research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three homologues with increasing ring size: 2-meth­­oxy-4-(thio­phen-2-yl)-5,6,7,8-tetra­hydro­quinoline-3-carbo­nitrile, 2-meth­­oxy-4-(thio­phen-2-yl)-6,7,8,9-tetra­hydro-5H-cyclo­hepta­[b]pyridine-3-carbo­nitrile and 2-meth­­oxy-4-(thio­phen-2-yl)-5,6,7,8,9,10-hexa­hydro­cyclo­octa[b]pyridine-3-carbo­nitrile

crossmark logo

aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 7 February 2023; accepted 1 March 2023; online 15 March 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The title compounds, C15H14N2OS (1a), C16H16N2OS (1b), and C17H18N2OS (1c), form a homologous series in which the size of the saturated ring increases from six- to eight-membered (with four, five and six methyl­ene groups respectively). For 1b and 1c, the central (CH2)n moieties are all displaced to the same side of their ring, and the CH2—CH2—CH2 angles are much wider than the standard sp3 value; a database search indicates that these are general features of such ring systems. For 1a, the thio­phene ring lies with the sulfur atom on the opposite side of the Cthio­phene—Cpyridine bond to the cyano group, in contrast to 1b and 1c. For each compound, the packing may be described in terms of two `weak' C—H⋯N hydrogen bonds, which link the mol­ecules to form one-dimensional (1a, 1c) or three-dimensional (1b) assemblies.

1. Chemical context

Recently, we started a widespread study of pyridones and related compounds and have described the synthesis of new N-substituted amino-2-pyridones (Azzam et al., 2017a[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820-1822.],b[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041-1043.], 2020a[Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023-30036.],b[Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182-26194.],c[Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640-1655.]; see also Bolduc et al., 2022[Bolduc, P. N., Pfaffenbach, M., Blasczak, V. D., Mathieu, S. R. & Peterson, E. A. (2022). Org. Lett. 24, 6133-6136.]). The synthetic applications of unsaturated nitriles as reaction inter­mediates for the preparation of a wide range of heterocyclic compounds has stimulated considerable inter­est in our group over the last decade (Khedr et al., 2022a[Khedr, M. A., Zaghary, W. A., Elsherif, G. E., Azzam, R. A. & Elgemeie, G. H. (2022a). Nucleosides Nucleotides Nucleic Acids, 41, 643-670.],b[Khedr, M. A., Zaghary, W. A., Elsherif, G. E., Azzam, R. A. & Elgemeie, G. H. (2022b). Nucleosides Nucleotides Nucleic Acids, 41, 643-670.]; Abdallah & Elgemeie, 2022[Abdallah, A. E. M. & Elgemeie, G. H. (2022). Med. Chem. 18, 926-948.]). Since pyridines and their fused heterocycles have been shown to constitute a new class of anti­metabolites (De et al., 2022[De, S., Kumar, A., Shah, S. K., Kazi, S., Sarkar, N., Banerjee, S. & Dey, S. (2022). RSC Adv. 12, 15385-15406.]), it is of inter­est to evaluate synthetic methods for the preparation of their analogues and demonstrate the effects of structural modifications on their biological activity (Elgemeie & Mohamed-Ezzat, 2022a[Elgemeie, G. H. & Mohamed-Ezzat, R. A. (2022a). New Strategies Targeting Cancer Metabolism, edited by G. H. Elgemeie & R. A. Mohamed-Ezzat, pp. 1-33. Amsterdam: Elsevier.],b[Elgemeie, G. H. & Mohamed-Ezzat, R. A. (2022b). New Strategies Targeting Cancer Metabolism, edited by G. H. Elgemeie & R. A. Mohamed-Ezzat, pp. 547-611. Amsterdam: Elsevier.]). Many 2-meth­oxy­pyridine derivatives have previously been shown to possess anti­tubercular and anti­bacterial activities (Bodige et al., 2019[Bodige, S., Ravula, P., Gulipalli, K. C., Endoori, S., Cherukumalli, P. K. R., Chandra, N. S. & Seelam, N. (2019). Synth. Commun. 49, 2219-2234.]).

Some time ago we reported the synthesis of the condensed 2-meth­oxy-4-thienyl-3-cyano­pyridines (1ac) via the reaction of cyclo­alkanones with 2-(2-thienyl­methyl­ene)malono­nitrile in refluxing methano­lic sodium hydroxide (Elgemeie et al., 1991[Elgemeie, G. H., Abdelaal, F. A. & Abou Hadeed, K. (1991). J. Chem. Res. (S), (5), 128-129.]); we also presented experimental data and a proposed mechanism. In 2015, another research group repeated our reaction and synthesized 1c using LiOEt instead of NaOEt (Maharani & Kumar, 2015[Maharani, S. & Kumar, R. R. (2015). Tetrahedron Lett. 56, 179-181.]). Here we are able to present the mol­ecular structures of 1ac determined with single crystal XRD.

[Scheme 1]

2. Structural commentary

The structure determinations confirm the nature of the products 1ac. The three mol­ecules, which form a homologous series with increasing ring size, are shown in Figs. 1[link]–3[link][link]. The compounds all crystallize in space group P21/c (or its equivalent P21/n) but none of them is isotypic to any other. Bond lengths and angles may be considered normal for these compound types. For instance: the exocyclic angles N—C—C at the ring junctions are appreciably less than 120° and the CH2—CH2—CH2 angles of 1b and 1c are markedly wider than the standard value of 109.5° (see Tables 1[link]–3[link][link]). The overall form of the mol­ecules, however, differs between 1a and the similar pair 1b/1c.

Table 1
Selected bond and torsion angles (°) for 1a[link]

C7—C6—C5 110.08 (10) N1—C8A—C8 113.91 (9)
C6—C7—C8 110.00 (9)    
       
C8A—C4A—C5—C6 18.12 (15) C6—C7—C8—C8A −42.62 (14)
C4A—C5—C6—C7 −50.80 (13) C5—C4A—C8A—C8 2.50 (16)
C5—C6—C7—C8 63.65 (13) C7—C8—C8A—C4A 10.21 (15)

Table 2
Selected bond and torsion angles (°) for 1b[link]

C7—C6—C5 113.31 (10) C7—C8—C9 115.55 (10)
C6—C7—C8 115.70 (10) N1—C9A—C9 115.16 (10)
       
C9A—C4A—C5—C6 −68.49 (13) C7—C8—C9—C9A −78.94 (13)
C4A—C5—C6—C7 81.19 (12) C5—C4A—C9A—C9 2.62 (15)
C5—C6—C7—C8 −60.92 (14) C8—C9—C9A—C4A 62.64 (14)
C6—C7—C8—C9 61.40 (14)    

Table 3
Selected bond and torsion angles (°) for 1c[link]

C7—C6—C5 115.95 (10) C10—C9—C8 115.98 (11)
C6—C7—C8 114.70 (12) N1—C10A—C10 114.11 (10)
C7—C8—C9 115.32 (12)    
       
C10A—C4A—C5—C6 91.62 (13) C7—C8—C9—C10 −72.30 (16)
C4A—C5—C6—C7 −49.08 (15) C8—C9—C10—C10A 78.19 (15)
C5—C6—C7—C8 −56.74 (16) C5—C4A—C10A—C10 −0.92 (17)
C6—C7—C8—C9 100.76 (15) C9—C10—C10A—C4A −81.90 (15)
[Figure 1]
Figure 1
The mol­ecule of 1a in the crystal. Ellipsoids represent 50% probability levels.
[Figure 2]
Figure 2
The mol­ecule of 1b in the crystal. Ellipsoids represent 50% probability levels. The minor position [occupation factor 0.083 (3)] of the disordered thienyl group is omitted.
[Figure 3]
Figure 3
The mol­ecule of 1c in the crystal. Ellipsoids represent 50% probability levels. The minor positions [occupation factor 0.101 (3)] of the disordered atoms C7 and C8 are omitted.

For convenience, the rings are designated as follows: Ring A, thio­phene; ring B, pyridine-type ring; ring C, the ring containing the (CH2)n moieties (as defined in the scheme, e.g. C4A,C5–C8,C8A for 1a). The minor disorder components (see Section 6) are not considered. Tables 1[link]–3[link][link] show the torsion angles of the rings C.

For 1a, ring C displays a standard half-chair conformation, with C6 and C7 lying 0.481 (2) and 0.293 (2) Å, respectively, in opposite directions out of the plane defined by C5, C4A, C8A and C8. The thio­phene ring lies with the sulfur atom on the opposite side of the C4—C11 bond to the cyano group. The inter­planar angle between rings A and B is 45.33 (4)°.

For 1b and 1c, however, the thio­phene rings are differently positioned, with the sulfur atom on the same side of the C4—C12 (1b) or C4—C13 bond (1c) as the cyano group. The respective S1⋯N2 distances are 3.676 (1) and 4.070 (1) Å, too long to be considered significant inter­actions, and the inter­planar angles A/B are 61.40 (5) and 79.67 (4)°. In the rings C, the (CH2)n moieties are all displaced to the same side of ring B, in the direction opposite to the sulfur atom (Fig. 4[link]).

[Figure 4]
Figure 4
Side view of 1c (radii arbitrary, H atoms omitted). The labelled atoms are displaced from the plane of the pyridine-type ring B (for definition, see text) by 1.343 (2), 2.360 (2), 1.913 (2) and 1.395 (2) Å, respectively.

3. Supra­molecular features

None of the compounds contains a classical hydrogen-bond donor, and so the mol­ecular packing must be inter­preted in terms of other `weak' inter­actions. The most obvious of these are `weak' C—H⋯N hydrogen bonds, mostly involving the nitro­gen atom of the nitrile group; however, it is a moot point whether these represent significant inter­actions or simply the exposed nature of the one-coordinated nitro­gen atoms. Each compound displays two such contacts.

For compound 1a, the two hydrogen bonds (Table 4[link]), one to each of the two nitro­gen atoms, combine to form a one-dimensional assembly parallel to the a axis (Fig. 5[link]). Both operators involve inversion. Further contacts may be identified: a possible stacking of two rings B, as seen in the Figure [inter­centroid distance 3.6516 (6) Å, offset 1.23 Å, operator −x + 1, −y + 1, −z + 1]; a C—H⋯π contact from H6B to the centroid (Cg) of ring A (H⋯Cg = 2.90 Å, C—H⋯Cg = 143°, operator −x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}]); and a possible S⋯π contact (Ringer et al., 2007[Ringer, A. L., Senenko, A. & Sherrill, C. D. (2007). Protein Sci. 16, 2216-2223.]; Daeffler et al., 2012[Daeffler, K. N.-M., Lester, H. A. & Dougherty, D. A. (2012). J. Am. Chem. Soc. 134, 14890-14896.]; Motherwell et al., 2018[Motherwell, W. B., Moreno, R. B., Pavlakos, C., Arendorf, J. R. T., Arif, T., Tizzard, G. J., Coles, S. J. & Aliev, A. E. (2018). Angew. Chem. Int. Ed. 57, 1193-1198.]) to ring B [S⋯centroid 3.5460 (5) Å, same operator −x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}]], although this contact is markedly one-sided, with S1⋯C2 at 3.370 (1) Å shorter than the other contact distances.

Table 4
Hydrogen-bond geometry (Å, °) for 1a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N1i 0.95 2.65 3.3499 (14) 131
C13—H13⋯N2ii 0.95 2.63 3.3503 (14) 133
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+2, -y+1, -z+1].
[Figure 5]
Figure 5
The mol­ecular packing of compound 1a, viewed parallel to the b axis, showing the `weak' hydrogen bonds (drawn as dashed bonds). Atom labels indicate the asymmetric unit.

Similarly, for compound 1c, the two C—H⋯N hydrogen bonds, both via inversion operators but both involving the same acceptor N2 (Table 6[link], Fig. 7[link]), lead to a one-dimensional structure parallel to [101]. However, whereas the H16⋯N2 inter­action is quite short, the contact from the methyl hydrogen atom H11C should probably be regarded as a borderline case.

Table 6
Hydrogen-bond geometry (Å, °) for 1c[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11C⋯N2i 0.98 2.69 3.4864 (16) 138
C16—H16⋯N2ii 0.95 2.41 3.3379 (17) 167
Symmetry codes: (i) [-x+2, -y+2, -z+2]; (ii) [-x+1, -y+2, -z+1].
[Figure 7]
Figure 7
The mol­ecular packing of compound 1c, viewed perpendicular to (10[\overline{1}]), showing the `weak' hydrogen bonds (drawn as dashed bonds). Atom labels indicate the asymmetric unit.

For compound 1b, the two C—H⋯N hydrogen bonds again both involve N2 (Table 5[link]), but the operators are different (one inversion centre and one 21 screw axis). This leads to a complex three-dimensional structure, part of which is shown in Fig. 6[link]. There is also a C—H⋯π contact from H7B to the centroid of ring A (H⋯Cg = 2.93 Å, C—H⋯Cg = 170°, operator x − [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]).

Table 5
Hydrogen-bond geometry (Å, °) for 1b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N2i 0.95 2.60 3.524 (3) 164
C15—H15⋯N2ii 0.95 2.53 3.3941 (19) 152
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z].
[Figure 6]
Figure 6
Part of the three-dimensional mol­ecular packing of compound 1b, viewed perpendicular to (1[\overline{1}]0), showing the `weak' hydrogen bonds (drawn as dashed bonds). Atom labels indicate the asymmetric unit. Two inversion-symmetric substructures are shown, each with two further mol­ecules related by the 21 axis.

4. Database survey

The searches employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2022.3.0 of the Cambridge Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

A search for the tetra­hydro­quinoline ring system corresponding to 1a gave 69 hits (68 compounds excluding one repeat) with no substituents at the sp3 carbon atoms. Almost all of these display a half-chair conformation of ring C; the only ordered example with a clear envelope conformation (five atoms approximately coplanar) was 2-amino-4-(1-methyl-1H-benzo[d]imidazol-2-yl)-5,6,7,8-tetra­hydro­quino­line-3-carbo­nitrile (refcode FIXGOL; Boulebd & Belfaitah, 2019[Boulebd, H. & Belfaitah, A. (2019). CSD Communication (refcode FIXGOL, CCDC 1528597). CCDC. Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1n9ml5.]).

A search for the cyclo­hepta­[b]pyridine subunit of 1b, excluding ring systems with further annelation, led to 26 hits, corresponding (excluding repeats) to 23 compounds; eleven of these involve seven-membered rings with no further substit­uents. The hits include the natural products rupestine B (refcode SUGSAP; Su et al., 2010[Su, Z., Wu, H.-K., He, F., Slukhan, U. & Aisa, H. A. (2010). Helv. Chim. Acta, 93, 33-38.]) and D (refcode SUGSET; Su et al., 2010[Su, Z., Wu, H.-K., He, F., Slukhan, U. & Aisa, H. A. (2010). Helv. Chim. Acta, 93, 33-38.], Zhang et al., 2021[Zhang, C., Wang, B., Aibibula, P., Zhao, J. & Aisa, H. A. (2021). Org. Biomol. Chem. 19, 7081-7084.]). An analogous search for cyclo­octa­[b]pyridine derivatives (corresponding to 1c) gave 19 hits for 18 unique compounds; in all cases, the eight-membered rings bear no further substituents. Both searches showed that the three or four central methyl­ene groups always lie on the same side of the plane of the pyridine-type ring (ring B in Section 2), as observed for 1b and 1c (Fig. 4[link]). They also confirmed the general trend to wide bond angles in the (CH2)n moieties.

5. Synthesis and crystallization

Compounds 1ac were prepared following our literature procedures (Elgemeie et al., 1991[Elgemeie, G. H., Abdelaal, F. A. & Abou Hadeed, K. (1991). J. Chem. Res. (S), (5), 128-129.]) and crystallized from ethanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. Methyl groups were included as idealized rigid groups allowed to rotate but not tip (C—H = 0.98 Å, H—C—H = 109.5°). Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic = 0.95 Å, C—Hmethyl­ene = 0.98 Å, C—Hmethine = 1.00 Å). The Uiso(H) values were fixed at 1.5 × Ueq of the parent carbon atoms for methyls and 1.2 × Ueq for other hydrogens.

Table 7
Experimental details

  1a 1b 1c
Crystal data
Chemical formula C15H14N2OS C16H16N2OS C17H18N2OS
Mr 270.34 284.37 298.39
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 100 100 100
a, b, c (Å) 10.85636 (13), 9.1857 (1), 13.31001 (16) 8.68561 (17), 13.7435 (2), 12.0379 (2) 9.87736 (14), 12.51312 (19), 12.53915 (19)
β (°) 98.7757 (12) 99.9254 (18) 102.9861 (14)
V3) 1311.78 (3) 1415.47 (5) 1510.16 (4)
Z 4 4 4
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 2.13 2.00 1.90
Crystal size (mm) 0.10 × 0.08 × 0.03 0.15 × 0.08 × 0.03 0.12 × 0.06 × 0.05
 
Data collection
Diffractometer XtaLAB Synergy XtaLAB Synergy XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.820, 1.000 0.835, 1.000 0.840, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 59253, 2774, 2663 5190, 5190, 4977 68720, 3210, 3087
Rint 0.032 0.029
(sin θ/λ)max−1) 0.634 0.634 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.071, 1.07 0.029, 0.077, 1.07 0.034, 0.091, 1.10
No. of reflections 2774 5190 3210
No. of parameters 173 204 200
No. of restraints 0 51 5
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.24 0.20, −0.33 0.28, −0.48
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

The structure of 1b was refined as a two-component twin using the HKLF 5 method (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]). The crystal was non-merohedrally twinned by 180° rotation about the vector (a + c). The scale factor (BASF, the relative volume of the smaller component) refined to 0.4982 (8). The thienyl group is disordered by ca 180° rotation about the bond C4—C12. The occupation factor of the major disorder component refined to 0.917 (2).

In the structure of 1c, the atoms C7 and C8 of the eight-membered ring are disordered over two positions; the relative occupation factors refined to 0.899 and 0.101 (3).

For both disordered structures, appropriate restraints (e.g. setting bond lengths and angles of the disorder components to be approximately equal, command SAME) were employed to improve stability of refinement, but the dimensions of disordered groups (especially the minor components) should be inter­preted with caution.

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.42.51a (Rigaku OD, 2022) for (1a); CrysAlis PRO 1.171.42.57a (Rigaku OD, 2022) for (1b); CrysAlis PRO 1.171.42.56a (Rigaku OD, 2022) for (1c). Cell refinement: CrysAlis PRO 1.171.42.51a (Rigaku OD, 2022) for (1a); CrysAlis PRO 1.171.42.57a (Rigaku OD, 2022) for (1b); CrysAlis PRO 1.171.42.56a (Rigaku OD, 2022) for (1c). Data reduction: CrysAlis PRO 1.171.42.51a (Rigaku OD, 2022) for (1a); CrysAlis PRO 1.171.42.57a (Rigaku OD, 2022) for (1b); CrysAlis PRO 1.171.42.56a (Rigaku OD, 2022) for (1c). For all structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).

2-Methoxy-4-(thiophen-2-yl)-5,6,7,8-tetrahydroquinoline-3-carbonitrile (1a) top
Crystal data top
C15H14N2OSF(000) = 568
Mr = 270.34Dx = 1.369 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 10.85636 (13) ÅCell parameters from 35765 reflections
b = 9.1857 (1) Åθ = 4.9–77.1°
c = 13.31001 (16) ŵ = 2.13 mm1
β = 98.7757 (12)°T = 100 K
V = 1311.78 (3) Å3Irregular, colourless
Z = 40.10 × 0.08 × 0.03 mm
Data collection top
XtaLAB Synergy
diffractometer
2774 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2663 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.0000 pixels mm-1θmax = 77.7°, θmin = 4.9°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1111
Tmin = 0.820, Tmax = 1.000l = 1616
59253 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.5681P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2774 reflectionsΔρmax = 0.28 e Å3
173 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.41901 (8)0.65182 (10)0.62167 (7)0.01531 (18)
C20.49881 (9)0.69755 (11)0.56350 (8)0.0145 (2)
C30.61817 (9)0.63623 (11)0.56496 (8)0.0145 (2)
C40.65292 (9)0.51730 (11)0.62923 (8)0.0143 (2)
C4A0.56608 (10)0.46444 (11)0.68941 (8)0.0156 (2)
C50.59305 (10)0.33045 (13)0.75609 (8)0.0201 (2)
H5A0.6492710.3578150.8189580.024*
H5B0.6367380.2574140.7196740.024*
C60.47503 (11)0.26226 (13)0.78460 (9)0.0235 (2)
H6A0.4259660.2170900.7237600.028*
H6B0.4977210.1851080.8360310.028*
C70.39682 (12)0.37797 (14)0.82721 (9)0.0261 (3)
H7A0.4469840.4259070.8863940.031*
H7B0.3237280.3317990.8504550.031*
C80.35304 (10)0.49113 (13)0.74576 (9)0.0204 (2)
H8A0.2811650.4510550.6992600.024*
H8B0.3237370.5783400.7788910.024*
C8A0.45209 (10)0.53687 (12)0.68392 (8)0.0156 (2)
C90.35965 (10)0.89244 (12)0.50857 (9)0.0206 (2)
H9A0.3507480.9722990.4591640.031*
H9B0.3657520.9323390.5774340.031*
H9C0.2868830.8282790.4951140.031*
O10.47092 (7)0.81060 (8)0.49971 (6)0.01807 (17)
C100.70092 (10)0.70570 (11)0.50540 (8)0.0164 (2)
N20.76402 (9)0.76686 (11)0.45769 (8)0.0230 (2)
S10.87568 (2)0.41082 (3)0.74141 (2)0.02107 (9)
C110.77753 (9)0.45283 (11)0.63009 (8)0.0152 (2)
C120.83478 (10)0.42163 (11)0.54747 (8)0.0171 (2)
H120.7968000.4376460.4792230.021*
C130.95620 (10)0.36312 (12)0.57419 (9)0.0199 (2)
H131.0075630.3343340.5259510.024*
C140.99099 (10)0.35277 (12)0.67641 (9)0.0218 (2)
H141.0697550.3175920.7079760.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0144 (4)0.0156 (4)0.0161 (4)0.0005 (3)0.0031 (3)0.0020 (3)
C20.0155 (5)0.0132 (5)0.0144 (5)0.0002 (4)0.0015 (4)0.0016 (4)
C30.0145 (5)0.0147 (5)0.0145 (5)0.0006 (4)0.0030 (4)0.0014 (4)
C40.0144 (5)0.0147 (5)0.0137 (5)0.0000 (4)0.0019 (4)0.0022 (4)
C4A0.0172 (5)0.0159 (5)0.0140 (5)0.0005 (4)0.0034 (4)0.0001 (4)
C50.0201 (5)0.0209 (5)0.0203 (5)0.0022 (4)0.0062 (4)0.0059 (4)
C60.0243 (6)0.0227 (6)0.0256 (6)0.0013 (5)0.0103 (5)0.0083 (5)
C70.0277 (6)0.0296 (6)0.0242 (6)0.0029 (5)0.0140 (5)0.0065 (5)
C80.0191 (5)0.0221 (5)0.0220 (5)0.0005 (4)0.0095 (4)0.0011 (4)
C8A0.0164 (5)0.0166 (5)0.0141 (5)0.0017 (4)0.0038 (4)0.0021 (4)
C90.0167 (5)0.0167 (5)0.0291 (6)0.0046 (4)0.0059 (4)0.0036 (4)
O10.0164 (4)0.0166 (4)0.0221 (4)0.0040 (3)0.0055 (3)0.0046 (3)
C100.0159 (5)0.0145 (5)0.0187 (5)0.0040 (4)0.0025 (4)0.0007 (4)
N20.0202 (5)0.0218 (5)0.0288 (5)0.0039 (4)0.0097 (4)0.0070 (4)
S10.01736 (14)0.02812 (16)0.01744 (14)0.00374 (10)0.00170 (10)0.00578 (10)
C110.0148 (5)0.0141 (5)0.0167 (5)0.0000 (4)0.0020 (4)0.0019 (4)
C120.0164 (5)0.0165 (5)0.0188 (5)0.0000 (4)0.0036 (4)0.0007 (4)
C130.0168 (5)0.0176 (5)0.0263 (6)0.0019 (4)0.0069 (4)0.0016 (4)
C140.0152 (5)0.0212 (5)0.0292 (6)0.0029 (4)0.0041 (4)0.0072 (4)
Geometric parameters (Å, º) top
N1—C21.3156 (14)C7—H7B0.9900
N1—C8A1.3563 (14)C8—C8A1.5102 (14)
C2—O11.3463 (13)C8—H8A0.9900
C2—C31.4104 (14)C8—H8B0.9900
C3—C41.4032 (14)C9—O11.4427 (12)
C3—C101.4353 (14)C9—H9A0.9800
C4—C4A1.4130 (14)C9—H9B0.9800
C4—C111.4752 (14)C9—H9C0.9800
C4A—C8A1.3971 (15)C10—N21.1492 (15)
C4A—C51.5195 (14)S1—C141.7120 (12)
C5—C61.5252 (15)S1—C111.7314 (11)
C5—H5A0.9900C11—C121.3734 (15)
C5—H5B0.9900C12—C131.4177 (15)
C6—C71.5229 (16)C12—H120.9500
C6—H6A0.9900C13—C141.3586 (17)
C6—H6B0.9900C13—H130.9500
C7—C81.5246 (16)C14—H140.9500
C7—H7A0.9900
C2—N1—C8A118.12 (9)C8A—C8—C7113.99 (9)
N1—C2—O1120.82 (9)C8A—C8—H8A108.8
N1—C2—C3123.40 (10)C7—C8—H8A108.8
O1—C2—C3115.75 (9)C8A—C8—H8B108.8
C4—C3—C2118.70 (9)C7—C8—H8B108.8
C4—C3—C10123.38 (9)H8A—C8—H8B107.6
C2—C3—C10117.78 (9)N1—C8A—C4A123.55 (9)
C3—C4—C4A118.20 (9)N1—C8A—C8113.91 (9)
C3—C4—C11118.57 (9)C4A—C8A—C8122.53 (10)
C4A—C4—C11123.23 (9)O1—C9—H9A109.5
C8A—C4A—C4117.96 (9)O1—C9—H9B109.5
C8A—C4A—C5120.43 (9)H9A—C9—H9B109.5
C4—C4A—C5121.58 (9)O1—C9—H9C109.5
C4A—C5—C6112.56 (9)H9A—C9—H9C109.5
C4A—C5—H5A109.1H9B—C9—H9C109.5
C6—C5—H5A109.1C2—O1—C9117.45 (8)
C4A—C5—H5B109.1N2—C10—C3176.95 (11)
C6—C5—H5B109.1C14—S1—C1192.23 (5)
H5A—C5—H5B107.8C12—C11—C4127.16 (10)
C7—C6—C5110.08 (10)C12—C11—S1110.13 (8)
C7—C6—H6A109.6C4—C11—S1122.68 (8)
C5—C6—H6A109.6C11—C12—C13113.28 (10)
C7—C6—H6B109.6C11—C12—H12123.4
C5—C6—H6B109.6C13—C12—H12123.4
H6A—C6—H6B108.2C14—C13—C12112.56 (10)
C6—C7—C8110.00 (9)C14—C13—H13123.7
C6—C7—H7A109.7C12—C13—H13123.7
C8—C7—H7A109.7C13—C14—S1111.79 (8)
C6—C7—H7B109.7C13—C14—H14124.1
C8—C7—H7B109.7S1—C14—H14124.1
H7A—C7—H7B108.2
C8A—N1—C2—O1179.60 (9)C2—N1—C8A—C8178.79 (9)
C8A—N1—C2—C32.09 (15)C4—C4A—C8A—N12.20 (16)
N1—C2—C3—C42.08 (16)C5—C4A—C8A—N1176.07 (10)
O1—C2—C3—C4179.53 (9)C4—C4A—C8A—C8179.22 (9)
N1—C2—C3—C10173.74 (9)C5—C4A—C8A—C82.50 (16)
O1—C2—C3—C104.65 (14)C7—C8—C8A—N1171.09 (10)
C2—C3—C4—C4A0.13 (15)C7—C8—C8A—C4A10.21 (15)
C10—C3—C4—C4A175.70 (9)N1—C2—O1—C99.04 (14)
C2—C3—C4—C11179.62 (9)C3—C2—O1—C9169.39 (9)
C10—C3—C4—C114.81 (15)C3—C4—C11—C1244.17 (16)
C3—C4—C4A—C8A2.10 (15)C4A—C4—C11—C12135.29 (12)
C11—C4—C4A—C8A178.44 (9)C3—C4—C11—S1133.63 (9)
C3—C4—C4A—C5176.16 (10)C4A—C4—C11—S146.91 (14)
C11—C4—C4A—C53.30 (16)C14—S1—C11—C120.06 (9)
C8A—C4A—C5—C618.12 (15)C14—S1—C11—C4178.08 (9)
C4—C4A—C5—C6160.09 (10)C4—C11—C12—C13178.59 (10)
C4A—C5—C6—C750.80 (13)S1—C11—C12—C130.56 (12)
C5—C6—C7—C863.65 (13)C11—C12—C13—C141.09 (14)
C6—C7—C8—C8A42.62 (14)C12—C13—C14—S11.11 (13)
C2—N1—C8A—C4A0.11 (15)C11—S1—C14—C130.68 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N1i0.952.653.3499 (14)131
C13—H13···N2ii0.952.633.3503 (14)133
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
2-Methoxy-4-(thiophen-2-yl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine-3-carbonitrile (1b) top
Crystal data top
C16H16N2OSF(000) = 600
Mr = 284.37Dx = 1.334 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 8.68561 (17) ÅCell parameters from 45134 reflections
b = 13.7435 (2) Åθ = 4.9–76.7°
c = 12.0379 (2) ŵ = 2.00 mm1
β = 99.9254 (18)°T = 100 K
V = 1415.47 (5) Å3Plate, colourless
Z = 40.15 × 0.08 × 0.03 mm
Data collection top
XtaLAB Synergy
diffractometer
5190 measured reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source5190 independent reflections
Mirror monochromator4977 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1θmax = 77.9°, θmin = 4.9°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1717
Tmin = 0.835, Tmax = 1.000l = 1515
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.218P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5190 reflectionsΔρmax = 0.20 e Å3
204 parametersΔρmin = 0.33 e Å3
51 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.62391 (11)0.40093 (7)0.55582 (8)0.0225 (2)
C20.68755 (12)0.44841 (8)0.47970 (9)0.0208 (2)
C30.64622 (12)0.43257 (7)0.36319 (9)0.0194 (2)
C4A0.46175 (12)0.31252 (8)0.40494 (9)0.0202 (2)
C50.33189 (13)0.23967 (8)0.37129 (9)0.0234 (2)
H5A0.2994580.2417210.2883500.028*
H5B0.2408300.2592860.4055030.028*
C60.37634 (15)0.13462 (9)0.40673 (11)0.0283 (3)
H6A0.3061610.0894830.3577440.034*
H6B0.4844510.1219420.3946730.034*
C70.36601 (15)0.11332 (9)0.52956 (11)0.0292 (3)
H7A0.3911370.0437850.5446220.035*
H7B0.2566060.1235300.5400720.035*
C80.47243 (15)0.17420 (9)0.61698 (11)0.0307 (3)
H8A0.5821410.1619250.6085610.037*
H8B0.4601310.1514580.6929920.037*
C90.44330 (14)0.28469 (9)0.61047 (9)0.0265 (2)
H9A0.3291640.2964970.5974630.032*
H9B0.4880830.3140690.6840490.032*
C9A0.51199 (12)0.33508 (8)0.51922 (9)0.0215 (2)
O10.79988 (9)0.51505 (6)0.51257 (6)0.02512 (18)
C100.85462 (14)0.52347 (9)0.63198 (9)0.0274 (2)
H10A0.9394890.5712700.6458410.041*
H10B0.8931400.4601490.6622920.041*
H10C0.7684970.5447350.6691460.041*
C110.72102 (12)0.49002 (8)0.28838 (9)0.0206 (2)
N20.78244 (11)0.53879 (7)0.23194 (8)0.0256 (2)
C40.53379 (12)0.36142 (8)0.32516 (9)0.0191 (2)
C120.4956 (4)0.3372 (2)0.20351 (15)0.0192 (6)0.9165 (18)
S10.41398 (4)0.42140 (3)0.10427 (4)0.02356 (11)0.9165 (18)
C130.5122 (4)0.2478 (2)0.1561 (3)0.0241 (6)0.9165 (18)
H130.5540880.1920120.1971800.029*0.9165 (18)
C140.45807 (17)0.24944 (12)0.03647 (12)0.0265 (3)0.9165 (18)
H140.4617580.1944920.0108840.032*0.9165 (18)
C150.40077 (16)0.33795 (15)0.00242 (11)0.0276 (3)0.9165 (18)
H150.3588640.3514680.0790690.033*0.9165 (18)
S1'0.4973 (14)0.2438 (9)0.1354 (9)0.034 (3)*0.0835 (18)
C12'0.482 (5)0.349 (2)0.2035 (17)0.021 (8)*0.0835 (18)
C13'0.416 (4)0.413 (2)0.128 (2)0.079 (13)*0.0835 (18)
H13'0.3918570.4774030.1483420.095*0.0835 (18)
C14'0.383 (2)0.3797 (15)0.0179 (16)0.037 (5)*0.0835 (18)
H14'0.3397500.4186970.0449090.044*0.0835 (18)
C15'0.421 (2)0.2852 (15)0.0112 (14)0.026 (4)*0.0835 (18)
H15'0.4048550.2479010.0562190.031*0.0835 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0234 (4)0.0247 (4)0.0197 (4)0.0042 (4)0.0047 (3)0.0008 (4)
C20.0206 (5)0.0195 (5)0.0224 (5)0.0034 (4)0.0037 (4)0.0009 (4)
C30.0196 (5)0.0183 (5)0.0208 (5)0.0025 (4)0.0049 (4)0.0014 (4)
C4A0.0199 (5)0.0194 (5)0.0219 (5)0.0035 (4)0.0054 (4)0.0034 (4)
C50.0236 (5)0.0246 (5)0.0226 (5)0.0018 (4)0.0063 (4)0.0042 (4)
C60.0339 (6)0.0224 (5)0.0315 (6)0.0015 (5)0.0142 (5)0.0026 (5)
C70.0338 (6)0.0237 (5)0.0326 (6)0.0041 (5)0.0131 (5)0.0094 (5)
C80.0322 (6)0.0322 (7)0.0288 (6)0.0051 (5)0.0082 (5)0.0127 (5)
C90.0292 (6)0.0308 (6)0.0211 (5)0.0019 (5)0.0085 (4)0.0037 (4)
C9A0.0221 (5)0.0211 (5)0.0222 (5)0.0051 (4)0.0065 (4)0.0028 (4)
O10.0263 (4)0.0268 (4)0.0215 (4)0.0032 (3)0.0018 (3)0.0030 (3)
C100.0296 (6)0.0291 (6)0.0214 (5)0.0020 (5)0.0016 (4)0.0036 (4)
C110.0204 (5)0.0199 (5)0.0213 (5)0.0005 (4)0.0028 (4)0.0031 (4)
N20.0268 (5)0.0255 (5)0.0252 (5)0.0049 (4)0.0062 (4)0.0012 (4)
C40.0192 (5)0.0184 (5)0.0199 (5)0.0036 (4)0.0041 (4)0.0020 (4)
C120.0189 (9)0.0194 (9)0.0198 (9)0.0013 (7)0.0047 (5)0.0031 (5)
S10.02551 (18)0.02386 (17)0.02084 (18)0.00268 (11)0.00265 (12)0.00618 (12)
C130.0299 (11)0.0250 (10)0.0180 (12)0.0021 (6)0.0058 (9)0.0021 (8)
C140.0302 (7)0.0276 (7)0.0230 (7)0.0086 (6)0.0082 (5)0.0050 (6)
C150.0270 (6)0.0379 (10)0.0176 (6)0.0052 (6)0.0032 (5)0.0014 (6)
Geometric parameters (Å, º) top
N1—C21.3212 (14)O1—C101.4387 (13)
N1—C9A1.3455 (15)C10—H10A0.9800
C2—O11.3470 (13)C10—H10B0.9800
C2—C31.4035 (15)C10—H10C0.9800
C3—C41.4019 (15)C11—N21.1490 (14)
C3—C111.4348 (14)C4—C12'1.466 (19)
C4A—C9A1.4043 (15)C4—C121.482 (2)
C4A—C41.4045 (14)C12—C131.373 (4)
C4A—C51.5104 (15)C12—S11.725 (3)
C5—C61.5358 (16)S1—C151.7109 (18)
C5—H5A0.9900C13—C141.436 (3)
C5—H5B0.9900C13—H130.9500
C6—C71.5251 (16)C14—C151.366 (2)
C6—H6A0.9900C14—H140.9500
C6—H6B0.9900C15—H150.9500
C7—C81.5253 (19)S1'—C15'1.630 (17)
C7—H7A0.9900S1'—C12'1.67 (2)
C7—H7B0.9900C12'—C13'1.33 (2)
C8—C91.5393 (17)C13'—C14'1.39 (2)
C8—H8A0.9900C13'—H13'0.9500
C8—H8B0.9900C14'—C15'1.345 (19)
C9—C9A1.5060 (14)C14'—H14'0.9500
C9—H9A0.9900C15'—H15'0.9500
C9—H9B0.9900
C2—N1—C9A118.04 (10)N1—C9A—C9115.16 (10)
N1—C2—O1120.04 (10)C4A—C9A—C9121.18 (10)
N1—C2—C3123.43 (10)C2—O1—C10116.49 (9)
O1—C2—C3116.52 (9)O1—C10—H10A109.5
C4—C3—C2118.58 (10)O1—C10—H10B109.5
C4—C3—C11122.97 (10)H10A—C10—H10B109.5
C2—C3—C11118.46 (10)O1—C10—H10C109.5
C9A—C4A—C4117.67 (10)H10A—C10—H10C109.5
C9A—C4A—C5120.04 (9)H10B—C10—H10C109.5
C4—C4A—C5122.27 (10)N2—C11—C3177.19 (12)
C4A—C5—C6114.10 (9)C3—C4—C4A118.54 (10)
C4A—C5—H5A108.7C3—C4—C12'119.0 (16)
C6—C5—H5A108.7C4A—C4—C12'122.1 (16)
C4A—C5—H5B108.7C3—C4—C12120.25 (15)
C6—C5—H5B108.7C4A—C4—C12121.19 (15)
H5A—C5—H5B107.6C13—C12—C4126.1 (2)
C7—C6—C5113.31 (10)C13—C12—S1111.88 (18)
C7—C6—H6A108.9C4—C12—S1121.9 (2)
C5—C6—H6A108.9C15—S1—C1292.11 (10)
C7—C6—H6B108.9C12—C13—C14111.3 (2)
C5—C6—H6B108.9C12—C13—H13124.4
H6A—C6—H6B107.7C14—C13—H13124.4
C6—C7—C8115.70 (10)C15—C14—C13113.24 (17)
C6—C7—H7A108.4C15—C14—H14123.4
C8—C7—H7A108.4C13—C14—H14123.4
C6—C7—H7B108.4C14—C15—S1111.49 (10)
C8—C7—H7B108.4C14—C15—H15124.3
H7A—C7—H7B107.4S1—C15—H15124.3
C7—C8—C9115.55 (10)C15'—S1'—C12'95.4 (12)
C7—C8—H8A108.4C13'—C12'—C4129 (2)
C9—C8—H8A108.4C13'—C12'—S1'107.5 (16)
C7—C8—H8B108.4C4—C12'—S1'123.8 (18)
C9—C8—H8B108.4C12'—C13'—C14'115 (2)
H8A—C8—H8B107.5C12'—C13'—H13'122.3
C9A—C9—C8114.11 (9)C14'—C13'—H13'122.3
C9A—C9—H9A108.7C15'—C14'—C13'111.4 (18)
C8—C9—H9A108.7C15'—C14'—H14'124.3
C9A—C9—H9B108.7C13'—C14'—H14'124.3
C8—C9—H9B108.7C14'—C15'—S1'110.3 (13)
H9A—C9—H9B107.6C14'—C15'—H15'124.9
N1—C9A—C4A123.66 (10)S1'—C15'—H15'124.9
C9A—N1—C2—O1179.93 (9)C9A—C4A—C4—C32.71 (14)
C9A—N1—C2—C31.04 (16)C5—C4A—C4—C3175.84 (9)
N1—C2—C3—C41.29 (16)C9A—C4A—C4—C12'175.4 (14)
O1—C2—C3—C4177.77 (9)C5—C4A—C4—C12'3.2 (14)
N1—C2—C3—C11178.70 (10)C9A—C4A—C4—C12175.80 (17)
O1—C2—C3—C112.24 (14)C5—C4A—C4—C125.6 (2)
C9A—C4A—C5—C668.49 (13)C3—C4—C12—C13119.7 (3)
C4—C4A—C5—C6112.99 (11)C4A—C4—C12—C1358.8 (4)
C4A—C5—C6—C781.19 (12)C3—C4—C12—S163.4 (3)
C5—C6—C7—C860.92 (14)C4A—C4—C12—S1118.13 (19)
C6—C7—C8—C961.40 (14)C13—C12—S1—C150.0 (2)
C7—C8—C9—C9A78.94 (13)C4—C12—S1—C15177.3 (2)
C2—N1—C9A—C4A1.50 (16)C4—C12—C13—C14177.7 (3)
C2—N1—C9A—C9179.26 (9)S1—C12—C13—C140.5 (3)
C4—C4A—C9A—N10.40 (15)C12—C13—C14—C151.0 (3)
C5—C4A—C9A—N1178.19 (10)C13—C14—C15—S11.0 (2)
C4—C4A—C9A—C9178.79 (10)C12—S1—C15—C140.58 (14)
C5—C4A—C9A—C92.62 (15)C3—C4—C12'—C13'59 (3)
C8—C9—C9A—N1116.61 (11)C4A—C4—C12'—C13'113 (2)
C8—C9—C9A—C4A62.64 (14)C3—C4—C12'—S1'122 (2)
N1—C2—O1—C105.86 (14)C4A—C4—C12'—S1'66 (3)
C3—C2—O1—C10173.24 (9)C15'—S1'—C12'—C13'1.0 (16)
C2—C3—C4—C4A3.15 (15)C15'—S1'—C12'—C4180 (3)
C11—C3—C4—C4A176.84 (9)C4—C12'—C13'—C14'179 (4)
C2—C3—C4—C12'176.0 (15)S1'—C12'—C13'—C14'2 (2)
C11—C3—C4—C12'4.0 (15)C12'—C13'—C14'—C15'3 (3)
C2—C3—C4—C12175.38 (17)C13'—C14'—C15'—S1'2 (3)
C11—C3—C4—C124.6 (2)C12'—S1'—C15'—C14'1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N2i0.952.603.524 (3)164
C15—H15···N2ii0.952.533.3941 (19)152
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y+1, z.
2-Methoxy-4-(thiophen-2-yl)-5,6,7,8,9,10-hexahydro-cycloocta[b]pyridine-3-carbonitrile (1c) top
Crystal data top
C17H18N2OSF(000) = 632
Mr = 298.39Dx = 1.312 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.87736 (14) ÅCell parameters from 43890 reflections
b = 12.51312 (19) Åθ = 4.6–77.4°
c = 12.53915 (19) ŵ = 1.90 mm1
β = 102.9861 (14)°T = 100 K
V = 1510.16 (4) Å3Block, colourless
Z = 40.12 × 0.06 × 0.05 mm
Data collection top
XtaLAB Synergy
diffractometer
3210 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3087 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.0000 pixels mm-1θmax = 77.6°, θmin = 4.6°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1515
Tmin = 0.840, Tmax = 1.000l = 1515
68720 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.045P)2 + 0.6567P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3210 reflectionsΔρmax = 0.28 e Å3
200 parametersΔρmin = 0.48 e Å3
5 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.96546 (10)0.70446 (8)0.86883 (8)0.0189 (2)
C20.90244 (11)0.79770 (9)0.86327 (9)0.0178 (2)
C30.78613 (11)0.82488 (9)0.78055 (9)0.0181 (2)
C40.73796 (11)0.75056 (9)0.69719 (9)0.0177 (2)
C4A0.80433 (12)0.65081 (9)0.70138 (9)0.0182 (2)
C50.75694 (12)0.56848 (9)0.61264 (10)0.0212 (2)
H5A0.8380850.5251900.6049220.025*
H5B0.7216460.6059610.5423530.025*
C60.64314 (13)0.49310 (10)0.63404 (10)0.0258 (3)
H6A0.5550450.5337100.6227760.031*0.899 (3)
H6B0.6296490.4353620.5786740.031*0.899 (3)
H6C0.5878210.4640350.5643370.031*0.101 (3)
H6D0.5800130.5314170.6720980.031*0.101 (3)
C70.67033 (14)0.44193 (12)0.74716 (12)0.0266 (4)0.899 (3)
H7A0.5917820.3938680.7505170.032*0.899 (3)
H7B0.6724510.4989150.8022830.032*0.899 (3)
C80.80578 (15)0.37783 (11)0.77828 (13)0.0274 (4)0.899 (3)
H8A0.8348310.3581120.7102850.033*0.899 (3)
H8B0.7868650.3107120.8141290.033*0.899 (3)
C90.92878 (13)0.43620 (10)0.85552 (11)0.0277 (3)
H9A0.8951120.4655750.9181640.033*0.899 (3)
H9B1.0013710.3826820.8850160.033*0.899 (3)
H9C0.9632480.3677710.8321140.033*0.101 (3)
H9D0.9624180.4409890.9359360.033*0.101 (3)
C7'0.7263 (11)0.3951 (8)0.7125 (8)0.018 (3)*0.101 (3)
H7'10.6633720.3329620.7092910.021*0.101 (3)
H7'20.8074010.3721120.6840960.021*0.101 (3)
C8'0.7754 (10)0.4312 (9)0.8312 (8)0.021 (3)*0.101 (3)
H8'10.7363690.5023220.8414520.025*0.101 (3)
H8'20.7443410.3798230.8808310.025*0.101 (3)
C100.99628 (12)0.52748 (9)0.80377 (10)0.0215 (2)
H10A1.0901570.5408010.8497940.026*
H10B1.0078390.5037870.7310110.026*
C10A0.91682 (12)0.63133 (9)0.78995 (10)0.0185 (2)
O10.95029 (9)0.87491 (6)0.93712 (7)0.02090 (19)
C111.06586 (13)0.84862 (10)1.02549 (10)0.0239 (3)
H11A1.1441240.8244110.9955740.036*
H11B1.0386660.7915511.0699700.036*
H11C1.0935040.9119831.0711240.036*
C120.72294 (12)0.92762 (9)0.78455 (9)0.0196 (2)
N20.67678 (11)1.01077 (8)0.79259 (9)0.0247 (2)
S10.66062 (3)0.86051 (3)0.50213 (3)0.03155 (12)
C130.62329 (12)0.78155 (9)0.60424 (9)0.0195 (2)
C140.48341 (13)0.75720 (10)0.58386 (10)0.0250 (3)
H140.4419500.7139190.6300150.030*
C150.40917 (14)0.80518 (11)0.48486 (12)0.0320 (3)
H150.3116500.7980120.4583260.038*
C160.49071 (15)0.86180 (11)0.43241 (12)0.0330 (3)
H160.4576970.8979680.3649630.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0175 (4)0.0169 (5)0.0212 (5)0.0006 (4)0.0021 (4)0.0021 (4)
C20.0176 (5)0.0161 (5)0.0195 (5)0.0015 (4)0.0034 (4)0.0008 (4)
C30.0164 (5)0.0155 (5)0.0219 (5)0.0005 (4)0.0032 (4)0.0017 (4)
C40.0157 (5)0.0178 (5)0.0192 (5)0.0007 (4)0.0029 (4)0.0024 (4)
C4A0.0182 (5)0.0166 (5)0.0197 (5)0.0002 (4)0.0040 (4)0.0010 (4)
C50.0228 (6)0.0189 (5)0.0205 (5)0.0023 (4)0.0019 (4)0.0010 (4)
C60.0250 (6)0.0219 (6)0.0271 (6)0.0029 (5)0.0016 (5)0.0001 (5)
C70.0208 (7)0.0239 (7)0.0341 (8)0.0011 (5)0.0044 (6)0.0065 (6)
C80.0231 (7)0.0196 (7)0.0371 (8)0.0012 (5)0.0018 (6)0.0058 (6)
C90.0236 (6)0.0237 (6)0.0335 (7)0.0041 (5)0.0015 (5)0.0086 (5)
C100.0184 (5)0.0183 (6)0.0259 (6)0.0030 (4)0.0010 (4)0.0001 (4)
C10A0.0173 (5)0.0168 (5)0.0213 (5)0.0004 (4)0.0043 (4)0.0014 (4)
O10.0209 (4)0.0169 (4)0.0213 (4)0.0014 (3)0.0028 (3)0.0013 (3)
C110.0239 (6)0.0211 (6)0.0221 (6)0.0006 (5)0.0045 (5)0.0002 (4)
C120.0162 (5)0.0200 (6)0.0210 (5)0.0012 (4)0.0003 (4)0.0004 (4)
N20.0227 (5)0.0208 (5)0.0277 (5)0.0027 (4)0.0002 (4)0.0010 (4)
S10.02601 (18)0.0363 (2)0.02987 (19)0.00005 (13)0.00100 (13)0.01445 (13)
C130.0201 (5)0.0159 (5)0.0209 (6)0.0014 (4)0.0014 (4)0.0003 (4)
C140.0216 (6)0.0233 (6)0.0277 (6)0.0017 (5)0.0003 (5)0.0048 (5)
C150.0235 (6)0.0282 (7)0.0374 (7)0.0002 (5)0.0076 (5)0.0022 (6)
C160.0340 (7)0.0303 (7)0.0286 (7)0.0042 (5)0.0061 (5)0.0075 (5)
Geometric parameters (Å, º) top
N1—C21.3168 (15)C9—C101.5378 (17)
N1—C10A1.3538 (15)C9—H9A0.9900
C2—O11.3482 (14)C9—H9B0.9900
C2—C31.4056 (15)C9—H9C0.9900
C3—C41.4003 (16)C9—H9D0.9900
C3—C121.4348 (16)C7'—C8'1.526 (12)
C4—C4A1.4053 (16)C7'—H7'10.9900
C4—C131.4826 (15)C7'—H7'20.9900
C4A—C10A1.4046 (16)C8'—H8'10.9900
C4A—C51.5115 (16)C8'—H8'20.9900
C5—C61.5365 (17)C10—C10A1.5078 (15)
C5—H5A0.9900C10—H10A0.9900
C5—H5B0.9900C10—H10B0.9900
C6—C71.5241 (19)O1—C111.4391 (13)
C6—C7'1.669 (10)C11—H11A0.9800
C6—H6A0.9900C11—H11B0.9800
C6—H6B0.9900C11—H11C0.9800
C6—H6C0.9900C12—N21.1494 (16)
C6—H6D0.9900S1—C161.7093 (14)
C7—C81.5333 (19)S1—C131.7216 (12)
C7—H7A0.9900C13—C141.3815 (17)
C7—H7B0.9900C14—C151.4248 (18)
C8—C91.5552 (19)C14—H140.9500
C8—H8A0.9900C15—C161.349 (2)
C8—H8B0.9900C15—H150.9500
C9—C8'1.478 (10)C16—H160.9500
C2—N1—C10A118.31 (10)H9A—C9—H9B107.4
N1—C2—O1120.66 (10)C8'—C9—H9C107.9
N1—C2—C3123.49 (11)C10—C9—H9C107.9
O1—C2—C3115.83 (10)C8'—C9—H9D107.9
C4—C3—C2118.32 (10)C10—C9—H9D107.9
C4—C3—C12122.93 (10)H9C—C9—H9D107.2
C2—C3—C12118.74 (10)C8'—C7'—C6111.3 (8)
C3—C4—C4A118.99 (10)C8'—C7'—H7'1109.4
C3—C4—C13118.98 (10)C6—C7'—H7'1109.4
C4A—C4—C13121.95 (10)C8'—C7'—H7'2109.4
C10A—C4A—C4117.59 (10)C6—C7'—H7'2109.4
C10A—C4A—C5121.53 (10)H7'1—C7'—H7'2108.0
C4—C4A—C5120.87 (10)C9—C8'—C7'107.5 (8)
C4A—C5—C6114.05 (10)C9—C8'—H8'1110.2
C4A—C5—H5A108.7C7'—C8'—H8'1110.2
C6—C5—H5A108.7C9—C8'—H8'2110.2
C4A—C5—H5B108.7C7'—C8'—H8'2110.2
C6—C5—H5B108.7H8'1—C8'—H8'2108.5
H5A—C5—H5B107.6C10A—C10—C9115.14 (10)
C7—C6—C5115.95 (10)C10A—C10—H10A108.5
C5—C6—C7'105.8 (4)C9—C10—H10A108.5
C7—C6—H6A108.3C10A—C10—H10B108.5
C5—C6—H6A108.3C9—C10—H10B108.5
C7—C6—H6B108.3H10A—C10—H10B107.5
C5—C6—H6B108.3N1—C10A—C4A123.24 (10)
H6A—C6—H6B107.4N1—C10A—C10114.11 (10)
C5—C6—H6C110.6C4A—C10A—C10122.63 (10)
C7'—C6—H6C110.6C2—O1—C11117.39 (9)
C5—C6—H6D110.6O1—C11—H11A109.5
C7'—C6—H6D110.6O1—C11—H11B109.5
H6C—C6—H6D108.7H11A—C11—H11B109.5
C6—C7—C8114.70 (12)O1—C11—H11C109.5
C6—C7—H7A108.6H11A—C11—H11C109.5
C8—C7—H7A108.6H11B—C11—H11C109.5
C6—C7—H7B108.6N2—C12—C3176.64 (12)
C8—C7—H7B108.6C16—S1—C1392.07 (6)
H7A—C7—H7B107.6C14—C13—C4130.04 (11)
C7—C8—C9115.32 (12)C14—C13—S1111.19 (9)
C7—C8—H8A108.4C4—C13—S1118.77 (9)
C9—C8—H8A108.4C13—C14—C15111.46 (12)
C7—C8—H8B108.4C13—C14—H14124.3
C9—C8—H8B108.4C15—C14—H14124.3
H8A—C8—H8B107.5C16—C15—C14113.52 (12)
C8'—C9—C10117.8 (5)C16—C15—H15123.2
C10—C9—C8115.98 (11)C14—C15—H15123.2
C10—C9—H9A108.3C15—C16—S1111.76 (10)
C8—C9—H9A108.3C15—C16—H16124.1
C10—C9—H9B108.3S1—C16—H16124.1
C8—C9—H9B108.3
C10A—N1—C2—O1177.20 (10)C8'—C9—C10—C10A33.5 (5)
C10A—N1—C2—C30.87 (17)C8—C9—C10—C10A78.19 (15)
N1—C2—C3—C42.62 (17)C2—N1—C10A—C4A1.34 (17)
O1—C2—C3—C4175.53 (10)C2—N1—C10A—C10179.91 (10)
N1—C2—C3—C12177.99 (10)C4—C4A—C10A—N11.67 (17)
O1—C2—C3—C123.86 (16)C5—C4A—C10A—N1177.53 (10)
C2—C3—C4—C4A2.15 (16)C4—C4A—C10A—C10179.88 (10)
C12—C3—C4—C4A178.48 (11)C5—C4A—C10A—C100.92 (17)
C2—C3—C4—C13174.70 (10)C9—C10—C10A—N199.52 (12)
C12—C3—C4—C134.66 (17)C9—C10—C10A—C4A81.90 (15)
C3—C4—C4A—C10A0.16 (16)N1—C2—O1—C114.18 (16)
C13—C4—C4A—C10A176.60 (10)C3—C2—O1—C11177.61 (10)
C3—C4—C4A—C5179.36 (10)C3—C4—C13—C14101.27 (15)
C13—C4—C4A—C52.61 (17)C4A—C4—C13—C1481.97 (17)
C10A—C4A—C5—C691.62 (13)C3—C4—C13—S178.50 (13)
C4—C4A—C5—C689.21 (13)C4A—C4—C13—S198.25 (12)
C4A—C5—C6—C749.08 (15)C16—S1—C13—C140.20 (10)
C4A—C5—C6—C7'85.2 (4)C16—S1—C13—C4179.62 (10)
C5—C6—C7—C856.74 (16)C4—C13—C14—C15179.12 (12)
C6—C7—C8—C9100.76 (15)S1—C13—C14—C150.66 (14)
C7—C8—C9—C1072.30 (16)C13—C14—C15—C160.95 (18)
C5—C6—C7'—C8'77.4 (8)C14—C15—C16—S10.79 (17)
C10—C9—C8'—C7'72.2 (8)C13—S1—C16—C150.34 (12)
C6—C7'—C8'—C9111.6 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···N2i0.982.693.4864 (16)138
C16—H16···N2ii0.952.413.3379 (17)167
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+2, z+1.
 

Acknowledgements

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationAbdallah, A. E. M. & Elgemeie, G. H. (2022). Med. Chem. 18, 926–948.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAzzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023–30036.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820–1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041–1043.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAzzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640–1655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBodige, S., Ravula, P., Gulipalli, K. C., Endoori, S., Cherukumalli, P. K. R., Chandra, N. S. & Seelam, N. (2019). Synth. Commun. 49, 2219–2234.  Web of Science CrossRef CAS Google Scholar
First citationBolduc, P. N., Pfaffenbach, M., Blasczak, V. D., Mathieu, S. R. & Peterson, E. A. (2022). Org. Lett. 24, 6133–6136.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBoulebd, H. & Belfaitah, A. (2019). CSD Communication (refcode FIXGOL, CCDC 1528597). CCDC. Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1n9ml5.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDaeffler, K. N.-M., Lester, H. A. & Dougherty, D. A. (2012). J. Am. Chem. Soc. 134, 14890–14896.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDe, S., Kumar, A., Shah, S. K., Kazi, S., Sarkar, N., Banerjee, S. & Dey, S. (2022). RSC Adv. 12, 15385–15406.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Abdelaal, F. A. & Abou Hadeed, K. (1991). J. Chem. Res. (S), (5), 128–129.  Google Scholar
First citationElgemeie, G. H. & Mohamed-Ezzat, R. A. (2022a). New Strategies Targeting Cancer Metabolism, edited by G. H. Elgemeie & R. A. Mohamed-Ezzat, pp. 1–33. Amsterdam: Elsevier.  Google Scholar
First citationElgemeie, G. H. & Mohamed-Ezzat, R. A. (2022b). New Strategies Targeting Cancer Metabolism, edited by G. H. Elgemeie & R. A. Mohamed-Ezzat, pp. 547–611. Amsterdam: Elsevier.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhedr, M. A., Zaghary, W. A., Elsherif, G. E., Azzam, R. A. & Elgemeie, G. H. (2022a). Nucleosides Nucleotides Nucleic Acids, 41, 643–670.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKhedr, M. A., Zaghary, W. A., Elsherif, G. E., Azzam, R. A. & Elgemeie, G. H. (2022b). Nucleosides Nucleotides Nucleic Acids, 41, 643–670.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMaharani, S. & Kumar, R. R. (2015). Tetrahedron Lett. 56, 179–181.  Web of Science CSD CrossRef CAS Google Scholar
First citationMotherwell, W. B., Moreno, R. B., Pavlakos, C., Arendorf, J. R. T., Arif, T., Tizzard, G. J., Coles, S. J. & Aliev, A. E. (2018). Angew. Chem. Int. Ed. 57, 1193–1198.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRinger, A. L., Senenko, A. & Sherrill, C. D. (2007). Protein Sci. 16, 2216–2223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationSu, Z., Wu, H.-K., He, F., Slukhan, U. & Aisa, H. A. (2010). Helv. Chim. Acta, 93, 33–38.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, C., Wang, B., Aibibula, P., Zhao, J. & Aisa, H. A. (2021). Org. Biomol. Chem. 19, 7081–7084.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds