research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Enanti­opure (S)-butan-2-yl N-(4-x-phen­yl)thio­carbamates, x = NO2, OCH3, F, and Cl

crossmark logo

aDepartment of Chemistry Univ. of Washington Seattle, WA 98195, USA
*Correspondence e-mail: kaminsky@chem.washington.edu

Edited by M. Zeller, Purdue University, USA (Received 6 March 2023; accepted 17 March 2023; online 23 March 2023)

The structures of (S)-butan-2-yl N-(4-nitro­phen­yl)thio­carbamate, C11H14N2O3S, (I), (S)-butan-2-yl N-(4-meth­oxy­phen­yl)thio­carbamate, C12H17NO2S, (II), (S)-butan-2-yl N-(4-fluoro­phen­yl)thio­carbamate, C11H14FNOS, (III), and (S)-butan-2-yl N-(4-chloro­phen­yl)thio­carbamate, C11H14ClNOS, (IV), all at 100 K, have monoclinic (P21) symmetry with two independent mol­ecules in the asymmetric unit. The Flack absolute structure parameters in all cases confirm the absence of inversion symmetry. The structures display N—H⋯S hydrogen bonds, resulting in R22(8) hydrogen-bonded ring synthons connecting the two independent mol­ecules. Despite the ring synthon, the packing follows two distinct patterns, with (I) and (IV) `pancaking' along the b-axis direction, while the other two `sandwich' in layers perpendicular to the b axis. Crystal morphologies were determined theoretically via the BFDH (Bravais, Friedel, Donnay–Harker) model and agree qualitatively with the experimentally indexed results. One of the butyl substituent of (II) exhibits structural disorder.

1. Chemical context

This research is part of an undergraduate study into creating new chiral model compounds from reacting a chiral moiety with another mol­ecule to combine specific features of both. Initially, iso­thio­cyanates were reacted with α-methyl­benzyl­amine to form chiral thio­urea derivatives (Kaminsky et al., 2010[Kaminsky, W., Responte, D., Daranciang, D., Gallegos, J. B., Ngoc Tran, B. C. & Pham, T. (2010). Molecules, 15, 554-569.]), whereas here, the poisonous iso­thio­cyanates were reacted with (S)-2-butanol to form thio­carbamates with possible protein-docking capability (Bull & Breese, 1978[Bull, H. B. & Breese, K. (1978). Biopolymers, 17, 2121-2131.]; Du et al. 2020[Du, Y., Grodowitz, M. J. & Chen, J. (2020). Biomolecules, 10, 716-726.]). Specifically, (S)-butan-2-yl-N-(4-x-phen­yl)thio­carb­amates were synthesized from enanti­opure (S)-2-butanol and 4-x-phenyl­iso­thio­cyanate, x = NO2, OCH3, F, and Cl. Similar thio­carbamates have been investigated previously for their biological activities (Ghosh & Brindisi, 2015[Ghosh, A. K. & Brindisi, M. (2015). J. Med. Chem. 58, 2895-2940.]).

[Scheme 1]

2. Structural commentary

Iso­thio­cyanates were selected because of the ease with which the –N=C=S functional group can be reacted with amines or alcohols to form thio­ureas or thio­carbamates, which in turn are well suited for simple crystal-growth studies. The –R=S linkage builds out selected hydrogen bonds, structuring the packing of the mol­ecule and thereby enhancing crystal growth. In addition, the sulfur atom has sufficient anomalous scattering capability with Mo radiation, which permits absolute structure determinations via single crystal X-ray diffraction. Further, from comparing a series of crystals with small chemical variations, we hoped to gain insight into the functionality of those inter­changed moieties, here NO2, OCH3, F, and Cl in the 4-x location on the structures of the phenyl­thio­carbamates. All four structures crystallize in the chiral space group P21 of the monoclinic system. Bond lengths and angles are in the expected ranges. We observed two pairings, where the 4-NO2 and 4-Cl crystals exhibited a similarly short b-axis, whereas OCH3 and F in the 4-x location had the longest axis dimensions along b. The chirality of the compounds was confirmed by the absolute structure parameters [(I)–(IV): −0.02 (3), −0.04 (4), 0.17 (13), and 0.022 (14), respectively].

3. Supra­molecular features

In each structure shown in Fig. 1[link], pairs of the title mol­ecules organize via the thio­amide {⋯H—N—C=S}2 into – R22(8) hydrogen-bonded ring synthons (Allen et al., 1999[Allen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. 23, 25-34.]). All six non-H atoms of the ring synthons are coplanar with r.m.s. deviations from the plane of 0.026 to 0.044 Å between the four synthons. The N⋯S distances of the synthon bonds range from 3.314 (3) to 3.410 (2) Å (Tables 1[link]–4[link][link][link]). Hydrogen-to-acceptor distances are similar as well, however, the D—H⋯A angles appear to deviate slightly more from a `straight' geometry in compounds (I)[link] and (IV)[link] than in (II)[link] and (III)[link]. With the exception of (III)[link], the sulfur atoms act as acceptors for two hydrogen bonds with a major N—H⋯S and a weaker secondary C—H⋯S inter­action, which causes the synthon geometry to shift slightly towards the secondary inter­actions. In (I)[link], we observe a weak inter­action with the ortho-C—H of the phenyl groups (C2—H2⋯S2, C13—H13⋯S1). The inter­action is strong enough to also cause the phenyl rings to become coplanar with the synthon plane. In (II)[link], the secondary inter­action is with a proton of the meth­oxy group from a symmetry-related mol­ecule. For (III)[link], consolidating S⋯F non-covalent inter­molecular inter­actions (Thorley & McCulloch, 2018[Thorley, K. J. & McCulloch, I. (2018). J. Mater. Chem. C6, 12413-12421.]) are found at 3.62 (1) Å instead of an H⋯S inter­action. The phenyl rings in (IV)[link] are tilted towards the ring synthon plane, causing the ortho-C—H distance to the sulfur atoms to be of lesser importance than in (I)[link]. Thus, for each case shown, we see a distinctly different bond environment of the sulfur atoms.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S2 0.80 (2) 2.62 (2) 3.3762 (19) 159 (2)
N3—H3N⋯S1 0.85 (2) 2.57 (2) 3.4095 (18) 166 (2)
C2—H2⋯S2 0.95 2.87 3.592 (2) 134
C13—H13⋯S1 0.95 2.81 3.611 (2) 142
C5—H5⋯O2i 0.95 2.53 3.203 (3) 128
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+2].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S2 0.82 (4) 2.53 (4) 3.347 (3) 171 (4)
N2—H2N⋯S1 0.86 (4) 2.47 (4) 3.314 (3) 165 (4)
C12—H12B⋯S1i 0.98 2.86 3.793 (4) 158
C24—H24B⋯S2ii 0.98 2.86 3.819 (4) 167
C18—H18⋯S2iii 0.95 2.98 3.730 (4) 136
C10B—H10C⋯S1 0.99 2.96 3.445 (11) 112
Symmetry codes: (i) [x+1, y, z-1]; (ii) [x-1, y, z+1]; (iii) [x-1, y, z].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S2 0.86 (5) 2.51 (5) 3.341 (8) 164 (8)
N2—H2N⋯S1 0.86 (5) 2.50 (5) 3.336 (7) 165 (7)
C8—H8A⋯F1i 0.98 2.59 3.494 (10) 154
Symmetry code: (i) x, y, z+1.

Table 4
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2 0.83 (2) 2.511 (19) 3.3163 (13) 163.0 (18)
N2—H2⋯S1 0.829 (19) 2.563 (19) 3.3645 (13) 162.8 (17)
C6—H6⋯S2 0.95 2.99 3.5961 (17) 123
C17—H17⋯S1 0.95 2.97 3.6122 (16) 127
C2—H2A⋯O1 0.95 2.38 2.8539 (18) 111
C13—H13⋯O2 0.95 2.29 2.8197 (19) 114
[Figure 1]
Figure 1
The mol­ecular structure of (I)–(IV), with non-H atoms labeled and 50% probability displacement ellipsoids for non-H atoms. Hydrogen bonds drawn as dashed lines. Disorder omitted for clarity.

The packing follows two distinct patterns, with (I)[link] and (IV)[link] `pancaking' along the b-axis direction, while the other two `sandwich' in layers perpendicular to the b-axis, see Fig. 2[link].

[Figure 2]
Figure 2
Packing of the structures of this report. (I)[link], (IV)[link]: view slightly inclined to the b axis·(II), (III)[link]: view approximately along the a axis. Disorder omitted for clarity.

Packing of (II)[link], (III)[link]: The 4-x-phenyl moiety is approximately parallel to the ac plane. The R22(8) hydrogen-bonded rings orient roughly parallel to the c plane in (II)[link] or the bc plane in (III)[link]. The phenyl­carbamate double layers are separated by layers containing the (S)-butan-2-yl moieties. Short distances between the phenyl plane and a symmetry-related OCH3 group are seen in (II)[link]. As a result of the S—F inter­action in (III)[link], the F atoms are not found as close to a phenyl group, but both are in hydrogen-bonding distance to a methyl group of a symmetry-related butyl moiety.

Packing of (I)[link], (IV)[link]: The R22(8) hydrogen-bonded rings are roughly parallel to the bc planes. Each dimer stacks entirely like `pancakes' along the short b-axis, with a separate stack for the 21 axis-related dimers. The dimers are inclined to b so that the NO2 group of (I)[link], or Cl of (IV)[link] are found at a short distance to the phenyl of the mol­ecule of the next layer. The NO2–phenyl plane distances are not the same for the independent phenyl moieties and are measured at 2.99 (2) and 3.169 (16) Å in (I)[link]. In (IV)[link], the Cl–phenyl plane distances are 3.062 (3) and 3.316 (12) Å. These distances are short and may indicate inter­action between the phenyl ring and the 4-x-groups, (NO2, Cl). One oxygen atom of the NO2 in (I)[link] establishes a hydrogen bond with a proton of a symmetry-related phenyl ring.

The different stacking models seem not to correlate with the electronegativity of the ligands, which is generally known to be in decreasing order NO2 > F > OCH3 > Cl (Pauling, 1932[Pauling, L. (1932). J. Am. Chem. Soc. 54, 3570-3582.]).

Morphologies of the four compounds, drawn with WinXMorph (Kaminsky, 2005[Kaminsky, W. (2005). J. Appl. Cryst. 38, 566-567.]) are shown in Fig. 3[link]. For (I)[link], the indexed faces are in decreasing order (increasing central distance): pinacoids 〈1 0 1〉, 〈1 0 [\overline{1}]〉, sphenoides 〈2 1 2〉, 〈[\overline{2}] [\overline{1}] [\overline{2}]〉. For (IV)[link], the face indexing yielded pinacoids 〈1 0 1〉, 〈1 0 [\overline{1}]〉, sphenoides 〈5 [\overline{1}] 2〉, 〈[\overline{5}] 1 [\overline{2}]〉. This observation was confirmed qualitatively by BFDH (Bravais, Friedel, Donnay–Harker) model simulations (Bravais, 1866[Bravais, A. (1866). Du Cristal Considéré Comme un Simple Assemblage de Points. In Étude Cristallographiques. Paris: Gauthier-Villars.]; Friedel, 1907[Friedel, G. (1907). Bull. Soc. Fr. Mineral. 22, 326-455.]; Donnay & Harker, 1937[Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446-467.]) using WinXMorph (Kaminsky, 2007[Kaminsky, W. (2007). J. Appl. Cryst. 40, 382-385.]) where the dominant crystal facets are pinacoids 〈001〉, 〈100〉, 〈10[\overline{1}]〉, and sphenoides 〈1 1 0〉, 〈0 1 1〉, 〈1 [\overline{1}] 0〉, 〈0 [\overline{1}] 1〉, 〈1 1 [\overline{1}]〉, and 〈1 [\overline{1}] 1〉 in decreasing order. For (I)[link] and (IV)[link], it is notable that the 〈0 0 1〉, 〈1 0 0〉 and calculated sphenoids were not observed. For compounds (II)[link] and (III)[link], a more prismatic morphology was observed. The BFDH model yields in both cases, in decreasing face-size order: pinacoids 〈0 1 0〉, 〈1 0 0〉, 〈1 0 [\overline{1}]〉, sphenoids 〈1 1 0〉, 〈1 [\overline{1}] 0〉, 〈1 1 [\overline{1}]〉, 〈1 [\overline{1}] [\overline{1}]〉. The observed faces in (II)[link] are 〈0 1 [\overline{1}]〉, 〈0 1 0〉, 〈0 [\overline{1}] 0〉, 〈1 0 0〉, 〈2 1 2〉. Compound (III)[link] grew with 〈0 [\overline{1}] [\overline{1}]〉, 〈0 1 [\overline{3}]〉, and 〈1 0 0〉 faces.

[Figure 3]
Figure 3
The morphologies of the samples used to obtain structures for this report and the result of BFDH calculations based on the structures.

The BFDH model is entirely based on the metrical and space-group symmetry. It does not account for solvent–surface effects. Thus, differences of growth rates due to such effects in the real samples may often distort the habitus, as well as changing the occurrence of faces.

4. Database survey

The structures of this report are not found in the Cambridge Structural Database (CSD version 5.42; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Earlier, we deposited related structures to the CSD, viz. the racemic (RS)-butan-2-yl equivalent structures to (I)[link], (II)[link], and (IV)[link], denoted with a prime: (I′): CCDC 2249338, (II'): 2249339, (IV'): 2249336 (Kaganyuk et al., 2023[Kaganyuk, M., Responte, D., Daranciang, D. & Kaminsky, W. (2023). CSD Communications (refcodes HEZYIY, HEZYOE, HEZYUK and HEZZAR). CCDC, Cambridge, England.]). Instead of (III′)[link], for which we got only a very low in quality obtained structure, we uploaded the 4-bromo structure (V′), CCDC 2249337. The 4-Cl (IV') and 4-Br (V′) compounds, both in space group P21/c, exhibit very similar packing to that of (IV)[link], despite the addition of the glide-plane symmetry. The other two crystallize in the triclinic space group P[\overline{1}], and only the (RS)-butan-2-yl-4-CH3 phenyl­thio­carbamate crystal builds out the R22(8) synthon, thus although likely, the thio­carbamates do not always exhibit this feature. A more general search for `thio­carbamate' gave 315 hits, indicating that this substance group has been crystallized moderately often. Via a GOOGLE search (March 2023), `phenyl­thio­carbamate' is found 9,370 times. Most of the compounds incorporate a center of symmetry, which is often compatible with an R22(8) synthon. In fact, the inter­net delivers over 43,000 results when searching for `N—H⋯S R22(8) synthon' (GOOGLE search, March 2023). The number drops considerably, to 93, in a search for 'ring synthon in phenyl­thio­carbamates'. `Ring synthon in chiral phenyl­thio­carbamates' yields only one reasonable result, already included here (Kaminsky et al., 2010[Kaminsky, W., Responte, D., Daranciang, D., Gallegos, J. B., Ngoc Tran, B. C. & Pham, T. (2010). Molecules, 15, 554-569.]).

5. Synthesis and crystallization

All chemicals were obtained from Sigma Aldrich. Compounds (I)[link], (III)[link], and (IV)[link]: 4 ml vials were charged with a stir bar, the aryl iso­thio­cyanate [0.100 g, 0.555 mmol (I)[link], 0.653 mmol (III)[link], 0.590 mmol (IV)[link]] and 2(S)-butanol (82.3 mg, 1.1 mmol). Using a hot oil bath, the reaction was run at 381 K for 24 h. Compound (II)[link]: A 4 mL vial was charged with a stir bar and 2(S)-butanol (0.054 g, 0.726 mmol). While stirring, tri­ethyl­amine (0.011 g, 0.109 mmol) was added. After 5 minutes, the aryl iso­thio­cyanate (0.100 g, 0.605 mmol) was added dropwise. The reaction was allowed to continue for 24 h at 358 K. Subsequently, for all four compounds, the vials, after allowing to cool, were covered with filter paper and left in a vacuum oven at 343 K. The crude product was purified by flash column chromatography, and eluted with 1:4 ethyl acetate/hexane. Fractions were collected in 13 × 100 mm test tubes and were spotted for thin layer chromatography to locate the product. The fractions containing the product were rotovaped in a 25 ml round-bottom flask. The solid found in low yields was redissolved in a 1:4 methanol/ethanol solution and crystals grew via slow evaporation. (I)[link]: 1H NMR (300 MHz, CDCl3): δ 9.2638 (bs, 1H), 8.1926 (d, J = 7.1 Hz, 2H), 7.5520 (bs, 2H), 5.5528 (m, 1H), 1.7044 (m, 2H), 1.4038 (d, J = 6.3 Hz, 3H), 0.9634 (t, J = 7.4 Hz, 3H). (II)[link]: 1H NMR (300 MHz,(CD3)2CO): δ 9.7438 (s, 1H), 7.5813 (m, 2H), 6.9070 (d, J = 9.1 Hz, 2H), 5.4819 (bs, 3H), 3.7847 (s, 3H), 1.7022 (m, 2H), 1.2948 (s, 3H), 0.9184 (t, J = 7.4, 3H). (III)[link]: 1H NMR (300 MHz, CDCl3): δ 8.8978 (bs, 1H), 7.2240 (bs, 2H), 7.0147 (t, J = 8.5 Hz, 2H), 5.0768 (m, 1H), 1.7280 (m, 2H), 1.3461 (d, J = 6.5 Hz, 3H), 0.9316 (t, J = 7.5 Hz, 3H). (IV)[link]: 1H NMR (300 MHz, CDCl3): δ 8.7150 (bs, 1H), 7.2918 (d, J = 8.6 Hz, 2H), 7.2130 (bs, 2H), 5.5199 (m, 1H), 1.7269 (m, 2H), 1.3640 (d, J = 6.2 Hz, 3H), 0.9472 (t, J = 7.4 Hz, 3H).

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 5[link]. Hydrogen atoms on carbon atoms were positioned geometrically, using a riding model, with C—H = 0.95–1.00Å. Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C). The nitro­gen protons were refined positionally, with Uiso(H) = 1.2Ueq(N). The two phenyl groups of the independent mol­ecules of (III)[link] were optimized to enhance the C—C bond precision with the C—C distance at 1.39 Å (AFIX 66). In (II)[link], one of the two (S)-butan-2-yl moieties appeared threefold disordered, requiring restraint of the displacement parameters with a SIMU 0.01 command. One atom (C8) was constrained to the same displacement parameter for each fraction with EADP. The disordered geometries were linked through a SAME command to the geometry of the ordered moiety of the other mol­ecule, and distances of O1 to C8, C8B and C8C were restrained to be similar (SADI), all with default esds. The occupancies of the three fractions were 0.444 (4), 0.354 (4), and 0.202 (4).

Table 5
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula C11H14N2O3S C12H17NO2S C11H14FNOS C11H14ClNOS
Mr 254.3 239.32 227.29 243.74
Crystal system, space group Monoclinic, P21 Monoclinic, P21 Monoclinic, P21 Monoclinic, P21
Temperature (K) 100 100 100 100
a, b, c (Å) 16.052 (2), 4.7635 (6), 16.853 (2) 6.6973 (5), 21.2076 (17), 9.1899 (7) 6.9723 (13), 20.166 (3), 8.2818 (14) 15.4173 (15), 5.0170 (5), 16.2502 (15)
β (°) 101.702 (8) 102.868 (5) 99.403 (13) 105.592 (5)
V3) 1261.9 (3) 1272.49 (17) 1148.8 (3) 1210.7 (2)
Z 4 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.26 0.24 0.27 0.46
Crystal size (mm) 0.6 × 0.12 × 0.06 0.6 × 0.48 × 0.2 0.5 × 0.1 × 0.05 0.6 × 0.12 × 0.11
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII Bruker APEXII Bruker APEXII
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.959, 1 0.657, 0.745 0.863, 1 0.954, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 37641, 9553, 7648 21043, 7694, 5666 10466, 5263, 2448 46534, 9292, 8469
Rint 0.047 0.048 0.171 0.029
(sin θ/λ)max−1) 0.772 0.720 0.650 0.772
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.084, 1.01 0.051, 0.113, 1.01 0.068, 0.143, 0.95 0.027, 0.066, 1.04
No. of reflections 9553 7694 5263 9292
No. of parameters 317 368 257 281
No. of restraints 1 293 2 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.28 0.51, −0.42 0.45, −0.52 0.36, −0.22
Absolute structure Flack x determined using 2891 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 2891 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 2891 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 2891 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.02 (3) 0.03 (4) 0.17 (13) 0.022 (14)
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

For all structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

(S)-2-Butyl N-(4-nitrophenyl)thiocarbamate (I) top
Crystal data top
C11H14N2O3SF(000) = 536
Mr = 254.3Dx = 1.339 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 8016 reflections
a = 16.052 (2) Åθ = 2.5–32.3°
b = 4.7635 (6) ŵ = 0.26 mm1
c = 16.853 (2) ÅT = 100 K
β = 101.702 (8)°Prism, yellow
V = 1261.9 (3) Å30.6 × 0.12 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
9553 independent reflections
Radiation source: sealed x-ray tube7648 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ or ω oscillation scansθmax = 33.3°, θmin = 1.6°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 2424
Tmin = 0.959, Tmax = 1k = 77
37641 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0311P)2 + 0.2393P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
9553 reflectionsΔρmax = 0.31 e Å3
317 parametersΔρmin = 0.28 e Å3
1 restraintAbsolute structure: Flack x determined using 2891 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
0 constraintsAbsolute structure parameter: 0.02 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Crystals were mounted on a CryoloopTM (0.2–0.3mm, Hampton Research) with Paratone (R) oil. Between 7 to 12 data sets were collected to cover full Ewald spheres to a resolution of better than 0.75 Å. Crystals were held at 100 K with a Cryostream cooler, mounted to a Bruker APEXII single crystal X-ray diffractometer, Mo radiation (Bruker 2012), equipped with a fine-focus X-ray tube, Miracol X-ray optical collimator, and CCD detector. Crystal-to-detector distance was 40 mm and the exposure times were between 20 to 120 seconds per frame for all sets, pending on sample size. The scan widths were 0.5°. Crystal data, data collection, and structure refinement details are summarized in Table 5. The data were integrated and scaled using SAINT, SADABS within the APEX2 software package by Bruker (2012). Data work-up was done with SAINT (Bruker, 2012). Structures were solved with SHELXS (Sheldrick, 2008), and refined with SHELXL (Sheldrick 2015).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15331 (12)0.1677 (4)0.84542 (12)0.0152 (4)
C20.12449 (12)0.0015 (4)0.77677 (12)0.0174 (4)
H20.1511440.0167290.7315060.021*
C30.05799 (13)0.1841 (4)0.77393 (13)0.0180 (4)
H30.0382540.2955540.7271550.022*
C40.02066 (13)0.2038 (4)0.84101 (13)0.0177 (4)
C50.04839 (13)0.0434 (5)0.90953 (12)0.0201 (4)
H50.0217110.0610940.9547130.024*
C60.11491 (13)0.1429 (4)0.91239 (13)0.0198 (4)
H60.1343540.2530520.9594860.024*
C70.27251 (12)0.5046 (4)0.89663 (12)0.0160 (4)
C80.39282 (13)0.4736 (6)1.07282 (13)0.0257 (4)
H8A0.4238960.5793531.1194230.031*
H8B0.3828330.2817551.0897010.031*
H8C0.4263920.4680521.0303380.031*
C90.30844 (13)0.6152 (5)1.04042 (12)0.0194 (4)
H90.3185620.8100971.0224930.023*
C100.24760 (13)0.6239 (5)1.09819 (13)0.0223 (4)
H10A0.1927370.7039461.0696760.027*
H10B0.2367670.4297971.1144710.027*
C110.28090 (15)0.7970 (5)1.17392 (13)0.0251 (5)
H11A0.2357650.8197711.2047890.03*
H11B0.329510.7006171.2074760.03*
H11C0.2988720.9819591.1582340.03*
C120.37889 (12)1.0550 (4)0.66160 (12)0.0145 (4)
C130.41365 (12)1.2037 (4)0.73232 (12)0.0162 (4)
H130.3939931.1671150.7808170.019*
C140.47613 (12)1.4027 (4)0.73227 (12)0.0161 (4)
H140.4995361.5041450.7801330.019*
C150.50388 (11)1.4511 (4)0.66101 (12)0.0143 (3)
C160.47042 (12)1.3078 (4)0.59063 (12)0.0171 (4)
H160.4904991.3456590.5424260.021*
C170.40740 (12)1.1085 (4)0.59036 (12)0.0168 (4)
H170.3839291.0094830.5420730.02*
C180.25910 (11)0.7200 (4)0.61245 (11)0.0144 (3)
C190.23833 (14)0.7059 (6)0.39684 (13)0.0263 (4)
H19A0.1999510.6301630.3488970.032*
H19B0.2502120.9036950.3876260.032*
H19C0.2916830.5994650.4068890.032*
C200.19702 (12)0.6818 (4)0.46925 (11)0.0164 (4)
H200.1867650.4795850.4800410.02*
C210.11459 (13)0.8446 (5)0.46106 (14)0.0230 (4)
H21A0.1014250.871980.5154350.028*
H21B0.121681.0320740.4379770.028*
C220.04055 (13)0.6930 (6)0.40690 (14)0.0283 (5)
H22A0.0120290.7991750.4054470.034*
H22B0.0515020.6777640.3519290.034*
H22C0.0346160.5047260.4285250.034*
N10.21907 (11)0.3574 (4)0.83957 (11)0.0166 (3)
H1N0.2270 (15)0.384 (5)0.7950 (15)0.02*
N20.04965 (11)0.3997 (4)0.83882 (11)0.0228 (4)
N30.31755 (10)0.8517 (4)0.66917 (10)0.0151 (3)
H3N0.3146 (15)0.810 (5)0.7178 (15)0.018*
N40.56963 (10)1.6622 (3)0.66027 (10)0.0173 (3)
O10.07477 (11)0.5356 (4)0.77657 (10)0.0371 (4)
O20.08002 (10)0.4226 (4)0.89972 (10)0.0296 (4)
O30.26222 (9)0.4523 (3)0.97083 (8)0.0185 (3)
O40.59552 (10)1.7972 (3)0.72206 (9)0.0257 (4)
O50.59525 (9)1.6972 (4)0.59691 (9)0.0246 (3)
O60.25984 (9)0.8002 (3)0.53765 (8)0.0168 (3)
S10.34368 (3)0.72622 (11)0.87190 (3)0.01983 (11)
S20.19349 (3)0.48150 (11)0.63883 (3)0.01827 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0164 (8)0.0135 (8)0.0158 (9)0.0006 (6)0.0037 (7)0.0010 (7)
C20.0206 (9)0.0176 (8)0.0146 (9)0.0004 (8)0.0051 (7)0.0011 (8)
C30.0213 (9)0.0176 (9)0.0149 (9)0.0007 (7)0.0031 (7)0.0008 (7)
C40.0175 (9)0.0178 (9)0.0177 (10)0.0016 (7)0.0033 (7)0.0020 (7)
C50.0214 (9)0.0240 (10)0.0162 (9)0.0038 (8)0.0065 (7)0.0018 (8)
C60.0212 (10)0.0227 (9)0.0163 (10)0.0034 (8)0.0056 (8)0.0025 (8)
C70.0182 (8)0.0147 (8)0.0156 (9)0.0001 (7)0.0044 (7)0.0013 (7)
C80.0221 (10)0.0343 (11)0.0200 (10)0.0017 (10)0.0025 (8)0.0020 (10)
C90.0218 (10)0.0208 (9)0.0149 (9)0.0033 (8)0.0018 (7)0.0019 (8)
C100.0243 (10)0.0236 (10)0.0194 (10)0.0026 (8)0.0055 (8)0.0013 (8)
C110.0336 (12)0.0241 (10)0.0170 (10)0.0061 (9)0.0039 (9)0.0004 (8)
C120.0130 (8)0.0148 (8)0.0152 (9)0.0002 (6)0.0019 (7)0.0013 (7)
C130.0188 (8)0.0174 (8)0.0126 (9)0.0019 (7)0.0038 (7)0.0005 (8)
C140.0179 (9)0.0173 (8)0.0129 (9)0.0024 (7)0.0026 (7)0.0005 (7)
C150.0129 (8)0.0134 (8)0.0166 (9)0.0022 (6)0.0028 (6)0.0003 (7)
C160.0171 (9)0.0206 (9)0.0148 (9)0.0018 (7)0.0059 (7)0.0004 (7)
C170.0187 (9)0.0185 (8)0.0133 (9)0.0038 (7)0.0037 (7)0.0017 (7)
C180.0129 (8)0.0150 (7)0.0151 (9)0.0006 (7)0.0023 (6)0.0009 (8)
C190.0225 (10)0.0397 (12)0.0163 (10)0.0003 (10)0.0032 (8)0.0027 (10)
C200.0166 (8)0.0179 (9)0.0134 (9)0.0017 (7)0.0001 (7)0.0022 (7)
C210.0200 (10)0.0252 (10)0.0221 (11)0.0021 (8)0.0002 (8)0.0034 (9)
C220.0172 (9)0.0370 (13)0.0285 (12)0.0020 (9)0.0010 (8)0.0010 (11)
N10.0215 (8)0.0175 (8)0.0116 (8)0.0042 (6)0.0051 (6)0.0007 (6)
N20.0224 (9)0.0266 (9)0.0201 (9)0.0061 (7)0.0057 (7)0.0007 (8)
N30.0165 (8)0.0176 (7)0.0110 (8)0.0028 (6)0.0021 (6)0.0008 (6)
N40.0175 (8)0.0161 (7)0.0178 (8)0.0023 (6)0.0025 (6)0.0002 (6)
O10.0385 (9)0.0461 (10)0.0284 (9)0.0228 (9)0.0113 (7)0.0145 (9)
O20.0305 (9)0.0396 (9)0.0209 (8)0.0139 (7)0.0104 (7)0.0004 (7)
O30.0234 (7)0.0201 (7)0.0118 (6)0.0052 (6)0.0030 (5)0.0001 (6)
O40.0313 (8)0.0245 (8)0.0205 (8)0.0126 (6)0.0032 (6)0.0050 (6)
O50.0247 (7)0.0294 (8)0.0224 (8)0.0089 (7)0.0107 (6)0.0004 (7)
O60.0168 (6)0.0209 (7)0.0119 (6)0.0046 (5)0.0007 (5)0.0001 (5)
S10.0218 (2)0.0214 (2)0.0165 (2)0.0062 (2)0.00440 (18)0.0007 (2)
S20.0180 (2)0.0205 (2)0.0167 (2)0.00655 (19)0.00423 (18)0.0005 (2)
Geometric parameters (Å, º) top
C1—C61.396 (3)C13—C141.380 (3)
C1—C21.401 (3)C13—H130.95
C1—N11.408 (2)C14—C151.382 (3)
C2—C31.379 (3)C14—H140.95
C2—H20.95C15—C161.379 (3)
C3—C41.386 (3)C15—N41.460 (2)
C3—H30.95C16—C171.387 (3)
C4—C51.381 (3)C16—H160.95
C4—N21.459 (3)C17—H170.95
C5—C61.382 (3)C18—O61.320 (2)
C5—H50.95C18—N31.350 (2)
C6—H60.95C18—S21.669 (2)
C7—O31.318 (2)C19—C201.507 (3)
C7—N11.348 (2)C19—H19A0.98
C7—S11.669 (2)C19—H19B0.98
C8—C91.512 (3)C19—H19C0.98
C8—H8A0.98C20—O61.481 (2)
C8—H8B0.98C20—C211.516 (3)
C8—H8C0.98C20—H201
C9—O31.475 (2)C21—C221.525 (3)
C9—C101.513 (3)C21—H21A0.99
C9—H91C21—H21B0.99
C10—C111.522 (3)C22—H22A0.98
C10—H10A0.99C22—H22B0.98
C10—H10B0.99C22—H22C0.98
C11—H11A0.98N1—H1N0.80 (2)
C11—H11B0.98N2—O21.227 (2)
C11—H11C0.98N2—O11.229 (2)
C12—C171.392 (3)N3—H3N0.85 (2)
C12—C131.401 (3)N4—O41.223 (2)
C12—N31.405 (2)N4—O51.231 (2)
C6—C1—C2119.58 (18)C13—C14—H14120.7
C6—C1—N1124.81 (18)C15—C14—H14120.7
C2—C1—N1115.58 (17)C16—C15—C14121.78 (18)
C3—C2—C1120.96 (19)C16—C15—N4119.32 (17)
C3—C2—H2119.5C14—C15—N4118.90 (17)
C1—C2—H2119.5C15—C16—C17119.87 (19)
C2—C3—C4118.36 (19)C15—C16—H16120.1
C2—C3—H3120.8C17—C16—H16120.1
C4—C3—H3120.8C16—C17—C12119.32 (18)
C5—C4—C3121.68 (18)C16—C17—H17120.3
C5—C4—N2119.43 (18)C12—C17—H17120.3
C3—C4—N2118.89 (18)O6—C18—N3113.71 (17)
C4—C5—C6120.01 (19)O6—C18—S2125.43 (14)
C4—C5—H5120N3—C18—S2120.85 (15)
C6—C5—H5120C20—C19—H19A109.5
C5—C6—C1119.41 (19)C20—C19—H19B109.5
C5—C6—H6120.3H19A—C19—H19B109.5
C1—C6—H6120.3C20—C19—H19C109.5
O3—C7—N1113.22 (17)H19A—C19—H19C109.5
O3—C7—S1125.47 (15)H19B—C19—H19C109.5
N1—C7—S1121.30 (15)O6—C20—C19105.04 (15)
C9—C8—H8A109.5O6—C20—C21108.67 (15)
C9—C8—H8B109.5C19—C20—C21114.00 (18)
H8A—C8—H8B109.5O6—C20—H20109.7
C9—C8—H8C109.5C19—C20—H20109.7
H8A—C8—H8C109.5C21—C20—H20109.7
H8B—C8—H8C109.5C20—C21—C22111.86 (18)
O3—C9—C8108.78 (18)C20—C21—H21A109.2
O3—C9—C10103.89 (16)C22—C21—H21A109.2
C8—C9—C10115.33 (17)C20—C21—H21B109.2
O3—C9—H9109.5C22—C21—H21B109.2
C8—C9—H9109.5H21A—C21—H21B107.9
C10—C9—H9109.5C21—C22—H22A109.5
C9—C10—C11113.06 (18)C21—C22—H22B109.5
C9—C10—H10A109H22A—C22—H22B109.5
C11—C10—H10A109C21—C22—H22C109.5
C9—C10—H10B109H22A—C22—H22C109.5
C11—C10—H10B109H22B—C22—H22C109.5
H10A—C10—H10B107.8C7—N1—C1131.41 (18)
C10—C11—H11A109.5C7—N1—H1N112.9 (18)
C10—C11—H11B109.5C1—N1—H1N115.7 (18)
H11A—C11—H11B109.5O2—N2—O1123.36 (19)
C10—C11—H11C109.5O2—N2—C4118.18 (18)
H11A—C11—H11C109.5O1—N2—C4118.46 (18)
H11B—C11—H11C109.5C18—N3—C12130.92 (18)
C17—C12—C13119.81 (17)C18—N3—H3N114.0 (16)
C17—C12—N3124.28 (18)C12—N3—H3N115.0 (16)
C13—C12—N3115.89 (17)O4—N4—O5123.50 (17)
C14—C13—C12120.70 (18)O4—N4—C15118.46 (17)
C14—C13—H13119.6O5—N4—C15118.04 (16)
C12—C13—H13119.6C7—O3—C9121.03 (16)
C13—C14—C15118.51 (18)C18—O6—C20119.80 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S20.80 (2)2.62 (2)3.3762 (19)159 (2)
N3—H3N···S10.85 (2)2.57 (2)3.4095 (18)166 (2)
C2—H2···S20.952.873.592 (2)134
C13—H13···S10.952.813.611 (2)142
C5—H5···O2i0.952.533.203 (3)128
Symmetry code: (i) x, y1/2, z+2.
(S)-2-Butyl N-(4-methoxyphenyl)thiocarbamate (II) top
Crystal data top
C12H17NO2SF(000) = 512
Mr = 239.32Dx = 1.249 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 21109 reflections
a = 6.6973 (5) Åθ = 1.9–30.8°
b = 21.2076 (17) ŵ = 0.24 mm1
c = 9.1899 (7) ÅT = 100 K
β = 102.868 (5)°Needle, colorless
V = 1272.49 (17) Å30.6 × 0.48 × 0.2 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
7694 independent reflections
Radiation source: sealed x-ray tube5666 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ or ω oscillation scansθmax = 30.8°, θmin = 1.9°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 99
Tmin = 0.657, Tmax = 0.745k = 3030
21043 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.037P)2 + 0.3946P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
7694 reflectionsΔρmax = 0.51 e Å3
368 parametersΔρmin = 0.42 e Å3
293 restraintsAbsolute structure: Flack x determined using 2891 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
0 constraintsAbsolute structure parameter: 0.03 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Crystals were mounted on a CryoloopTM (0.2–0.3mm, Hampton Research) with Paratone (R) oil. Between 7 to 12 data sets were collected to cover full Ewald spheres to a resolution of better than 0.75 Å. Crystals were held at 100 K with a Cryostream cooler, mounted to a Bruker APEXII single crystal X-ray diffractometer, Mo radiation (Bruker 2012), equipped with a fine-focus X-ray tube, Miracol X-ray optical collimator, and CCD detector. Crystal-to-detector distance was 40 mm and the exposure times were between 20 to 120 seconds per frame for all sets, pending on sample size. The scan widths were 0.5°. Crystal data, data collection, and structure refinement details are summarized in Table 5. The data were integrated and scaled using SAINT, SADABS within the APEX2 software package by Bruker (2012). Data work-up was done with SAINT (Bruker, 2012). Structures were solved with SHELXS (Sheldrick, 2008), and refined with SHELXL (Sheldrick 2015).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3234 (5)0.72968 (17)0.0597 (4)0.0242 (8)
C20.2356 (5)0.72153 (15)0.0890 (4)0.0245 (7)
H20.0946090.7109730.1194930.029*
C30.3544 (6)0.72883 (15)0.1957 (4)0.0233 (7)
H30.2951130.7228860.2986810.028*
C40.5579 (5)0.74471 (18)0.1494 (4)0.0269 (7)
C50.6459 (5)0.7519 (2)0.0015 (4)0.0333 (8)
H50.7871730.7619730.0328260.04*
C60.5286 (5)0.7444 (2)0.1060 (4)0.0340 (8)
H60.588490.7493940.2091830.041*
S10.02973 (14)0.74842 (5)0.39257 (10)0.0343 (2)
C70.1630 (5)0.76439 (17)0.2634 (4)0.0278 (8)
O10.2409 (4)0.81978 (12)0.2408 (3)0.0355 (6)
C80.444 (2)0.9025 (7)0.378 (3)0.041 (2)0.444 (4)
H8A0.5236780.8686680.4363540.061*0.444 (4)
H8B0.4453170.9397580.4412780.061*0.444 (4)
H8C0.5045980.9132420.2933990.061*0.444 (4)
C90.229 (2)0.8810 (7)0.321 (2)0.034 (2)0.444 (4)
H9A0.1652510.8730170.4083060.041*0.444 (4)
C100.1038 (14)0.9302 (4)0.2216 (12)0.0382 (19)0.444 (4)
H10A0.0936090.9681450.2821450.046*0.444 (4)
H10B0.1778130.9423140.1439120.046*0.444 (4)
C110.1086 (17)0.9096 (6)0.1463 (15)0.057 (3)0.444 (4)
H11A0.1006170.8749810.0772580.086*0.444 (4)
H11B0.1824270.9451550.0908350.086*0.444 (4)
H11C0.1813710.8953060.2217370.086*0.444 (4)
C8B0.393 (3)0.9101 (8)0.374 (3)0.041 (2)0.354 (4)
H8D0.3682050.9494430.4228350.061*0.354 (4)
H8E0.4266340.9196520.2778020.061*0.354 (4)
H8F0.5081140.8875780.4376390.061*0.354 (4)
C9B0.204 (3)0.8694 (9)0.349 (2)0.034 (3)0.354 (4)
H9B0.19390.8489550.4450960.041*0.354 (4)
C10B0.0088 (18)0.9043 (5)0.2850 (13)0.035 (2)0.354 (4)
H10C0.1084650.8756140.2825870.042*0.354 (4)
H10D0.0042490.9399510.3517960.042*0.354 (4)
C11B0.003 (2)0.9293 (5)0.1310 (13)0.039 (3)0.354 (4)
H11D0.1312260.9527410.0976320.058*0.354 (4)
H11E0.0011740.8941530.0625820.058*0.354 (4)
H11F0.1132750.9574980.1318930.058*0.354 (4)
C8C0.366 (4)0.9172 (10)0.333 (4)0.041 (2)0.202 (4)
H8G0.333530.9559480.3804650.061*0.202 (4)
H8H0.3957510.9274030.2355430.061*0.202 (4)
H8I0.4864290.8971020.3961540.061*0.202 (4)
C9C0.187 (4)0.8727 (15)0.311 (5)0.035 (3)0.202 (4)
H9C0.1544890.8614480.4085930.042*0.202 (4)
C10C0.005 (3)0.8952 (9)0.201 (3)0.036 (3)0.202 (4)
H10E0.0266090.8994420.100690.043*0.202 (4)
H10F0.1130850.8628470.1933780.043*0.202 (4)
C11C0.083 (3)0.9564 (8)0.243 (3)0.041 (4)0.202 (4)
H11G0.1979890.9703310.1639910.062*0.202 (4)
H11H0.0264270.987910.2574940.062*0.202 (4)
H11I0.1296240.9512190.3363950.062*0.202 (4)
C120.6008 (6)0.7513 (2)0.3988 (4)0.0370 (9)
H12A0.5555850.7079540.4247410.055*
H12B0.7038730.7633440.4544020.055*
H12C0.4833480.7798740.4244480.055*
C130.2448 (5)0.59142 (17)0.4748 (4)0.0265 (8)
C140.1540 (5)0.59857 (18)0.6239 (4)0.0275 (8)
H140.0118770.6077810.6528480.033*
C150.2673 (5)0.59251 (17)0.7318 (4)0.0269 (8)
H150.2041780.5975420.8344650.032*
C160.4754 (5)0.57890 (15)0.6877 (4)0.0224 (7)
C170.5672 (5)0.57305 (19)0.5371 (4)0.0272 (7)
H170.7098520.5647240.5075140.033*
C180.4541 (5)0.57916 (18)0.4312 (4)0.0265 (8)
H180.5177860.5750710.3283410.032*
C190.0790 (5)0.55447 (17)0.2769 (4)0.0264 (8)
C200.1078 (9)0.4170 (3)0.3247 (7)0.081 (2)
H20A0.2173030.4475060.3235260.122*
H20B0.1407730.3769050.2824010.122*
H20C0.0949170.4102830.4277020.122*
C210.0908 (7)0.44190 (19)0.2334 (6)0.0484 (12)
H210.0739270.4527270.1308720.058*
C220.2657 (10)0.3961 (2)0.2227 (6)0.0655 (17)
H22A0.2272190.3555340.1830680.079*
H22B0.2871270.388150.3242430.079*
C230.4637 (10)0.4183 (3)0.1252 (6)0.0695 (18)
H23A0.5069150.4573780.1662550.104*
H23B0.5690580.3859280.1216970.104*
H23C0.4444710.4261720.0241690.104*
C240.5110 (6)0.5739 (2)0.9395 (4)0.0342 (8)
H24A0.4014110.54250.9650420.051*
H24B0.6153160.5654950.9967580.051*
H24C0.4539490.6161420.963610.051*
N10.2009 (5)0.72059 (15)0.1684 (3)0.0284 (7)
H1N0.157 (6)0.684 (2)0.170 (5)0.034*
N20.1264 (5)0.59976 (16)0.3643 (3)0.0286 (7)
H2N0.084 (6)0.637 (2)0.354 (4)0.034*
O20.6872 (3)0.75506 (13)0.2435 (3)0.0330 (6)
O30.1487 (4)0.49852 (11)0.3056 (3)0.0317 (6)
O40.6018 (4)0.57030 (13)0.7839 (3)0.0295 (5)
S20.05382 (13)0.56943 (4)0.14638 (10)0.0289 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0204 (18)0.0272 (17)0.0252 (19)0.0030 (13)0.0060 (15)0.0071 (13)
C20.0197 (17)0.0241 (16)0.0278 (18)0.0014 (13)0.0014 (14)0.0046 (13)
C30.0241 (18)0.0236 (16)0.0215 (17)0.0011 (13)0.0034 (14)0.0012 (13)
C40.0185 (16)0.0309 (17)0.0314 (18)0.0028 (14)0.0058 (15)0.0042 (16)
C50.0150 (16)0.045 (2)0.037 (2)0.0016 (16)0.0006 (15)0.0153 (19)
C60.0239 (18)0.049 (2)0.0251 (17)0.0073 (18)0.0022 (15)0.0143 (18)
S10.0292 (5)0.0490 (5)0.0236 (4)0.0062 (4)0.0037 (4)0.0097 (4)
C70.0172 (16)0.039 (2)0.0231 (17)0.0055 (14)0.0038 (14)0.0080 (14)
O10.0320 (14)0.0382 (14)0.0362 (15)0.0014 (11)0.0073 (12)0.0150 (12)
C80.046 (6)0.027 (4)0.052 (4)0.002 (4)0.018 (5)0.001 (3)
C90.040 (5)0.036 (5)0.030 (5)0.001 (4)0.016 (4)0.009 (4)
C100.042 (4)0.031 (4)0.043 (4)0.001 (3)0.015 (4)0.005 (3)
C110.040 (6)0.052 (6)0.076 (7)0.000 (5)0.006 (6)0.012 (6)
C8B0.046 (6)0.027 (4)0.052 (4)0.002 (4)0.018 (5)0.001 (3)
C9B0.038 (5)0.030 (5)0.036 (6)0.005 (4)0.009 (5)0.011 (4)
C10B0.042 (5)0.029 (4)0.036 (5)0.002 (4)0.013 (4)0.005 (4)
C11B0.045 (7)0.028 (5)0.042 (6)0.001 (5)0.009 (6)0.008 (5)
C8C0.046 (6)0.027 (4)0.052 (4)0.002 (4)0.018 (5)0.001 (3)
C9C0.040 (6)0.032 (5)0.036 (6)0.001 (5)0.015 (5)0.006 (5)
C10C0.041 (6)0.032 (6)0.037 (6)0.004 (5)0.015 (6)0.003 (5)
C11C0.046 (9)0.024 (7)0.057 (9)0.002 (7)0.019 (8)0.004 (7)
C120.032 (2)0.042 (2)0.039 (2)0.0034 (19)0.0139 (18)0.0048 (19)
C130.0198 (18)0.038 (2)0.0214 (17)0.0015 (14)0.0032 (15)0.0062 (14)
C140.0148 (16)0.044 (2)0.0235 (18)0.0006 (15)0.0032 (14)0.0062 (15)
C150.0209 (18)0.0382 (19)0.0199 (17)0.0017 (14)0.0005 (14)0.0058 (14)
C160.0208 (16)0.0229 (17)0.0259 (16)0.0030 (13)0.0105 (14)0.0036 (14)
C170.0145 (15)0.0330 (17)0.0331 (18)0.0001 (15)0.0034 (14)0.0046 (17)
C180.0202 (17)0.036 (2)0.0225 (16)0.0008 (14)0.0025 (14)0.0049 (15)
C190.0166 (16)0.043 (2)0.0185 (16)0.0067 (14)0.0013 (13)0.0011 (14)
C200.080 (4)0.071 (4)0.109 (5)0.046 (3)0.058 (4)0.041 (4)
C210.070 (3)0.031 (2)0.057 (3)0.013 (2)0.041 (3)0.0039 (19)
C220.121 (5)0.023 (2)0.070 (3)0.001 (2)0.060 (4)0.002 (2)
C230.100 (5)0.047 (3)0.073 (4)0.036 (3)0.044 (4)0.017 (3)
C240.036 (2)0.042 (2)0.0289 (18)0.0073 (19)0.0168 (17)0.0025 (18)
N10.0259 (17)0.0364 (17)0.0223 (15)0.0022 (13)0.0041 (13)0.0085 (13)
N20.0248 (16)0.0391 (17)0.0242 (16)0.0037 (13)0.0100 (14)0.0074 (13)
O20.0199 (12)0.0426 (15)0.0380 (14)0.0018 (11)0.0099 (11)0.0088 (13)
O30.0351 (15)0.0343 (14)0.0300 (14)0.0062 (11)0.0163 (12)0.0007 (11)
O40.0233 (12)0.0393 (13)0.0291 (12)0.0005 (12)0.0128 (10)0.0018 (12)
S20.0233 (4)0.0415 (5)0.0231 (4)0.0021 (4)0.0079 (3)0.0047 (4)
Geometric parameters (Å, º) top
C1—C21.373 (5)C9C—C10C1.52 (2)
C1—C61.380 (5)C9C—H9C1
C1—N11.440 (4)C10C—C11C1.486 (18)
C2—C31.402 (5)C10C—H10E0.99
C2—H20.95C10C—H10F0.99
C3—C41.376 (5)C11C—H11G0.98
C3—H30.95C11C—H11H0.98
C4—O21.371 (4)C11C—H11I0.98
C4—C51.390 (5)C12—O21.417 (4)
C5—C61.378 (5)C12—H12A0.98
C5—H50.95C12—H12B0.98
C6—H60.95C12—H12C0.98
S1—C71.671 (4)C13—C141.378 (5)
C7—O11.320 (4)C13—C181.394 (5)
C7—N11.337 (4)C13—N21.432 (4)
O1—C9C1.38 (4)C14—C151.382 (5)
O1—C9B1.50 (2)C14—H140.95
O1—C91.51 (2)C15—C161.392 (5)
C8—C91.490 (13)C15—H150.95
C8—H8A0.98C16—O41.365 (4)
C8—H8B0.98C16—C171.389 (5)
C8—H8C0.98C17—C181.366 (5)
C9—C101.512 (14)C17—H170.95
C9—H9A1C18—H180.95
C10—C111.501 (13)C19—O31.323 (4)
C10—H10A0.99C19—N21.335 (4)
C10—H10B0.99C19—S21.674 (4)
C11—H11A0.98C20—C211.502 (7)
C11—H11B0.98C20—H20A0.98
C11—H11C0.98C20—H20B0.98
C8B—C9B1.508 (16)C20—H20C0.98
C8B—H8D0.98C21—O31.466 (5)
C8B—H8E0.98C21—C221.508 (7)
C8B—H8F0.98C21—H211
C9B—C10B1.504 (16)C22—C231.501 (8)
C9B—H9B1C22—H22A0.99
C10B—C11B1.497 (13)C22—H22B0.99
C10B—H10C0.99C23—H23A0.98
C10B—H10D0.99C23—H23B0.98
C11B—H11D0.98C23—H23C0.98
C11B—H11E0.98C24—O41.426 (4)
C11B—H11F0.98C24—H24A0.98
C8C—C9C1.51 (2)C24—H24B0.98
C8C—H8G0.98C24—H24C0.98
C8C—H8H0.98N1—H1N0.82 (4)
C8C—H8I0.98N2—H2N0.86 (4)
C2—C1—C6120.8 (3)O1—C9C—H9C110.8
C2—C1—N1119.3 (3)C8C—C9C—H9C110.8
C6—C1—N1119.9 (3)C10C—C9C—H9C110.8
C1—C2—C3119.9 (3)C11C—C10C—C9C113 (2)
C1—C2—H2120.1C11C—C10C—H10E109
C3—C2—H2120.1C9C—C10C—H10E109
C4—C3—C2119.2 (3)C11C—C10C—H10F109
C4—C3—H3120.4C9C—C10C—H10F109
C2—C3—H3120.4H10E—C10C—H10F107.8
O2—C4—C3124.5 (3)C10C—C11C—H11G109.5
O2—C4—C5115.2 (3)C10C—C11C—H11H109.5
C3—C4—C5120.4 (3)H11G—C11C—H11H109.5
C6—C5—C4120.1 (3)C10C—C11C—H11I109.5
C6—C5—H5119.9H11G—C11C—H11I109.5
C4—C5—H5119.9H11H—C11C—H11I109.5
C5—C6—C1119.6 (3)O2—C12—H12A109.5
C5—C6—H6120.2O2—C12—H12B109.5
C1—C6—H6120.2H12A—C12—H12B109.5
O1—C7—N1112.1 (3)O2—C12—H12C109.5
O1—C7—S1125.7 (3)H12A—C12—H12C109.5
N1—C7—S1122.1 (3)H12B—C12—H12C109.5
C7—O1—C9C119.8 (15)C14—C13—C18120.0 (3)
C7—O1—C9B112.9 (7)C14—C13—N2120.0 (3)
C7—O1—C9128.6 (7)C18—C13—N2119.9 (3)
C9—C8—H8A109.5C13—C14—C15120.8 (3)
C9—C8—H8B109.5C13—C14—H14119.6
H8A—C8—H8B109.5C15—C14—H14119.6
C9—C8—H8C109.5C14—C15—C16118.9 (3)
H8A—C8—H8C109.5C14—C15—H15120.5
H8B—C8—H8C109.5C16—C15—H15120.5
C8—C9—O1106.4 (12)O4—C16—C17115.6 (3)
C8—C9—C10111.3 (12)O4—C16—C15124.3 (3)
O1—C9—C10112.3 (12)C17—C16—C15120.1 (3)
C8—C9—H9A108.9C18—C17—C16120.6 (3)
O1—C9—H9A108.9C18—C17—H17119.7
C10—C9—H9A108.9C16—C17—H17119.7
C11—C10—C9114.8 (10)C17—C18—C13119.6 (3)
C11—C10—H10A108.6C17—C18—H18120.2
C9—C10—H10A108.6C13—C18—H18120.2
C11—C10—H10B108.6O3—C19—N2112.5 (3)
C9—C10—H10B108.6O3—C19—S2125.5 (3)
H10A—C10—H10B107.5N2—C19—S2122.0 (3)
C10—C11—H11A109.5C21—C20—H20A109.5
C10—C11—H11B109.5C21—C20—H20B109.5
H11A—C11—H11B109.5H20A—C20—H20B109.5
C10—C11—H11C109.5C21—C20—H20C109.5
H11A—C11—H11C109.5H20A—C20—H20C109.5
H11B—C11—H11C109.5H20B—C20—H20C109.5
C9B—C8B—H8D109.5O3—C21—C20109.0 (4)
C9B—C8B—H8E109.5O3—C21—C22106.1 (3)
H8D—C8B—H8E109.5C20—C21—C22112.8 (4)
C9B—C8B—H8F109.5O3—C21—H21109.6
H8D—C8B—H8F109.5C20—C21—H21109.6
H8E—C8B—H8F109.5C22—C21—H21109.6
C10B—C9B—O1110.0 (12)C23—C22—C21114.0 (4)
C10B—C9B—C8B114.0 (14)C23—C22—H22A108.8
O1—C9B—C8B104.2 (14)C21—C22—H22A108.8
C10B—C9B—H9B109.5C23—C22—H22B108.8
O1—C9B—H9B109.5C21—C22—H22B108.8
C8B—C9B—H9B109.5H22A—C22—H22B107.6
C11B—C10B—C9B113.7 (11)C22—C23—H23A109.5
C11B—C10B—H10C108.8C22—C23—H23B109.5
C9B—C10B—H10C108.8H23A—C23—H23B109.5
C11B—C10B—H10D108.8C22—C23—H23C109.5
C9B—C10B—H10D108.8H23A—C23—H23C109.5
H10C—C10B—H10D107.7H23B—C23—H23C109.5
C10B—C11B—H11D109.5O4—C24—H24A109.5
C10B—C11B—H11E109.5O4—C24—H24B109.5
H11D—C11B—H11E109.5H24A—C24—H24B109.5
C10B—C11B—H11F109.5O4—C24—H24C109.5
H11D—C11B—H11F109.5H24A—C24—H24C109.5
H11E—C11B—H11F109.5H24B—C24—H24C109.5
C9C—C8C—H8G109.5C7—N1—C1125.5 (3)
C9C—C8C—H8H109.5C7—N1—H1N121 (3)
H8G—C8C—H8H109.5C1—N1—H1N113 (3)
C9C—C8C—H8I109.5C19—N2—C13125.6 (3)
H8G—C8C—H8I109.5C19—N2—H2N119 (3)
H8H—C8C—H8I109.5C13—N2—H2N116 (3)
O1—C9C—C8C107 (3)C4—O2—C12116.9 (3)
O1—C9C—C10C102 (2)C19—O3—C21120.2 (3)
C8C—C9C—C10C115 (2)C16—O4—C24117.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S20.82 (4)2.53 (4)3.347 (3)171 (4)
N2—H2N···S10.86 (4)2.47 (4)3.314 (3)165 (4)
C12—H12B···S1i0.982.863.793 (4)158
C24—H24B···S2ii0.982.863.819 (4)167
C18—H18···S2iii0.952.983.730 (4)136
C10B—H10C···S10.992.963.445 (11)112
Symmetry codes: (i) x+1, y, z1; (ii) x1, y, z+1; (iii) x1, y, z.
(S)-2-Butyl N-(4-fluorophenyl)thiocarbamate (III) top
Crystal data top
C11H14FNOSF(000) = 480
Mr = 227.29Dx = 1.314 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1312 reflections
a = 6.9723 (13) Åθ = 2.7–18.9°
b = 20.166 (3) ŵ = 0.27 mm1
c = 8.2818 (14) ÅT = 100 K
β = 99.403 (13)°Prism, colourless
V = 1148.8 (3) Å30.5 × 0.1 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
5263 independent reflections
Radiation source: sealed x-ray tube2448 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.171
φ or ω oscillation scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 99
Tmin = 0.863, Tmax = 1k = 2626
10466 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0402P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
5263 reflectionsΔρmax = 0.45 e Å3
257 parametersΔρmin = 0.52 e Å3
2 restraintsAbsolute structure: Flack x determined using 2891 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
0 constraintsAbsolute structure parameter: 0.17 (13)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Crystals were mounted on a CryoloopTM (0.2–0.3mm, Hampton Research) with Paratone (R) oil. Between 7 to 12 data sets were collected to cover full Ewald spheres to a resolution of better than 0.75 Å. Crystals were held at 100 K with a Cryostream cooler, mounted to a Bruker APEXII single crystal X-ray diffractometer, Mo radiation (Bruker 2012), equipped with a fine-focus X-ray tube, Miracol X-ray optical collimator, and CCD detector. Crystal-to-detector distance was 40 mm and the exposure times were between 20 to 120 seconds per frame for all sets, pending on sample size. The scan widths were 0.5°. Crystal data, data collection, and structure refinement details are summarized in Table 5. The data were integrated and scaled using SAINT, SADABS within the APEX2 software package by Bruker (2012). Data work-up was done with SAINT (Bruker, 2012). Structures were solved with SHELXS (Sheldrick, 2008), and refined with SHELXL (Sheldrick 2015).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8966 (7)0.6722 (3)0.5978 (6)0.021 (2)
C21.0905 (8)0.6846 (3)0.6605 (5)0.023 (2)
H21.1308290.6886840.7753140.028*
C31.2256 (6)0.6911 (3)0.5552 (7)0.024 (2)
H31.358160.6995720.5980670.029*
C41.1666 (7)0.6852 (4)0.3872 (6)0.023 (2)
C50.9726 (8)0.6727 (3)0.3245 (5)0.022 (2)
H50.9323640.668690.2096950.027*
C60.8376 (6)0.6663 (3)0.4298 (7)0.022 (2)
H60.705030.6578010.3869390.027*
C70.7286 (12)0.6991 (4)0.8282 (12)0.019 (2)
C81.0523 (12)0.8141 (4)1.0396 (12)0.032 (3)
H8A1.1165050.7720141.0738640.048*
H8B1.0656960.844521.1331210.048*
H8C1.1129710.8338230.9522210.048*
C90.8394 (12)0.8018 (4)0.9774 (11)0.019 (2)
H90.7755240.7822241.066030.023*
C100.7329 (12)0.8630 (4)0.9100 (11)0.025 (2)
H10A0.8014290.8818950.8248640.03*
H10B0.7402650.8960990.9990750.03*
C110.5181 (11)0.8534 (4)0.8352 (12)0.034 (3)
H11A0.508970.8261470.7362780.051*
H11B0.4581060.8967050.806980.051*
H11C0.4501370.8311930.9147350.051*
C120.1978 (7)0.5306 (3)0.9155 (6)0.019 (2)
C130.0041 (8)0.5172 (3)0.8542 (5)0.023 (2)
H130.0365790.5119750.7397280.027*
C140.1301 (6)0.5113 (3)0.9604 (7)0.023 (2)
H140.2625220.5020420.9184840.028*
C150.0706 (8)0.5188 (3)1.1279 (7)0.023 (2)
C160.1231 (9)0.5323 (3)1.1892 (5)0.025 (2)
H160.1637730.5375081.3037330.029*
C170.2573 (6)0.5382 (3)1.0831 (7)0.021 (2)
H170.389720.5474411.1249780.026*
C180.3719 (11)0.5013 (4)0.6901 (11)0.014 (2)
C190.4944 (12)0.3531 (4)0.6560 (11)0.028 (2)
H19A0.6053810.3834570.6786780.042*
H19B0.52440.3175530.5834970.042*
H19C0.4681790.3339680.7589620.042*
C200.3174 (12)0.3908 (4)0.5742 (11)0.023 (2)
H200.3443480.4105630.4694540.028*
C210.1363 (12)0.3495 (4)0.5410 (11)0.026 (2)
H21A0.1125720.3301730.6458490.031*
H21B0.1600710.3121940.4689580.031*
C220.0480 (12)0.3853 (4)0.4618 (12)0.031 (3)
H22A0.0805030.4199310.5359260.047*
H22B0.1554150.3535110.4401150.047*
H22C0.02650.405530.3586970.047*
N10.7567 (10)0.6619 (4)0.7012 (9)0.0215 (19)
N20.3377 (10)0.5404 (3)0.8108 (9)0.0188 (18)
O10.8371 (7)0.7537 (3)0.8418 (7)0.0201 (14)
O20.2729 (8)0.4444 (3)0.6850 (7)0.0220 (15)
F11.2980 (7)0.6908 (2)0.2885 (7)0.0307 (14)
F20.2026 (7)0.5147 (3)1.2271 (7)0.0310 (13)
S10.5732 (3)0.67758 (11)0.9542 (3)0.0232 (6)
S20.5266 (3)0.52266 (12)0.5636 (3)0.0237 (6)
H1N0.682 (11)0.628 (3)0.681 (10)0.028*
H2N0.384 (10)0.580 (3)0.832 (10)0.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (5)0.017 (5)0.020 (5)0.000 (4)0.005 (4)0.003 (5)
C20.022 (5)0.024 (5)0.024 (5)0.005 (4)0.004 (4)0.006 (5)
C30.017 (5)0.028 (6)0.026 (6)0.002 (4)0.001 (4)0.002 (5)
C40.020 (5)0.020 (5)0.032 (6)0.003 (4)0.012 (5)0.001 (5)
C50.019 (5)0.016 (5)0.032 (6)0.002 (4)0.005 (4)0.005 (5)
C60.015 (5)0.019 (5)0.031 (6)0.003 (4)0.001 (4)0.004 (5)
C70.014 (5)0.018 (5)0.024 (6)0.001 (4)0.000 (4)0.001 (4)
C80.021 (6)0.031 (6)0.039 (7)0.003 (4)0.007 (5)0.001 (5)
C90.021 (5)0.015 (5)0.022 (5)0.004 (4)0.004 (4)0.005 (4)
C100.027 (5)0.019 (5)0.028 (6)0.005 (4)0.003 (4)0.005 (4)
C110.014 (5)0.038 (6)0.046 (7)0.011 (4)0.001 (5)0.006 (5)
C120.015 (5)0.017 (5)0.027 (5)0.007 (4)0.006 (4)0.004 (5)
C130.010 (5)0.019 (5)0.038 (6)0.007 (4)0.000 (4)0.003 (5)
C140.022 (5)0.020 (6)0.027 (6)0.001 (4)0.000 (5)0.000 (5)
C150.024 (6)0.025 (6)0.023 (6)0.000 (5)0.014 (5)0.010 (5)
C160.034 (6)0.018 (5)0.020 (5)0.003 (4)0.001 (5)0.010 (4)
C170.017 (5)0.022 (5)0.025 (5)0.001 (4)0.000 (4)0.003 (4)
C180.014 (5)0.019 (5)0.010 (5)0.002 (4)0.002 (4)0.002 (4)
C190.024 (6)0.028 (6)0.032 (6)0.012 (4)0.004 (5)0.003 (5)
C200.024 (5)0.023 (5)0.022 (6)0.004 (4)0.006 (4)0.008 (4)
C210.026 (5)0.025 (5)0.028 (6)0.008 (4)0.009 (4)0.005 (5)
C220.022 (6)0.031 (6)0.038 (7)0.001 (4)0.001 (5)0.002 (5)
N10.018 (5)0.023 (5)0.026 (5)0.007 (3)0.011 (4)0.006 (4)
N20.015 (4)0.016 (4)0.027 (5)0.003 (3)0.010 (4)0.005 (4)
O10.017 (3)0.017 (3)0.026 (4)0.007 (2)0.004 (3)0.000 (3)
O20.030 (4)0.013 (3)0.023 (4)0.000 (3)0.003 (3)0.007 (3)
F10.026 (3)0.039 (4)0.031 (3)0.002 (3)0.016 (2)0.003 (3)
F20.028 (3)0.035 (3)0.033 (3)0.001 (3)0.012 (2)0.002 (3)
S10.0187 (13)0.0246 (13)0.0264 (14)0.0067 (10)0.0038 (10)0.0008 (12)
S20.0196 (13)0.0255 (13)0.0264 (15)0.0052 (10)0.0046 (10)0.0018 (12)
Geometric parameters (Å, º) top
C1—C21.39C12—C171.39
C1—C61.39C12—N21.421 (8)
C1—N11.414 (8)C13—C141.39
C2—C31.39C13—H130.95
C2—H20.95C14—C151.39
C3—C41.39C14—H140.95
C3—H30.95C15—F21.333 (6)
C4—F11.329 (6)C15—C161.39
C4—C51.39C16—C171.39
C5—C61.39C16—H160.95
C5—H50.95C17—H170.95
C6—H60.95C18—N21.325 (10)
C7—O11.329 (9)C18—O21.335 (9)
C7—N11.332 (11)C18—S21.678 (9)
C7—S11.680 (9)C19—C201.512 (10)
C8—C91.510 (10)C19—H19A0.98
C8—H8A0.98C19—H19B0.98
C8—H8B0.98C19—H19C0.98
C8—H8C0.98C20—O21.483 (10)
C9—O11.483 (10)C20—C211.501 (11)
C9—C101.500 (11)C20—H201
C9—H91C21—C221.526 (11)
C10—C111.536 (10)C21—H21A0.99
C10—H10A0.99C21—H21B0.99
C10—H10B0.99C22—H22A0.98
C11—H11A0.98C22—H22B0.98
C11—H11B0.98C22—H22C0.98
C11—H11C0.98N1—H1N0.86 (5)
C12—C131.39N2—H2N0.86 (5)
C2—C1—C6120C14—C13—H13120
C2—C1—N1121.7 (5)C12—C13—H13120
C6—C1—N1118.2 (5)C13—C14—C15120
C1—C2—C3120C13—C14—H14120
C1—C2—H2120C15—C14—H14120
C3—C2—H2120F2—C15—C16121.0 (5)
C4—C3—C2120F2—C15—C14119.0 (5)
C4—C3—H3120C16—C15—C14120
C2—C3—H3120C15—C16—C17120
F1—C4—C5120.8 (5)C15—C16—H16120
F1—C4—C3119.2 (5)C17—C16—H16120
C5—C4—C3120C16—C17—C12120
C6—C5—C4120C16—C17—H17120
C6—C5—H5120C12—C17—H17120
C4—C5—H5120N2—C18—O2112.3 (7)
C5—C6—C1120N2—C18—S2122.1 (6)
C5—C6—H6120O2—C18—S2125.6 (7)
C1—C6—H6120C20—C19—H19A109.5
O1—C7—N1112.2 (8)C20—C19—H19B109.5
O1—C7—S1125.2 (7)H19A—C19—H19B109.5
N1—C7—S1122.5 (7)C20—C19—H19C109.5
C9—C8—H8A109.5H19A—C19—H19C109.5
C9—C8—H8B109.5H19B—C19—H19C109.5
H8A—C8—H8B109.5O2—C20—C21105.3 (7)
C9—C8—H8C109.5O2—C20—C19109.1 (7)
H8A—C8—H8C109.5C21—C20—C19113.8 (8)
H8B—C8—H8C109.5O2—C20—H20109.5
O1—C9—C10108.2 (7)C21—C20—H20109.5
O1—C9—C8104.7 (7)C19—C20—H20109.5
C10—C9—C8113.0 (7)C20—C21—C22116.1 (7)
O1—C9—H9110.2C20—C21—H21A108.3
C10—C9—H9110.2C22—C21—H21A108.3
C8—C9—H9110.2C20—C21—H21B108.3
C9—C10—C11115.9 (7)C22—C21—H21B108.3
C9—C10—H10A108.3H21A—C21—H21B107.4
C11—C10—H10A108.3C21—C22—H22A109.5
C9—C10—H10B108.3C21—C22—H22B109.5
C11—C10—H10B108.3H22A—C22—H22B109.5
H10A—C10—H10B107.4C21—C22—H22C109.5
C10—C11—H11A109.5H22A—C22—H22C109.5
C10—C11—H11B109.5H22B—C22—H22C109.5
H11A—C11—H11B109.5C7—N1—C1126.9 (7)
C10—C11—H11C109.5C7—N1—H1N116 (6)
H11A—C11—H11C109.5C1—N1—H1N117 (6)
H11B—C11—H11C109.5C18—N2—C12127.2 (7)
C13—C12—C17120C18—N2—H2N126 (6)
C13—C12—N2121.8 (5)C12—N2—H2N106 (6)
C17—C12—N2118.1 (5)C7—O1—C9122.8 (7)
C14—C13—C12120C18—O2—C20119.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S20.86 (5)2.51 (5)3.341 (8)164 (8)
N2—H2N···S10.86 (5)2.50 (5)3.336 (7)165 (7)
C8—H8A···F1i0.982.593.494 (10)154
Symmetry code: (i) x, y, z+1.
(S)-2-Butyl N-(4-chlorophenyl)thiocarbamate (IV) top
Crystal data top
C11H14ClNOSF(000) = 512
Mr = 243.74Dx = 1.337 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9275 reflections
a = 15.4173 (15) Åθ = 2.6–33.1°
b = 5.0170 (5) ŵ = 0.46 mm1
c = 16.2502 (15) ÅT = 100 K
β = 105.592 (5)°Prsm, colourless
V = 1210.7 (2) Å30.6 × 0.12 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
9292 independent reflections
Radiation source: sealed x-ray tube8469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ or ω oscillation scansθmax = 33.3°, θmin = 2.1°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 2323
Tmin = 0.954, Tmax = 1k = 77
46534 measured reflectionsl = 2425
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0312P)2 + 0.1769P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
9292 reflectionsΔρmax = 0.36 e Å3
281 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack x determined using 2891 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
0 constraintsAbsolute structure parameter: 0.022 (14)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Crystals were mounted on a CryoloopTM (0.2–0.3mm, Hampton Research) with Paratone (R) oil. Between 7 to 12 data sets were collected to cover full Ewald spheres to a resolution of better than 0.75 Å. Crystals were held at 100 K with a Cryostream cooler, mounted to a Bruker APEXII single crystal X-ray diffractometer, Mo radiation (Bruker 2012), equipped with a fine-focus X-ray tube, Miracol X-ray optical collimator, and CCD detector. Crystal-to-detector distance was 40 mm and the exposure times were between 20 to 120 seconds per frame for all sets, pending on sample size. The scan widths were 0.5°. Crystal data, data collection, and structure refinement details are summarized in Table 5. The data were integrated and scaled using SAINT, SADABS within the APEX2 software package by Bruker (2012). Data work-up was done with SAINT (Bruker, 2012). Structures were solved with SHELXS (Sheldrick, 2008), and refined with SHELXL (Sheldrick 2015).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35185 (9)0.0662 (3)0.14953 (8)0.0139 (2)
C20.41945 (10)0.0839 (4)0.10745 (9)0.0190 (3)
H2A0.4675530.2067480.1265580.023*
C30.41621 (10)0.0787 (4)0.03751 (10)0.0192 (3)
H30.4619550.0669320.0084670.023*
C40.34615 (10)0.2577 (3)0.01033 (9)0.0166 (3)
C50.27962 (11)0.2816 (4)0.05240 (10)0.0205 (3)
H50.2324160.4075880.0337390.025*
C60.28265 (10)0.1197 (3)0.12206 (10)0.0187 (3)
H60.237290.1350390.1514380.022*
C70.40912 (9)0.3612 (3)0.27658 (9)0.0143 (3)
C80.58731 (11)0.2067 (4)0.41659 (10)0.0234 (3)
H8A0.5331020.1914690.4368360.035*
H8B0.637130.2747490.462810.035*
H8C0.603230.0309840.3987130.035*
C90.56953 (10)0.3964 (3)0.34164 (9)0.0152 (3)
H90.5552060.5773050.36030.018*
C100.64685 (10)0.4172 (3)0.30082 (10)0.0183 (3)
H10A0.6581950.2390340.2796540.022*
H10B0.7018190.4717550.3449030.022*
C110.62976 (12)0.6144 (4)0.22712 (11)0.0246 (3)
H11A0.5786750.5533230.1809040.037*
H11B0.683510.6270460.2060550.037*
H11C0.6160890.7900110.2469220.037*
C120.15284 (10)0.8652 (3)0.36586 (9)0.0139 (3)
C130.08213 (10)0.8722 (3)0.40427 (9)0.0177 (3)
H130.031960.7566070.3849760.021*
C140.08536 (10)1.0489 (4)0.47084 (9)0.0188 (3)
H140.0372641.0542280.4970950.023*
C150.15837 (10)1.2168 (3)0.49896 (9)0.0156 (3)
C160.22863 (10)1.2164 (3)0.46032 (10)0.0173 (3)
H160.2781131.3346680.4792340.021*
C170.22527 (9)1.0408 (3)0.39386 (9)0.0163 (3)
H170.2728091.039580.3668690.02*
C180.09692 (9)0.5412 (3)0.24559 (8)0.0143 (2)
C190.11540 (12)0.3508 (5)0.25809 (12)0.0303 (4)
H19A0.077210.2266430.2986340.045*
H19B0.1702390.258910.2262070.045*
H19C0.1316070.501610.2893280.045*
C200.06464 (10)0.4518 (4)0.19644 (10)0.0196 (3)
H200.0439380.2979520.167480.024*
C210.11786 (11)0.6453 (4)0.13017 (11)0.0285 (4)
H21A0.1338590.8027660.1597940.034*
H21B0.1746390.5585830.0983140.034*
C220.06701 (14)0.7390 (6)0.06654 (13)0.0423 (6)
H22A0.0111270.8278810.0974270.063*
H22B0.1046580.8642210.025960.063*
H22C0.0526770.585060.0354820.063*
N10.34513 (8)0.2393 (3)0.21636 (8)0.0161 (2)
H10.2928 (13)0.275 (5)0.2178 (12)0.019*
N20.15996 (8)0.6818 (3)0.30193 (8)0.0148 (2)
H20.2126 (13)0.652 (4)0.3009 (12)0.018*
O10.49217 (6)0.2959 (2)0.27480 (6)0.0150 (2)
O20.01363 (7)0.5970 (2)0.24906 (7)0.0169 (2)
S10.38309 (2)0.57287 (9)0.34614 (2)0.02056 (8)
S20.12456 (2)0.32279 (9)0.17890 (2)0.01850 (8)
Cl10.34068 (3)0.45232 (9)0.07979 (2)0.02263 (8)
Cl20.16375 (3)1.43009 (8)0.58491 (2)0.02094 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0125 (5)0.0154 (6)0.0131 (5)0.0004 (6)0.0022 (4)0.0009 (6)
C20.0149 (6)0.0245 (8)0.0182 (6)0.0054 (6)0.0053 (5)0.0064 (6)
C30.0157 (6)0.0250 (8)0.0178 (6)0.0024 (6)0.0059 (5)0.0054 (6)
C40.0165 (6)0.0171 (7)0.0147 (6)0.0016 (5)0.0017 (5)0.0034 (5)
C50.0186 (7)0.0201 (8)0.0231 (7)0.0055 (6)0.0063 (6)0.0069 (6)
C60.0166 (7)0.0210 (8)0.0202 (6)0.0041 (6)0.0075 (5)0.0038 (6)
C70.0133 (6)0.0161 (7)0.0135 (6)0.0012 (5)0.0037 (5)0.0010 (5)
C80.0242 (8)0.0261 (8)0.0168 (7)0.0033 (7)0.0002 (6)0.0043 (6)
C90.0127 (6)0.0160 (7)0.0147 (6)0.0015 (5)0.0001 (5)0.0016 (5)
C100.0143 (6)0.0180 (7)0.0216 (7)0.0024 (6)0.0032 (5)0.0014 (6)
C110.0266 (8)0.0219 (9)0.0266 (8)0.0034 (6)0.0092 (6)0.0035 (6)
C120.0137 (6)0.0148 (7)0.0124 (6)0.0009 (5)0.0023 (5)0.0007 (5)
C130.0151 (6)0.0216 (8)0.0176 (6)0.0042 (5)0.0061 (5)0.0040 (6)
C140.0168 (6)0.0228 (7)0.0181 (6)0.0011 (6)0.0070 (5)0.0046 (6)
C150.0175 (6)0.0149 (6)0.0135 (6)0.0021 (5)0.0024 (5)0.0015 (5)
C160.0152 (6)0.0175 (7)0.0185 (6)0.0023 (6)0.0031 (5)0.0029 (6)
C170.0141 (6)0.0180 (7)0.0175 (6)0.0015 (6)0.0053 (5)0.0018 (6)
C180.0134 (6)0.0161 (6)0.0129 (5)0.0006 (5)0.0028 (4)0.0004 (5)
C190.0210 (8)0.0366 (11)0.0354 (9)0.0074 (8)0.0112 (7)0.0048 (9)
C200.0119 (6)0.0239 (8)0.0218 (7)0.0025 (6)0.0023 (5)0.0080 (6)
C210.0180 (7)0.0377 (11)0.0254 (8)0.0058 (7)0.0017 (6)0.0054 (7)
C220.0366 (11)0.0611 (16)0.0255 (9)0.0153 (11)0.0020 (8)0.0125 (10)
N10.0107 (5)0.0209 (6)0.0167 (6)0.0008 (5)0.0037 (4)0.0051 (5)
N20.0107 (5)0.0181 (6)0.0161 (5)0.0008 (5)0.0044 (4)0.0038 (5)
O10.0113 (4)0.0179 (5)0.0146 (4)0.0005 (4)0.0017 (3)0.0031 (4)
O20.0109 (4)0.0210 (6)0.0179 (5)0.0004 (4)0.0025 (4)0.0059 (4)
S10.01572 (15)0.0266 (2)0.01970 (16)0.00029 (16)0.00542 (12)0.00983 (16)
S20.01356 (15)0.02352 (19)0.01815 (16)0.00004 (15)0.00376 (12)0.00788 (15)
Cl10.02137 (17)0.02587 (19)0.01964 (16)0.00053 (16)0.00377 (13)0.00968 (16)
Cl20.02176 (17)0.02132 (18)0.01908 (16)0.00135 (15)0.00432 (13)0.00738 (14)
Geometric parameters (Å, º) top
C1—C21.3945 (19)C12—C171.399 (2)
C1—C61.397 (2)C12—N21.4138 (19)
C1—N11.4160 (19)C13—C141.389 (2)
C2—C31.389 (2)C13—H130.95
C2—H2A0.95C14—C151.382 (2)
C3—C41.383 (2)C14—H140.95
C3—H30.95C15—C161.390 (2)
C4—C51.382 (2)C15—Cl21.7436 (16)
C4—Cl11.7432 (16)C16—C171.384 (2)
C5—C61.384 (2)C16—H160.95
C5—H50.95C17—H170.95
C6—H60.95C18—O21.3301 (17)
C7—O11.3296 (17)C18—N21.3425 (18)
C7—N11.3364 (19)C18—S21.6747 (16)
C7—S11.6763 (15)C19—C201.515 (2)
C8—C91.512 (2)C19—H19A0.98
C8—H8A0.98C19—H19B0.98
C8—H8B0.98C19—H19C0.98
C8—H8C0.98C20—O21.4708 (18)
C9—O11.4698 (17)C20—C211.517 (3)
C9—C101.516 (2)C20—H201
C9—H91C21—C221.530 (3)
C10—C111.521 (2)C21—H21A0.99
C10—H10A0.99C21—H21B0.99
C10—H10B0.99C22—H22A0.98
C11—H11A0.98C22—H22B0.98
C11—H11B0.98C22—H22C0.98
C11—H11C0.98N1—H10.83 (2)
C12—C131.395 (2)N2—H20.829 (19)
C2—C1—C6119.55 (14)C14—C13—H13120.1
C2—C1—N1123.74 (14)C12—C13—H13120.1
C6—C1—N1116.58 (12)C15—C14—C13120.14 (13)
C3—C2—C1119.78 (15)C15—C14—H14119.9
C3—C2—H2A120.1C13—C14—H14119.9
C1—C2—H2A120.1C14—C15—C16120.93 (14)
C4—C3—C2119.74 (14)C14—C15—Cl2119.89 (12)
C4—C3—H3120.1C16—C15—Cl2119.18 (12)
C2—C3—H3120.1C17—C16—C15118.89 (14)
C5—C4—C3121.20 (14)C17—C16—H16120.6
C5—C4—Cl1119.48 (12)C15—C16—H16120.6
C3—C4—Cl1119.31 (12)C16—C17—C12120.93 (13)
C4—C5—C6119.16 (15)C16—C17—H17119.5
C4—C5—H5120.4C12—C17—H17119.5
C6—C5—H5120.4O2—C18—N2112.99 (13)
C5—C6—C1120.55 (14)O2—C18—S2125.57 (11)
C5—C6—H6119.7N2—C18—S2121.44 (11)
C1—C6—H6119.7C20—C19—H19A109.5
O1—C7—N1113.38 (13)C20—C19—H19B109.5
O1—C7—S1125.26 (11)H19A—C19—H19B109.5
N1—C7—S1121.35 (11)C20—C19—H19C109.5
C9—C8—H8A109.5H19A—C19—H19C109.5
C9—C8—H8B109.5H19B—C19—H19C109.5
H8A—C8—H8B109.5O2—C20—C19105.68 (13)
C9—C8—H8C109.5O2—C20—C21107.36 (14)
H8A—C8—H8C109.5C19—C20—C21113.99 (14)
H8B—C8—H8C109.5O2—C20—H20109.9
O1—C9—C8108.35 (12)C19—C20—H20109.9
O1—C9—C10106.11 (11)C21—C20—H20109.9
C8—C9—C10113.72 (13)C20—C21—C22113.51 (15)
O1—C9—H9109.5C20—C21—H21A108.9
C8—C9—H9109.5C22—C21—H21A108.9
C10—C9—H9109.5C20—C21—H21B108.9
C9—C10—C11113.53 (13)C22—C21—H21B108.9
C9—C10—H10A108.9H21A—C21—H21B107.7
C11—C10—H10A108.9C21—C22—H22A109.5
C9—C10—H10B108.9C21—C22—H22B109.5
C11—C10—H10B108.9H22A—C22—H22B109.5
H10A—C10—H10B107.7C21—C22—H22C109.5
C10—C11—H11A109.5H22A—C22—H22C109.5
C10—C11—H11B109.5H22B—C22—H22C109.5
H11A—C11—H11B109.5C7—N1—C1130.59 (13)
C10—C11—H11C109.5C7—N1—H1114.2 (15)
H11A—C11—H11C109.5C1—N1—H1115.2 (15)
H11B—C11—H11C109.5C18—N2—C12131.16 (13)
C13—C12—C17119.34 (13)C18—N2—H2115.1 (14)
C13—C12—N2124.73 (14)C12—N2—H2113.7 (14)
C17—C12—N2115.86 (13)C7—O1—C9119.61 (11)
C14—C13—C12119.74 (14)C18—O2—C20121.44 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S20.83 (2)2.511 (19)3.3163 (13)163.0 (18)
N2—H2···S10.829 (19)2.563 (19)3.3645 (13)162.8 (17)
C6—H6···S20.952.993.5961 (17)123
C17—H17···S10.952.973.6122 (16)127
C2—H2A···O10.952.382.8539 (18)111
C13—H13···O20.952.292.8197 (19)114
 

Acknowledgements

The contributions to this study of undergraduate students Crystal Chang, Bao-Chau Ngoc Tran, Tram-Anh Pham, Donald Responte, Dan Darenciang, Joel A. Zazueta, Joey B. Gallegos, Viktoria Pakhnyuk are gratefully acknowledged. We also like to thank the Hooked on Photonics REU program and the MDITR-STC organization at the University of Washington. We are especially indebted to Bart Kahr and Larry Dalton for lab space and Dr Meghana Rawal and Dr Delwin Elder for guidance.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. 0840520).

References

First citationAllen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. 23, 25–34.  Web of Science CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBravais, A. (1866). Du Cristal Considéré Comme un Simple Assemblage de Points. In Étude Cristallographiques. Paris: Gauthier-Villars.  Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBull, H. B. & Breese, K. (1978). Biopolymers, 17, 2121–2131.  CrossRef CAS Google Scholar
First citationDonnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467.  CAS Google Scholar
First citationDu, Y., Grodowitz, M. J. & Chen, J. (2020). Biomolecules, 10, 716–726.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFriedel, G. (1907). Bull. Soc. Fr. Mineral. 22, 326–455.  Google Scholar
First citationGhosh, A. K. & Brindisi, M. (2015). J. Med. Chem. 58, 2895–2940.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaganyuk, M., Responte, D., Daranciang, D. & Kaminsky, W. (2023). CSD Communications (refcodes HEZYIY, HEZYOE, HEZYUK and HEZZAR). CCDC, Cambridge, England.  Google Scholar
First citationKaminsky, W. (2005). J. Appl. Cryst. 38, 566–567.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaminsky, W. (2007). J. Appl. Cryst. 40, 382–385.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaminsky, W., Responte, D., Daranciang, D., Gallegos, J. B., Ngoc Tran, B. C. & Pham, T. (2010). Molecules, 15, 554–569.  CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPauling, L. (1932). J. Am. Chem. Soc. 54, 3570–3582.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThorley, K. J. & McCulloch, I. (2018). J. Mater. Chem. C6, 12413–12421.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds