research communications
and Hirshfeld surface analysis of 1,6-diamino-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3,5-dicarbonitrile
aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
The 11H7N5OS, contains two independent molecules (1 and 2). The thiophene ring in molecule 2 is rotationally disordered (flip disorder) by ca 180° (around the single C—C bond, to which it is attached) over two sites with the site-occupation factors of 0.9 and 0.1. These two orientations of the thiophene ring in molecule 2 are not equivalent. In the crystal, molecules are linked by intermolecular N—H⋯O and N—H⋯N hydrogen bonds into ribbons parallel to (022) along the a axis. Within the (022) planes, these ribbons are connected by van der Waals interactions and between the (022) planes by N—H⋯O hydrogen bonds. In molecule 1, Hirshfeld surface analysis showed that the most important contributions to the crystal packing are from N⋯H/H⋯N (27.1%), H⋯H (17.6%), C⋯H/H⋯C (13.6%) and O⋯H/H⋯O (9.3%) interactions, while in molecule 2, H⋯H (25.4%) interactions are the most significant contributors to the crystal packing.
of the title compound, CKeywords: crystal structure; 1,2-dihydropyridine; hydrogen bond; disorder; Hirshfeld surface analysis.
CCDC reference: 2255359
1. Chemical context
The various C—C and C—N bond-formation techniques play key roles in organic synthesis (Celik et al., 2023; Chalkha et al., 2023; Tapera et al., 2022; Lakhrissi et al., 2022). The dihydropyridine moiety, comprising heterocycles, demonstrates a wide spectrum of biological activities, such as antitumor, antitubercular, antimicrobial and anti-diabetic (Mohamed et al., 2013; Soliman et al., 2014). On the other hand, a dihydropyridine scaffold is the active structural unit of a variety of natural products, drugs and functional materials. These compounds have found synthetic applications in the construction of many pharmacologically relevant natural such as the isoquinuclidines, ibogaine, mearsine, dioscorine, caldaphinidine D, catharanthine, vinblastine and vincristine (Sharma & Singh, 2017).
Thus, in the framework of our ongoing structural studies (Maharramov et al., 2021, 2022; Naghiyev et al., 2020, 2021, 2022), we report the and Hirshfeld surface analysis of the title compound, 1,6-diamino-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3,5-dicarbonitrile.
2. Structural commentary
As seen in Fig. 1, the of the title compound contains two independent molecules (1 and 2). The thiophene ring (S2′/C19/C20′–C22′) in molecule 2 is rotationally disordered (flip disorder) by ca 180° (around the single C15—C19 bond to which it is attached) over two sites with the site-occupation factors of 0.9 and 0.1 (fixed after cycles). These two orientations of the thiophene ring in molecule 2 are not equivalent.
In molecule 1, the angle between the thiophene (S1/C8–C11) and pyridine (N1/C2–C6) rings is 50.72 (9)°. In molecule 2, the angle between the two disordered thiophene rings (S2/C19–C22 and S2′/C19/C20′–C22′) is 6.2 (5)°, and they make an angle with the pyridine ring (N6/C13-C17) of 40.3 (1) and 34.8 (5)°, respectively. Molecules 1 and 2 (r.m.s. deviation = 0.126 A) are almost identical and the geometric parameters are normal and comparable to those of related compounds listed in the Database survey section.
Molecules 1 and 2 are stabilized by intramolecular N5—H5B⋯N2 and N10—H10A⋯N7 hydrogen bonds, forming S(5) motifs (Table 1; Bernstein et al., 1995).
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are linked by intermolecular N—H⋯O and N—H⋯N hydrogen bonds into ribbons parallel to (022) along the a-axis (Table 1, Fig. 2). Within the (022) planes, these ribbons are connected by van der Waals interactions and between the (022) planes by N—H⋯O intermolecular hydrogen bonds (Table 1, Figs. 3 and 4).
CrystalExplorer17.5 (Turner et al., 2017) was used to construct Hirshfeld surfaces and generate the related two-dimensional fingerprint plots to illustrate the intermolecular interactions for molecules 1 and 2. The dnorm mappings of 1 were conducted in the range −0.5158 to +1.0500 a.u. Bright-red circles on the dnorm surfaces (Fig. 5a,b) represent N—H⋯O interaction zones (Table 1). The fingerprint plots of 1 (Fig. 6) show that, while N⋯H/H⋯N (27.1%; Fig. 6b) interactions provide the highest contribution (Table 2), as would be expected for a molecule with so many H atoms, H⋯H (17.6%; Fig. 6c), C⋯H/H⋯C (13.6%; Fig. 6d) and O⋯H/H⋯O (9.3%; Fig. 6e) contacts are also significant. Table 2 shows the contributions of all contacts. In molecule 2, the dnorm mappings were performed in the range −0.5165 to +1.1535 a.u. The locations of N—H⋯O interactions are shown by bright-red circles on the dnorm surfaces (Fig. 5c,d), Table 1). Fig. 6 displays the full two-dimensional fingerprint plot and those delineated into the major contacts. H⋯H interactions (Fig. 6c; 25.4%) are the major factor in the crystal packing with N⋯H/H⋯N (Fig. 6b; 24.3%), O⋯H/H⋯O (Fig. 6e; 11.7%) and C⋯H/H⋯C (Fig. 6d; 11.4%) interactions representing the next highest contributions. The percentage contributions of comparatively weaker interactions in molecules 1 and 2 are given in Table 2. The surroundings of molecules 1 and 2 are quite similar, as seen by the data comparison.
|
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) gave thirteen compounds closely related to the title compounds, viz. CSD refcodes BEFFOL (I; Naghiyev et al., 2022), BEFFUR (II; Naghiyev et al., 2022), YAXQAT (III; Mamedov et al., 2022), OZAKOS (IV; Naghiyev et al., 2021), JEBREQ (V; Mohana et al., 2017), JEBRAM (VI; Mohana et al., 2017), SETWUK (VII; Suresh et al., 2007), SETWOE (VIII; Suresh et al., 2007), IQEFOC (IX; Naghiyev et al., 2021a), MOKBUL (X; Mohamed et al., 2014), PAVQIO (XI; Al-Said et al., 2012), YIZGOE01 (XII; Jia & Tu, 2008) and YIBZAL (XIII; Eyduran et al., 2007).
In the crystal of I (monoclinic, C2/c), pairs of molecules are linked by pairs of N—H⋯N hydrogen bonds, forming dimers with an R22(12) ring motif. The dimers are connected by N—H⋯Br and O—H⋯O hydrogen bonds, and C—Br⋯π interactions, forming layers parallel to the (010) plane. Compound II crystallizes in the triclinic P with two independent molecules (IIA and IIB) in the In the crystal of II, molecules IIA and IIB are linked by intermolecular N—H⋯N and N—H⋯O hydrogen bonds into layers parallel to (001). These layers are connected along the c-axis direction by weak C—H⋯N contacts. C—H⋯π and C—N⋯π interactions connect adjacent molecules, forming chains along the a-axis direction. In III (space group: Pc), the two molecules in the are joined together by N—H⋯O hydrogen bonds, forming a dimer with an R22(16) ring motif. N—H⋯O and N—H⋯N hydrogen bonds link the dimers, generating chains along the c-axis direction, which are connected by C—Br⋯π interactions. In IV (space group: Pc), intermolecular N—H⋯N and C—H⋯N hydrogen bonds, as well as N—H⋯π and C—H⋯π interactions, connect the molecules in the crystal, generating a 3D network. In both V (space group: P) and VI (space group: P), a supramolecular homosynthon [ R22(8) ring motif] is formed through N—H⋯N hydrogen bonds. The molecular structures are further stabilized by π–π stacking, and C—O⋯π, C—H⋯O and C—H⋯Cl interactions. In VII (space group: P21/n), the is stabilized by intermolecular C—H⋯F and C—H⋯π interactions, and in VIII (space group: P21/c), by intermolecular C—H⋯O and C—H⋯π interactions. In IX (space group: Cc), intermolecular N—H⋯N and C—H⋯N hydrogen bonds form molecular sheets parallel to the (110) and (110) planes, crossing each other. Adjacent molecules are further linked by C—H⋯π interactions, which form zigzag chains propagating parallel to [100]. The compound X (space group: Pca21) crystallizes with two independent molecules in the In the crystal, the A and B molecules are linked by N—H⋯S, N—H⋯N and C—H⋯S hydrogen bonds, forming a three-dimensional network. In XI (space group: P21/c), molecules are linked into a chain along the b-axis direction via C—H⋯O interactions. In XII (space group: P), the crystal packing is consolidated by intermolecular N—H⋯N, O—H⋯O and N—H⋯O hydrogen bonds. In XIII (space group: P21/c), the molecules form centrosymmetric dimers via N—H⋯S hydrogen bonds.
5. Synthesis and crystallization
The title compound was synthesized using a recently reported procedure (Babaee et al., 2020), and colorless crystals were obtained upon recrystallization from an ethanol/water (3:1) solution at room temperature.
6. Refinement
Crystal data, data collection and structure . The aromatic H atoms were placed at calculated positions (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were found in a difference-Fourier map, and refined freely [N2—H2A = 0.85 (3), N2—H2B = 0.93 (2), N5—H5A = 0.87 (3), N5—H5B = 0.88 (3), N7—H7A = 0.91 (3), N7—H7B = 0.88 (2), N10—H10A = 0.85 (2) and N10—H10B = 0.84 (3) Å], with Uiso(H) = 1.2Ueq(N). The thiophene ring (S2/C19–C22) in molecule 2 is rotationally disordered (flip disorder) by ca 180° (around the single C15—C19 bond, to which it is attached) over two sites with the site-occupation factors of 0.9 and 0.1 (fixed after cycles). A DFIX instruction was applied to constrain the distances in the thiophene rings of disordered molecule 2. For these rings, FLAT and EADP instructions were also used.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2255359
https://doi.org/10.1107/S2056989023003237/tx2066sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023003237/tx2066Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023003237/tx2066Isup3.cml
Data collection: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); cell
CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C11H7N5OS | Z = 4 |
Mr = 257.28 | F(000) = 528 |
Triclinic, P1 | Dx = 1.588 Mg m−3 |
a = 8.94782 (10) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 9.03908 (9) Å | Cell parameters from 26181 reflections |
c = 14.87299 (18) Å | θ = 3.1–78.8° |
α = 90.9441 (9)° | µ = 2.65 mm−1 |
β = 104.1197 (10)° | T = 100 K |
γ = 111.7451 (10)° | Prism, colourless |
V = 1075.92 (2) Å3 | 0.25 × 0.20 × 0.20 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 4467 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.033 |
φ and ω scans | θmax = 79.3°, θmin = 3.1° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −11→11 |
Tmin = 0.505, Tmax = 0.561 | k = −10→11 |
32558 measured reflections | l = −18→18 |
4547 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.105 | w = 1/[σ2(Fo2) + (0.046P)2 + 1.11P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
4547 reflections | Δρmax = 0.45 e Å−3 |
362 parameters | Δρmin = −0.46 e Å−3 |
11 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.0028 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.42276 (5) | 0.52922 (6) | 0.09865 (3) | 0.02122 (13) | |
O1 | 0.79462 (15) | 0.40083 (16) | 0.42272 (9) | 0.0213 (3) | |
N1 | 0.96105 (17) | 0.46444 (18) | 0.32428 (10) | 0.0155 (3) | |
N2 | 1.07380 (19) | 0.4068 (2) | 0.38163 (11) | 0.0204 (3) | |
H2A | 1.022 (3) | 0.306 (3) | 0.3791 (16) | 0.024* | |
H2B | 1.100 (3) | 0.458 (3) | 0.4416 (17) | 0.024* | |
N3 | 0.44940 (19) | 0.4937 (2) | 0.33818 (11) | 0.0234 (3) | |
N4 | 0.9777 (2) | 0.6738 (2) | 0.03594 (12) | 0.0287 (4) | |
N5 | 1.14206 (19) | 0.5269 (2) | 0.23148 (11) | 0.0209 (3) | |
H5A | 1.166 (3) | 0.560 (3) | 0.1804 (18) | 0.025* | |
H5B | 1.208 (3) | 0.495 (3) | 0.2738 (17) | 0.025* | |
C2 | 0.8182 (2) | 0.4562 (2) | 0.34957 (12) | 0.0167 (3) | |
C3 | 0.7099 (2) | 0.5149 (2) | 0.28660 (12) | 0.0180 (3) | |
C4 | 0.7451 (2) | 0.5773 (2) | 0.20585 (12) | 0.0178 (3) | |
C5 | 0.8932 (2) | 0.5840 (2) | 0.18606 (12) | 0.0170 (3) | |
C6 | 1.0017 (2) | 0.5258 (2) | 0.24648 (12) | 0.0168 (3) | |
C7 | 0.5643 (2) | 0.5051 (2) | 0.31343 (12) | 0.0181 (3) | |
C8 | 0.6340 (2) | 0.6391 (2) | 0.14265 (12) | 0.0175 (3) | |
C9 | 0.6819 (2) | 0.7868 (2) | 0.10847 (12) | 0.0175 (3) | |
H9 | 0.7933 | 0.8642 | 0.1235 | 0.021* | |
C10 | 0.5435 (3) | 0.8072 (2) | 0.04835 (14) | 0.0249 (4) | |
H10 | 0.5523 | 0.9018 | 0.0193 | 0.030* | |
C11 | 0.3974 (2) | 0.6796 (2) | 0.03603 (13) | 0.0239 (4) | |
H11 | 0.2935 | 0.6741 | −0.0026 | 0.029* | |
C12 | 0.9363 (2) | 0.6369 (2) | 0.10243 (13) | 0.0202 (4) | |
S2 | 0.80863 (7) | −0.08316 (7) | 0.72047 (4) | 0.02529 (14) | 0.9 |
S2' | 0.6895 (15) | −0.0343 (17) | 0.8718 (3) | 0.0314 (5) | 0.1 |
O2 | 0.11544 (15) | −0.02340 (16) | 0.64254 (9) | 0.0214 (3) | |
N6 | 0.31497 (17) | 0.12527 (18) | 0.57464 (10) | 0.0160 (3) | |
N7 | 0.19787 (19) | 0.1759 (2) | 0.51471 (11) | 0.0193 (3) | |
H7A | 0.129 (3) | 0.094 (3) | 0.4695 (17) | 0.023* | |
H7B | 0.140 (3) | 0.197 (3) | 0.5497 (16) | 0.023* | |
N8 | 0.2765 (2) | −0.1813 (2) | 0.82807 (11) | 0.0230 (3) | |
N9 | 0.86800 (19) | 0.19394 (19) | 0.57542 (11) | 0.0213 (3) | |
N10 | 0.4975 (2) | 0.25717 (19) | 0.48991 (11) | 0.0190 (3) | |
H10A | 0.424 (3) | 0.292 (3) | 0.4638 (16) | 0.023* | |
H10B | 0.591 (3) | 0.293 (3) | 0.4796 (16) | 0.023* | |
C13 | 0.2627 (2) | 0.0251 (2) | 0.64097 (12) | 0.0174 (3) | |
C14 | 0.3908 (2) | −0.0122 (2) | 0.70405 (12) | 0.0198 (4) | |
C15 | 0.5502 (2) | 0.0312 (2) | 0.69219 (12) | 0.0194 (4) | |
C16 | 0.5878 (2) | 0.1196 (2) | 0.61720 (12) | 0.0161 (3) | |
C17 | 0.4699 (2) | 0.1710 (2) | 0.55950 (12) | 0.0164 (3) | |
C18 | 0.3323 (2) | −0.1073 (2) | 0.77379 (12) | 0.0181 (3) | |
C19 | 0.6737 (2) | −0.0168 (2) | 0.75586 (11) | 0.0189 (3) | |
C20 | 0.6928 (6) | −0.0243 (7) | 0.84874 (15) | 0.0314 (5) | 0.9 |
H20 | 0.6287 | 0.0068 | 0.8819 | 0.038* | 0.9 |
C21 | 0.8164 (3) | −0.0824 (3) | 0.89227 (16) | 0.0287 (5) | 0.9 |
H21 | 0.8463 | −0.0917 | 0.9571 | 0.034* | 0.9 |
C22 | 0.8866 (3) | −0.1231 (3) | 0.82943 (14) | 0.0211 (4) | 0.9 |
H22 | 0.9689 | −0.1681 | 0.8445 | 0.025* | 0.9 |
C20' | 0.7887 (14) | −0.0522 (15) | 0.7247 (13) | 0.02529 (14) | 0.1 |
H20A | 0.7989 | −0.0491 | 0.6626 | 0.030* | 0.1 |
C21' | 0.891 (2) | −0.0945 (14) | 0.8000 (13) | 0.0211 (4) | 0.1 |
H21A | 0.9796 | −0.1234 | 0.7924 | 0.025* | 0.1 |
C22' | 0.8558 (11) | −0.0913 (9) | 0.8836 (15) | 0.0287 (5) | 0.1 |
H22A | 0.9139 | −0.1166 | 0.9398 | 0.034* | 0.1 |
C23 | 0.7447 (2) | 0.1620 (2) | 0.59624 (12) | 0.0170 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0164 (2) | 0.0275 (2) | 0.0230 (2) | 0.01097 (18) | 0.00676 (16) | 0.00771 (17) |
O1 | 0.0182 (6) | 0.0324 (7) | 0.0191 (6) | 0.0132 (5) | 0.0090 (5) | 0.0115 (5) |
N1 | 0.0129 (6) | 0.0205 (7) | 0.0169 (7) | 0.0098 (6) | 0.0052 (5) | 0.0070 (5) |
N2 | 0.0155 (7) | 0.0283 (9) | 0.0220 (8) | 0.0135 (7) | 0.0048 (6) | 0.0108 (6) |
N3 | 0.0191 (7) | 0.0353 (9) | 0.0223 (8) | 0.0156 (7) | 0.0087 (6) | 0.0092 (7) |
N4 | 0.0284 (9) | 0.0421 (10) | 0.0286 (9) | 0.0220 (8) | 0.0161 (7) | 0.0175 (8) |
N5 | 0.0172 (7) | 0.0323 (9) | 0.0219 (8) | 0.0158 (7) | 0.0100 (6) | 0.0119 (6) |
C2 | 0.0156 (8) | 0.0207 (8) | 0.0172 (8) | 0.0092 (7) | 0.0069 (6) | 0.0050 (6) |
C3 | 0.0153 (8) | 0.0249 (9) | 0.0186 (8) | 0.0113 (7) | 0.0074 (6) | 0.0059 (7) |
C4 | 0.0157 (8) | 0.0209 (9) | 0.0197 (8) | 0.0094 (7) | 0.0061 (6) | 0.0055 (7) |
C5 | 0.0150 (8) | 0.0211 (9) | 0.0185 (8) | 0.0089 (7) | 0.0073 (6) | 0.0077 (6) |
C6 | 0.0139 (7) | 0.0195 (8) | 0.0191 (8) | 0.0074 (7) | 0.0064 (6) | 0.0047 (6) |
C7 | 0.0180 (8) | 0.0243 (9) | 0.0163 (8) | 0.0123 (7) | 0.0055 (6) | 0.0079 (7) |
C8 | 0.0167 (8) | 0.0233 (9) | 0.0183 (8) | 0.0118 (7) | 0.0082 (6) | 0.0066 (7) |
C9 | 0.0166 (8) | 0.0180 (8) | 0.0222 (8) | 0.0105 (7) | 0.0068 (6) | 0.0037 (7) |
C10 | 0.0322 (10) | 0.0284 (10) | 0.0253 (9) | 0.0219 (9) | 0.0107 (8) | 0.0113 (8) |
C11 | 0.0241 (9) | 0.0374 (11) | 0.0189 (8) | 0.0221 (8) | 0.0048 (7) | 0.0041 (7) |
C12 | 0.0165 (8) | 0.0263 (9) | 0.0241 (9) | 0.0139 (7) | 0.0074 (7) | 0.0094 (7) |
S2 | 0.0260 (3) | 0.0395 (3) | 0.0210 (3) | 0.0241 (2) | 0.00679 (19) | 0.0055 (2) |
S2' | 0.0332 (9) | 0.0657 (15) | 0.0095 (13) | 0.0340 (10) | 0.0073 (14) | 0.0067 (17) |
O2 | 0.0136 (6) | 0.0303 (7) | 0.0236 (6) | 0.0096 (5) | 0.0086 (5) | 0.0107 (5) |
N6 | 0.0131 (6) | 0.0201 (7) | 0.0182 (7) | 0.0090 (6) | 0.0058 (5) | 0.0076 (6) |
N7 | 0.0159 (7) | 0.0262 (8) | 0.0209 (7) | 0.0128 (6) | 0.0058 (6) | 0.0092 (6) |
N8 | 0.0224 (8) | 0.0257 (8) | 0.0236 (8) | 0.0100 (7) | 0.0097 (6) | 0.0084 (6) |
N9 | 0.0179 (7) | 0.0260 (8) | 0.0243 (8) | 0.0111 (6) | 0.0087 (6) | 0.0080 (6) |
N10 | 0.0156 (7) | 0.0251 (8) | 0.0207 (7) | 0.0102 (6) | 0.0088 (6) | 0.0101 (6) |
C13 | 0.0157 (8) | 0.0205 (9) | 0.0186 (8) | 0.0085 (7) | 0.0066 (6) | 0.0052 (6) |
C14 | 0.0170 (8) | 0.0258 (9) | 0.0197 (8) | 0.0104 (7) | 0.0067 (7) | 0.0095 (7) |
C15 | 0.0175 (8) | 0.0246 (9) | 0.0196 (8) | 0.0110 (7) | 0.0064 (7) | 0.0063 (7) |
C16 | 0.0134 (8) | 0.0194 (8) | 0.0174 (8) | 0.0073 (6) | 0.0059 (6) | 0.0040 (6) |
C17 | 0.0159 (8) | 0.0190 (8) | 0.0164 (8) | 0.0079 (7) | 0.0064 (6) | 0.0032 (6) |
C18 | 0.0137 (7) | 0.0218 (9) | 0.0201 (8) | 0.0087 (7) | 0.0038 (6) | 0.0050 (7) |
C19 | 0.0148 (8) | 0.0232 (9) | 0.0220 (8) | 0.0096 (7) | 0.0071 (6) | 0.0081 (7) |
C20 | 0.0332 (9) | 0.0657 (15) | 0.0095 (13) | 0.0340 (10) | 0.0073 (14) | 0.0067 (17) |
C21 | 0.0218 (11) | 0.0467 (13) | 0.0228 (10) | 0.0176 (10) | 0.0075 (9) | 0.0136 (9) |
C22 | 0.0179 (9) | 0.0206 (10) | 0.0274 (12) | 0.0108 (8) | 0.0045 (9) | 0.0116 (8) |
C20' | 0.0260 (3) | 0.0395 (3) | 0.0210 (3) | 0.0241 (2) | 0.00679 (19) | 0.0055 (2) |
C21' | 0.0179 (9) | 0.0206 (10) | 0.0274 (12) | 0.0108 (8) | 0.0045 (9) | 0.0116 (8) |
C22' | 0.0218 (11) | 0.0467 (13) | 0.0228 (10) | 0.0176 (10) | 0.0075 (9) | 0.0136 (9) |
C23 | 0.0171 (8) | 0.0193 (8) | 0.0171 (8) | 0.0091 (7) | 0.0055 (6) | 0.0065 (6) |
S1—C11 | 1.713 (2) | O2—C13 | 1.232 (2) |
S1—C8 | 1.7239 (18) | N6—C17 | 1.369 (2) |
O1—C2 | 1.237 (2) | N6—C13 | 1.397 (2) |
N1—C6 | 1.362 (2) | N6—N7 | 1.4192 (19) |
N1—C2 | 1.395 (2) | N7—H7A | 0.91 (3) |
N1—N2 | 1.4148 (19) | N7—H7B | 0.88 (2) |
N2—H2A | 0.85 (3) | N8—C18 | 1.147 (2) |
N2—H2B | 0.93 (2) | N9—C23 | 1.153 (2) |
N3—C7 | 1.145 (2) | N10—C17 | 1.322 (2) |
N4—C12 | 1.151 (2) | N10—H10A | 0.85 (2) |
N5—C6 | 1.325 (2) | N10—H10B | 0.84 (3) |
N5—H5A | 0.87 (3) | C13—C14 | 1.442 (2) |
N5—H5B | 0.88 (3) | C14—C15 | 1.389 (2) |
C2—C3 | 1.433 (2) | C14—C18 | 1.432 (2) |
C3—C4 | 1.391 (2) | C15—C16 | 1.417 (2) |
C3—C7 | 1.426 (2) | C15—C19 | 1.471 (2) |
C4—C5 | 1.406 (2) | C16—C17 | 1.414 (2) |
C4—C8 | 1.468 (2) | C16—C23 | 1.427 (2) |
C5—C6 | 1.412 (2) | C19—C20 | 1.356 (2) |
C5—C12 | 1.429 (2) | C19—C20' | 1.360 (3) |
C8—C9 | 1.388 (3) | C20—C21 | 1.418 (3) |
C9—C10 | 1.415 (2) | C20—H20 | 0.9500 |
C9—H9 | 0.9500 | C21—C22 | 1.360 (2) |
C10—C11 | 1.353 (3) | C21—H21 | 0.9500 |
C10—H10 | 0.9500 | C22—H22 | 0.9500 |
C11—H11 | 0.9500 | C20'—C21' | 1.420 (3) |
S2—C22 | 1.702 (2) | C20'—H20A | 0.9500 |
S2—C19 | 1.7120 (17) | C21'—C22' | 1.359 (3) |
S2'—C19 | 1.711 (3) | C21'—H21A | 0.9500 |
S2'—C22' | 1.719 (3) | C22'—H22A | 0.9500 |
C11—S1—C8 | 91.74 (9) | H7A—N7—H7B | 110 (2) |
C6—N1—C2 | 124.17 (14) | C17—N10—H10A | 117.1 (16) |
C6—N1—N2 | 116.35 (13) | C17—N10—H10B | 121.3 (16) |
C2—N1—N2 | 119.48 (14) | H10A—N10—H10B | 120 (2) |
N1—N2—H2A | 106.5 (16) | O2—C13—N6 | 119.40 (15) |
N1—N2—H2B | 105.8 (14) | O2—C13—C14 | 124.96 (16) |
H2A—N2—H2B | 111 (2) | N6—C13—C14 | 115.63 (15) |
C6—N5—H5A | 118.2 (16) | C15—C14—C18 | 124.60 (16) |
C6—N5—H5B | 119.1 (15) | C15—C14—C13 | 122.10 (16) |
H5A—N5—H5B | 123 (2) | C18—C14—C13 | 113.12 (15) |
O1—C2—N1 | 118.98 (15) | C14—C15—C16 | 118.19 (15) |
O1—C2—C3 | 125.41 (15) | C14—C15—C19 | 119.86 (15) |
N1—C2—C3 | 115.61 (14) | C16—C15—C19 | 121.94 (15) |
C4—C3—C7 | 122.82 (15) | C17—C16—C15 | 121.00 (15) |
C4—C3—C2 | 122.37 (15) | C17—C16—C23 | 116.69 (15) |
C7—C3—C2 | 114.82 (15) | C15—C16—C23 | 122.31 (15) |
C3—C4—C5 | 118.57 (15) | N10—C17—N6 | 117.38 (15) |
C3—C4—C8 | 121.73 (15) | N10—C17—C16 | 124.41 (16) |
C5—C4—C8 | 119.68 (15) | N6—C17—C16 | 118.18 (15) |
C4—C5—C6 | 120.31 (15) | N8—C18—C14 | 175.66 (18) |
C4—C5—C12 | 123.03 (15) | C20—C19—C15 | 126.3 (2) |
C6—C5—C12 | 116.49 (15) | C20'—C19—C15 | 120.7 (8) |
N5—C6—N1 | 117.64 (15) | C20'—C19—S2' | 113.7 (9) |
N5—C6—C5 | 123.40 (16) | C15—C19—S2' | 125.6 (3) |
N1—C6—C5 | 118.96 (15) | C20—C19—S2 | 109.75 (18) |
N3—C7—C3 | 176.99 (18) | C15—C19—S2 | 123.87 (12) |
C9—C8—C4 | 126.08 (16) | C19—C20—C21 | 114.3 (3) |
C9—C8—S1 | 111.33 (13) | C19—C20—H20 | 122.8 |
C4—C8—S1 | 122.57 (13) | C21—C20—H20 | 122.8 |
C8—C9—C10 | 111.33 (16) | C22—C21—C20 | 111.4 (2) |
C8—C9—H9 | 124.3 | C22—C21—H21 | 124.3 |
C10—C9—H9 | 124.3 | C20—C21—H21 | 124.3 |
C11—C10—C9 | 113.81 (17) | C21—C22—S2 | 111.52 (17) |
C11—C10—H10 | 123.1 | C21—C22—H22 | 124.2 |
C9—C10—H10 | 123.1 | S2—C22—H22 | 124.2 |
C10—C11—S1 | 111.78 (14) | C19—C20'—C21' | 109.0 (15) |
C10—C11—H11 | 124.1 | C19—C20'—H20A | 125.5 |
S1—C11—H11 | 124.1 | C21'—C20'—H20A | 125.5 |
N4—C12—C5 | 175.40 (18) | C22'—C21'—C20' | 116 (2) |
C22—S2—C19 | 92.90 (9) | C22'—C21'—H21A | 121.9 |
C19—S2'—C22' | 91.8 (9) | C20'—C21'—H21A | 121.9 |
C17—N6—C13 | 124.25 (14) | C21'—C22'—S2' | 109.3 (16) |
C17—N6—N7 | 117.12 (14) | C21'—C22'—H22A | 125.3 |
C13—N6—N7 | 118.50 (13) | S2'—C22'—H22A | 125.3 |
N6—N7—H7A | 108.6 (15) | N9—C23—C16 | 177.12 (19) |
N6—N7—H7B | 106.1 (15) | ||
C6—N1—C2—O1 | −178.66 (16) | C18—C14—C15—C19 | −2.0 (3) |
N2—N1—C2—O1 | 1.2 (2) | C13—C14—C15—C19 | −176.95 (17) |
C6—N1—C2—C3 | 1.1 (3) | C14—C15—C16—C17 | 3.9 (3) |
N2—N1—C2—C3 | −179.01 (15) | C19—C15—C16—C17 | −177.03 (16) |
O1—C2—C3—C4 | 179.29 (18) | C14—C15—C16—C23 | −176.47 (17) |
N1—C2—C3—C4 | −0.5 (3) | C19—C15—C16—C23 | 2.6 (3) |
O1—C2—C3—C7 | −0.4 (3) | C13—N6—C17—N10 | 175.40 (16) |
N1—C2—C3—C7 | 179.81 (16) | N7—N6—C17—N10 | −0.6 (2) |
C7—C3—C4—C5 | 179.12 (17) | C13—N6—C17—C16 | −2.9 (3) |
C2—C3—C4—C5 | −0.6 (3) | N7—N6—C17—C16 | −178.87 (15) |
C7—C3—C4—C8 | 0.6 (3) | C15—C16—C17—N10 | 178.19 (17) |
C2—C3—C4—C8 | −179.13 (17) | C23—C16—C17—N10 | −1.5 (3) |
C3—C4—C5—C6 | 1.1 (3) | C15—C16—C17—N6 | −3.6 (3) |
C8—C4—C5—C6 | 179.65 (16) | C23—C16—C17—N6 | 176.68 (15) |
C3—C4—C5—C12 | 176.19 (17) | C14—C15—C19—C20 | −36.9 (4) |
C8—C4—C5—C12 | −5.2 (3) | C16—C15—C19—C20 | 144.0 (4) |
C2—N1—C6—N5 | 179.57 (16) | C14—C15—C19—C20' | 146.3 (6) |
N2—N1—C6—N5 | −0.3 (2) | C16—C15—C19—C20' | −32.8 (6) |
C2—N1—C6—C5 | −0.7 (3) | C14—C15—C19—S2' | −33.7 (6) |
N2—N1—C6—C5 | 179.46 (16) | C16—C15—C19—S2' | 147.2 (6) |
C4—C5—C6—N5 | 179.26 (18) | C14—C15—C19—S2 | 139.30 (16) |
C12—C5—C6—N5 | 3.8 (3) | C16—C15—C19—S2 | −39.8 (2) |
C4—C5—C6—N1 | −0.5 (3) | C22'—S2'—C19—C20 | −73 (10) |
C12—C5—C6—N1 | −175.92 (16) | C22'—S2'—C19—C20' | 0.00 (9) |
C3—C4—C8—C9 | 129.8 (2) | C22'—S2'—C19—C15 | 179.99 (5) |
C5—C4—C8—C9 | −48.7 (3) | C22'—S2'—C19—S2 | 6.2 (6) |
C3—C4—C8—S1 | −52.1 (2) | C22—S2—C19—C20 | 0.9 (3) |
C5—C4—C8—S1 | 129.31 (16) | C22—S2—C19—C20' | 120 (7) |
C11—S1—C8—C9 | −0.62 (14) | C22—S2—C19—C15 | −175.83 (17) |
C11—S1—C8—C4 | −178.91 (15) | C22—S2—C19—S2' | −1.9 (5) |
C4—C8—C9—C10 | 179.27 (16) | C20'—C19—C20—C21 | −6.0 (10) |
S1—C8—C9—C10 | 1.05 (19) | C15—C19—C20—C21 | 177.0 (2) |
C8—C9—C10—C11 | −1.1 (2) | S2'—C19—C20—C21 | 102 (10) |
C9—C10—C11—S1 | 0.6 (2) | S2—C19—C20—C21 | 0.3 (5) |
C8—S1—C11—C10 | 0.01 (15) | C19—C20—C21—C22 | −1.8 (5) |
C17—N6—C13—O2 | −172.12 (17) | C20—C21—C22—S2 | 2.4 (3) |
N7—N6—C13—O2 | 3.8 (2) | C19—S2—C22—C21 | −1.95 (19) |
C17—N6—C13—C14 | 8.5 (2) | C20—C19—C20'—C21' | 2.8 (8) |
N7—N6—C13—C14 | −175.61 (15) | C15—C19—C20'—C21' | −179.99 (8) |
O2—C13—C14—C15 | 172.61 (18) | S2'—C19—C20'—C21' | 0.01 (13) |
N6—C13—C14—C15 | −8.0 (3) | S2—C19—C20'—C21' | −60 (7) |
O2—C13—C14—C18 | −2.9 (3) | C19—C20'—C21'—C22' | −0.01 (19) |
N6—C13—C14—C18 | 176.52 (15) | C20'—C21'—C22'—S2' | 0.01 (18) |
C18—C14—C15—C16 | 177.10 (17) | C19—S2'—C22'—C21' | −0.01 (11) |
C13—C14—C15—C16 | 2.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O2i | 0.85 (3) | 2.37 (3) | 3.212 (2) | 174 (2) |
N2—H2B···O1ii | 0.93 (2) | 2.16 (3) | 3.086 (2) | 169 (2) |
N5—H5B···N3iii | 0.88 (3) | 2.14 (3) | 2.944 (2) | 151 (2) |
N7—H7A···O2iv | 0.91 (3) | 2.26 (2) | 3.010 (2) | 139 (2) |
N7—H7B···N9v | 0.88 (2) | 2.55 (2) | 3.348 (2) | 152 (2) |
N10—H10A···N3 | 0.85 (2) | 2.62 (2) | 3.196 (2) | 126 (2) |
N10—H10B···O1 | 0.84 (3) | 2.11 (3) | 2.921 (2) | 165 (2) |
N5—H5B···N2 | 0.88 (3) | 2.22 (3) | 2.606 (2) | 106 (2) |
N10—H10A···N7 | 0.85 (3) | 2.23 (3) | 2.626 (3) | 109 (2) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x+1, y, z; (iv) −x, −y, −z+1; (v) x−1, y, z. |
Contact | Percentage contribution for molecule 1 | Percentage contribution for molecule 2 |
N···H/H···N | 27.1 | 24.3 |
H···H | 17.6 | 25.4 |
C···H/H···C | 13.6 | 11.4 |
O···H/H···O | 9.3 | 11.7 |
C···C | 7.3 | 8.5 |
N···C/C···N | 7.0 | 9.0 |
S···C/C···S | 5.4 | 1.3 |
S···H/H···S | 5.1 | 1.8 |
N···N | 2.8 | 2.7 |
S···N/N···S | 2.2 | 1.1 |
O···C/C···O | 1.0 | 1.3 |
S···S | 0.8 | 0.3 |
O···N/N···O | 0.7 | 1.2 |
Acknowledgements
Authors contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK, FNN and IGM; investigation, ANK, MA and FSK; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and FSK; supervision, ANK and MA.
Funding information
This work was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.
References
Al-Said, M. S., Ghorab, M. M., Ghabbour, H. A., Arshad, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1679. CSD CrossRef IUCr Journals Google Scholar
Babaee, S., Zarei, M., Sepehrmansourie, H., Zolfigol, M. A. & Rostamnia, S. (2020). ACS Omega, 5, 6240–6249. CrossRef CAS PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Çelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158. Google Scholar
Chalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255. Web of Science CSD CrossRef Google Scholar
Eyduran, F., Özyürek, C., Dilek, N., Ocak Iskeleli, N. & Şendil, K. (2007). Acta Cryst. E63, o2415–o2417. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jia, R. & Tu, S. J. (2008). Acta Cryst. E64, o1578. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lakhrissi, Y., Rbaa, M., Tuzun, B., Hichar, A., Anouar, H., Ounine, K., Almalki, F., Hadda, T. B., Zarrouk, A. & Lakhrissi, B. (2022). J. Mol. Struct. 1259, 132683. Web of Science CrossRef Google Scholar
Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11. Google Scholar
Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73. Google Scholar
Mamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291–296. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mohamed, S. K., Akkurt, M., Singh, K., Hussein, B. R. M. & Albayati, M. R. (2014). Acta Cryst. E70, o993–o994. CSD CrossRef IUCr Journals Google Scholar
Mohamed, S. K., Soliman, A. M., El Remaily, M. A. A. & Abdel-Ghany, H. (2013). J. Heterocycl. Chem. 50, 1425–1430. CrossRef CAS Google Scholar
Mohana, M., Thomas Muthiah, P. & Butcher, R. J. (2017). Acta Cryst. C73, 536–540. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Pavlova, A. V., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 930–934. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sharma, V. K. & Singh, S. K. (2017). RSC Adv. 7, 2682–2732. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soliman, A. M., Mohamed, S. K., El-Remaily, M. A. A. & Abdel-Ghany, H. (2014). J. Heterocycl. Chem. 51, 1202–1209. CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Suresh, J., Suresh Kumar, R., Perumal, S., Mostad, A. & Natarajan, S. (2007). Acta Cryst. C63, o141–o144. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816. Web of Science CSD CrossRef Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.