
C12 | 0.0162 (5) | 0.0200 (6) | 0.0210 (5) | −0.0012 (4) | 0.0003 (4) | 0.0004 (4) |
N2 | 0.0227 (5) | 0.0208 (5) | 0.0277 (5) | 0.0027 (4) | −0.0002 (4) | −0.0010 (4) |
S1 | 0.02601 (18) | 0.0363 (2) | 0.02987 (19) | −0.00005 (13) | 0.00100 (13) | 0.01445 (13) |
C13 | 0.0201 (5) | 0.0159 (5) | 0.0209 (6) | 0.0014 (4) | 0.0014 (4) | 0.0003 (4) |
C14 | 0.0216 (6) | 0.0233 (6) | 0.0277 (6) | 0.0017 (5) | 0.0003 (5) | 0.0048 (5) |
C15 | 0.0235 (6) | 0.0282 (7) | 0.0374 (7) | 0.0002 (5) | −0.0076 (5) | 0.0022 (6) |
C16 | 0.0340 (7) | 0.0303 (7) | 0.0286 (7) | 0.0042 (5) | −0.0061 (5) | 0.0075 (5) |
N1—C2 | 1.3168 (15) | C9—C10 | 1.5378 (17) |
N1—C10A | 1.3538 (15) | C9—H9A | 0.9900 |
C2—O1 | 1.3482 (14) | C9—H9B | 0.9900 |
C2—C3 | 1.4056 (15) | C9—H9C | 0.9900 |
C3—C4 | 1.4003 (16) | C9—H9D | 0.9900 |
C3—C12 | 1.4348 (16) | C7'—C8' | 1.526 (12) |
C4—C4A | 1.4053 (16) | C7'—H7'1 | 0.9900 |
C4—C13 | 1.4826 (15) | C7'—H7'2 | 0.9900 |
C4A—C10A | 1.4046 (16) | C8'—H8'1 | 0.9900 |
C4A—C5 | 1.5115 (16) | C8'—H8'2 | 0.9900 |
C5—C6 | 1.5365 (17) | C10—C10A | 1.5078 (15) |
C5—H5A | 0.9900 | C10—H10A | 0.9900 |
C5—H5B | 0.9900 | C10—H10B | 0.9900 |
C6—C7 | 1.5241 (19) | O1—C11 | 1.4391 (13) |
C6—C7' | 1.669 (10) | C11—H11A | 0.9800 |
C6—H6A | 0.9900 | C11—H11B | 0.9800 |
C6—H6B | 0.9900 | C11—H11C | 0.9800 |
C6—H6C | 0.9900 | C12—N2 | 1.1494 (16) |
C6—H6D | 0.9900 | S1—C16 | 1.7093 (14) |
C7—C8 | 1.5333 (19) | S1—C13 | 1.7216 (12) |
C7—H7A | 0.9900 | C13—C14 | 1.3815 (17) |
C7—H7B | 0.9900 | C14—C15 | 1.4248 (18) |
C8—C9 | 1.5552 (19) | C14—H14 | 0.9500 |
C8—H8A | 0.9900 | C15—C16 | 1.349 (2) |
C8—H8B | 0.9900 | C15—H15 | 0.9500 |
C9—C8' | 1.478 (10) | C16—H16 | 0.9500 |
C2—N1—C10A | 118.31 (10) | H9A—C9—H9B | 107.4 |
N1—C2—O1 | 120.66 (10) | C8'—C9—H9C | 107.9 |
N1—C2—C3 | 123.49 (11) | C10—C9—H9C | 107.9 |
O1—C2—C3 | 115.83 (10) | C8'—C9—H9D | 107.9 |
C4—C3—C2 | 118.32 (10) | C10—C9—H9D | 107.9 |
C4—C3—C12 | 122.93 (10) | H9C—C9—H9D | 107.2 |
C2—C3—C12 | 118.74 (10) | C8'—C7'—C6 | 111.3 (8) |
C3—C4—C4A | 118.99 (10) | C8'—C7'—H7'1 | 109.4 |
C3—C4—C13 | 118.98 (10) | C6—C7'—H7'1 | 109.4 |
C4A—C4—C13 | 121.95 (10) | C8'—C7'—H7'2 | 109.4 |
C10A—C4A—C4 | 117.59 (10) | C6—C7'—H7'2 | 109.4 |
C10A—C4A—C5 | 121.53 (10) | H7'1—C7'—H7'2 | 108.0 |
C4—C4A—C5 | 120.87 (10) | C9—C8'—C7' | 107.5 (8) |
C4A—C5—C6 | 114.05 (10) | C9—C8'—H8'1 | 110.2 |
C4A—C5—H5A | 108.7 | C7'—C8'—H8'1 | 110.2 |
C6—C5—H5A | 108.7 | C9—C8'—H8'2 | 110.2 |
C4A—C5—H5B | 108.7 | C7'—C8'—H8'2 | 110.2 |
C6—C5—H5B | 108.7 | H8'1—C8'—H8'2 | 108.5 |
H5A—C5—H5B | 107.6 | C10A—C10—C9 | 115.14 (10) |
C7—C6—C5 | 115.95 (10) | C10A—C10—H10A | 108.5 |
C5—C6—C7' | 105.8 (4) | C9—C10—H10A | 108.5 |
C7—C6—H6A | 108.3 | C10A—C10—H10B | 108.5 |
C5—C6—H6A | 108.3 | C9—C10—H10B | 108.5 |
C7—C6—H6B | 108.3 | H10A—C10—H10B | 107.5 |
C5—C6—H6B | 108.3 | N1—C10A—C4A | 123.24 (10) |
H6A—C6—H6B | 107.4 | N1—C10A—C10 | 114.11 (10) |
C5—C6—H6C | 110.6 | C4A—C10A—C10 | 122.63 (10) |
C7'—C6—H6C | 110.6 | C2—O1—C11 | 117.39 (9) |
C5—C6—H6D | 110.6 | O1—C11—H11A | 109.5 |
C7'—C6—H6D | 110.6 | O1—C11—H11B | 109.5 |
H6C—C6—H6D | 108.7 | H11A—C11—H11B | 109.5 |
C6—C7—C8 | 114.70 (12) | O1—C11—H11C | 109.5 |
C6—C7—H7A | 108.6 | H11A—C11—H11C | 109.5 |
C8—C7—H7A | 108.6 | H11B—C11—H11C | 109.5 |
C6—C7—H7B | 108.6 | N2—C12—C3 | 176.64 (12) |
C8—C7—H7B | 108.6 | C16—S1—C13 | 92.07 (6) |
H7A—C7—H7B | 107.6 | C14—C13—C4 | 130.04 (11) |
C7—C8—C9 | 115.32 (12) | C14—C13—S1 | 111.19 (9) |
C7—C8—H8A | 108.4 | C4—C13—S1 | 118.77 (9) |
C9—C8—H8A | 108.4 | C13—C14—C15 | 111.46 (12) |
C7—C8—H8B | 108.4 | C13—C14—H14 | 124.3 |
C9—C8—H8B | 108.4 | C15—C14—H14 | 124.3 |
H8A—C8—H8B | 107.5 | C16—C15—C14 | 113.52 (12) |
C8'—C9—C10 | 117.8 (5) | C16—C15—H15 | 123.2 |
C10—C9—C8 | 115.98 (11) | C14—C15—H15 | 123.2 |
C10—C9—H9A | 108.3 | C15—C16—S1 | 111.76 (10) |
C8—C9—H9A | 108.3 | C15—C16—H16 | 124.1 |
C10—C9—H9B | 108.3 | S1—C16—H16 | 124.1 |
C8—C9—H9B | 108.3 | ||
C10A—N1—C2—O1 | −177.20 (10) | C8'—C9—C10—C10A | 33.5 (5) |
C10A—N1—C2—C3 | 0.87 (17) | C8—C9—C10—C10A | 78.19 (15) |
N1—C2—C3—C4 | −2.62 (17) | C2—N1—C10A—C4A | 1.34 (17) |
O1—C2—C3—C4 | 175.53 (10) | C2—N1—C10A—C10 | 179.91 (10) |
N1—C2—C3—C12 | 177.99 (10) | C4—C4A—C10A—N1 | −1.67 (17) |
O1—C2—C3—C12 | −3.86 (16) | C5—C4A—C10A—N1 | 177.53 (10) |
C2—C3—C4—C4A | 2.15 (16) | C4—C4A—C10A—C10 | 179.88 (10) |
C12—C3—C4—C4A | −178.48 (11) | C5—C4A—C10A—C10 | −0.92 (17) |
C2—C3—C4—C13 | −174.70 (10) | C9—C10—C10A—N1 | 99.52 (12) |
C12—C3—C4—C13 | 4.66 (17) | C9—C10—C10A—C4A | −81.90 (15) |
C3—C4—C4A—C10A | −0.16 (16) | N1—C2—O1—C11 | −4.18 (16) |
C13—C4—C4A—C10A | 176.60 (10) | C3—C2—O1—C11 | 177.61 (10) |
C3—C4—C4A—C5 | −179.36 (10) | C3—C4—C13—C14 | −101.27 (15) |
C13—C4—C4A—C5 | −2.61 (17) | C4A—C4—C13—C14 | 81.97 (17) |
C10A—C4A—C5—C6 | 91.62 (13) | C3—C4—C13—S1 | 78.50 (13) |
C4—C4A—C5—C6 | −89.21 (13) | C4A—C4—C13—S1 | −98.25 (12) |
C4A—C5—C6—C7 | −49.08 (15) | C16—S1—C13—C14 | 0.20 (10) |
C4A—C5—C6—C7' | −85.2 (4) | C16—S1—C13—C4 | −179.62 (10) |
C5—C6—C7—C8 | −56.74 (16) | C4—C13—C14—C15 | 179.12 (12) |
C6—C7—C8—C9 | 100.76 (15) | S1—C13—C14—C15 | −0.66 (14) |
C7—C8—C9—C10 | −72.30 (16) | C13—C14—C15—C16 | 0.95 (18) |
C5—C6—C7'—C8' | 77.4 (8) | C14—C15—C16—S1 | −0.79 (17) |
C10—C9—C8'—C7' | 72.2 (8) | C13—S1—C16—C15 | 0.34 (12) |
C6—C7'—C8'—C9 | −111.6 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11C···N2i | 0.98 | 2.69 | 3.4864 (16) | 138 |
C16—H16···N2ii | 0.95 | 2.41 | 3.3379 (17) | 167 |
Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+1, −y+2, −z+1. |
Acknowledgements
The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.
References
Abdallah, A. E. M. & Elgemeie, G. H. (2022). Med. Chem. 18, 926–948. Web of Science CrossRef CAS PubMed Google Scholar
Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023–30036. Web of Science CrossRef CAS PubMed Google Scholar
Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820–1822. Web of Science CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041–1043. Web of Science CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194. Web of Science CrossRef CAS PubMed Google Scholar
Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640–1655. Web of Science CrossRef CAS PubMed Google Scholar
Bodige, S., Ravula, P., Gulipalli, K. C., Endoori, S., Cherukumalli, P. K. R., Chandra, N. S. & Seelam, N. (2019). Synth. Commun. 49, 2219–2234. Web of Science CrossRef CAS Google Scholar
Bolduc, P. N., Pfaffenbach, M., Blasczak, V. D., Mathieu, S. R. & Peterson, E. A. (2022). Org. Lett. 24, 6133–6136. Web of Science CrossRef CAS PubMed Google Scholar
Boulebd, H. & Belfaitah, A. (2019). CSD Communication (refcode FIXGOL, CCDC 1528597). CCDC. Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1n9ml5. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Daeffler, K. N.-M., Lester, H. A. & Dougherty, D. A. (2012). J. Am. Chem. Soc. 134, 14890–14896. Web of Science CrossRef CAS PubMed Google Scholar
De, S., Kumar, A., Shah, S. K., Kazi, S., Sarkar, N., Banerjee, S. & Dey, S. (2022). RSC Adv. 12, 15385–15406. Web of Science CrossRef CAS PubMed Google Scholar
Elgemeie, G. H., Abdelaal, F. A. & Abou Hadeed, K. (1991). J. Chem. Res. (S), (5), 128–129. Google Scholar
Elgemeie, G. H. & Mohamed-Ezzat, R. A. (2022a). New Strategies Targeting Cancer Metabolism, edited by G. H. Elgemeie & R. A. Mohamed-Ezzat, pp. 1–33. Amsterdam: Elsevier. Google Scholar
Elgemeie, G. H. & Mohamed-Ezzat, R. A. (2022b). New Strategies Targeting Cancer Metabolism, edited by G. H. Elgemeie & R. A. Mohamed-Ezzat, pp. 547–611. Amsterdam: Elsevier. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Khedr, M. A., Zaghary, W. A., Elsherif, G. E., Azzam, R. A. & Elgemeie, G. H. (2022a). Nucleosides Nucleotides Nucleic Acids, 41, 643–670. Web of Science CrossRef CAS PubMed Google Scholar
Khedr, M. A., Zaghary, W. A., Elsherif, G. E., Azzam, R. A. & Elgemeie, G. H. (2022b). Nucleosides Nucleotides Nucleic Acids, 41, 643–670. Web of Science CrossRef CAS PubMed Google Scholar
Maharani, S. & Kumar, R. R. (2015). Tetrahedron Lett. 56, 179–181. Web of Science CSD CrossRef CAS Google Scholar
Motherwell, W. B., Moreno, R. B., Pavlakos, C., Arendorf, J. R. T., Arif, T., Tizzard, G. J., Coles, S. J. & Aliev, A. E. (2018). Angew. Chem. Int. Ed. 57, 1193–1198. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Ringer, A. L., Senenko, A. & Sherrill, C. D. (2007). Protein Sci. 16, 2216–2223. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA. Google Scholar
Su, Z., Wu, H.-K., He, F., Slukhan, U. & Aisa, H. A. (2010). Helv. Chim. Acta, 93, 33–38. Web of Science CSD CrossRef CAS Google Scholar
Zhang, C., Wang, B., Aibibula, P., Zhao, J. & Aisa, H. A. (2021). Org. Biomol. Chem. 19, 7081–7084. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.