research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1,6-di­amino-2-oxo-4-(thio­phen-2-yl)-1,2-di­hydro­pyridine-3,5-dicarbo­nitrile

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 28 March 2023; accepted 7 April 2023; online 21 April 2023)

The asymmetric unit of the title compound, C11H7N5OS, contains two independent mol­ecules (1 and 2). The thio­phene ring in mol­ecule 2 is rotationally disordered (flip disorder) by ca 180° (around the single C—C bond, to which it is attached) over two sites with the site-occupation factors of 0.9 and 0.1. These two orientations of the thio­phene ring in mol­ecule 2 are not equivalent. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and N—H⋯N hydrogen bonds into ribbons parallel to (022) along the a axis. Within the (022) planes, these ribbons are connected by van der Waals inter­actions and between the (022) planes by N—H⋯O hydrogen bonds. In mol­ecule 1, Hirshfeld surface analysis showed that the most important contributions to the crystal packing are from N⋯H/H⋯N (27.1%), H⋯H (17.6%), C⋯H/H⋯C (13.6%) and O⋯H/H⋯O (9.3%) inter­actions, while in mol­ecule 2, H⋯H (25.4%) inter­actions are the most significant contributors to the crystal packing.

1. Chemical context

The various C—C and C—N bond-formation techniques play key roles in organic synthesis (Celik et al., 2023[Çelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.]; Chalkha et al., 2023[Chalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255.]; Tapera et al., 2022[Tapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816.]; Lakhrissi et al., 2022[Lakhrissi, Y., Rbaa, M., Tuzun, B., Hichar, A., Anouar, H., Ounine, K., Almalki, F., Hadda, T. B., Zarrouk, A. & Lakhrissi, B. (2022). J. Mol. Struct. 1259, 132683.]). The di­hydro­pyridine moiety, comprising heterocycles, demonstrates a wide spectrum of biological activities, such as anti­tumor, anti­tubercular, anti­microbial and anti-diabetic (Mohamed et al., 2013[Mohamed, S. K., Soliman, A. M., El Remaily, M. A. A. & Abdel-Ghany, H. (2013). J. Heterocycl. Chem. 50, 1425-1430.]; Soliman et al., 2014[Soliman, A. M., Mohamed, S. K., El-Remaily, M. A. A. & Abdel-Ghany, H. (2014). J. Heterocycl. Chem. 51, 1202-1209.]). On the other hand, a di­hydro­pyridine scaffold is the active structural unit of a variety of natural products, drugs and functional materials. These compounds have found synthetic applications in the construction of many pharmacologically relevant natural alkaloids, such as the isoquinuclidines, ibogaine, mearsine, dioscorine, caldaphinidine D, catharanthine, vinblastine and vincristine (Sharma & Singh, 2017[Sharma, V. K. & Singh, S. K. (2017). RSC Adv. 7, 2682-2732.]).

[Scheme 1]

Thus, in the framework of our ongoing structural studies (Maharramov et al., 2021[Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5-11.], 2022[Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64-73.]; Naghiyev et al., 2020[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720-723.], 2021[Naghiyev, F. N., Pavlova, A. V., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 930-934.], 2022[Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.]), we report the crystal structure and Hirshfeld surface analysis of the title compound, 1,6-di­amino-2-oxo-4-(thio­phen-2-yl)-1,2-di­hydro­pyridine-3,5-dicarbo­nitrile.

2. Structural commentary

As seen in Fig. 1[link], the asymmetric unit of the title compound contains two independent mol­ecules (1 and 2). The thio­phene ring (S2′/C19/C20′–C22′) in mol­ecule 2 is rotationally disordered (flip disorder) by ca 180° (around the single C15—C19 bond to which it is attached) over two sites with the site-occupation factors of 0.9 and 0.1 (fixed after refinement cycles). These two orientations of the thio­phene ring in mol­ecule 2 are not equivalent.

[Figure 1]
Figure 1
View of the two independent mol­ecules,1 and 2, in the asymmetric unit of the title compound, with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. For clarity, the minor disordered components in 2 are omitted.

In mol­ecule 1, the angle between the thio­phene (S1/C8–C11) and pyridine (N1/C2–C6) rings is 50.72 (9)°. In mol­ecule 2, the angle between the two disordered thio­phene rings (S2/C19–C22 and S2′/C19/C20′–C22′) is 6.2 (5)°, and they make an angle with the pyridine ring (N6/C13-C17) of 40.3 (1) and 34.8 (5)°, respectively. Mol­ecules 1 and 2 (r.m.s. deviation = 0.126 A) are almost identical and the geometric parameters are normal and comparable to those of related compounds listed in the Database survey section.

Mol­ecules 1 and 2 are stabilized by intra­molecular N5—H5B⋯N2 and N10—H10A⋯N7 hydrogen bonds, forming S(5) motifs (Table 1[link]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.85 (3) 2.37 (3) 3.212 (2) 174 (2)
N2—H2B⋯O1ii 0.93 (2) 2.16 (3) 3.086 (2) 169 (2)
N5—H5B⋯N3iii 0.88 (3) 2.14 (3) 2.944 (2) 151 (2)
N7—H7A⋯O2iv 0.91 (3) 2.26 (2) 3.010 (2) 139 (2)
N7—H7B⋯N9v 0.88 (2) 2.55 (2) 3.348 (2) 152 (2)
N10—H10A⋯N3 0.85 (2) 2.62 (2) 3.196 (2) 126 (2)
N10—H10B⋯O1 0.84 (3) 2.11 (3) 2.921 (2) 165 (2)
N5—H5B⋯N2 0.88 (3) 2.22 (3) 2.606 (2) 106 (2)
N10—H10A⋯N7 0.85 (3) 2.23 (3) 2.626 (3) 109 (2)
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+2, -y+1, -z+1]; (iii) x+1, y, z; (iv) [-x, -y, -z+1]; (v) [x-1, y, z].

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and N—H⋯N hydrogen bonds into ribbons parallel to (022) along the a-axis (Table 1[link], Fig. 2[link]). Within the (022) planes, these ribbons are connected by van der Waals inter­actions and between the (022) planes by N—H⋯O inter­molecular hydrogen bonds (Table 1[link], Figs. 3[link] and 4[link]).

[Figure 2]
Figure 2
A view of the inter­molecular N—H⋯O and N—H⋯N inter­actions along the a axis in the crystal structure of the title compound. For clarity, H atoms not involved in hydrogen bonding and disordered components in 2 are omitted.
[Figure 3]
Figure 3
A view of the inter­molecular N—H⋯O and N—H⋯N inter­actions along the b axis in the crystal structure of the title compound. For clarity, H atoms not involved in hydrogen bonding and disordered components in 2 are omitted.
[Figure 4]
Figure 4
A view of the inter­molecular N—H⋯O and N—H⋯N inter­actions along the c axis in the crystal structure of the title compound. For clarity, H atoms not involved in hydrogen bonding and the minor disorder components in mol­ecule 2 are omitted.

CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) was used to construct Hirshfeld surfaces and generate the related two-dimensional fingerprint plots to illustrate the inter­molecular inter­actions for mol­ecules 1 and 2. The dnorm mappings of 1 were conducted in the range −0.5158 to +1.0500 a.u. Bright-red circles on the dnorm surfaces (Fig. 5[link]a,b) represent N—H⋯O inter­action zones (Table 1[link]). The fingerprint plots of 1 (Fig. 6[link]) show that, while N⋯H/H⋯N (27.1%; Fig. 6[link]b) inter­actions provide the highest contribution (Table 2[link]), as would be expected for a mol­ecule with so many H atoms, H⋯H (17.6%; Fig. 6[link]c), C⋯H/H⋯C (13.6%; Fig. 6[link]d) and O⋯H/H⋯O (9.3%; Fig. 6[link]e) contacts are also significant. Table 2[link] shows the contributions of all contacts. In mol­ecule 2, the dnorm mappings were performed in the range −0.5165 to +1.1535 a.u. The locations of N—H⋯O inter­actions are shown by bright-red circles on the dnorm surfaces (Fig. 5[link]c,d), Table 1[link]). Fig. 6[link] displays the full two-dimensional fingerprint plot and those delineated into the major contacts. H⋯H inter­actions (Fig. 6[link]c; 25.4%) are the major factor in the crystal packing with N⋯H/H⋯N (Fig. 6[link]b; 24.3%), O⋯H/H⋯O (Fig. 6[link]e; 11.7%) and C⋯H/H⋯C (Fig. 6[link]d; 11.4%) inter­actions representing the next highest contributions. The percentage contributions of comparatively weaker inter­actions in mol­ecules 1 and 2 are given in Table 2[link]. The surroundings of mol­ecules 1 and 2 are quite similar, as seen by the data comparison.

Table 2
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution for mol­ecule 1 Percentage contribution for mol­ecule 2
N⋯H/H⋯N 27.1 24.3
H⋯H 17.6 25.4
C⋯H/H⋯C 13.6 11.4
O⋯H/H⋯O 9.3 11.7
C⋯C 7.3 8.5
N⋯C/C⋯N 7.0 9.0
S⋯C/C⋯S 5.4 1.3
S⋯H/H⋯S 5.1 1.8
N⋯N 2.8 2.7
S⋯N/N⋯S 2.2 1.1
O⋯C/C⋯O 1.0 1.3
S⋯S 0.8 0.3
O⋯N/N⋯O 0.7 1.2
[Figure 5]
Figure 5
Front (a) and back (b) views of the three-dimensional Hirshfeld surface for mol­ecule 1. Front (c) and back (d) views of the three-dimensional Hirshfeld surface for mol­ecule 2. Some inter­molecular N—H⋯O and N—H⋯N inter­actions are shown.
[Figure 6]
Figure 6
The two-dimensional fingerprint plots for mol­ecules 1 and 2 of the title compound showing (a) all inter­actions, and delineated into (b) N⋯H/H⋯N, (c) H⋯H, (d) C⋯H/H⋯C and (e) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave thirteen compounds closely related to the title compounds, viz. CSD refcodes BEFFOL (I; Naghiyev et al., 2022[Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.]), BEFFUR (II; Naghiyev et al., 2022[Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.]), YAXQAT (III; Mamedov et al., 2022[Mamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291-296.]), OZAKOS (IV; Naghiyev et al., 2021[Naghiyev, F. N., Pavlova, A. V., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 930-934.]), JEBREQ (V; Mohana et al., 2017[Mohana, M., Thomas Muthiah, P. & Butcher, R. J. (2017). Acta Cryst. C73, 536-540.]), JEBRAM (VI; Mohana et al., 2017[Mohana, M., Thomas Muthiah, P. & Butcher, R. J. (2017). Acta Cryst. C73, 536-540.]), SETWUK (VII; Suresh et al., 2007[Suresh, J., Suresh Kumar, R., Perumal, S., Mostad, A. & Natarajan, S. (2007). Acta Cryst. C63, o141-o144.]), SETWOE (VIII; Suresh et al., 2007[Suresh, J., Suresh Kumar, R., Perumal, S., Mostad, A. & Natarajan, S. (2007). Acta Cryst. C63, o141-o144.]), IQEFOC (IX; Naghiyev et al., 2021[Naghiyev, F. N., Pavlova, A. V., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 930-934.]a), MOKBUL (X; Mohamed et al., 2014[Mohamed, S. K., Akkurt, M., Singh, K., Hussein, B. R. M. & Albayati, M. R. (2014). Acta Cryst. E70, o993-o994.]), PAVQIO (XI; Al-Said et al., 2012[Al-Said, M. S., Ghorab, M. M., Ghabbour, H. A., Arshad, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1679.]), YIZGOE01 (XII; Jia & Tu, 2008[Jia, R. & Tu, S. J. (2008). Acta Cryst. E64, o1578.]) and YIBZAL (XIII; Eyduran et al., 2007[Eyduran, F., Özyürek, C., Dilek, N., Ocak Iskeleli, N. & Şendil, K. (2007). Acta Cryst. E63, o2415-o2417.]).

In the crystal of I (monoclinic, C2/c), pairs of mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming dimers with an R22(12) ring motif. The dimers are connected by N—H⋯Br and O—H⋯O hydrogen bonds, and C—Br⋯π inter­actions, forming layers parallel to the (010) plane. Compound II crystallizes in the triclinic space group P[\overline{1}] with two independent mol­ecules (IIA and IIB) in the asymmetric unit. In the crystal of II, mol­ecules IIA and IIB are linked by inter­molecular N—H⋯N and N—H⋯O hydrogen bonds into layers parallel to (001). These layers are connected along the c-axis direction by weak C—H⋯N contacts. C—H⋯π and C—N⋯π inter­actions connect adjacent mol­ecules, forming chains along the a-axis direction. In III (space group: Pc), the two mol­ecules in the asymmetric unit are joined together by N—H⋯O hydrogen bonds, forming a dimer with an R22(16) ring motif. N—H⋯O and N—H⋯N hydrogen bonds link the dimers, generating chains along the c-axis direction, which are connected by C—Br⋯π inter­actions. In IV (space group: Pc), inter­molecular N—H⋯N and C—H⋯N hydrogen bonds, as well as N—H⋯π and C—H⋯π inter­actions, connect the mol­ecules in the crystal, generating a 3D network. In both V (space group: P[\overline{1}]) and VI (space group: P[\overline{1}]), a supra­molecular homosynthon [ R22(8) ring motif] is formed through N—H⋯N hydrogen bonds. The mol­ecular structures are further stabilized by ππ stacking, and C—O⋯π, C—H⋯O and C—H⋯Cl inter­actions. In VII (space group: P21/n), the crystal structure is stabilized by inter­molecular C—H⋯F and C—H⋯π inter­actions, and in VIII (space group: P21/c), by inter­molecular C—H⋯O and C—H⋯π inter­actions. In IX (space group: Cc), inter­molecular N—H⋯N and C—H⋯N hydrogen bonds form mol­ecular sheets parallel to the (110) and (110) planes, crossing each other. Adjacent mol­ecules are further linked by C—H⋯π inter­actions, which form zigzag chains propagating parallel to [100]. The compound X (space group: Pca21) crystallizes with two independent mol­ecules in the asymmetric unit. In the crystal, the A and B mol­ecules are linked by N—H⋯S, N—H⋯N and C—H⋯S hydrogen bonds, forming a three-dimensional network. In XI (space group: P21/c), mol­ecules are linked into a chain along the b-axis direction via C—H⋯O inter­actions. In XII (space group: P[\overline{1}]), the crystal packing is consolidated by inter­molecular N—H⋯N, O—H⋯O and N—H⋯O hydrogen bonds. In XIII (space group: P21/c), the mol­ecules form centrosymmetric dimers via N—H⋯S hydrogen bonds.

5. Synthesis and crystallization

The title compound was synthesized using a recently reported procedure (Babaee et al., 2020[Babaee, S., Zarei, M., Sepehrmansourie, H., Zolfigol, M. A. & Rostamnia, S. (2020). ACS Omega, 5, 6240-6249.]), and colorless crystals were obtained upon recrystallization from an ethanol/water (3:1) solution at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The aromatic H atoms were placed at calculated positions (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were found in a difference-Fourier map, and refined freely [N2—H2A = 0.85 (3), N2—H2B = 0.93 (2), N5—H5A = 0.87 (3), N5—H5B = 0.88 (3), N7—H7A = 0.91 (3), N7—H7B = 0.88 (2), N10—H10A = 0.85 (2) and N10—H10B = 0.84 (3) Å], with Uiso(H) = 1.2Ueq(N). The thio­phene ring (S2/C19–C22) in mol­ecule 2 is rotationally disordered (flip disorder) by ca 180° (around the single C15—C19 bond, to which it is attached) over two sites with the site-occupation factors of 0.9 and 0.1 (fixed after refinement cycles). A DFIX instruction was applied to constrain the distances in the thio­phene rings of disordered mol­ecule 2. For these rings, FLAT and EADP instructions were also used.

Table 3
Experimental details

Crystal data
Chemical formula C11H7N5OS
Mr 257.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.94782 (10), 9.03908 (9), 14.87299 (18)
α, β, γ (°) 90.9441 (9), 104.1197 (10), 111.7451 (10)
V3) 1075.92 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.65
Crystal size (mm) 0.25 × 0.20 × 0.20
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.505, 0.561
No. of measured, independent and observed [I > 2σ(I)] reflections 32558, 4547, 4467
Rint 0.033
(sin θ/λ)max−1) 0.637
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 1.09
No. of reflections 4547
No. of parameters 362
No. of restraints 11
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.46
Computer programs: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); cell refinement: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

1,6-Diamino-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3,5-dicarbonitrile top
Crystal data top
C11H7N5OSZ = 4
Mr = 257.28F(000) = 528
Triclinic, P1Dx = 1.588 Mg m3
a = 8.94782 (10) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.03908 (9) ÅCell parameters from 26181 reflections
c = 14.87299 (18) Åθ = 3.1–78.8°
α = 90.9441 (9)°µ = 2.65 mm1
β = 104.1197 (10)°T = 100 K
γ = 111.7451 (10)°Prism, colourless
V = 1075.92 (2) Å30.25 × 0.20 × 0.20 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
4467 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.033
φ and ω scansθmax = 79.3°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1111
Tmin = 0.505, Tmax = 0.561k = 1011
32558 measured reflectionsl = 1818
4547 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.046P)2 + 1.11P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4547 reflectionsΔρmax = 0.45 e Å3
362 parametersΔρmin = 0.46 e Å3
11 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.0028 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.42276 (5)0.52922 (6)0.09865 (3)0.02122 (13)
O10.79462 (15)0.40083 (16)0.42272 (9)0.0213 (3)
N10.96105 (17)0.46444 (18)0.32428 (10)0.0155 (3)
N21.07380 (19)0.4068 (2)0.38163 (11)0.0204 (3)
H2A1.022 (3)0.306 (3)0.3791 (16)0.024*
H2B1.100 (3)0.458 (3)0.4416 (17)0.024*
N30.44940 (19)0.4937 (2)0.33818 (11)0.0234 (3)
N40.9777 (2)0.6738 (2)0.03594 (12)0.0287 (4)
N51.14206 (19)0.5269 (2)0.23148 (11)0.0209 (3)
H5A1.166 (3)0.560 (3)0.1804 (18)0.025*
H5B1.208 (3)0.495 (3)0.2738 (17)0.025*
C20.8182 (2)0.4562 (2)0.34957 (12)0.0167 (3)
C30.7099 (2)0.5149 (2)0.28660 (12)0.0180 (3)
C40.7451 (2)0.5773 (2)0.20585 (12)0.0178 (3)
C50.8932 (2)0.5840 (2)0.18606 (12)0.0170 (3)
C61.0017 (2)0.5258 (2)0.24648 (12)0.0168 (3)
C70.5643 (2)0.5051 (2)0.31343 (12)0.0181 (3)
C80.6340 (2)0.6391 (2)0.14265 (12)0.0175 (3)
C90.6819 (2)0.7868 (2)0.10847 (12)0.0175 (3)
H90.79330.86420.12350.021*
C100.5435 (3)0.8072 (2)0.04835 (14)0.0249 (4)
H100.55230.90180.01930.030*
C110.3974 (2)0.6796 (2)0.03603 (13)0.0239 (4)
H110.29350.67410.00260.029*
C120.9363 (2)0.6369 (2)0.10243 (13)0.0202 (4)
S20.80863 (7)0.08316 (7)0.72047 (4)0.02529 (14)0.9
S2'0.6895 (15)0.0343 (17)0.8718 (3)0.0314 (5)0.1
O20.11544 (15)0.02340 (16)0.64254 (9)0.0214 (3)
N60.31497 (17)0.12527 (18)0.57464 (10)0.0160 (3)
N70.19787 (19)0.1759 (2)0.51471 (11)0.0193 (3)
H7A0.129 (3)0.094 (3)0.4695 (17)0.023*
H7B0.140 (3)0.197 (3)0.5497 (16)0.023*
N80.2765 (2)0.1813 (2)0.82807 (11)0.0230 (3)
N90.86800 (19)0.19394 (19)0.57542 (11)0.0213 (3)
N100.4975 (2)0.25717 (19)0.48991 (11)0.0190 (3)
H10A0.424 (3)0.292 (3)0.4638 (16)0.023*
H10B0.591 (3)0.293 (3)0.4796 (16)0.023*
C130.2627 (2)0.0251 (2)0.64097 (12)0.0174 (3)
C140.3908 (2)0.0122 (2)0.70405 (12)0.0198 (4)
C150.5502 (2)0.0312 (2)0.69219 (12)0.0194 (4)
C160.5878 (2)0.1196 (2)0.61720 (12)0.0161 (3)
C170.4699 (2)0.1710 (2)0.55950 (12)0.0164 (3)
C180.3323 (2)0.1073 (2)0.77379 (12)0.0181 (3)
C190.6737 (2)0.0168 (2)0.75586 (11)0.0189 (3)
C200.6928 (6)0.0243 (7)0.84874 (15)0.0314 (5)0.9
H200.62870.00680.88190.038*0.9
C210.8164 (3)0.0824 (3)0.89227 (16)0.0287 (5)0.9
H210.84630.09170.95710.034*0.9
C220.8866 (3)0.1231 (3)0.82943 (14)0.0211 (4)0.9
H220.96890.16810.84450.025*0.9
C20'0.7887 (14)0.0522 (15)0.7247 (13)0.02529 (14)0.1
H20A0.79890.04910.66260.030*0.1
C21'0.891 (2)0.0945 (14)0.8000 (13)0.0211 (4)0.1
H21A0.97960.12340.79240.025*0.1
C22'0.8558 (11)0.0913 (9)0.8836 (15)0.0287 (5)0.1
H22A0.91390.11660.93980.034*0.1
C230.7447 (2)0.1620 (2)0.59624 (12)0.0170 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0164 (2)0.0275 (2)0.0230 (2)0.01097 (18)0.00676 (16)0.00771 (17)
O10.0182 (6)0.0324 (7)0.0191 (6)0.0132 (5)0.0090 (5)0.0115 (5)
N10.0129 (6)0.0205 (7)0.0169 (7)0.0098 (6)0.0052 (5)0.0070 (5)
N20.0155 (7)0.0283 (9)0.0220 (8)0.0135 (7)0.0048 (6)0.0108 (6)
N30.0191 (7)0.0353 (9)0.0223 (8)0.0156 (7)0.0087 (6)0.0092 (7)
N40.0284 (9)0.0421 (10)0.0286 (9)0.0220 (8)0.0161 (7)0.0175 (8)
N50.0172 (7)0.0323 (9)0.0219 (8)0.0158 (7)0.0100 (6)0.0119 (6)
C20.0156 (8)0.0207 (8)0.0172 (8)0.0092 (7)0.0069 (6)0.0050 (6)
C30.0153 (8)0.0249 (9)0.0186 (8)0.0113 (7)0.0074 (6)0.0059 (7)
C40.0157 (8)0.0209 (9)0.0197 (8)0.0094 (7)0.0061 (6)0.0055 (7)
C50.0150 (8)0.0211 (9)0.0185 (8)0.0089 (7)0.0073 (6)0.0077 (6)
C60.0139 (7)0.0195 (8)0.0191 (8)0.0074 (7)0.0064 (6)0.0047 (6)
C70.0180 (8)0.0243 (9)0.0163 (8)0.0123 (7)0.0055 (6)0.0079 (7)
C80.0167 (8)0.0233 (9)0.0183 (8)0.0118 (7)0.0082 (6)0.0066 (7)
C90.0166 (8)0.0180 (8)0.0222 (8)0.0105 (7)0.0068 (6)0.0037 (7)
C100.0322 (10)0.0284 (10)0.0253 (9)0.0219 (9)0.0107 (8)0.0113 (8)
C110.0241 (9)0.0374 (11)0.0189 (8)0.0221 (8)0.0048 (7)0.0041 (7)
C120.0165 (8)0.0263 (9)0.0241 (9)0.0139 (7)0.0074 (7)0.0094 (7)
S20.0260 (3)0.0395 (3)0.0210 (3)0.0241 (2)0.00679 (19)0.0055 (2)
S2'0.0332 (9)0.0657 (15)0.0095 (13)0.0340 (10)0.0073 (14)0.0067 (17)
O20.0136 (6)0.0303 (7)0.0236 (6)0.0096 (5)0.0086 (5)0.0107 (5)
N60.0131 (6)0.0201 (7)0.0182 (7)0.0090 (6)0.0058 (5)0.0076 (6)
N70.0159 (7)0.0262 (8)0.0209 (7)0.0128 (6)0.0058 (6)0.0092 (6)
N80.0224 (8)0.0257 (8)0.0236 (8)0.0100 (7)0.0097 (6)0.0084 (6)
N90.0179 (7)0.0260 (8)0.0243 (8)0.0111 (6)0.0087 (6)0.0080 (6)
N100.0156 (7)0.0251 (8)0.0207 (7)0.0102 (6)0.0088 (6)0.0101 (6)
C130.0157 (8)0.0205 (9)0.0186 (8)0.0085 (7)0.0066 (6)0.0052 (6)
C140.0170 (8)0.0258 (9)0.0197 (8)0.0104 (7)0.0067 (7)0.0095 (7)
C150.0175 (8)0.0246 (9)0.0196 (8)0.0110 (7)0.0064 (7)0.0063 (7)
C160.0134 (8)0.0194 (8)0.0174 (8)0.0073 (6)0.0059 (6)0.0040 (6)
C170.0159 (8)0.0190 (8)0.0164 (8)0.0079 (7)0.0064 (6)0.0032 (6)
C180.0137 (7)0.0218 (9)0.0201 (8)0.0087 (7)0.0038 (6)0.0050 (7)
C190.0148 (8)0.0232 (9)0.0220 (8)0.0096 (7)0.0071 (6)0.0081 (7)
C200.0332 (9)0.0657 (15)0.0095 (13)0.0340 (10)0.0073 (14)0.0067 (17)
C210.0218 (11)0.0467 (13)0.0228 (10)0.0176 (10)0.0075 (9)0.0136 (9)
C220.0179 (9)0.0206 (10)0.0274 (12)0.0108 (8)0.0045 (9)0.0116 (8)
C20'0.0260 (3)0.0395 (3)0.0210 (3)0.0241 (2)0.00679 (19)0.0055 (2)
C21'0.0179 (9)0.0206 (10)0.0274 (12)0.0108 (8)0.0045 (9)0.0116 (8)
C22'0.0218 (11)0.0467 (13)0.0228 (10)0.0176 (10)0.0075 (9)0.0136 (9)
C230.0171 (8)0.0193 (8)0.0171 (8)0.0091 (7)0.0055 (6)0.0065 (6)
Geometric parameters (Å, º) top
S1—C111.713 (2)O2—C131.232 (2)
S1—C81.7239 (18)N6—C171.369 (2)
O1—C21.237 (2)N6—C131.397 (2)
N1—C61.362 (2)N6—N71.4192 (19)
N1—C21.395 (2)N7—H7A0.91 (3)
N1—N21.4148 (19)N7—H7B0.88 (2)
N2—H2A0.85 (3)N8—C181.147 (2)
N2—H2B0.93 (2)N9—C231.153 (2)
N3—C71.145 (2)N10—C171.322 (2)
N4—C121.151 (2)N10—H10A0.85 (2)
N5—C61.325 (2)N10—H10B0.84 (3)
N5—H5A0.87 (3)C13—C141.442 (2)
N5—H5B0.88 (3)C14—C151.389 (2)
C2—C31.433 (2)C14—C181.432 (2)
C3—C41.391 (2)C15—C161.417 (2)
C3—C71.426 (2)C15—C191.471 (2)
C4—C51.406 (2)C16—C171.414 (2)
C4—C81.468 (2)C16—C231.427 (2)
C5—C61.412 (2)C19—C201.356 (2)
C5—C121.429 (2)C19—C20'1.360 (3)
C8—C91.388 (3)C20—C211.418 (3)
C9—C101.415 (2)C20—H200.9500
C9—H90.9500C21—C221.360 (2)
C10—C111.353 (3)C21—H210.9500
C10—H100.9500C22—H220.9500
C11—H110.9500C20'—C21'1.420 (3)
S2—C221.702 (2)C20'—H20A0.9500
S2—C191.7120 (17)C21'—C22'1.359 (3)
S2'—C191.711 (3)C21'—H21A0.9500
S2'—C22'1.719 (3)C22'—H22A0.9500
C11—S1—C891.74 (9)H7A—N7—H7B110 (2)
C6—N1—C2124.17 (14)C17—N10—H10A117.1 (16)
C6—N1—N2116.35 (13)C17—N10—H10B121.3 (16)
C2—N1—N2119.48 (14)H10A—N10—H10B120 (2)
N1—N2—H2A106.5 (16)O2—C13—N6119.40 (15)
N1—N2—H2B105.8 (14)O2—C13—C14124.96 (16)
H2A—N2—H2B111 (2)N6—C13—C14115.63 (15)
C6—N5—H5A118.2 (16)C15—C14—C18124.60 (16)
C6—N5—H5B119.1 (15)C15—C14—C13122.10 (16)
H5A—N5—H5B123 (2)C18—C14—C13113.12 (15)
O1—C2—N1118.98 (15)C14—C15—C16118.19 (15)
O1—C2—C3125.41 (15)C14—C15—C19119.86 (15)
N1—C2—C3115.61 (14)C16—C15—C19121.94 (15)
C4—C3—C7122.82 (15)C17—C16—C15121.00 (15)
C4—C3—C2122.37 (15)C17—C16—C23116.69 (15)
C7—C3—C2114.82 (15)C15—C16—C23122.31 (15)
C3—C4—C5118.57 (15)N10—C17—N6117.38 (15)
C3—C4—C8121.73 (15)N10—C17—C16124.41 (16)
C5—C4—C8119.68 (15)N6—C17—C16118.18 (15)
C4—C5—C6120.31 (15)N8—C18—C14175.66 (18)
C4—C5—C12123.03 (15)C20—C19—C15126.3 (2)
C6—C5—C12116.49 (15)C20'—C19—C15120.7 (8)
N5—C6—N1117.64 (15)C20'—C19—S2'113.7 (9)
N5—C6—C5123.40 (16)C15—C19—S2'125.6 (3)
N1—C6—C5118.96 (15)C20—C19—S2109.75 (18)
N3—C7—C3176.99 (18)C15—C19—S2123.87 (12)
C9—C8—C4126.08 (16)C19—C20—C21114.3 (3)
C9—C8—S1111.33 (13)C19—C20—H20122.8
C4—C8—S1122.57 (13)C21—C20—H20122.8
C8—C9—C10111.33 (16)C22—C21—C20111.4 (2)
C8—C9—H9124.3C22—C21—H21124.3
C10—C9—H9124.3C20—C21—H21124.3
C11—C10—C9113.81 (17)C21—C22—S2111.52 (17)
C11—C10—H10123.1C21—C22—H22124.2
C9—C10—H10123.1S2—C22—H22124.2
C10—C11—S1111.78 (14)C19—C20'—C21'109.0 (15)
C10—C11—H11124.1C19—C20'—H20A125.5
S1—C11—H11124.1C21'—C20'—H20A125.5
N4—C12—C5175.40 (18)C22'—C21'—C20'116 (2)
C22—S2—C1992.90 (9)C22'—C21'—H21A121.9
C19—S2'—C22'91.8 (9)C20'—C21'—H21A121.9
C17—N6—C13124.25 (14)C21'—C22'—S2'109.3 (16)
C17—N6—N7117.12 (14)C21'—C22'—H22A125.3
C13—N6—N7118.50 (13)S2'—C22'—H22A125.3
N6—N7—H7A108.6 (15)N9—C23—C16177.12 (19)
N6—N7—H7B106.1 (15)
C6—N1—C2—O1178.66 (16)C18—C14—C15—C192.0 (3)
N2—N1—C2—O11.2 (2)C13—C14—C15—C19176.95 (17)
C6—N1—C2—C31.1 (3)C14—C15—C16—C173.9 (3)
N2—N1—C2—C3179.01 (15)C19—C15—C16—C17177.03 (16)
O1—C2—C3—C4179.29 (18)C14—C15—C16—C23176.47 (17)
N1—C2—C3—C40.5 (3)C19—C15—C16—C232.6 (3)
O1—C2—C3—C70.4 (3)C13—N6—C17—N10175.40 (16)
N1—C2—C3—C7179.81 (16)N7—N6—C17—N100.6 (2)
C7—C3—C4—C5179.12 (17)C13—N6—C17—C162.9 (3)
C2—C3—C4—C50.6 (3)N7—N6—C17—C16178.87 (15)
C7—C3—C4—C80.6 (3)C15—C16—C17—N10178.19 (17)
C2—C3—C4—C8179.13 (17)C23—C16—C17—N101.5 (3)
C3—C4—C5—C61.1 (3)C15—C16—C17—N63.6 (3)
C8—C4—C5—C6179.65 (16)C23—C16—C17—N6176.68 (15)
C3—C4—C5—C12176.19 (17)C14—C15—C19—C2036.9 (4)
C8—C4—C5—C125.2 (3)C16—C15—C19—C20144.0 (4)
C2—N1—C6—N5179.57 (16)C14—C15—C19—C20'146.3 (6)
N2—N1—C6—N50.3 (2)C16—C15—C19—C20'32.8 (6)
C2—N1—C6—C50.7 (3)C14—C15—C19—S2'33.7 (6)
N2—N1—C6—C5179.46 (16)C16—C15—C19—S2'147.2 (6)
C4—C5—C6—N5179.26 (18)C14—C15—C19—S2139.30 (16)
C12—C5—C6—N53.8 (3)C16—C15—C19—S239.8 (2)
C4—C5—C6—N10.5 (3)C22'—S2'—C19—C2073 (10)
C12—C5—C6—N1175.92 (16)C22'—S2'—C19—C20'0.00 (9)
C3—C4—C8—C9129.8 (2)C22'—S2'—C19—C15179.99 (5)
C5—C4—C8—C948.7 (3)C22'—S2'—C19—S26.2 (6)
C3—C4—C8—S152.1 (2)C22—S2—C19—C200.9 (3)
C5—C4—C8—S1129.31 (16)C22—S2—C19—C20'120 (7)
C11—S1—C8—C90.62 (14)C22—S2—C19—C15175.83 (17)
C11—S1—C8—C4178.91 (15)C22—S2—C19—S2'1.9 (5)
C4—C8—C9—C10179.27 (16)C20'—C19—C20—C216.0 (10)
S1—C8—C9—C101.05 (19)C15—C19—C20—C21177.0 (2)
C8—C9—C10—C111.1 (2)S2'—C19—C20—C21102 (10)
C9—C10—C11—S10.6 (2)S2—C19—C20—C210.3 (5)
C8—S1—C11—C100.01 (15)C19—C20—C21—C221.8 (5)
C17—N6—C13—O2172.12 (17)C20—C21—C22—S22.4 (3)
N7—N6—C13—O23.8 (2)C19—S2—C22—C211.95 (19)
C17—N6—C13—C148.5 (2)C20—C19—C20'—C21'2.8 (8)
N7—N6—C13—C14175.61 (15)C15—C19—C20'—C21'179.99 (8)
O2—C13—C14—C15172.61 (18)S2'—C19—C20'—C21'0.01 (13)
N6—C13—C14—C158.0 (3)S2—C19—C20'—C21'60 (7)
O2—C13—C14—C182.9 (3)C19—C20'—C21'—C22'0.01 (19)
N6—C13—C14—C18176.52 (15)C20'—C21'—C22'—S2'0.01 (18)
C18—C14—C15—C16177.10 (17)C19—S2'—C22'—C21'0.01 (11)
C13—C14—C15—C162.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.85 (3)2.37 (3)3.212 (2)174 (2)
N2—H2B···O1ii0.93 (2)2.16 (3)3.086 (2)169 (2)
N5—H5B···N3iii0.88 (3)2.14 (3)2.944 (2)151 (2)
N7—H7A···O2iv0.91 (3)2.26 (2)3.010 (2)139 (2)
N7—H7B···N9v0.88 (2)2.55 (2)3.348 (2)152 (2)
N10—H10A···N30.85 (2)2.62 (2)3.196 (2)126 (2)
N10—H10B···O10.84 (3)2.11 (3)2.921 (2)165 (2)
N5—H5B···N20.88 (3)2.22 (3)2.606 (2)106 (2)
N10—H10A···N70.85 (3)2.23 (3)2.626 (3)109 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x, y, z+1; (v) x1, y, z.
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution for molecule 1Percentage contribution for molecule 2
N···H/H···N27.124.3
H···H17.625.4
C···H/H···C13.611.4
O···H/H···O9.311.7
C···C7.38.5
N···C/C···N7.09.0
S···C/C···S5.41.3
S···H/H···S5.11.8
N···N2.82.7
S···N/N···S2.21.1
O···C/C···O1.01.3
S···S0.80.3
O···N/N···O0.71.2
 

Acknowledgements

Authors contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK, FNN and IGM; investigation, ANK, MA and FSK; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and FSK; supervision, ANK and MA.

Funding information

This work was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.

References

First citationAl-Said, M. S., Ghorab, M. M., Ghabbour, H. A., Arshad, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1679.  CSD CrossRef IUCr Journals Google Scholar
First citationBabaee, S., Zarei, M., Sepehrmansourie, H., Zolfigol, M. A. & Rostamnia, S. (2020). ACS Omega, 5, 6240–6249.  CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationÇelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.  Google Scholar
First citationChalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255.  Web of Science CSD CrossRef Google Scholar
First citationEyduran, F., Özyürek, C., Dilek, N., Ocak Iskeleli, N. & Şendil, K. (2007). Acta Cryst. E63, o2415–o2417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJia, R. & Tu, S. J. (2008). Acta Cryst. E64, o1578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLakhrissi, Y., Rbaa, M., Tuzun, B., Hichar, A., Anouar, H., Ounine, K., Almalki, F., Hadda, T. B., Zarrouk, A. & Lakhrissi, B. (2022). J. Mol. Struct. 1259, 132683.  Web of Science CrossRef Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11.  Google Scholar
First citationMaharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73.  Google Scholar
First citationMamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291–296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Singh, K., Hussein, B. R. M. & Albayati, M. R. (2014). Acta Cryst. E70, o993–o994.  CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Soliman, A. M., El Remaily, M. A. A. & Abdel-Ghany, H. (2013). J. Heterocycl. Chem. 50, 1425–1430.  CrossRef CAS Google Scholar
First citationMohana, M., Thomas Muthiah, P. & Butcher, R. J. (2017). Acta Cryst. C73, 536–540.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Pavlova, A. V., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 930–934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSharma, V. K. & Singh, S. K. (2017). RSC Adv. 7, 2682–2732.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoliman, A. M., Mohamed, S. K., El-Remaily, M. A. A. & Abdel-Ghany, H. (2014). J. Heterocycl. Chem. 51, 1202–1209.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuresh, J., Suresh Kumar, R., Perumal, S., Mostad, A. & Natarajan, S. (2007). Acta Cryst. C63, o141–o144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816.  Web of Science CSD CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds