research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of three salts of 1-(4-nitro­phenyl)­piperazine

crossmark logo

aDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore-570 005, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039, Kayseri, Türkiye, dInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, eThomas Jefferson High School for Science and Technology, 6560 Braddock Rd, Alexandria VA 22312, USA, and fDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: Passion49432005@gmail.com, yathirajan@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 25 January 2023; accepted 2 April 2023; online 6 April 2023)

The crystal structures and Hirshfeld surface analyses of three salts of 1-(4-nitro­phenyl)­piperazine with 2-chloro­benzoic acid, 2-bromo­benzoic acid and 2-iodo­benzoic acid are reported. The chloro­benzoate salt, C10H14N3O2+·C7H4ClO2, contains whole-ion-disordered cations and anions, which were modeled with two equivalent conformations with occupancies of 0.745 (10)/0.255 (10) and 0.563 (13)/0.437 (13), respectively. The bromo­benzoate and iodo­benzoate derivatives are isomorphous and crystallize as hemihydrates, viz. C10H14N3O2+·C7H4BrO2·0.5H2O and C10H14N3O2+·C7H4IO2·0.5H2O, respectively [the water mol­ecule is disordered over two locations with occupancies of 0.276 (3)/0.223 (3) for the iodo­benzoate derivative]. In the extended structures, all three salts feature an R44(12) loop of two anions and two cations linked by N—H⋯O hydrogen bonds.

1. Chemical context

Piperazines and substituted piperazines are pharmacophores that can be found in many biologically active compounds across a number of different therapeutic areas (Berkheij, 2005[Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369-2371.]) such as anti­fungal (Upadhayaya et al., 2004[Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225-2238.]), anti-bacterial, anti-malarial and anti-psychotic agents (Chaudhary et al., 2006[Chaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819-1826.]). A review on the current pharmacological and toxicological information for piperazine derivatives was described (Elliott, 2011[Elliott, S. (2011). Drug Test. Anal. 3, 430-438.]). 4-(4-Nitrophenyl)piperazin-1-ium chloride monohydrate has been used as an inter­mediate in the synthesis of anti­cancer drugs, transcriptase inhibitors and anti­fungal reagents and is also an important reagent for potassium channel openers, which show considerable biomolecular current-voltage rectification characteristics (Lu, 2007[Lu, Y.-X. (2007). Acta Cryst. E63, o3611.]). 4-Nitro­phenyl­piperazine was the starting material in the synthesis and biological evaluation of piperazine containing hydrazone derivatives (Kaya et al., 2016[Kaya, B., Ozkay, Y., Temel, H. E. & Kaplancikli, Z. A. (2016). J. Chem. 5878410.]).

Very recently, we have reported the syntheses, crystal structures and Hirshfeld surface analysis of 4-(4-nitro­phen­yl)piperazin-1-ium tri­fluoro­acetate (Cambridge Structural Database refcode BEYREG) and 4-(4-nitro­phen­yl)piperazin-1-ium tri­chloro­acetate (BEYRIK) (Shankara Prasad et al., 2023[Shankara Prasad, H. J., Devaraju, Murthy, S. M., Kaspiaruk, H., Yathirajan, H. S., Foro, S. & Chęcińska, L. (2023). Acta Cryst. E79, 1-7.]). As part of our ongoing studies in this area, the present paper reports the crystal structure studies and Hirshfeld surface analysis of three salts of 1-(4-nitro­phenyl)­piperazine with organic acids viz., 4-(4-nitrophenyl)piperazin-1-ium 2-chloro­benzoate, C10H14N3O2+·C7H4ClO2 (1), 4-(4-nitrophenyl)piperazin-1-ium 2-bromo­benzoate hemihydrate, C10H14N3O2+·C7H4BrO2·0.5H2O (2), and 4-(4-nitrophenyl)piperazin-1-ium 2-iodo­benzoate hemihydrate, C10H14N3O2+·C7H4IO2·0.5H2O (3).

[Scheme 1]

2. Structural commentary

Structure 1 consists of a 4-nitro­piperazinium cation linked to a 2-chloro­benzoate anion by two N—H⋯O hydrogen bonds (Fig. 1[link], Table 1[link]), which will be discussed in further detail in the Supra­molecular features section of the paper. Both the cation and the anion exhibit whole-ion disorder, which was modeled with two equivalent conformations with occupancies of 0.745 (10)/0.255 (10) and 0.563 (13)/0.437 (13) respectively. When discussing the conformations of the anion and cation, only the major components will be used. In the chloro­benzoate anion, the carboxyl­ate group is significantly twisted with respect to the 2-chloro­phenyl ring with a dihedral angle of 76.7 (4)°, which is likely due to the steric inter­action between the ortho-chloro substituent and the carboxyl­ate group. Structures 2 and 3 exhibit similar cation conformations, with equivalent dihedral angles of 65.5 (3) and 67.1 (5)°, respectively. Additionally, in all three structures, the 4-nitro­phenyl group occupies an equatorial position in its attachment to the piperazinium ring.

Table 1
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2i 0.93 2.13 2.880 (15) 137
N2—H2B⋯O3ii 0.88 (2) 1.86 (2) 2.740 (6) 172 (3)
N2—H2B⋯O3Aii 0.88 (2) 1.73 (2) 2.590 (13) 164 (3)
N2—H2C⋯O4 0.89 (2) 1.83 (2) 2.705 (8) 169 (3)
N2—H2C⋯O4A 0.89 (2) 1.81 (3) 2.644 (19) 156 (3)
C8—H8A⋯Cl1iii 0.97 2.82 3.629 (5) 142
C8—H8A⋯Cl1iv 0.97 2.95 3.780 (5) 144
C8—H8A⋯Cl1Aiv 0.97 2.88 3.643 (12) 136
C8—H8B⋯O4Aiv 0.97 2.58 3.13 (2) 116
C10—H10A⋯O3Aii 0.97 2.65 3.285 (19) 123
Symmetry codes: (i) [-x+2, -y+1, -z]; (ii) [-x+1, -y+2, -z+1]; (iii) [x-1, y, z]; (iv) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of 1 with the N—H⋯O hydrogen bond shown as a dashed line. Atomic displacement parameters are at the 30% probability level.

Since 2 and 3 are isostructural, only 2 will be discussed in detail. This structure consists of a 4-(4-nitrophenyl)piperazin-1-ium cation linked to a 2-bromo­benzoate anion by two N—H⋯O hydrogen bonds (Figs. 2[link] and 3[link], Tables 2[link] and 3[link]). Both 2 and 3 contain 0.5 water mol­ecules of crystallization [disordered over two locations with occupancies of 0.276 (3)/0.223 (3) for the iodo­benzoate derivative]. Additionally, there is a weak C—H⋯Br inter­action accepted by the bromine atom in the 2-bromo­bezoate anion and a carbon atom in the piperazinium ring, as well as a pair of weak C—H⋯O inter­actions between adjacent 4-nitro­phenyl rings in the 4-(4-nitrophenyl)piperazin-1-ium cation.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.85 (2) 1.83 (2) 2.655 (3) 164 (2)
N2—H2B⋯O4i 0.88 (2) 1.82 (2) 2.701 (3) 173 (2)
C2—H2⋯O2ii 0.93 2.50 3.307 (4) 145
C7—H7B⋯Br1iii 0.97 3.11 4.032 (2) 160
C10—H10B⋯O1Wi 0.97 2.10 3.057 (8) 169
Symmetry codes: (i) [-x+1, -y, -z]; (ii) [-x, -y+1, -z+1]; (iii) [x-1, y, z].

Table 3
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯I1i 0.93 3.28 4.110 (4) 150
C3—H3⋯O1ii 0.93 2.53 3.347 (7) 147
C6—H6⋯I1iii 0.93 3.26 3.940 (4) 132
C7—H7A⋯O1WA 0.97 2.14 3.09 (3) 167
C7—H7A⋯O1WB 0.97 2.01 2.85 (3) 145
N2—H2A⋯O3iv 0.88 (5) 1.86 (5) 2.717 (5) 164 (5)
N2—H2B⋯O4 0.93 (5) 1.77 (5) 2.666 (6) 160 (5)
O1WB—H1W3⋯O3iv 0.83 (2) 1.71 (10) 2.37 (2) 135 (12)
Symmetry codes: (i) [x-1, y, z]; (ii) [-x-1, -y+1, -z]; (iii) x, y+1, z; (iv) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
The mol­ecular structure of 2 with the N—H⋯O hydrogen bond shown as a dashed line. Atomic displacement parameters are at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of 3 with the N—H⋯O hydrogen bond shown as a dashed line. Atomic displacement parameters are at the 30% probability level.

3. Supra­molecular features

In the packing of 1, which contains both a disordered cation and anion as well as disordered water of solvation, the discussion will focus solely on the major component. The cation forms an R44(12) loop involving N—H⋯O hydrogen bonds with two adjacent anions and an adjacent cation (symmetry codes: 2 − x, 1 − y, 1 − z; x, 1 + y, z; 1 − x, 1 − y, 1 − z; see Fig. 4[link] for packing and Fig. 5[link] for fingerprint plots). There is also a ππ inter­action between the nitro group in the cation and the phenyl ring of an adjacent cation [symmetry code: 1 − x, −y, −z; YCg distance = 3.488 (18) Å; XYCg: 85.8 (12)°].

[Figure 4]
Figure 4
Packing diagram for 1 showing an R44(12) loop of N—H⋯O hydrogen bonds with two cations and two anions (symmetry codes: 2 − x, 1 − y, 1 − z; x, 1 + y, z; 1 − x, 1 − y, 1 − z). Hydrogen bonds shown as dashed lines.
[Figure 5]
Figure 5
Fingerprint plot for 1 showing the N—H⋯O hydrogen bonds as prominent spikes.

In the packing of 2, two cations and two anions form an R44 (12) loop (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) of N—H⋯O hydrogen bonds (symmetry code: 1 − x, −y, −z; see Fig. 6[link] for packing and Fig. 7[link] for fingerprint plots). Additionally, there are weak C—H⋯O inter­actions between adjacent nitro­phenyl rings (symmetry code: −x, 1 − y, 1 − z) that form an R22(10) ring (Fig. 6[link]), as well as a weak C—H⋯Br inter­action between the piperazine ring and the bromine atom in an adjacent 2-bromo­benzoate anion (symmetry code: −1 + x, y, z). The phenyl rings in adjacent cations form ππ inter­actions with a perpendicular distance between centroids of 3.5332 (11) Å (symmetry code: 1 − x, 1 − y, 1 − z; slippage = 0.737 Å). These are all clearly seen in the fingerprint plot generated by CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]).

[Figure 6]
Figure 6
Packing diagram for 2 showing an R44(12) loop arising from N—H⋯O hydrogen bonds with an adjacent cation and anion (symmetry code: 1 − x, −y, −z) and an R22(10) loop comprised of weak C—H⋯O inter­actions between adjacent nitro­phenyl rings (symmetry code: −x, 1 − y, 1 − z). Hydrogen bonds and C—H⋯O inter­actions shown as dashed lines. The half occupancy water mol­ecule is omitted for clarity.
[Figure 7]
Figure 7
Fingerprint plot for 2 showing the N—H⋯O hydrogen bonds as prominent spikes.

In the packing of 3, a pair of cations and a pair of anions form an R44(12) loop linked by N—H⋯O hydrogen bonds (symmetry code: 1 − x, 1 − y, 1 − z; see Fig. 8[link] for packing and Fig. 9[link] for fingerprint plots). Additionally, there are weak C—H⋯O inter­actions between adjacent nitro­phenyl rings (symmetry code: 1 − x, 1 − y, −z) that form an R22 (10) ring. This structure contains a partially occupied water mol­ecule close to a center of inversion for which the hydrogen atoms were not able to be located (see Refinement). This species is likely to be involved in hydrogen bonding with an adjacent oxygen atom in the anion (symmetry code: 1 − x, 1 − y, 1 − z) and with the piperazine ring in the cation, forming an R33(10) ring. The phenyl rings in adjacent cations form ππ inter­actions with a perpendicular distance between centroids of 3.586 (4) Å (symmetry code: −x, 1 − y, −z; slippage = 0.379 Å).

[Figure 8]
Figure 8
Packing diagram for 3 showing the same features as Fig. 6[link].
[Figure 9]
Figure 9
Fingerprint plot for 3 showing the N—H⋯O hydrogen bonding as prominent spikes.

4. Database survey

Related structures containing the 4-(4-nitrophenyl)piperazin-1-ium cation include 4-(4-nitrophenyl)piperazin-1-ium chloride monohydrate (refcode LIJNAU; Lu, 2007[Lu, Y.-X. (2007). Acta Cryst. E63, o3611.]) and 4,6-dimeth­oxy pyrimidin-2-amine-1-(4-nitro­phen­yl)piperazine (1:1) (LUD­MUU; Wang et al., 2014[Wang, X.-Y., Wang, M.-Z., Guo, F.-J., Sun, J. & Qian, S.-S. (2014). Z. Kristallogr. New Cryst. Struct. 229, 97-98.]). Very recently, we have reported the crystal structures of six salts of 1-(4-nitro­phenyl)­piperazine (NEBVOJ, NEBVUP, NEBWAW, NEBWEA, NEBWIE, NEBWOK; Mahesha et al., 2022a[Mahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022a). Acta Cryst. E78, 510-518.]). The syntheses and crystal structures of 4-(4-nitro­phen­yl)piperazin-1-ium benzoate monohydrate (BEFGIG) and 4-(4-nitro­phen­yl)piperazin-1-ium 2-carb­oxy-4,6-di­nitro­phenolate (BEFGOM) have been reported (Shankara Prasad et al., 2022[Shankara Prasad, H. J., Devaraju, Vinaya, Yathirajan, H. S., Parkin, S. R. & Glidewell, C. (2022). Acta Cryst. E78, 840-845.]). A survey of these published derivatives containing the 4-(4-nitrophenyl)piperazin-1-ium cation shows that the most common conformation adopted by the 4-nitro­phenyl substituent with respect to the six-membered piperazinium ring is equatorial (LUDMUU, NEBVOJ, NEBVUP, NEBWAW, NEBWEA, NEBWOK, BEFGIG and BEYRIK) with only three adopting the axial conformation (LUDMUU, BEFGOM, and BEYREG). One published structure contains two 4-nitro­phenyl cations, with one adopting an equatorial conformation and the other an axial conformation (Mahesha et al., 2022a[Mahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022a). Acta Cryst. E78, 510-518.]).

5. Synthesis and crystallization

For the synthesis of salts (1)–(3), a solution of commercially available (from Sigma-Aldrich) 1-(4-nitro­phenyl)­piperazine (100 mg, 0.483 mmol) in methanol (10 ml) was mixed with equimolar solutions of the appropriate acids in methanol (10 ml) and ethyl acetate (10 ml), viz., 2-chloro­benzoic acid (76 mg, 0.483 mmol) for (1), 2-bromo­benzoic acid (97 mg, 0.483 mmol) for (2), and 2-iodo­benzoic acid (120 mg, 0.483 mmol) for (3), The resulting solutions were stirred for 15 minutes at room temperature and allowed to stand at the same temperature. X-ray quality crystals were formed on slow evaporation after one week for all compounds, where ethanol:ethyl­acetate (1:1) was used for crystallization. The melting points are 439–441 K (1), 443–445 K (2) and 451–453 K (3).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. For all structures, the hydrogen atoms were located in difference maps and relocated to idealized locations (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) while the N—H hydrogen atoms were refined isotropically. For 1, in which both the cation and the anion exhibit whole-ion disorder, two equivalent conformations were modeled with occupancies of 0.745 (10)/0.255 (10) and 0.563 (13)/ 0.437 (13) respectively. The water hydrogen atoms were refined isotropically with idealized geometries.

Table 4
Experimental details

  1 2 3
Crystal data
Chemical formula C10H14N3O2+·C7H4ClO2 C10H14N3O2+·C7H4BrO2·0.5H2O C10H14N3O2+·C7H4IO2·0.5H2O
Mr 363.79 417.26 928.50
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 293 293 293
a, b, c (Å) 6.6073 (5), 8.2708 (5), 16.984 (1) 7.2570 (5), 9.7772 (6), 14.202 (1) 7.3949 (6), 9.3440 (8), 14.498 (1)
α, β, γ (°) 102.385 (6), 91.745 (6), 99.903 (6) 102.101 (6), 99.534 (6), 110.981 (6) 104.967 (8), 94.707 (7), 107.430 (8)
V3) 890.84 (10) 887.41 (11) 909.44 (13)
Z 2 2 1
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.24 2.35 1.79
Crystal size (mm) 0.48 × 0.44 × 0.24 0.36 × 0.32 × 0.20 0.50 × 0.44 × 0.24
 
Data collection
Diffractometer Oxford Diffraction Xcalibur CCD Oxford Diffraction Xcalibur CCD Oxford Diffraction Xcalibur CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis RED, CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis RED, CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis RED, CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.894, 1.000 0.781, 1.000 0.697, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6637, 3787, 1916 6177, 3856, 2478 6275, 3904, 2443
Rint 0.014 0.016 0.024
(sin θ/λ)max−1) 0.653 0.660 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.162, 1.06 0.036, 0.084, 0.94 0.046, 0.117, 1.02
No. of reflections 3787 3856 3904
No. of parameters 357 244 264
No. of restraints 714 5 13
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.15 0.51, −0.33 0.61, −0.44
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis RED, CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXL2018 (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015a); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

4-(4-Nitrophenyl)piperazin-1-ium 2-chlorobenzoate (1) top
Crystal data top
C10H14N3O2+·C7H4ClO2Z = 2
Mr = 363.79F(000) = 380
Triclinic, P1Dx = 1.356 Mg m3
a = 6.6073 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2708 (5) ÅCell parameters from 2365 reflections
c = 16.984 (1) Åθ = 2.6–27.6°
α = 102.385 (6)°µ = 0.24 mm1
β = 91.745 (6)°T = 293 K
γ = 99.903 (6)°Prism, yellow
V = 890.84 (10) Å30.48 × 0.44 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
1916 reflections with I > 2σ(I)
ω scansRint = 0.014
Absorption correction: multi-scan
(CrysalisRed; Oxford Diffraction, 2009)
θmax = 27.7°, θmin = 2.6°
Tmin = 0.894, Tmax = 1.000h = 88
6637 measured reflectionsk = 107
3787 independent reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: mixed
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.3137P]
where P = (Fo2 + 2Fc2)/3
3787 reflections(Δ/σ)max < 0.001
357 parametersΔρmax = 0.15 e Å3
714 restraintsΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.0680 (5)0.6989 (5)0.5627 (2)0.0833 (8)0.745 (10)
O30.7965 (9)1.0649 (9)0.6034 (5)0.0842 (18)0.745 (10)
O40.6067 (11)0.8100 (10)0.5952 (5)0.082 (2)0.745 (10)
C110.9076 (7)0.8971 (6)0.6843 (2)0.0615 (11)0.745 (10)
C121.0545 (7)0.7974 (6)0.6616 (3)0.0650 (12)0.745 (10)
C131.1959 (7)0.7776 (5)0.7195 (3)0.0835 (16)0.745 (10)
H131.2942320.7109070.7042980.100*0.745 (10)
C141.1905 (8)0.8575 (5)0.8000 (3)0.0943 (18)0.745 (10)
H141.2851240.8442280.8387110.113*0.745 (10)
C151.0436 (9)0.9572 (6)0.8227 (2)0.0931 (16)0.745 (10)
H151.0399421.0106340.8765380.112*0.745 (10)
C160.9022 (8)0.9770 (6)0.7648 (3)0.0776 (13)0.745 (10)
H160.8038661.0437200.7799530.093*0.745 (10)
C170.7612 (19)0.9300 (14)0.6263 (9)0.0666 (17)0.745 (10)
Cl1A1.0723 (17)0.6949 (14)0.5994 (9)0.100 (3)0.255 (10)
O3A0.741 (3)1.065 (3)0.6227 (13)0.082 (4)0.255 (10)
O4A0.654 (3)0.785 (3)0.5841 (13)0.073 (4)0.255 (10)
C11A0.877 (2)0.906 (2)0.7016 (7)0.066 (2)0.255 (10)
C12A1.030 (2)0.8078 (18)0.6923 (8)0.069 (2)0.255 (10)
C13A1.1458 (19)0.7951 (16)0.7596 (10)0.083 (2)0.255 (10)
H13A1.2476040.7294050.7533780.099*0.255 (10)
C14A1.110 (2)0.8807 (17)0.8362 (8)0.092 (3)0.255 (10)
H14A1.1874330.8722190.8812310.111*0.255 (10)
C15A0.958 (2)0.9790 (17)0.8455 (7)0.090 (3)0.255 (10)
H15A0.9334241.0362080.8967550.108*0.255 (10)
C16A0.841 (2)0.9916 (19)0.7782 (8)0.081 (2)0.255 (10)
H16A0.7395831.0573810.7844260.097*0.255 (10)
C17A0.735 (7)0.904 (5)0.617 (3)0.067 (3)0.255 (10)
O1A0.437 (2)0.1420 (17)0.0678 (8)0.143 (4)0.437 (13)
O2A0.725 (2)0.2969 (18)0.0749 (8)0.127 (3)0.437 (13)
N3A0.575 (2)0.2519 (16)0.0385 (7)0.105 (2)0.437 (13)
C1A0.548 (2)0.5327 (19)0.1991 (6)0.071 (2)0.437 (13)
C2A0.713 (2)0.5730 (16)0.1536 (7)0.085 (3)0.437 (13)
H20.8201540.6617380.1756670.102*0.437 (13)
C3A0.7186 (17)0.4807 (15)0.0753 (7)0.089 (3)0.437 (13)
H30.8290210.5076210.0448650.107*0.437 (13)
C4A0.5589 (19)0.3480 (14)0.0424 (5)0.086 (2)0.437 (13)
C5A0.3939 (18)0.3077 (15)0.0878 (7)0.093 (2)0.437 (13)
H50.2870890.2189960.0657730.112*0.437 (13)
C6A0.389 (2)0.4001 (18)0.1662 (7)0.089 (2)0.437 (13)
H60.2782180.3731110.1965760.107*0.437 (13)
O10.5473 (18)0.1306 (13)0.0808 (7)0.144 (3)0.563 (13)
O20.836 (2)0.2893 (15)0.0755 (6)0.161 (4)0.563 (13)
N30.675 (2)0.2455 (14)0.0465 (6)0.109 (3)0.563 (13)
C10.5784 (18)0.5063 (14)0.1894 (4)0.070 (2)0.563 (13)
C20.7641 (16)0.5504 (13)0.1562 (5)0.089 (3)0.563 (13)
H2A0.8660180.6353360.1858130.107*0.563 (13)
C30.7975 (15)0.4676 (12)0.0787 (5)0.095 (2)0.563 (13)
H3A0.9216920.4970430.0565170.114*0.563 (13)
C40.6452 (15)0.3406 (11)0.0345 (4)0.086 (2)0.563 (13)
C50.4595 (14)0.2966 (11)0.0676 (5)0.087 (2)0.563 (13)
H5A0.3575910.2116380.0380290.105*0.563 (13)
C60.4261 (15)0.3794 (13)0.1451 (5)0.0822 (19)0.563 (13)
H6A0.3019140.3499290.1673260.099*0.563 (13)
N10.5532 (4)0.5957 (3)0.27470 (16)0.0768 (8)
N20.5064 (4)0.7717 (3)0.43581 (17)0.0675 (7)
H2B0.417 (4)0.834 (3)0.4252 (17)0.081*
H2C0.530 (5)0.795 (4)0.4892 (11)0.081*
C70.3683 (5)0.5526 (4)0.3162 (2)0.0921 (11)
H7A0.3132370.4332760.2979240.110*
H7B0.2647690.6142620.3027940.110*
C80.4136 (5)0.5935 (3)0.4054 (2)0.0858 (10)
H8A0.2869230.5682390.4313840.103*
H8B0.5069560.5237030.4191850.103*
C90.6955 (5)0.8126 (4)0.3947 (2)0.0899 (11)
H9A0.7967440.7495610.4088430.108*
H9B0.7524650.9315380.4129760.108*
C100.6532 (6)0.7714 (4)0.3053 (2)0.0929 (11)
H10A0.5653680.8445950.2907460.111*
H10B0.7818390.7923440.2799450.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0608 (8)0.0760 (9)0.0980 (18)0.0096 (6)0.0027 (12)0.0109 (13)
O30.056 (3)0.069 (2)0.139 (4)0.019 (2)0.014 (3)0.041 (3)
O40.048 (3)0.077 (3)0.115 (4)0.000 (2)0.000 (3)0.018 (2)
C110.053 (2)0.0330 (18)0.092 (3)0.0025 (16)0.002 (2)0.0088 (19)
C120.058 (2)0.0400 (19)0.088 (3)0.0002 (16)0.009 (2)0.003 (2)
C130.087 (3)0.050 (2)0.108 (4)0.015 (2)0.016 (3)0.007 (3)
C140.110 (4)0.069 (3)0.096 (4)0.012 (3)0.029 (3)0.009 (3)
C150.107 (4)0.064 (3)0.097 (3)0.002 (3)0.004 (3)0.004 (2)
C160.077 (3)0.049 (2)0.101 (3)0.007 (2)0.009 (2)0.009 (2)
C170.047 (4)0.048 (4)0.101 (4)0.007 (3)0.010 (3)0.009 (3)
Cl1A0.071 (3)0.079 (3)0.140 (6)0.017 (2)0.020 (5)0.004 (5)
O3A0.064 (8)0.063 (5)0.128 (9)0.024 (6)0.017 (7)0.030 (6)
O4A0.048 (8)0.062 (6)0.104 (7)0.005 (6)0.004 (6)0.014 (5)
C11A0.057 (4)0.038 (4)0.099 (4)0.005 (3)0.001 (4)0.009 (4)
C12A0.063 (4)0.039 (4)0.098 (4)0.004 (3)0.007 (4)0.009 (4)
C13A0.085 (4)0.054 (4)0.103 (5)0.011 (4)0.015 (4)0.010 (4)
C14A0.096 (5)0.068 (5)0.105 (5)0.009 (5)0.010 (5)0.009 (5)
C15A0.089 (6)0.066 (5)0.106 (5)0.001 (4)0.000 (5)0.011 (5)
C16A0.080 (5)0.054 (4)0.101 (4)0.001 (4)0.002 (4)0.008 (4)
C17A0.051 (5)0.047 (5)0.102 (5)0.011 (4)0.006 (4)0.015 (5)
O1A0.145 (8)0.134 (6)0.107 (6)0.007 (6)0.031 (6)0.035 (5)
O2A0.135 (7)0.122 (6)0.103 (6)0.019 (6)0.005 (6)0.019 (5)
N3A0.117 (5)0.090 (4)0.089 (4)0.007 (5)0.014 (4)0.007 (3)
C1A0.090 (5)0.033 (4)0.080 (4)0.002 (4)0.014 (3)0.001 (3)
C2A0.095 (5)0.053 (4)0.091 (4)0.005 (4)0.014 (4)0.001 (3)
C3A0.094 (5)0.072 (4)0.087 (4)0.001 (4)0.010 (4)0.004 (3)
C4A0.104 (5)0.068 (3)0.074 (3)0.001 (4)0.018 (4)0.001 (3)
C5A0.112 (5)0.071 (4)0.077 (5)0.009 (4)0.017 (4)0.000 (4)
C6A0.107 (5)0.063 (4)0.079 (5)0.006 (4)0.017 (4)0.001 (4)
O10.146 (7)0.123 (4)0.116 (5)0.016 (5)0.006 (5)0.043 (4)
O20.144 (7)0.150 (5)0.140 (5)0.011 (6)0.036 (5)0.051 (4)
N30.125 (6)0.090 (4)0.088 (4)0.008 (5)0.003 (4)0.008 (3)
C10.090 (4)0.033 (3)0.082 (3)0.007 (3)0.017 (3)0.006 (3)
C20.099 (5)0.059 (4)0.092 (3)0.004 (4)0.003 (3)0.004 (3)
C30.103 (5)0.074 (3)0.090 (3)0.005 (4)0.005 (4)0.002 (3)
C40.105 (5)0.068 (3)0.076 (3)0.004 (4)0.012 (3)0.004 (2)
C50.108 (5)0.068 (3)0.069 (4)0.010 (3)0.015 (3)0.002 (3)
C60.101 (4)0.058 (3)0.070 (4)0.011 (3)0.012 (3)0.001 (3)
N10.0767 (17)0.0420 (12)0.099 (2)0.0114 (11)0.0042 (15)0.0076 (13)
N20.0543 (15)0.0425 (12)0.103 (2)0.0079 (10)0.0018 (15)0.0101 (14)
C70.079 (2)0.0508 (17)0.127 (3)0.0174 (16)0.006 (2)0.0043 (19)
C80.086 (2)0.0425 (16)0.121 (3)0.0017 (15)0.014 (2)0.0099 (17)
C90.061 (2)0.074 (2)0.111 (3)0.0155 (16)0.0106 (19)0.0102 (19)
C100.096 (3)0.0543 (18)0.105 (3)0.0236 (17)0.011 (2)0.0043 (18)
Geometric parameters (Å, º) top
Cl1—C121.715 (3)C3A—C4A1.3900
Cl1—H8Ai2.953 (5)C3A—H30.9300
O3—C171.247 (14)C4A—C5A1.3900
O4—C171.304 (10)C5A—C6A1.3900
C11—C121.3900C5A—H50.9300
C11—C161.3900C6A—H60.9300
C11—C171.458 (15)O1—N31.189 (9)
C12—C131.3900O2—N31.216 (10)
C13—C141.3900N3—C41.468 (8)
C13—H130.9300C1—C21.3900
C14—C151.3900C1—C61.3900
C14—H140.9300C1—N11.507 (7)
C15—C161.3900C2—C31.3900
C15—H150.9300C2—H2A0.9300
C16—H160.9300C3—C41.3900
Cl1A—C12A1.711 (4)C3—H3A0.9300
O3A—C17A1.31 (4)C4—C51.3900
O4A—C17A1.06 (4)C5—C61.3900
C11A—C12A1.3900C5—H5A0.9300
C11A—C16A1.3900C6—H6A0.9300
C11A—C17A1.68 (4)N1—C71.459 (4)
C12A—C13A1.3900N1—C101.464 (3)
C13A—C14A1.3900N2—C81.469 (3)
C13A—H13A0.9300N2—C91.474 (4)
C14A—C15A1.3900N2—H2B0.882 (17)
C14A—H14A0.9300N2—H2C0.889 (17)
C15A—C16A1.3900C7—C81.488 (5)
C15A—H15A0.9300C7—H7A0.9700
C16A—H16A0.9300C7—H7B0.9700
O1A—N3A1.182 (10)C8—H8A0.9700
O2A—N3A1.235 (12)C8—H8B0.9700
N3A—C4A1.448 (9)C9—C101.490 (5)
C1A—N11.275 (9)C9—H9A0.9700
C1A—C2A1.3900C9—H9B0.9700
C1A—C6A1.3900C10—H10A0.9700
C2A—C3A1.3900C10—H10B0.9700
C2A—H20.9300
C12—Cl1—H8Ai92.6 (2)C4A—C5A—H5120.0
C12—C11—C16120.0C5A—C6A—C1A120.0
C12—C11—C17122.9 (6)C5A—C6A—H6120.0
C16—C11—C17117.0 (6)C1A—C6A—H6120.0
C11—C12—C13120.0O1—N3—O2122.6 (9)
C11—C12—Cl1121.34 (18)O1—N3—C4120.6 (8)
C13—C12—Cl1118.66 (18)O2—N3—C4116.9 (7)
C14—C13—C12120.0C2—C1—C6120.0
C14—C13—H13120.0C2—C1—N1117.8 (6)
C12—C13—H13120.0C6—C1—N1122.1 (6)
C13—C14—C15120.0C1—C2—C3120.0
C13—C14—H14120.0C1—C2—H2A120.0
C15—C14—H14120.0C3—C2—H2A120.0
C14—C15—C16120.0C4—C3—C2120.0
C14—C15—H15120.0C4—C3—H3A120.0
C16—C15—H15120.0C2—C3—H3A120.0
C15—C16—C11120.0C3—C4—C5120.0
C15—C16—H16120.0C3—C4—N3122.1 (5)
C11—C16—H16120.0C5—C4—N3117.9 (5)
O3—C17—O4122.2 (12)C4—C5—C6120.0
O3—C17—C11119.3 (7)C4—C5—H5A120.0
O4—C17—C11118.2 (10)C6—C5—H5A120.0
C12A—C11A—C16A120.0C5—C6—C1120.0
C12A—C11A—C17A116.6 (17)C5—C6—H6A120.0
C16A—C11A—C17A123.3 (17)C1—C6—H6A120.0
C11A—C12A—C13A120.0C1A—N1—C7117.5 (7)
C11A—C12A—Cl1A121.3 (4)C1A—N1—C10118.6 (7)
C13A—C12A—Cl1A118.7 (4)C7—N1—C10111.7 (3)
C14A—C13A—C12A120.0C7—N1—C1121.9 (5)
C14A—C13A—H13A120.0C10—N1—C1120.3 (5)
C12A—C13A—H13A120.0C8—N2—C9109.7 (2)
C13A—C14A—C15A120.0C8—N2—H2B108 (2)
C13A—C14A—H14A120.0C9—N2—H2B109.3 (19)
C15A—C14A—H14A120.0C8—N2—H2C111 (2)
C16A—C15A—C14A120.0C9—N2—H2C112 (2)
C16A—C15A—H15A120.0H2B—N2—H2C107 (3)
C14A—C15A—H15A120.0N1—C7—C8111.2 (3)
C15A—C16A—C11A120.0N1—C7—H7A109.4
C15A—C16A—H16A120.0C8—C7—H7A109.4
C11A—C16A—H16A120.0N1—C7—H7B109.4
O4A—C17A—O3A140 (4)C8—C7—H7B109.4
O4A—C17A—C11A118 (4)H7A—C7—H7B108.0
O3A—C17A—C11A101 (2)N2—C8—C7111.6 (3)
O1A—N3A—O2A123.5 (11)N2—C8—H8A109.3
O1A—N3A—C4A118.5 (10)C7—C8—H8A109.3
O2A—N3A—C4A117.8 (10)N2—C8—H8B109.3
N1—C1A—C2A121.6 (9)C7—C8—H8B109.3
N1—C1A—C6A117.4 (9)H8A—C8—H8B108.0
C2A—C1A—C6A120.0N2—C9—C10111.3 (3)
C1A—C2A—C3A120.0N2—C9—H9A109.4
C1A—C2A—H2120.0C10—C9—H9A109.4
C3A—C2A—H2120.0N2—C9—H9B109.4
C4A—C3A—C2A120.0C10—C9—H9B109.4
C4A—C3A—H3120.0H9A—C9—H9B108.0
C2A—C3A—H3120.0N1—C10—C9111.9 (3)
C3A—C4A—C5A120.0N1—C10—H10A109.2
C3A—C4A—N3A118.0 (6)C9—C10—H10A109.2
C5A—C4A—N3A122.0 (6)N1—C10—H10B109.2
C6A—C5A—C4A120.0C9—C10—H10B109.2
C6A—C5A—H5120.0H10A—C10—H10B107.9
C16—C11—C12—C130.0O1A—N3A—C4A—C5A4.2 (16)
C17—C11—C12—C13177.0 (7)O2A—N3A—C4A—C5A179.5 (10)
C16—C11—C12—Cl1179.2 (4)C3A—C4A—C5A—C6A0.0
C17—C11—C12—Cl12.3 (6)N3A—C4A—C5A—C6A177.9 (10)
H8Ai—Cl1—C12—C1177.7C4A—C5A—C6A—C1A0.0
H8Ai—Cl1—C12—C13103.1N1—C1A—C6A—C5A169.0 (13)
C11—C12—C13—C140.0C2A—C1A—C6A—C5A0.0
Cl1—C12—C13—C14179.2 (4)C6—C1—C2—C30.0
C12—C13—C14—C150.0N1—C1—C2—C3177.8 (9)
C13—C14—C15—C160.0C1—C2—C3—C40.0
C14—C15—C16—C110.0C2—C3—C4—C50.0
C12—C11—C16—C150.0C2—C3—C4—N3177.9 (8)
C17—C11—C16—C15177.1 (6)O1—N3—C4—C3175.2 (11)
C12—C11—C17—O399.0 (12)O2—N3—C4—C34.2 (14)
C16—C11—C17—O378.0 (14)O1—N3—C4—C52.8 (15)
C12—C11—C17—O475.1 (13)O2—N3—C4—C5177.8 (10)
C16—C11—C17—O4107.8 (11)C3—C4—C5—C60.0
C16A—C11A—C12A—C13A0.0N3—C4—C5—C6178.0 (8)
C17A—C11A—C12A—C13A176.2 (19)C4—C5—C6—C10.0
C16A—C11A—C12A—Cl1A177.7 (12)C2—C1—C6—C50.0
C17A—C11A—C12A—Cl1A1.5 (19)N1—C1—C6—C5177.7 (9)
C11A—C12A—C13A—C14A0.0C2A—C1A—N1—C7176.8 (6)
Cl1A—C12A—C13A—C14A177.7 (12)C6A—C1A—N1—C714.3 (11)
C12A—C13A—C14A—C15A0.0C2A—C1A—N1—C1037.6 (12)
C13A—C14A—C15A—C16A0.0C6A—C1A—N1—C10153.6 (5)
C14A—C15A—C16A—C11A0.0C2—C1—N1—C7176.9 (4)
C12A—C11A—C16A—C15A0.0C6—C1—N1—C70.9 (9)
C17A—C11A—C16A—C15A176 (2)C2—C1—N1—C1032.7 (8)
C12A—C11A—C17A—O4A57 (5)C6—C1—N1—C10149.5 (5)
C16A—C11A—C17A—O4A119 (4)C1A—N1—C7—C8164.1 (9)
C12A—C11A—C17A—O3A132 (2)C10—N1—C7—C854.0 (4)
C16A—C11A—C17A—O3A52 (3)C1—N1—C7—C8153.4 (6)
N1—C1A—C2A—C3A168.6 (14)C9—N2—C8—C757.1 (4)
C6A—C1A—C2A—C3A0.0N1—C7—C8—N256.4 (4)
C1A—C2A—C3A—C4A0.0C8—N2—C9—C1056.2 (4)
C2A—C3A—C4A—C5A0.0C1A—N1—C10—C9164.9 (9)
C2A—C3A—C4A—N3A178.0 (10)C7—N1—C10—C953.6 (4)
O1A—N3A—C4A—C3A177.9 (12)C1—N1—C10—C9153.2 (6)
O2A—N3A—C4A—C3A2.6 (14)N2—C9—C10—N155.0 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2ii0.932.132.880 (15)137
N2—H2B···O3iii0.88 (2)1.86 (2)2.740 (6)172 (3)
N2—H2B···O3Aiii0.88 (2)1.73 (2)2.590 (13)164 (3)
N2—H2C···O40.89 (2)1.83 (2)2.705 (8)169 (3)
N2—H2C···O4A0.89 (2)1.81 (3)2.644 (19)156 (3)
C8—H8A···Cl1iv0.972.823.629 (5)142
C8—H8A···Cl1i0.972.953.780 (5)144
C8—H8A···Cl1Ai0.972.883.643 (12)136
C8—H8B···O4Ai0.972.583.13 (2)116
C10—H10A···O3Aiii0.972.653.285 (19)123
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z; (iii) x+1, y+2, z+1; (iv) x1, y, z.
4-(4-Nitrophenyl)piperazin-1-ium 2-bromobenzoate hemihydrate (2) top
Crystal data top
C10H14N3O2+·C7H4BrO2·0.5H2OZ = 2
Mr = 417.26F(000) = 426
Triclinic, P1Dx = 1.562 Mg m3
a = 7.2570 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7772 (6) ÅCell parameters from 2832 reflections
c = 14.202 (1) Åθ = 3.0–27.9°
α = 102.101 (6)°µ = 2.35 mm1
β = 99.534 (6)°T = 293 K
γ = 110.981 (6)°Prism, brown
V = 887.41 (11) Å30.36 × 0.32 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2478 reflections with I > 2σ(I)
ω scansRint = 0.016
Absorption correction: multi-scan
(CrysalisRed; Oxford Diffraction, 2009)
θmax = 28.0°, θmin = 3.0°
Tmin = 0.781, Tmax = 1.000h = 99
6177 measured reflectionsk = 1212
3856 independent reflectionsl = 1118
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0444P)2]
where P = (Fo2 + 2Fc2)/3
3856 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.51 e Å3
5 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4472 (3)0.9088 (2)0.57716 (16)0.0866 (7)
O20.1466 (4)0.7360 (3)0.53813 (19)0.0965 (8)
N10.5490 (3)0.3809 (2)0.27923 (14)0.0452 (5)
N20.6259 (3)0.1873 (2)0.12301 (15)0.0462 (5)
H2A0.686 (3)0.132 (3)0.1015 (18)0.055*
H2B0.556 (3)0.198 (3)0.0700 (14)0.055*
N30.3218 (4)0.7818 (3)0.53126 (16)0.0593 (6)
C10.3797 (4)0.6788 (3)0.46525 (17)0.0447 (6)
C20.2487 (4)0.5276 (3)0.4245 (2)0.0540 (7)
H20.1232150.4912070.4394370.065*
C30.3015 (4)0.4304 (3)0.36200 (19)0.0518 (6)
H30.2098240.3285300.3337020.062*
C40.4910 (3)0.4806 (2)0.33958 (16)0.0399 (5)
C50.6204 (4)0.6357 (3)0.38273 (19)0.0493 (6)
H50.7463500.6736890.3683810.059*
C60.5675 (4)0.7326 (3)0.44508 (18)0.0505 (6)
H60.6577300.8347500.4739320.061*
C70.3935 (4)0.2306 (3)0.2201 (2)0.0611 (8)
H7A0.3077310.2415860.1646660.073*
H7B0.3074960.1874840.2611020.073*
C80.4847 (5)0.1232 (3)0.1806 (2)0.0676 (8)
H8A0.5574310.1025030.2358840.081*
H8B0.3762100.0269770.1384410.081*
C90.7856 (4)0.3349 (3)0.1852 (2)0.0781 (10)
H9A0.8747560.3789800.1457290.094*
H9B0.8674530.3191210.2398240.094*
C100.6991 (5)0.4438 (3)0.2265 (3)0.0808 (10)
H10A0.8094910.5363130.2718860.097*
H10B0.6353830.4716940.1723200.097*
Br10.92610 (5)0.00832 (3)0.31967 (2)0.06679 (14)
O30.8488 (3)0.0263 (3)0.09269 (16)0.0782 (6)
O40.6156 (3)0.2125 (3)0.03302 (17)0.0860 (7)
C110.9379 (3)0.1685 (3)0.12893 (18)0.0438 (6)
C121.0135 (4)0.1304 (3)0.23087 (19)0.0469 (6)
C131.1536 (4)0.1827 (3)0.2715 (2)0.0609 (7)
H131.2015610.1577570.3404360.073*
C141.2204 (4)0.2701 (3)0.2107 (3)0.0671 (8)
H141.3163520.3031990.2381160.080*
C151.1471 (4)0.3102 (3)0.1086 (2)0.0630 (8)
H151.1936640.3698750.0670670.076*
C161.0048 (4)0.2615 (3)0.0683 (2)0.0545 (7)
H160.9524950.2912670.0006110.065*
C170.7895 (5)0.1121 (4)0.0817 (2)0.0564 (7)
O1W0.5508 (9)0.5202 (7)0.0662 (6)0.138 (2)0.5
H1W10.4358820.4301240.0603070.207*0.5
H1W20.4583060.6293270.0423480.207*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0975 (16)0.0587 (13)0.0842 (15)0.0191 (13)0.0368 (13)0.0055 (11)
O20.0777 (15)0.0870 (16)0.1195 (19)0.0333 (13)0.0502 (15)0.0009 (14)
N10.0415 (11)0.0324 (10)0.0568 (12)0.0109 (9)0.0146 (10)0.0093 (9)
N20.0471 (13)0.0423 (12)0.0490 (12)0.0236 (10)0.0069 (10)0.0080 (10)
N30.0699 (17)0.0574 (15)0.0511 (13)0.0261 (14)0.0222 (13)0.0119 (11)
C10.0523 (15)0.0453 (14)0.0398 (13)0.0228 (13)0.0121 (12)0.0143 (11)
C20.0445 (14)0.0516 (15)0.0666 (17)0.0165 (13)0.0229 (13)0.0177 (13)
C30.0435 (15)0.0382 (13)0.0670 (17)0.0108 (12)0.0159 (13)0.0112 (12)
C40.0384 (13)0.0357 (12)0.0452 (13)0.0148 (11)0.0067 (11)0.0149 (10)
C50.0413 (14)0.0372 (13)0.0630 (16)0.0100 (11)0.0163 (12)0.0105 (12)
C60.0506 (15)0.0378 (13)0.0524 (15)0.0121 (12)0.0083 (13)0.0066 (11)
C70.0520 (16)0.0403 (14)0.0762 (18)0.0041 (13)0.0293 (15)0.0039 (13)
C80.088 (2)0.0366 (14)0.0735 (18)0.0160 (15)0.0382 (17)0.0111 (13)
C90.0509 (17)0.0548 (17)0.101 (2)0.0095 (14)0.0262 (17)0.0155 (16)
C100.075 (2)0.0370 (15)0.125 (3)0.0103 (14)0.061 (2)0.0078 (16)
Br10.0855 (2)0.05620 (19)0.05928 (19)0.02352 (16)0.03290 (16)0.01687 (13)
O30.1037 (16)0.0759 (15)0.0967 (15)0.0672 (14)0.0419 (13)0.0421 (12)
O40.0686 (14)0.1081 (18)0.0862 (15)0.0493 (15)0.0021 (13)0.0322 (14)
C110.0435 (13)0.0383 (13)0.0501 (14)0.0172 (11)0.0089 (12)0.0154 (11)
C120.0479 (14)0.0379 (13)0.0538 (15)0.0126 (12)0.0135 (12)0.0194 (11)
C130.0569 (17)0.0535 (16)0.0625 (17)0.0141 (15)0.0009 (15)0.0236 (14)
C140.0530 (17)0.0570 (18)0.094 (2)0.0271 (15)0.0038 (17)0.0318 (17)
C150.0583 (17)0.0508 (16)0.088 (2)0.0320 (15)0.0202 (16)0.0180 (15)
C160.0564 (16)0.0532 (16)0.0554 (15)0.0288 (14)0.0108 (13)0.0107 (13)
C170.067 (2)0.076 (2)0.0507 (15)0.0494 (18)0.0227 (15)0.0258 (15)
O1W0.118 (4)0.096 (4)0.197 (7)0.036 (4)0.044 (4)0.046 (4)
Geometric parameters (Å, º) top
O1—N31.204 (3)C8—H8A0.9700
O2—N31.216 (3)C8—H8B0.9700
N1—C41.387 (3)C9—C101.487 (4)
N1—C101.452 (3)C9—H9A0.9700
N1—C71.456 (3)C9—H9B0.9700
N2—C91.461 (3)C10—H10A0.9700
N2—C81.465 (3)C10—H10B0.9700
N2—H2A0.846 (16)Br1—C121.896 (2)
N2—H2B0.881 (16)O3—C171.230 (3)
N3—C11.452 (3)O4—C171.254 (3)
C1—C21.370 (3)C11—C121.378 (3)
C1—C61.376 (3)C11—C161.389 (3)
C2—C31.363 (3)C11—C171.502 (4)
C2—H20.9300C12—C131.389 (4)
C3—C41.400 (3)C13—C141.355 (4)
C3—H30.9300C13—H130.9300
C4—C51.399 (3)C14—C151.377 (4)
C5—C61.361 (3)C14—H140.9300
C5—H50.9300C15—C161.375 (4)
C6—H60.9300C15—H150.9300
C7—C81.492 (3)C16—H160.9300
C7—H7A0.9700O1W—H1W11.4134
C7—H7B0.9700O1W—H1W21.1905
C4—N1—C10118.22 (18)C7—C8—H8A109.4
C4—N1—C7118.65 (17)N2—C8—H8B109.4
C10—N1—C7112.0 (2)C7—C8—H8B109.4
C9—N2—C8109.6 (2)H8A—C8—H8B108.0
C9—N2—H2A106.7 (16)N2—C9—C10112.0 (2)
C8—N2—H2A114.7 (17)N2—C9—H9A109.2
C9—N2—H2B110.9 (17)C10—C9—H9A109.2
C8—N2—H2B108.5 (16)N2—C9—H9B109.2
H2A—N2—H2B106 (2)C10—C9—H9B109.2
O1—N3—O2122.2 (2)H9A—C9—H9B107.9
O1—N3—C1119.5 (2)N1—C10—C9112.8 (2)
O2—N3—C1118.3 (2)N1—C10—H10A109.0
C2—C1—C6120.1 (2)C9—C10—H10A109.0
C2—C1—N3119.9 (2)N1—C10—H10B109.0
C6—C1—N3120.0 (2)C9—C10—H10B109.0
C3—C2—C1120.2 (2)H10A—C10—H10B107.8
C3—C2—H2119.9C12—C11—C16118.0 (2)
C1—C2—H2119.9C12—C11—C17122.6 (2)
C2—C3—C4121.4 (2)C16—C11—C17119.3 (2)
C2—C3—H3119.3C11—C12—C13120.8 (2)
C4—C3—H3119.3C11—C12—Br1121.09 (19)
N1—C4—C5121.73 (19)C13—C12—Br1118.1 (2)
N1—C4—C3121.6 (2)C14—C13—C12120.0 (3)
C5—C4—C3116.6 (2)C14—C13—H13120.0
C6—C5—C4121.9 (2)C12—C13—H13120.0
C6—C5—H5119.0C13—C14—C15120.4 (3)
C4—C5—H5119.0C13—C14—H14119.8
C5—C6—C1119.7 (2)C15—C14—H14119.8
C5—C6—H6120.2C16—C15—C14119.7 (3)
C1—C6—H6120.2C16—C15—H15120.2
N1—C7—C8112.2 (2)C14—C15—H15120.2
N1—C7—H7A109.2C15—C16—C11121.0 (3)
C8—C7—H7A109.2C15—C16—H16119.5
N1—C7—H7B109.2C11—C16—H16119.5
C8—C7—H7B109.2O3—C17—O4126.0 (3)
H7A—C7—H7B107.9O3—C17—C11117.9 (3)
N2—C8—C7111.3 (2)O4—C17—C11116.2 (3)
N2—C8—H8A109.4H1W1—O1W—H1W2105.4
O1—N3—C1—C2170.2 (3)N1—C7—C8—N255.5 (3)
O2—N3—C1—C29.8 (4)C8—N2—C9—C1056.2 (3)
O1—N3—C1—C68.7 (4)C4—N1—C10—C9165.9 (2)
O2—N3—C1—C6171.2 (3)C7—N1—C10—C950.6 (4)
C6—C1—C2—C31.4 (4)N2—C9—C10—N153.6 (4)
N3—C1—C2—C3179.7 (2)C16—C11—C12—C130.5 (4)
C1—C2—C3—C41.4 (4)C17—C11—C12—C13178.8 (2)
C10—N1—C4—C526.0 (3)C16—C11—C12—Br1178.41 (17)
C7—N1—C4—C5167.1 (2)C17—C11—C12—Br12.4 (3)
C10—N1—C4—C3155.3 (3)C11—C12—C13—C141.2 (4)
C7—N1—C4—C314.2 (3)Br1—C12—C13—C14179.9 (2)
C2—C3—C4—N1177.4 (2)C12—C13—C14—C151.3 (4)
C2—C3—C4—C51.3 (4)C13—C14—C15—C160.2 (4)
N1—C4—C5—C6177.4 (2)C14—C15—C16—C111.9 (4)
C3—C4—C5—C61.4 (4)C12—C11—C16—C152.0 (4)
C4—C5—C6—C11.4 (4)C17—C11—C16—C15177.2 (3)
C2—C1—C6—C51.4 (4)C12—C11—C17—O365.2 (3)
N3—C1—C6—C5179.6 (2)C16—C11—C17—O3114.1 (3)
C4—N1—C7—C8165.1 (2)C12—C11—C17—O4115.8 (3)
C10—N1—C7—C851.5 (3)C16—C11—C17—O464.9 (3)
C9—N2—C8—C757.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.85 (2)1.83 (2)2.655 (3)164 (2)
N2—H2B···O4i0.88 (2)1.82 (2)2.701 (3)173 (2)
C2—H2···O2ii0.932.503.307 (4)145
C7—H7B···Br1iii0.973.114.032 (2)160
C10—H10B···O1Wi0.972.103.057 (8)169
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x1, y, z.
4-(4-Nitrophenyl)piperazin-1-ium 2-iodobenzoate hemihydrate (3) top
Crystal data top
C10H14N3O2+·C7H4IO2·0.5H2OZ = 1
Mr = 928.50F(000) = 462
Triclinic, P1Dx = 1.695 Mg m3
a = 7.3949 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3440 (8) ÅCell parameters from 2991 reflections
c = 14.498 (1) Åθ = 3.0–28.0°
α = 104.967 (8)°µ = 1.79 mm1
β = 94.707 (7)°T = 293 K
γ = 107.430 (8)°Prism, orange
V = 909.44 (13) Å30.50 × 0.44 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2443 reflections with I > 2σ(I)
ω scansRint = 0.024
Absorption correction: multi-scan
(CrysalisRed; Oxford Diffraction, 2009)
θmax = 28.0°, θmin = 3.0°
Tmin = 0.697, Tmax = 1.000h = 99
6275 measured reflectionsk = 912
3904 independent reflectionsl = 1911
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.5457P]
where P = (Fo2 + 2Fc2)/3
3904 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.61 e Å3
13 restraintsΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1376 (6)0.6393 (4)0.1581 (3)0.0555 (10)
C20.0631 (7)0.5730 (5)0.1440 (3)0.0687 (12)
H20.1169140.5039740.1782620.082*
C30.1822 (7)0.6059 (6)0.0822 (4)0.0724 (13)
H30.3147310.5583300.0739320.087*
C40.1064 (7)0.7096 (5)0.0318 (3)0.0636 (11)
C50.0897 (7)0.7763 (6)0.0429 (3)0.0723 (13)
H50.1415000.8453430.0083460.087*
C60.2093 (7)0.7419 (5)0.1044 (3)0.0667 (12)
H60.3416590.7879230.1106430.080*
C70.4418 (7)0.7234 (7)0.2667 (5)0.0957 (18)
H7A0.4189230.8026830.3179710.115*
H7B0.4990450.7737840.2204870.115*
C80.5801 (7)0.6593 (7)0.3092 (4)0.0927 (17)
H8A0.6195080.5928940.2571900.111*
H8B0.6939880.7455780.3460160.111*
C90.3145 (8)0.4451 (6)0.3207 (4)0.0897 (16)
H9A0.2567810.3893550.3645600.108*
H9B0.3408420.3703850.2679160.108*
C100.1766 (7)0.5111 (6)0.2811 (4)0.0835 (15)
H10A0.0614120.4258240.2447670.100*
H10B0.1397970.5772450.3343730.100*
C110.8424 (6)0.2081 (5)0.3805 (3)0.0609 (11)
C120.8206 (6)0.1340 (5)0.2821 (3)0.0635 (12)
C130.9344 (9)0.0414 (6)0.2499 (4)0.0850 (16)
H130.9202050.0092870.1841120.102*
C141.0663 (9)0.0254 (7)0.3150 (5)0.0919 (17)
H141.1433730.0341480.2929320.110*
C151.0857 (8)0.0952 (7)0.4112 (5)0.0857 (15)
H151.1742000.0824830.4551490.103*
C160.9743 (7)0.1845 (6)0.4432 (4)0.0769 (13)
H160.9875790.2310200.5094880.092*
C170.7295 (7)0.3142 (7)0.4194 (3)0.0746 (13)
I10.61864 (5)0.15483 (4)0.18127 (2)0.08807 (17)
N10.2589 (5)0.6027 (4)0.2184 (3)0.0622 (9)
N20.4954 (6)0.5683 (5)0.3724 (3)0.0686 (10)
H2A0.482 (7)0.635 (6)0.424 (4)0.082*
H2B0.596 (7)0.539 (6)0.396 (4)0.082*
N30.2340 (7)0.7474 (5)0.0316 (3)0.0825 (12)
O10.4061 (7)0.6959 (6)0.0342 (4)0.1259 (16)
O20.1641 (7)0.8273 (6)0.0819 (3)0.1165 (14)
O30.6139 (6)0.2673 (6)0.4715 (3)0.1206 (15)
O40.7641 (6)0.4395 (5)0.4000 (3)0.0969 (11)
O1WA0.426 (5)0.976 (3)0.449 (2)0.154 (7)0.224 (3)
H1W10.396 (13)1.048 (8)0.483 (6)0.231*0.224 (3)
H1W20.470 (14)1.011 (10)0.406 (4)0.231*0.224 (3)
O1WB0.507 (4)0.935 (3)0.4569 (19)0.149 (6)0.276 (3)
H1W30.427 (8)0.892 (15)0.486 (6)0.224*0.276 (3)
H1W40.604 (7)0.916 (12)0.475 (10)0.224*0.276 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.061 (2)0.043 (2)0.057 (2)0.0145 (19)0.023 (2)0.0061 (18)
C20.068 (3)0.062 (3)0.076 (3)0.014 (2)0.020 (2)0.027 (2)
C30.065 (3)0.065 (3)0.079 (3)0.012 (2)0.017 (2)0.017 (2)
C40.078 (3)0.057 (3)0.049 (2)0.021 (2)0.015 (2)0.0047 (19)
C50.083 (3)0.071 (3)0.063 (3)0.017 (2)0.026 (2)0.026 (2)
C60.062 (3)0.067 (3)0.067 (3)0.010 (2)0.018 (2)0.025 (2)
C70.067 (3)0.082 (3)0.140 (5)0.007 (3)0.005 (3)0.062 (3)
C80.063 (3)0.124 (4)0.113 (4)0.029 (3)0.024 (3)0.073 (4)
C90.098 (4)0.081 (3)0.091 (4)0.015 (3)0.013 (3)0.047 (3)
C100.069 (3)0.090 (4)0.094 (3)0.009 (3)0.018 (3)0.051 (3)
C110.066 (3)0.056 (2)0.063 (2)0.022 (2)0.024 (2)0.016 (2)
C120.073 (3)0.042 (2)0.066 (3)0.008 (2)0.028 (2)0.0089 (19)
C130.110 (4)0.056 (3)0.085 (3)0.026 (3)0.048 (3)0.004 (2)
C140.097 (4)0.073 (3)0.125 (5)0.044 (3)0.051 (4)0.035 (3)
C150.082 (3)0.086 (4)0.110 (4)0.039 (3)0.033 (3)0.046 (3)
C160.085 (3)0.089 (3)0.072 (3)0.040 (3)0.031 (3)0.031 (3)
C170.073 (3)0.079 (3)0.064 (3)0.032 (3)0.012 (2)0.000 (2)
I10.0918 (3)0.0799 (2)0.0696 (2)0.00239 (18)0.00710 (17)0.01674 (16)
N10.061 (2)0.057 (2)0.071 (2)0.0143 (17)0.0198 (18)0.0276 (17)
N20.073 (2)0.081 (3)0.065 (2)0.038 (2)0.0256 (19)0.025 (2)
N30.092 (3)0.082 (3)0.063 (2)0.019 (2)0.002 (2)0.019 (2)
O10.091 (3)0.159 (4)0.138 (4)0.035 (3)0.005 (3)0.075 (3)
O20.116 (3)0.134 (4)0.100 (3)0.022 (3)0.003 (2)0.064 (3)
O30.119 (3)0.124 (3)0.130 (3)0.058 (3)0.075 (3)0.019 (3)
O40.106 (3)0.077 (2)0.116 (3)0.051 (2)0.018 (2)0.020 (2)
O1WA0.208 (17)0.155 (15)0.160 (13)0.119 (12)0.070 (15)0.070 (12)
O1WB0.210 (16)0.145 (13)0.161 (12)0.123 (11)0.079 (14)0.069 (11)
Geometric parameters (Å, º) top
C1—N11.377 (5)C10—H10A0.9700
C1—C61.398 (6)C10—H10B0.9700
C1—C21.401 (6)C11—C161.384 (7)
C2—C31.359 (7)C11—C121.387 (6)
C2—H20.9300C11—C171.511 (7)
C3—C41.376 (6)C12—C131.403 (7)
C3—H30.9300C12—I12.090 (5)
C4—C51.373 (6)C13—C141.369 (8)
C4—N31.443 (7)C13—H130.9300
C5—C61.367 (7)C14—C151.354 (8)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—C161.365 (7)
C7—N11.454 (6)C15—H150.9300
C7—C81.496 (7)C16—H160.9300
C7—H7A0.9700C17—O41.232 (6)
C7—H7B0.9700C17—O31.243 (6)
C8—N21.461 (6)N2—H2A0.88 (5)
C8—H8A0.9700N2—H2B0.93 (5)
C8—H8B0.9700N3—O11.212 (6)
C9—N21.465 (7)N3—O21.212 (6)
C9—C101.487 (7)O1WA—H1W10.82 (2)
C9—H9A0.9700O1WA—H1W20.82 (2)
C9—H9B0.9700O1WB—H1W30.83 (2)
C10—N11.453 (5)O1WB—H1W40.82 (2)
N1—C1—C6121.4 (4)N1—C10—H10B109.3
N1—C1—C2122.6 (4)C9—C10—H10B109.3
C6—C1—C2115.9 (4)H10A—C10—H10B107.9
C3—C2—C1122.4 (4)C16—C11—C12118.0 (4)
C3—C2—H2118.8C16—C11—C17120.1 (4)
C1—C2—H2118.8C12—C11—C17121.9 (4)
C2—C3—C4120.0 (4)C11—C12—C13119.3 (5)
C2—C3—H3120.0C11—C12—I1121.3 (3)
C4—C3—H3120.0C13—C12—I1119.4 (4)
C5—C4—C3119.5 (5)C14—C13—C12120.1 (5)
C5—C4—N3120.9 (4)C14—C13—H13119.9
C3—C4—N3119.6 (4)C12—C13—H13119.9
C6—C5—C4120.5 (4)C15—C14—C13120.8 (5)
C6—C5—H5119.8C15—C14—H14119.6
C4—C5—H5119.8C13—C14—H14119.6
C5—C6—C1121.7 (4)C14—C15—C16119.4 (6)
C5—C6—H6119.2C14—C15—H15120.3
C1—C6—H6119.2C16—C15—H15120.3
N1—C7—C8112.7 (4)C15—C16—C11122.3 (5)
N1—C7—H7A109.1C15—C16—H16118.9
C8—C7—H7A109.1C11—C16—H16118.9
N1—C7—H7B109.1O4—C17—O3126.3 (5)
C8—C7—H7B109.1O4—C17—C11118.0 (5)
H7A—C7—H7B107.8O3—C17—C11115.6 (5)
N2—C8—C7111.8 (4)C1—N1—C10118.7 (4)
N2—C8—H8A109.3C1—N1—C7117.8 (3)
C7—C8—H8A109.3C10—N1—C7111.5 (4)
N2—C8—H8B109.3C8—N2—C9110.3 (4)
C7—C8—H8B109.3C8—N2—H2A107 (3)
H8A—C8—H8B107.9C9—N2—H2A114 (3)
N2—C9—C10111.7 (4)C8—N2—H2B104 (3)
N2—C9—H9A109.3C9—N2—H2B119 (3)
C10—C9—H9A109.3H2A—N2—H2B102 (5)
N2—C9—H9B109.3O1—N3—O2122.4 (5)
C10—C9—H9B109.3O1—N3—C4119.3 (5)
H9A—C9—H9B107.9O2—N3—C4118.3 (5)
N1—C10—C9111.8 (4)H1W1—O1WA—H1W2103 (3)
N1—C10—H10A109.3H1W3—O1WB—H1W4103 (3)
C9—C10—H10A109.3
N1—C1—C2—C3178.0 (4)C12—C11—C16—C151.9 (7)
C6—C1—C2—C30.1 (6)C17—C11—C16—C15177.1 (5)
C1—C2—C3—C41.0 (7)C16—C11—C17—O4111.4 (5)
C2—C3—C4—C51.5 (7)C12—C11—C17—O467.5 (6)
C2—C3—C4—N3178.2 (4)C16—C11—C17—O366.2 (6)
C3—C4—C5—C60.8 (7)C12—C11—C17—O3114.9 (5)
N3—C4—C5—C6178.8 (4)C6—C1—N1—C10172.5 (4)
C4—C5—C6—C10.3 (7)C2—C1—N1—C109.7 (6)
N1—C1—C6—C5178.7 (4)C6—C1—N1—C732.9 (6)
C2—C1—C6—C50.8 (6)C2—C1—N1—C7149.3 (5)
N1—C7—C8—N253.1 (7)C9—C10—N1—C1164.4 (4)
N2—C9—C10—N156.1 (6)C9—C10—N1—C753.6 (6)
C16—C11—C12—C131.3 (6)C8—C7—N1—C1165.4 (4)
C17—C11—C12—C13177.7 (4)C8—C7—N1—C1052.3 (7)
C16—C11—C12—I1177.8 (3)C7—C8—N2—C954.3 (7)
C17—C11—C12—I13.3 (6)C10—C9—N2—C856.0 (6)
C11—C12—C13—C140.4 (7)C5—C4—N3—O1174.4 (5)
I1—C12—C13—C14179.5 (4)C3—C4—N3—O15.2 (7)
C12—C13—C14—C151.6 (8)C5—C4—N3—O27.1 (7)
C13—C14—C15—C161.0 (8)C3—C4—N3—O2173.3 (5)
C14—C15—C16—C110.7 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···I1i0.933.284.110 (4)150
C3—H3···O1ii0.932.533.347 (7)147
C6—H6···I1iii0.933.263.940 (4)132
C7—H7A···O1WA0.972.143.09 (3)167
C7—H7A···O1WB0.972.012.85 (3)145
N2—H2A···O3iv0.88 (5)1.86 (5)2.717 (5)164 (5)
N2—H2B···O40.93 (5)1.77 (5)2.666 (6)160 (5)
O1WB—H1W3···O3iv0.83 (2)1.71 (10)2.37 (2)135 (12)
Symmetry codes: (i) x1, y, z; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

One of the authors (HJS) is grateful to the University of Mysore for research facilities. HSY thanks UGC for a BSR Faculty fellowship for three years.

References

First citationBerkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369–2371.  Web of Science CrossRef CAS Google Scholar
First citationChaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819–1826.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElliott, S. (2011). Drug Test. Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationKaya, B., Ozkay, Y., Temel, H. E. & Kaplancikli, Z. A. (2016). J. Chem. 5878410.  Google Scholar
First citationLu, Y.-X. (2007). Acta Cryst. E63, o3611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022a). Acta Cryst. E78, 510–518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis RED, CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationShankara Prasad, H. J., Devaraju, Murthy, S. M., Kaspiaruk, H., Yathirajan, H. S., Foro, S. & Chęcińska, L. (2023). Acta Cryst. E79, 1–7.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShankara Prasad, H. J., Devaraju, Vinaya, Yathirajan, H. S., Parkin, S. R. & Glidewell, C. (2022). Acta Cryst. E78, 840–845.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, X.-Y., Wang, M.-Z., Guo, F.-J., Sun, J. & Qian, S.-S. (2014). Z. Kristallogr. New Cryst. Struct. 229, 97–98.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds