research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT study of (5E,5′E,6Z,6′Z)-6,6′-[ethane-1,2-diyl­bis­(aza­nylyl­­idene)]bis­­{5-[2-(4-fluoro­phen­yl)hydra­zono]-3,3-di­methyl­cyclo­hexa­none} 2.5-hydrate

crossmark logo

aBaku State University, Organic Chemistry Department, Z. Khalilov 23, Baku, AZ, 1148, Azerbaijan, bPG Department of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar-842001, India, cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Türkiye, dDepartment of Physics, Faculty of Sciences, Ondokuz Mayıs University, Samsun, 55200, Türkiye, and eFaculty of Chemistry, Karte-e-chahar, Kabul, Afghanistan
*Correspondence e-mail: tahera.nabi@ku.edu.af

Edited by A. S. Batsanov, University of Durham, United Kingdom (Received 25 October 2022; accepted 1 March 2023; online 10 March 2023)

The title compound, C30H34F2N6O2·2.5H2O, was obtained by condensation of 2-[2-(4-fluoro­phen­yl)hydrazono]-5,5-di­methyl­cyclo­hexan-1,3-dione with ethyl­enedi­amine in ethanol and crystallized as a 1:2.5 hydrate in space group C2/c. The two independent mol­ecules, with approximate crystallographic C2 symmetries, have different conformations and packing environments, are stabilized by intra­molecular N—H⋯N hydrogen bonds and linked by O—H⋯O hydrogen bonds involving the water mol­ecules. A Hirshfeld surface analysis showed that H⋯H contacts make by far the largest (48–50%) contribution to the crystal packing. From DFT calculations, the LUMO–HOMO energy gap of the mol­ecule is 0.827 eV.

1. Chemical context

Diketones are versatile starting materials in the synthesis of organic and coordination compounds (Mahmudov et al., 2017[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). Coord. Chem. Rev. 345, 54-72.]), used as shift reagents (Hinckley, 1969[Hinckley, C. C. (1969). J. Am. Chem. Soc. 91, 5160-5162.]), chemical and photochemical catalysts or as biologically active derivatives to treat inflammatory diseases. β-Diketones can be isolated from natural sources such as bacteria, plants or fungi, and can also be obtained synthetically (Shokova et al., 2015[Shokova, E. A., Kim, J. K. & Kovalev, V. V. (2015). Russ. J. Org. Chem. 51, 755-830.]). More recently, 1,2-bis­(3,5-di­fluoro­phen­yl)ethane-1,2-dione has been used to synthesize various polymers for use as photovoltaics (Cai et al., 2019[Cai, F., Li, L., Zhu, C., Li, J., Peng, H. & Zou, Y. (2019). Chem. Phys. Lett. 730, 271-276.]) or gas chromatography stationary phases (Liu et al., 2019[Liu, J., Xu, L., Bai, J., Du, A. & Wu, B. (2019). New J. Chem. 43, 8290-8298.]). Non-covalent inter­actions, such as halogen, hydrogen, chalcogen, pnicogen, aerogen, tetrel and icosa­gen bonds, as well as π–cation, π–anion, nπ, ππ* stacking and hydro­phobic contacts may organize or arrange the conformation and aggregation of mol­ecules, their stabilization and particular properties (Desiraju 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]; Akbari Afkhami et al., 2017[Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Hazra et al., 2018[Hazra, S., Martins, N. M. R., Mahmudov, K. T., Zubkov, F. I., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2018). J. Organomet. Chem. 867, 193-200.]; Gurbanov et al., 2018[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190-194.]; Kvyatkovskaya et al., 2017[Kvyatkovskaya, E. A., Zaytsev, V. P., Zubkov, F. I., Dorovatovskii, P. V., Zubavichus, Y. V. & Khrustalev, V. N. (2017). Acta Cryst. E73, 515-519.]; Jlassi et al., 2014[Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541-4550.]). Herein we report the synthesis, crystal structure and density functional theory (DFT) calculation of the title compound (II)[link], obtained by the condensation reaction between ethyl­enedi­amine and 2-[2-(4-fluoro­phen­yl)hydrazone]-5,5-di­methyl­cyclo­hexan-1,3-dione (I)[link] in a 2:1 ratio, in the presence of catalytic hydro­chloric acid. A series of similar compounds was synthesized (but not characterized crystallographically) by Rema et al. (1997[Rema, V. T., Krishnankutty, K. & Michael, J. (1997). J. Indian Chem. Soc. 74, 391-392.]) by the condensation of 2-phenyl­hydrazones of acetyl­acetone, benzoyl­acetone and 1,3-cyclo­hexa­nedione with ethyl­enedi­amine, as well as 1,3-di­amino­propane and 1,6-di­amino­hexane.

[Scheme 1]

2. Structural commentary

The asymmetric unit contains one full mol­ecule (A) of (II)[link] in a general position and one-half of another mol­ecule (B), which lies on a crystallographic twofold axis, as well as three ordered water mol­ecules (O1W, O2W, O3W) and one that is disordered over three positions (O4W, O5W and O6W) with occupancies of 0.5, 0.125 and 0.125, respectively. Thus the crystal composition is (II)[link]·2.5H2O.

Mol­ecule A has an approximate non-crystallographic C2 symmetry. Each mol­ecule comprises two approximately planar halves, whose planarity is stabilized by intra­molecular N—H⋯N hydrogen bonds, arranged in an `open-book' mode. The connecting bridges, N3—C25—C24—N2 in mol­ecule A and N9—C13—C13i—N9i in B, have gauche conformations, with torsion angles of −59.1 (3) and 63.7 (3)°, respectively. However, in other respects the conformations of mol­ecules A and B are drastically different (Fig. 1[link]). It is noteworthy that although crystal structures with Z′ > 1 are common, two substanti­ally different conformers rarely co-exist in the same structure (Sona & Gautham, 1992[Sona, V. & Gautham, N. (1992). Acta Cryst. B48, 111-113.]). The bond lengths in mol­ecules A and B are similar, and close to those reported earlier (Turkoglu et al., 2015[Turkoglu, G., Berber, H. & Kani, I. (2015). New J. Chem. 39, 2728-2740.]; Shikhaliyev et al., 2019[Shikhaliyev, N. O., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]) for analogous compounds (see also Section 6).

[Figure 1]
Figure 1
The structures of mol­ecules A and B. Displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

In the crystal, mol­ecules of (II)[link] are linked directly through weak C—H⋯O and C—H⋯F hydrogen bonds and indirectly through water mol­ecules of crystallization and strong O—H⋯O hydrogen bonds formed by the latter (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯N1 0.86 1.93 2.609 (3) 135
N2—H2⋯N6 0.86 1.91 2.585 (3) 134
N3—H3⋯N5 0.86 1.90 2.582 (3) 136
C13—H13B⋯O2Wi 0.97 2.59 3.302 (4) 130
C25—H25A⋯O6 0.97 2.46 3.370 (4) 156
C24—H24A⋯O3ii 0.97 2.65 3.518 (4) 149
C24—H24A⋯O5Wiii 0.97 2.58 3.27 (4) 128
C27—H27B⋯O6 0.97 2.58 3.451 (4) 149
C42—H42⋯F4iv 0.93 2.52 3.218 (4) 132
C5—H5⋯O2W 0.93 2.53 3.441 (5) 166
C23—H23A⋯O6v 0.97 2.43 3.311 (4) 151
O2W—H2WA⋯O7 0.85 2.08 2.926 (4) 178
O2W—H2WB⋯O1Wvi 0.85 1.91 2.749 (5) 171
O1W—H1WA⋯O3Wvii 0.85 2.26 3.042 (5) 154
O1W—H1WB⋯O3 0.85 2.03 2.812 (4) 152
O3W—H3WA⋯O4W 0.85 2.09 2.921 (10) 164
O3W—H3WA⋯O5W 0.85 2.11 2.88 (4) 151
O3W—H3WB⋯O7 0.85 2.13 2.866 (4) 144
O4W—H4WA⋯O4Wi 0.85 2.20 3.04 (2) 170
O4W—H4WB⋯O3W 0.85 2.08 2.921 (10) 168
O5W—H5WA⋯O3W 0.85 2.32 2.88 (4) 124
O5W—H5WB⋯O5Wi 0.85 1.97 2.48 (7) 118
O6W—H6WA⋯O3vi 0.85 2.06 2.90 (2) 175
Symmetry codes: (i) [-x+2, y, -z+{\script{1\over 2}}]; (II)[link] [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x, -y+1, z-{\script{1\over 2}}]; (vii) [-x+2, -y+1, -z+1].
[Figure 2]
Figure 2
Hydrogen bonds in the crystal of (II)[link].

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]) was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.]). The Hirshfeld surfaces of mol­ecules A and B, mapped over dnorm, are shown in Fig. 3[link]. The red spots, indicating short inter­molecular contacts, correspond to O—H⋯O hydrogen bonds donated by the water mol­ecules, and C—H⋯F contacts. The Hirshfeld surface of mol­ecule B is smaller than that of A, both in terms of area (527.8 vs 532.1 Å2) and the enclosed volume (684.6 vs 694.0 Å3), and has a higher asphericity factor (0.211 vs 0.085), as a result of the difference in conformations (see above).

[Figure 3]
Figure 3
Hirshfeld surfaces of mol­ecules A and B, mapped over dnorm.

Two-dimensional fingerprint plots (Fig. 4[link]) show the contributions of various contacts to the Hirshfeld surface. Thus, for both mol­ecules A and B, by far the largest contributions are by H⋯H contacts, 49.9% (A) and 47.9% (B). Given that H atoms comprise ca 70% of the mol­ecular surface, a similar share would be expected if the contact distribution were entirely random. The O⋯H/H⋯O contacts, i.e. strong and weak hydrogen bonds, contribute 14.9% (A) and 13.8% (B), and H⋯C/C⋯H contacts, i.e. σπ inter­actions, 14.1% (A) and 11.8% (B). Most remarkable is the different role of the fluorine atoms. In mol­ecule B, F⋯H/H⋯F contacts contribute 16.8%, much more than the 6.4% in A or the 6% expected for a random distribution. In contrast, F⋯C/C⋯F contacts are more common in A (5.1%) than in B (1.2%). The contributions of all other contacts are negligible, except H⋯N/N⋯H (4.0% for A, 3.8% for B). Thus, the fingerprint plots reveal that mol­ecules A and B have substanti­ally different packing environments.

[Figure 4]
Figure 4
Two-dimensional fingerprint plots for (a) all inter­actions and delineated into (b) H⋯H, (c) H⋯O/O⋯H and (d) H⋯F/F⋯H contacts in mol­ecules A and B.

5. Frontier mol­ecular orbital analysis

The frontier mol­ecular orbitals (FMOs), i.e. the highest occupied MO (HOMO) and the lowest unoccupied MO (LUMO) play the most significant role in defining the mol­ecular properties (Hoffmann et al., 1965[Hoffmann, R. & Woodward, R. B. (1965). J. Am. Chem. Soc. 87, 2046-2048.]; Fukui, 1982[Fukui, K. (1982). Pure Appl. Chem. 54, 1825-1836.]). The HOMO is associated with electron-donating and LUMO with the electron-accepting capability, their energies approximating the negative of the (first) ionization energy and the electron affinity of the mol­ecule, respectively, from where useful information regarding donor–acceptor inter­actions can be obtained (Demir et al., 2016[Demir, S., Tinmaz, F., Dege, N. & Ilhan, I. O. (2016). J. Mol. Struct. 1108, 637-648.]), and the degree of the electrophilicity or nucleophilicity of the mol­ecule estimated (Parr et al., 1999[Parr, R. G., Szentpály, L. v. & Liu, S. (1999). J. Am. Chem. Soc. 121, 1922-1924.]; Chattaraj et al., 2006[Chattaraj, P. K., Sarkar, U. & Roy, D. R. (2006). Chem. Rev. 106, 2065-2091.]).

The frontier orbitals of mol­ecule (II)[link] (Fig. 5[link]) were calculated at the DFT-B3LYP/6-311G(d,p) level of theory as implemented in Gaussian09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The X-ray-determined structure of mol­ecule A was taken as the starting mol­ecular geometry. This gave the energies of HOMO as −4.8164 eV and LUMO as −3.9894 eV, with a LUMO–HOMO gap of 0.827 eV, from which the chemical potential (μ = −4.40 eV), global hardness η (= 0.41 eV), softness (S = 1.21) and the global electrophilicity index (ω = 23.4 eV) can be derived. Thus mol­ecule (II)[link] can be regarded as a good electrophile (Domingo et al., 2002[Domingo, L. R., Aurell, M. J., Pérez, P. & Contreras, R. (2002). Tetrahedron, 58, 4417-4423.]) and rather soft.

[Figure 5]
Figure 5
The frontier mol­ecular orbitals of (II)[link].

6. Database survey

A search of the Cambridge Database (CSD Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) did not yield any close analogue of compound (II)[link]. However, various similar compounds have been reported, viz. 7-(5-bromo-2-hy­droxy­phen­yl)-6-(4-bromo­phen­yl)-3,3,10,10-tetra­methyl-3,4,10,11-tetra­hydro­indolo[1,2-a]quinoxaline-1,8[2H,9H]-dione (ELIBIM; Fang & Yan, 2016[Fang, J. & Yan, C. G. (2016). J. Heterocycl. Chem. 53, 800-804.]), 6,6-dimethyl-1-(4-nitro­phen­yl)-1,5,6,7-tetra­hydro-4H-benzotriazol-4-one (EMOLEZ; Singh et al., 2016[Singh, H., Khanna, G. & Khurana, J. M. (2016). Tetrahedron Lett. 57, 3075-3080.]), 3-(3-meth­oxy­phenyl­amino)-5,5-dimethyl-2-nitroso-2-cyclo­hexan-1-one (GOYFOP; Gilli et al., 2000[Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (2000). J. Am. Chem. Soc. 122, 10405-10417.]), 3-hy­droxy-6,6-dimethyl-2-(4-oxo-4H-chromen-3-yl)-1,5,6,7-tetra­hydro-4H-3,1-benzimidazol-4-one methanol solvate (ZEVJUH; Nikitina et al., 2013[Nikitina, P. A., Kuz'mina, L. G., Perevalov, V. P. & Tkach, I. I. (2013). Tetrahedron, 69, 3249-3256.]), 1-[2,2-di­chloro-1-(4-chloro­phen­yl)ethen­yl]-2-(4-fluoro­phen­yl)diazene (XAJZIV; Nenajdenko et al., 2020[Nenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2020). Molecules, 25, 5013-5027.]), 1-[(5-chloro-2-phen­oxy­phen­yl)(4-methoxy­phen­yl)carbonohydrazono­yl]-2-(4-fluoro­phen­yl)diazene (QOWNOH; Turkoglu et al., 2015[Turkoglu, G., Berber, H. & Kani, I. (2015). New J. Chem. 39, 2728-2740.]), (Z)-4-[(E)-(4-fluoro­phen­yl)diazen­yl]-6-[(3-hy­droxy­propyl­amino)­methyl­ene]-2-meth­oxy­cyclo­hexa-2,4-dienone (KARFAM; Albayrak et al., 2012[Albayrak, C., Odabaşoğlu, M., Özek, A. & Büyükgüngör, O. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 85, 85-91.]), N-(4-fluoro­phen­yl)-N′-{1-[(4-fluoro­phen­yl)di­azen­yl]-2-(methyl­imino)-2-phenyl­ethyl­idene}-2,2-di­methyl­prop­ane­hydrazide (SIDKOH; Simunek et al., 2013[Simunek, P. V., Bertolasi, V. & Machacek, V. (2013). Eur. J. Org. Chem. pp. 5683-5691.]) and 2-[2-(3-chloro-4-fluoro­phen­yl)hydrazono]-5,5-di­methyl­cyclo­hex­ane-1,3-dione (CAXPIE; Subhasri et al., 2022[Subhasri, A., Balachandran, S., Mohanraj, K., Kumar, P. S., Jothi, K. J. & Anbuselvan, C. (2022). Chemosphere, 297, 134150-134161.]).

7. Synthesis and crystallization

2 mmol of (I)[link] were dissolved in 15–20 ml of ethanol in a three-necked flask, 1 drop of HCl was added and the solution was heated to 323 K. Then 1 mmol of ethyl­enedi­amine was added and the mixture stirred for 1 h at the same temperature. The product (II)[link] was filtered off and purified by recrystallization from ethanol (yield 59%). The reaction and the purity of the substances were monitored by TLC (Sorbil, RF:0.72, 2-propanol).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geom­etrically and refined using a riding model [O—H = 0.85, N—H = 0.86, Csp2—H = 0.93 and Csp3—H = 0.97 Å, Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(O, N, C)].

Table 2
Experimental details

Crystal data
Chemical formula C30H34F2N6O2·2.5H2O
Mr 593.67
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 22.7715 (19), 17.2794 (15), 25.640 (3)
β (°) 112.297 (1)
V3) 9334.2 (16)
Z 12
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.16 × 0.14 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 37069, 8249, 4099
Rint 0.070
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.193, 0.99
No. of reflections 8249
No. of parameters 601
No. of restraints 25
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2013/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT2013/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(5E,5'E,6Z,6'Z)-6,6'-[Ethane-1,2-diylbis(azanylylidene)]bis{5-[2-(4-fluorophenyl)hydrazono]-3,3-dimethylcyclohexanone} 2.5-hydrate top
Crystal data top
C30H34F2N6O2·2.5H2OF(000) = 3780
Mr = 593.67Dx = 1.267 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.7715 (19) ÅCell parameters from 2620 reflections
b = 17.2794 (15) Åθ = 2.5–18.8°
c = 25.640 (3) ŵ = 0.10 mm1
β = 112.297 (1)°T = 296 K
V = 9334.2 (16) Å3Prism, colourless
Z = 120.16 × 0.14 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.070
φ and ω scansθmax = 25.1°, θmin = 1.9°
37069 measured reflectionsh = 2727
8249 independent reflectionsk = 2020
4099 reflections with I > 2σ(I)l = 3030
Refinement top
Refinement on F225 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.193 w = 1/[σ2(Fo2) + (0.0988P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
8249 reflectionsΔρmax = 0.20 e Å3
601 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F21.09554 (9)0.57702 (14)0.53005 (9)0.0952 (7)
O60.89907 (11)0.85004 (13)0.36530 (9)0.0707 (7)
N90.95271 (11)0.63828 (14)0.27726 (10)0.0497 (6)
H90.9147060.6389970.2522260.060*
F30.76710 (10)0.32116 (12)0.48211 (10)0.1025 (8)
N100.86237 (11)0.75960 (14)0.27290 (10)0.0519 (6)
N20.75280 (11)0.67741 (14)0.31652 (10)0.0521 (6)
H20.7913520.6772510.3405270.063*
N30.78027 (11)0.76386 (14)0.41673 (10)0.0530 (7)
H30.7710480.7157920.4179040.064*
N10.84455 (11)0.71070 (15)0.23249 (10)0.0539 (7)
N70.83957 (12)0.55075 (15)0.32396 (11)0.0557 (7)
N60.85905 (12)0.60375 (15)0.36126 (11)0.0550 (7)
N40.82821 (12)0.67186 (16)0.51854 (11)0.0588 (7)
O70.79621 (12)0.44357 (15)0.24172 (11)0.0846 (8)
N50.79668 (12)0.63644 (15)0.47308 (11)0.0581 (7)
F40.60711 (11)0.74370 (16)0.06565 (10)0.1250 (9)
O30.89386 (14)0.75091 (17)0.61336 (10)0.0977 (9)
C120.96907 (13)0.69768 (16)0.31285 (11)0.0446 (7)
C70.92362 (13)0.75336 (17)0.31220 (12)0.0460 (7)
C80.93933 (15)0.80892 (17)0.35815 (12)0.0492 (7)
C200.73494 (14)0.61741 (17)0.28199 (12)0.0499 (8)
C101.05603 (13)0.78558 (17)0.37729 (12)0.0509 (8)
C130.99160 (14)0.57224 (16)0.27573 (12)0.0514 (8)
H13A0.9688910.5249590.2762940.062*
H13B1.0303490.5728080.3092100.062*
C111.03605 (13)0.70393 (17)0.35377 (12)0.0498 (7)
H11A1.0639500.6868570.3353690.060*
H11B1.0419150.6690600.3850020.060*
C400.92104 (14)0.59354 (18)0.40252 (13)0.0524 (8)
C210.77828 (15)0.55750 (17)0.28450 (13)0.0526 (8)
C310.83760 (14)0.75046 (19)0.51517 (12)0.0538 (8)
C260.81638 (13)0.79584 (17)0.46495 (13)0.0506 (8)
C40.78281 (14)0.72419 (19)0.19112 (12)0.0523 (8)
C340.79058 (14)0.55572 (19)0.47871 (14)0.0556 (8)
C390.76263 (15)0.5143 (2)0.42909 (14)0.0607 (9)
H390.7495490.5401460.3947190.073*
C250.75416 (15)0.80125 (18)0.36141 (12)0.0580 (8)
H25A0.7884410.8195370.3509190.070*
H25B0.7285650.8454380.3628860.070*
C240.71388 (14)0.74392 (18)0.31816 (12)0.0559 (8)
H24A0.6787420.7269860.3279340.067*
H24B0.6966460.7682550.2813440.067*
C91.00665 (14)0.81378 (18)0.39906 (12)0.0544 (8)
H9A1.0106640.7838190.4322370.065*
H9B1.0159340.8672630.4107730.065*
C220.75933 (17)0.4957 (2)0.24298 (14)0.0634 (9)
C450.96325 (16)0.53591 (19)0.40083 (14)0.0595 (9)
H450.9516410.5007970.3711370.071*
C410.93867 (14)0.64476 (19)0.44682 (14)0.0581 (8)
H410.9105660.6833240.4477030.070*
C350.80994 (15)0.5166 (2)0.53017 (14)0.0626 (9)
H350.8285540.5435800.5638350.075*
C360.80127 (16)0.4373 (2)0.53080 (17)0.0724 (10)
H360.8137230.4104940.5647560.087*
C441.02267 (16)0.5316 (2)0.44389 (16)0.0675 (10)
H441.0516750.4941830.4431130.081*
C190.66830 (15)0.61617 (18)0.23968 (13)0.0621 (9)
H19A0.6656240.6494030.2083680.075*
H19B0.6406370.6376500.2569040.075*
C431.03795 (16)0.5828 (2)0.48728 (16)0.0666 (10)
C300.87277 (17)0.7878 (2)0.56849 (15)0.0678 (9)
C280.89082 (16)0.90513 (19)0.51674 (14)0.0659 (9)
C270.83332 (15)0.87873 (17)0.46489 (13)0.0607 (9)
H27A0.7968960.9097880.4624710.073*
H27B0.8420910.8889470.4313520.073*
C180.64399 (16)0.5357 (2)0.21674 (14)0.0680 (10)
C380.75398 (16)0.4358 (2)0.42995 (16)0.0693 (10)
H380.7347670.4083620.3965380.083*
C420.99769 (16)0.6397 (2)0.49014 (14)0.0666 (9)
H421.0095720.6740410.5203100.080*
C30.74440 (16)0.7869 (2)0.19078 (14)0.0655 (9)
H3A0.7586770.8242480.2188970.079*
C50.76179 (16)0.6708 (2)0.14840 (14)0.0672 (9)
H50.7878440.6293390.1483300.081*
C151.06016 (17)0.83952 (19)0.33173 (14)0.0701 (10)
H15A1.0888260.8181250.3161150.105*
H15B1.0754070.8892480.3479160.105*
H15C1.0188410.8451620.3024900.105*
C290.88290 (17)0.8731 (2)0.56898 (14)0.0710 (10)
H29A0.9204470.8860390.6017200.085*
H29B0.8470520.8987160.5731980.085*
C370.77395 (16)0.3988 (2)0.48037 (19)0.0713 (10)
C230.69345 (16)0.4967 (2)0.19936 (14)0.0726 (10)
H23A0.6802410.4437260.1887600.087*
H23B0.6942560.5228010.1661310.087*
C141.12089 (15)0.7801 (2)0.42564 (14)0.0742 (10)
H14A1.1181890.7457580.4540650.111*
H14B1.1336610.8305530.4416400.111*
H14C1.1515420.7606390.4115750.111*
C460.66604 (18)0.7378 (3)0.10724 (16)0.0812 (11)
C60.70266 (19)0.6772 (3)0.10544 (15)0.0791 (11)
H60.6886390.6411510.0763800.095*
C330.95173 (17)0.8743 (2)0.51310 (16)0.0831 (11)
H33A0.9492590.8189390.5095100.125*
H33B0.9871620.8881380.5466440.125*
H33C0.9571990.8962370.4808480.125*
C170.63175 (18)0.4872 (2)0.26157 (17)0.0875 (12)
H17A0.6706400.4811960.2937640.131*
H17B0.6160020.4371810.2463230.131*
H17C0.6009460.5127640.2727250.131*
C20.68508 (18)0.7934 (2)0.14860 (16)0.0795 (11)
H2A0.6585180.8344470.1481600.095*
C160.58150 (18)0.5454 (2)0.16554 (17)0.0996 (14)
H16A0.5504010.5691130.1772590.149*
H16B0.5664890.4955460.1494300.149*
H16C0.5885580.5775060.1379320.149*
C320.8926 (2)0.9931 (2)0.51835 (18)0.0964 (13)
H32A0.8967501.0124110.4847910.145*
H32B0.9281801.0100590.5507790.145*
H32C0.8540801.0124470.5205020.145*
O2W0.85971 (16)0.5119 (2)0.17268 (14)0.1381 (12)
H2WA0.8408830.4931440.1927780.207*
H2WB0.8791230.4737040.1657980.207*
O1W0.93443 (17)0.6011 (2)0.65403 (17)0.1587 (15)
H1WA0.9705800.6206510.6727850.238*
H1WB0.9101300.6399510.6418470.238*
O3W0.92308 (17)0.3840 (2)0.2815 (2)0.1847 (19)
H3WA0.9359320.3383460.2793480.277*
H3WB0.8828920.3800270.2691880.277*
O4W0.9769 (4)0.2282 (5)0.2984 (4)0.180 (3)0.5
H4WA0.9851400.2270730.2687240.270*0.5
H4WB0.9626010.2735030.2988950.270*0.5
O5W0.9411 (16)0.241 (2)0.2313 (14)0.175 (4)0.125
H5WA0.9110130.2657070.2360690.263*0.125
H5WB0.9698130.2753970.2365990.263*0.125
O6W0.9656 (16)0.1682 (18)0.2174 (11)0.152 (11)0.125
H6WA0.9429590.1926820.1878850.229*0.125
H6WB0.9496690.1230320.2128350.229*0.125
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F20.0492 (12)0.1286 (19)0.0893 (15)0.0052 (12)0.0055 (12)0.0275 (14)
O60.0634 (15)0.0765 (16)0.0659 (15)0.0190 (13)0.0174 (12)0.0113 (12)
N90.0451 (14)0.0494 (15)0.0520 (15)0.0007 (12)0.0157 (12)0.0013 (13)
F30.0878 (16)0.0592 (13)0.133 (2)0.0079 (11)0.0110 (14)0.0246 (13)
N100.0481 (16)0.0540 (16)0.0504 (16)0.0013 (13)0.0153 (14)0.0014 (13)
N20.0465 (15)0.0554 (16)0.0465 (15)0.0008 (13)0.0088 (12)0.0035 (13)
N30.0575 (16)0.0460 (15)0.0480 (15)0.0019 (12)0.0114 (13)0.0015 (12)
N10.0471 (16)0.0600 (17)0.0506 (16)0.0003 (13)0.0141 (14)0.0011 (14)
N70.0548 (17)0.0560 (17)0.0556 (16)0.0069 (13)0.0200 (15)0.0017 (14)
N60.0489 (16)0.0614 (17)0.0512 (16)0.0062 (13)0.0150 (14)0.0006 (14)
N40.0586 (17)0.0617 (19)0.0545 (17)0.0017 (14)0.0194 (14)0.0029 (14)
O70.0789 (18)0.0724 (17)0.100 (2)0.0005 (14)0.0314 (16)0.0241 (15)
N50.0596 (17)0.0575 (18)0.0527 (17)0.0005 (14)0.0162 (14)0.0002 (14)
F40.0794 (16)0.154 (2)0.0920 (17)0.0178 (15)0.0236 (14)0.0128 (16)
O30.123 (2)0.098 (2)0.0496 (15)0.0072 (17)0.0072 (16)0.0027 (15)
C120.0480 (18)0.0432 (18)0.0428 (17)0.0026 (14)0.0174 (15)0.0015 (14)
C70.0442 (18)0.0466 (17)0.0447 (17)0.0040 (14)0.0141 (15)0.0048 (14)
C80.0532 (19)0.0493 (18)0.0453 (18)0.0078 (16)0.0189 (16)0.0036 (15)
C200.0531 (19)0.0517 (19)0.0415 (17)0.0090 (16)0.0143 (15)0.0034 (15)
C100.0459 (18)0.0524 (19)0.0500 (18)0.0059 (15)0.0134 (15)0.0055 (15)
C130.0559 (19)0.0392 (16)0.0572 (19)0.0019 (15)0.0193 (16)0.0004 (14)
C110.0439 (18)0.0504 (18)0.0518 (18)0.0026 (15)0.0146 (15)0.0012 (15)
C400.0451 (19)0.056 (2)0.056 (2)0.0016 (16)0.0188 (17)0.0053 (16)
C210.0502 (19)0.0482 (19)0.056 (2)0.0041 (16)0.0163 (17)0.0007 (16)
C310.0536 (19)0.060 (2)0.0438 (18)0.0015 (16)0.0141 (16)0.0051 (16)
C260.0447 (18)0.0520 (19)0.055 (2)0.0034 (15)0.0194 (16)0.0079 (16)
C40.0476 (19)0.065 (2)0.0389 (17)0.0007 (17)0.0104 (15)0.0049 (16)
C340.0494 (19)0.057 (2)0.061 (2)0.0031 (16)0.0225 (17)0.0116 (17)
C390.058 (2)0.062 (2)0.056 (2)0.0010 (17)0.0154 (17)0.0074 (18)
C250.062 (2)0.0522 (19)0.0497 (19)0.0048 (16)0.0101 (17)0.0060 (16)
C240.0528 (19)0.057 (2)0.0486 (18)0.0060 (16)0.0086 (16)0.0040 (16)
C90.057 (2)0.0558 (19)0.0472 (18)0.0013 (16)0.0162 (16)0.0041 (15)
C220.067 (2)0.056 (2)0.065 (2)0.0082 (19)0.023 (2)0.0040 (18)
C450.061 (2)0.061 (2)0.061 (2)0.0007 (18)0.0274 (19)0.0072 (17)
C410.0442 (19)0.060 (2)0.065 (2)0.0024 (16)0.0155 (18)0.0031 (18)
C350.057 (2)0.074 (2)0.056 (2)0.0042 (18)0.0200 (17)0.0082 (18)
C360.062 (2)0.072 (3)0.079 (3)0.003 (2)0.022 (2)0.030 (2)
C440.051 (2)0.071 (2)0.084 (3)0.0148 (18)0.028 (2)0.024 (2)
C190.054 (2)0.062 (2)0.056 (2)0.0027 (16)0.0051 (17)0.0009 (17)
C430.044 (2)0.082 (3)0.066 (2)0.002 (2)0.0114 (19)0.021 (2)
C300.067 (2)0.077 (3)0.055 (2)0.006 (2)0.0184 (19)0.005 (2)
C280.065 (2)0.061 (2)0.066 (2)0.0066 (18)0.0187 (19)0.0158 (18)
C270.064 (2)0.053 (2)0.061 (2)0.0050 (16)0.0187 (18)0.0070 (16)
C180.057 (2)0.067 (2)0.063 (2)0.0098 (18)0.0033 (18)0.0026 (18)
C380.062 (2)0.062 (2)0.072 (2)0.0038 (18)0.013 (2)0.004 (2)
C420.052 (2)0.075 (2)0.065 (2)0.0087 (19)0.0135 (19)0.0012 (19)
C30.067 (2)0.068 (2)0.055 (2)0.0049 (19)0.0147 (19)0.0068 (17)
C50.060 (2)0.081 (2)0.054 (2)0.0016 (19)0.0142 (19)0.0019 (19)
C150.079 (2)0.058 (2)0.081 (2)0.0153 (18)0.039 (2)0.0003 (19)
C290.073 (2)0.076 (3)0.057 (2)0.006 (2)0.0171 (19)0.0179 (19)
C370.054 (2)0.055 (2)0.095 (3)0.0012 (18)0.017 (2)0.009 (2)
C230.075 (3)0.065 (2)0.067 (2)0.009 (2)0.014 (2)0.0092 (18)
C140.057 (2)0.077 (3)0.077 (2)0.0035 (19)0.0117 (19)0.016 (2)
C460.061 (2)0.102 (3)0.058 (2)0.002 (2)0.004 (2)0.012 (2)
C60.072 (3)0.095 (3)0.052 (2)0.005 (2)0.004 (2)0.005 (2)
C330.063 (2)0.104 (3)0.077 (3)0.010 (2)0.021 (2)0.019 (2)
C170.077 (3)0.082 (3)0.098 (3)0.018 (2)0.027 (2)0.005 (2)
C20.070 (3)0.085 (3)0.076 (3)0.024 (2)0.018 (2)0.020 (2)
C160.075 (3)0.091 (3)0.091 (3)0.010 (2)0.016 (2)0.018 (2)
C320.118 (4)0.063 (3)0.099 (3)0.015 (2)0.031 (3)0.025 (2)
O2W0.137 (3)0.153 (3)0.134 (3)0.008 (2)0.062 (2)0.002 (2)
O1W0.130 (3)0.116 (3)0.188 (4)0.014 (2)0.013 (3)0.049 (2)
O3W0.111 (3)0.134 (3)0.298 (6)0.003 (2)0.066 (3)0.025 (3)
O4W0.160 (6)0.137 (6)0.170 (6)0.040 (5)0.019 (5)0.015 (5)
O5W0.157 (7)0.138 (7)0.166 (7)0.038 (6)0.011 (6)0.015 (6)
O6W0.19 (3)0.13 (2)0.12 (2)0.05 (2)0.05 (2)0.050 (18)
Geometric parameters (Å, º) top
F2—C431.357 (4)C36—C371.375 (5)
O6—C81.227 (3)C36—H360.9300
N9—C121.329 (3)C44—C431.360 (5)
N9—C131.454 (4)C44—H440.9300
N9—H90.8600C19—C181.529 (4)
F3—C371.353 (4)C19—H19A0.9700
N10—N11.278 (3)C19—H19B0.9700
N10—C71.380 (3)C43—C421.365 (5)
N2—C201.323 (3)C30—C291.491 (5)
N2—C241.461 (4)C28—C321.521 (5)
N2—H20.8600C28—C331.522 (5)
N3—C261.319 (3)C28—C291.522 (5)
N3—C251.464 (3)C28—C271.539 (4)
N3—H30.8600C27—H27A0.9700
N1—C41.423 (4)C27—H27B0.9700
N7—N61.276 (3)C18—C231.517 (5)
N7—C211.383 (4)C18—C171.531 (5)
N6—C401.418 (4)C18—C161.536 (4)
N4—N51.270 (3)C38—C371.357 (5)
N4—C311.383 (4)C38—H380.9300
O7—C221.240 (4)C42—H420.9300
N5—C341.414 (4)C3—C21.378 (5)
F4—C461.365 (4)C3—H3A0.9300
O3—C301.242 (4)C5—C61.383 (5)
C12—C71.409 (4)C5—H50.9300
C12—C111.491 (4)C15—H15A0.9600
C7—C81.455 (4)C15—H15B0.9600
C8—C91.496 (4)C15—H15C0.9600
C20—C211.415 (4)C29—H29A0.9700
C20—C191.494 (4)C29—H29B0.9700
C10—C91.513 (4)C23—H23A0.9700
C10—C151.525 (4)C23—H23B0.9700
C10—C141.529 (4)C14—H14A0.9600
C10—C111.534 (4)C14—H14B0.9600
C13—C13i1.507 (6)C14—H14C0.9600
C13—H13A0.9700C46—C61.350 (5)
C13—H13B0.9700C46—C21.373 (5)
C11—H11A0.9700C6—H60.9300
C11—H11B0.9700C33—H33A0.9600
C40—C411.374 (4)C33—H33B0.9600
C40—C451.396 (4)C33—H33C0.9600
C21—C221.453 (4)C17—H17A0.9600
C31—C261.426 (4)C17—H17B0.9600
C31—C301.448 (4)C17—H17C0.9600
C26—C271.483 (4)C2—H2A0.9300
C4—C51.372 (4)C16—H16A0.9600
C4—C31.390 (4)C16—H16B0.9600
C34—C391.386 (4)C16—H16C0.9600
C34—C351.397 (4)C32—H32A0.9600
C39—C381.374 (4)C32—H32B0.9600
C39—H390.9300C32—H32C0.9600
C25—C241.510 (4)O2W—H2WA0.8500
C25—H25A0.9700O2W—H2WB0.8497
C25—H25B0.9700O1W—H1WA0.8499
C24—H24A0.9700O1W—H1WB0.8500
C24—H24B0.9700O3W—H3WA0.8500
C9—H9A0.9700O3W—H3WB0.8500
C9—H9B0.9700O4W—H4WA0.8503
C22—C231.493 (4)O4W—H4WB0.8499
C45—C441.386 (4)O5W—H5WA0.8501
C45—H450.9300O5W—H5WB0.8501
C41—C421.384 (4)O6W—O6Wi1.80 (6)
C41—H410.9300O6W—H6WA0.8499
C35—C361.385 (5)O6W—H6WB0.8500
C35—H350.9300
C12—N9—C13127.6 (3)C18—C19—H19B108.7
C12—N9—H9116.2H19A—C19—H19B107.6
C13—N9—H9116.2F2—C43—C44118.8 (3)
N1—N10—C7117.5 (2)F2—C43—C42118.2 (4)
C20—N2—C24126.8 (3)C44—C43—C42123.0 (3)
C20—N2—H2116.6O3—C30—C31121.8 (3)
C24—N2—H2116.6O3—C30—C29119.7 (3)
C26—N3—C25127.1 (3)C31—C30—C29118.5 (3)
C26—N3—H3116.5C32—C28—C33109.7 (3)
C25—N3—H3116.5C32—C28—C29110.5 (3)
N10—N1—C4114.6 (3)C33—C28—C29110.0 (3)
N6—N7—C21117.1 (3)C32—C28—C27109.0 (3)
N7—N6—C40115.8 (3)C33—C28—C27109.9 (3)
N5—N4—C31117.6 (3)C29—C28—C27107.8 (3)
N4—N5—C34115.1 (3)C26—C27—C28114.9 (3)
N9—C12—C7120.4 (3)C26—C27—H27A108.5
N9—C12—C11119.0 (3)C28—C27—H27A108.5
C7—C12—C11120.6 (3)C26—C27—H27B108.5
N10—C7—C12126.6 (3)C28—C27—H27B108.5
N10—C7—C8114.2 (3)H27A—C27—H27B107.5
C12—C7—C8119.2 (3)C23—C18—C19108.4 (3)
O6—C8—C7122.3 (3)C23—C18—C17110.1 (3)
O6—C8—C9119.2 (3)C19—C18—C17110.6 (3)
C7—C8—C9118.5 (3)C23—C18—C16110.3 (3)
N2—C20—C21120.7 (3)C19—C18—C16108.2 (3)
N2—C20—C19117.8 (3)C17—C18—C16109.1 (3)
C21—C20—C19121.4 (3)C37—C38—C39118.9 (3)
C9—C10—C15110.9 (3)C37—C38—H38120.6
C9—C10—C14110.2 (2)C39—C38—H38120.6
C15—C10—C14109.7 (3)C43—C42—C41118.0 (3)
C9—C10—C11106.8 (2)C43—C42—H42121.0
C15—C10—C11110.9 (2)C41—C42—H42121.0
C14—C10—C11108.3 (2)C2—C3—C4119.7 (3)
N9—C13—C13i112.5 (2)C2—C3—H3A120.1
N9—C13—H13A109.1C4—C3—H3A120.1
C13i—C13—H13A109.1C4—C5—C6121.4 (3)
N9—C13—H13B109.1C4—C5—H5119.3
C13i—C13—H13B109.1C6—C5—H5119.3
H13A—C13—H13B107.8C10—C15—H15A109.5
C12—C11—C10114.5 (2)C10—C15—H15B109.5
C12—C11—H11A108.6H15A—C15—H15B109.5
C10—C11—H11A108.6C10—C15—H15C109.5
C12—C11—H11B108.6H15A—C15—H15C109.5
C10—C11—H11B108.6H15B—C15—H15C109.5
H11A—C11—H11B107.6C30—C29—C28114.9 (3)
C41—C40—C45119.8 (3)C30—C29—H29A108.5
C41—C40—N6115.6 (3)C28—C29—H29A108.5
C45—C40—N6124.6 (3)C30—C29—H29B108.5
N7—C21—C20126.0 (3)C28—C29—H29B108.5
N7—C21—C22114.2 (3)H29A—C29—H29B107.5
C20—C21—C22119.8 (3)F3—C37—C38119.8 (4)
N4—C31—C26126.1 (3)F3—C37—C36117.7 (4)
N4—C31—C30115.0 (3)C38—C37—C36122.5 (3)
C26—C31—C30118.9 (3)C22—C23—C18115.6 (3)
N3—C26—C31119.6 (3)C22—C23—H23A108.4
N3—C26—C27118.3 (3)C18—C23—H23A108.4
C31—C26—C27122.2 (3)C22—C23—H23B108.4
C5—C4—C3119.4 (3)C18—C23—H23B108.4
C5—C4—N1115.6 (3)H23A—C23—H23B107.4
C3—C4—N1125.0 (3)C10—C14—H14A109.5
C39—C34—C35119.2 (3)C10—C14—H14B109.5
C39—C34—N5116.3 (3)H14A—C14—H14B109.5
C35—C34—N5124.5 (3)C10—C14—H14C109.5
C38—C39—C34120.9 (3)H14A—C14—H14C109.5
C38—C39—H39119.5H14B—C14—H14C109.5
C34—C39—H39119.5C6—C46—F4117.9 (4)
N3—C25—C24109.4 (2)C6—C46—C2123.4 (3)
N3—C25—H25A109.8F4—C46—C2118.7 (4)
C24—C25—H25A109.8C46—C6—C5117.6 (4)
N3—C25—H25B109.8C46—C6—H6121.2
C24—C25—H25B109.8C5—C6—H6121.2
H25A—C25—H25B108.2C28—C33—H33A109.5
N2—C24—C25109.3 (2)C28—C33—H33B109.5
N2—C24—H24A109.8H33A—C33—H33B109.5
C25—C24—H24A109.8C28—C33—H33C109.5
N2—C24—H24B109.8H33A—C33—H33C109.5
C25—C24—H24B109.8H33B—C33—H33C109.5
H24A—C24—H24B108.3C18—C17—H17A109.5
C8—C9—C10115.5 (2)C18—C17—H17B109.5
C8—C9—H9A108.4H17A—C17—H17B109.5
C10—C9—H9A108.4C18—C17—H17C109.5
C8—C9—H9B108.4H17A—C17—H17C109.5
C10—C9—H9B108.4H17B—C17—H17C109.5
H9A—C9—H9B107.5C46—C2—C3118.5 (4)
O7—C22—C21122.5 (3)C46—C2—H2A120.7
O7—C22—C23119.2 (3)C3—C2—H2A120.7
C21—C22—C23118.3 (3)C18—C16—H16A109.5
C44—C45—C40119.3 (3)C18—C16—H16B109.5
C44—C45—H45120.4H16A—C16—H16B109.5
C40—C45—H45120.4C18—C16—H16C109.5
C40—C41—C42120.9 (3)H16A—C16—H16C109.5
C40—C41—H41119.6H16B—C16—H16C109.5
C42—C41—H41119.6C28—C32—H32A109.5
C36—C35—C34119.7 (3)C28—C32—H32B109.5
C36—C35—H35120.2H32A—C32—H32B109.5
C34—C35—H35120.2C28—C32—H32C109.5
C37—C36—C35118.9 (3)H32A—C32—H32C109.5
C37—C36—H36120.6H32B—C32—H32C109.5
C35—C36—H36120.6H2WA—O2W—H2WB104.5
C43—C44—C45119.1 (3)H1WA—O1W—H1WB104.5
C43—C44—H44120.5H3WA—O3W—H3WB104.5
C45—C44—H44120.5H4WA—O4W—H4WB104.5
C20—C19—C18114.3 (3)H5WA—O5W—H5WB104.5
C20—C19—H19A108.7O6Wi—O6W—H6WA147.7
C18—C19—H19A108.7O6Wi—O6W—H6WB107.6
C20—C19—H19B108.7H6WA—O6W—H6WB104.5
C7—N10—N1—C4175.2 (2)N7—C21—C22—C23178.6 (3)
C21—N7—N6—C40177.4 (2)C20—C21—C22—C231.3 (4)
C31—N4—N5—C34177.7 (3)C41—C40—C45—C440.4 (4)
C13—N9—C12—C7173.7 (2)N6—C40—C45—C44179.7 (3)
C13—N9—C12—C115.7 (4)C45—C40—C41—C420.5 (5)
N1—N10—C7—C120.6 (4)N6—C40—C41—C42178.9 (3)
N1—N10—C7—C8177.4 (2)C39—C34—C35—C360.4 (5)
N9—C12—C7—N108.4 (4)N5—C34—C35—C36179.5 (3)
C11—C12—C7—N10172.2 (3)C34—C35—C36—C370.4 (5)
N9—C12—C7—C8168.2 (2)C40—C45—C44—C431.2 (5)
C11—C12—C7—C811.2 (4)N2—C20—C19—C18158.9 (3)
N10—C7—C8—O69.6 (4)C21—C20—C19—C1822.5 (4)
C12—C7—C8—O6167.4 (3)C45—C44—C43—F2178.3 (3)
N10—C7—C8—C9172.5 (2)C45—C44—C43—C421.1 (5)
C12—C7—C8—C910.4 (4)N4—C31—C30—O31.6 (5)
C24—N2—C20—C21178.8 (3)C26—C31—C30—O3178.1 (3)
C24—N2—C20—C190.2 (4)N4—C31—C30—C29177.7 (3)
C12—N9—C13—C13i111.6 (3)C26—C31—C30—C292.7 (5)
N9—C12—C11—C10159.0 (3)N3—C26—C27—C28161.6 (3)
C7—C12—C11—C1021.6 (4)C31—C26—C27—C2818.7 (4)
C9—C10—C11—C1251.5 (3)C32—C28—C27—C26166.1 (3)
C15—C10—C11—C1269.4 (3)C33—C28—C27—C2673.8 (4)
C14—C10—C11—C12170.2 (3)C29—C28—C27—C2646.1 (4)
N7—N6—C40—C41171.5 (3)C20—C19—C18—C2348.5 (4)
N7—N6—C40—C457.8 (4)C20—C19—C18—C1772.4 (4)
N6—N7—C21—C200.6 (4)C20—C19—C18—C16168.1 (3)
N6—N7—C21—C22179.5 (3)C34—C39—C38—C370.7 (5)
N2—C20—C21—N75.5 (5)F2—C43—C42—C41179.1 (3)
C19—C20—C21—N7175.9 (3)C44—C43—C42—C410.3 (5)
N2—C20—C21—C22174.6 (3)C40—C41—C42—C430.5 (5)
C19—C20—C21—C224.0 (4)C5—C4—C3—C21.9 (5)
N5—N4—C31—C261.5 (5)N1—C4—C3—C2179.4 (3)
N5—N4—C31—C30178.8 (3)C3—C4—C5—C61.1 (5)
C25—N3—C26—C31179.9 (3)N1—C4—C5—C6179.9 (3)
C25—N3—C26—C270.1 (4)O3—C30—C29—C28146.9 (3)
N4—C31—C26—N35.5 (5)C31—C30—C29—C2833.8 (4)
C30—C31—C26—N3174.9 (3)C32—C28—C29—C30173.0 (3)
N4—C31—C26—C27174.8 (3)C33—C28—C29—C3065.8 (4)
C30—C31—C26—C274.8 (4)C27—C28—C29—C3054.0 (4)
N10—N1—C4—C5177.7 (3)C39—C38—C37—F3178.6 (3)
N10—N1—C4—C33.6 (4)C39—C38—C37—C361.5 (5)
N4—N5—C34—C39173.0 (3)C35—C36—C37—F3178.8 (3)
N4—N5—C34—C357.8 (4)C35—C36—C37—C381.3 (5)
C35—C34—C39—C380.2 (5)O7—C22—C23—C18153.5 (3)
N5—C34—C39—C38179.4 (3)C21—C22—C23—C1828.2 (5)
C26—N3—C25—C24178.3 (3)C19—C18—C23—C2251.9 (4)
C20—N2—C24—C25176.4 (3)C17—C18—C23—C2269.2 (4)
N3—C25—C24—N259.1 (3)C16—C18—C23—C22170.2 (3)
O6—C8—C9—C10158.5 (3)F4—C46—C6—C5178.7 (3)
C7—C8—C9—C1023.6 (4)C2—C46—C6—C51.3 (6)
C15—C10—C9—C868.3 (3)C4—C5—C6—C460.5 (5)
C14—C10—C9—C8170.0 (3)C6—C46—C2—C30.5 (6)
C11—C10—C9—C852.6 (3)F4—C46—C2—C3179.5 (3)
N7—C21—C22—O73.2 (5)C4—C3—C2—C461.2 (5)
C20—C21—C22—O7176.8 (3)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···N10.861.932.609 (3)135
N2—H2···N60.861.912.585 (3)134
N3—H3···N50.861.902.582 (3)136
C13—H13B···O2Wi0.972.593.302 (4)130
C25—H25A···O60.972.463.370 (4)156
C24—H24A···O3ii0.972.653.518 (4)149
C24—H24A···O5Wiii0.972.583.27 (4)128
C27—H27B···O60.972.583.451 (4)149
C42—H42···F4iv0.932.523.218 (4)132
C5—H5···O2W0.932.533.441 (5)166
C23—H23A···O6v0.972.433.311 (4)151
O2W—H2WA···O70.852.082.926 (4)178
O2W—H2WB···O1Wvi0.851.912.749 (5)171
O1W—H1WA···O3Wvii0.852.263.042 (5)154
O1W—H1WB···O30.852.032.812 (4)152
O3W—H3WA···O4W0.852.092.921 (10)164
O3W—H3WA···O5W0.852.112.88 (4)151
O3W—H3WB···O70.852.132.866 (4)144
O4W—H4WA···O4Wi0.852.203.04 (2)170
O4W—H4WB···O3W0.852.082.921 (10)168
O5W—H5WA···O3W0.852.322.88 (4)124
O5W—H5WB···O5Wi0.851.972.48 (7)118
O6W—H6WA···O3vi0.852.062.90 (2)175
Symmetry codes: (i) x+2, y, z+1/2; (ii) x+3/2, y+3/2, z+1; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x+3/2, y1/2, z+1/2; (vi) x, y+1, z1/2; (vii) x+2, y+1, z+1.
 

Acknowledgements

The authors thank Ondokuz Mayıs University (Turkey) for single-crystal X-ray experiment.

References

First citationAkbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAlbayrak, C., Odabaşoğlu, M., Özek, A. & Büyükgüngör, O. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 85, 85–91.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, F., Li, L., Zhu, C., Li, J., Peng, H. & Zou, Y. (2019). Chem. Phys. Lett. 730, 271–276.  Web of Science CrossRef CAS Google Scholar
First citationChattaraj, P. K., Sarkar, U. & Roy, D. R. (2006). Chem. Rev. 106, 2065–2091.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDemir, S., Tinmaz, F., Dege, N. & Ilhan, I. O. (2016). J. Mol. Struct. 1108, 637–648.  Web of Science CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationDomingo, L. R., Aurell, M. J., Pérez, P. & Contreras, R. (2002). Tetrahedron, 58, 4417–4423.  Web of Science CrossRef CAS Google Scholar
First citationFang, J. & Yan, C. G. (2016). J. Heterocycl. Chem. 53, 800–804.  Web of Science CSD CrossRef CAS Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationFukui, K. (1982). Pure Appl. Chem. 54, 1825–1836.  CrossRef CAS Web of Science Google Scholar
First citationGilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (2000). J. Am. Chem. Soc. 122, 10405–10417.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationHazra, S., Martins, N. M. R., Mahmudov, K. T., Zubkov, F. I., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2018). J. Organomet. Chem. 867, 193–200.  Web of Science CSD CrossRef CAS Google Scholar
First citationHinckley, C. C. (1969). J. Am. Chem. Soc. 91, 5160–5162.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHoffmann, R. & Woodward, R. B. (1965). J. Am. Chem. Soc. 87, 2046–2048.  CrossRef CAS Web of Science Google Scholar
First citationJlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541–4550.  Web of Science CSD CrossRef Google Scholar
First citationKvyatkovskaya, E. A., Zaytsev, V. P., Zubkov, F. I., Dorovatovskii, P. V., Zubavichus, Y. V. & Khrustalev, V. N. (2017). Acta Cryst. E73, 515–519.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, J., Xu, L., Bai, J., Du, A. & Wu, B. (2019). New J. Chem. 43, 8290–8298.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). Coord. Chem. Rev. 345, 54–72.  Web of Science CrossRef CAS Google Scholar
First citationNenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2020). Molecules, 25, 5013–5027.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNikitina, P. A., Kuz'mina, L. G., Perevalov, V. P. & Tkach, I. I. (2013). Tetrahedron, 69, 3249–3256.  Web of Science CSD CrossRef CAS Google Scholar
First citationParr, R. G., Szentpály, L. v. & Liu, S. (1999). J. Am. Chem. Soc. 121, 1922–1924.  Web of Science CrossRef CAS Google Scholar
First citationRema, V. T., Krishnankutty, K. & Michael, J. (1997). J. Indian Chem. Soc. 74, 391–392.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. O., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationShokova, E. A., Kim, J. K. & Kovalev, V. V. (2015). Russ. J. Org. Chem. 51, 755–830.  Web of Science CrossRef CAS Google Scholar
First citationSimunek, P. V., Bertolasi, V. & Machacek, V. (2013). Eur. J. Org. Chem. pp. 5683–5691.  Google Scholar
First citationSingh, H., Khanna, G. & Khurana, J. M. (2016). Tetrahedron Lett. 57, 3075–3080.  Web of Science CSD CrossRef CAS Google Scholar
First citationSona, V. & Gautham, N. (1992). Acta Cryst. B48, 111–113.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSubhasri, A., Balachandran, S., Mohanraj, K., Kumar, P. S., Jothi, K. J. & Anbuselvan, C. (2022). Chemosphere, 297, 134150–134161.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTurkoglu, G., Berber, H. & Kani, I. (2015). New J. Chem. 39, 2728–2740.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds