research communications
and luminescence spectrum of a one-dimensional nickel(II) coordination polymer incorporating 1,4-bis[(2-methylimidazol-1-yl)methyl]benzene and adamantane-1,3-dicarboxylate co-ligands
aSuzhou Industrial Park Institute of Services Outsourcing, Suzhou 215123, Jiangsu, People's Republic of China, and bCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
*Correspondence e-mail: zhangyong@siso.edu.cn
An NiII coordination polymer, namely, poly[(μ2-adamantane-1,3-dicarboxylato-κ4O1,O1′:O3,O3′)[μ2-1,4-bis(2-methyl-imidazol-1-ylmethyl)benzene-κ2N3:N3′]nickel(II)], [Ni(C12H14O4)(C16H18N4)]n or [Ni(adc)(bmib)]n, (I) [adc = adamantane-1,3-dicarboxylate, C12H14O42– and bmib = 1,4-bis(2-methyl-imidazol-1-ylmethyl)benzene, C16H18N4] was synthesized and characterized. It exhibits a one-dimensional extended structure built up from alternating [Ni2(bmib)2] 26-membered rings and [Ni2(adc)2] 16-membered rings. The nickel atom lies on a crystallographic twofold axis and both ligands are completed by mirror symmetry. The solid-state luminescence spectra of (I) and the bmib ligand show strong emissions at 442 and 410 nm, respectively.
Keywords: crystal structure; nickel; coordination polymer.
CCDC reference: 2280450
1. Chemical context
Coordination polymers have been widely studied because of their diverse and interesting structures (Bao et al., 2019; Zhang & Lin 2014; Wang et al., 2020; Parmar et al., 2021) and potential applications in sorption (Fan et al., 2021), luminescent materials (Zhou et al., 2021), magnetism (Yang et al., 2021a), catalytic splitting of water (Li et al., 2019), catalytic degrading of pollutants (Jiang et al., 2018) and battery materials (Yang et al., 2021b; Bao et al., 2019). In the construction of coordination polymers, N-donor (imidazole or triazole ligands) and O-donor (polycarboxylate ligands) co-ligand systems lead to various interesting networks (Yang et al., 2014; Sun et al., 2013; Zhang et al., 2021a,b). 1,4-Bis(2-methyl-imidazol-1-ylmethyl)benzene (C16H18N4; bmib) is a semi-flexible bidentate N-donor ligand and is widely used in the construction of different coordination polymers (Yang et al., 2014; Sun et al., 2013). Four Ni-bmib coordination polymers are documented: [Ni(bcpb)(bmib)0.5]n (H2bcpb = 3,5-bis(4-carboxyphenyl)pyridine) has a (3,4)-connected three-dimensional amd network, with the point symbol of (62.8)(63.8.102) (Fan et al., 2014a). {[Ni(tptc)0.5(bmib)]·0.25H2O}n (H4tptc = terphenyl-2,5,2′,5′-tetracarboxylic acid) shows a (4,4)-coordinated three-dimensional network with a point symbol of (4.64.82)2(42.84) (Fan et al., 2014b). [Ni(bmib)(bpda)] (H2bpda = biphenyl-3,4′-dicarboxylic acid) exhibits a threefold interpenetrated (65.8) network (Sun et al., 2013). {[Ni2(glu)2(bmib)2(H2O)2]·H2O}n (glu = glutarate) exhibits a 4-connected three-dimensional framework with point symbol 66, but is not a typical dia network (Zhao et al., 2020). The adamantane-1,3-dicarboxylate dianion (C12H14O42–; adc) is a good O-donor bridging ligand for constructing coordination polymers (Zhao et al., 2017). In this work, the title NiII coordination polymer [Ni(adc)(bmib)]n, (I), was synthesized and its was determined.
2. Structural commentary
The structural motif of the title coordination polymer (I) is a one-dimensional chain. The NiII atom in (I) lies on a crystallographic twofold axis and adopts a distorted cis-NiN2O4 octahedral coordination geometry arising from four oxygen atoms from two carboxylate groups in two adc ligands [Ni1—O1 = 2.179 (3) Å; Ni1—O2 = 2.096 (3) Å] and two nitrogen atoms of two bmib ligands [Ni1—N2 = 2.050 (3) Å] (Table 1, Fig. 1). Atoms O1 and O1i lie opposite to each other with the bond angle O1—Ni1—O1i [symmetry code: (i) 1 – x, y, –z] = 142.26 (15)°. These Ni—O and Ni—N bond lengths are typical and show no deviations from those in other distorted octahedral NiII coordination polymers (Fan et al., 2014a,b). The other bond angles are in the range 61.20 (11)–156.75 (13)° (Fan et al., 2014a,b). The dihedral angle between the imidazole and benzene rings of the bmib molecule is 78.8 (2)° and that between the imidazole rings is 67.1 (2)°. The bmib ligand exhibits a gauche conformation and the torsion angle N1—C4—C1—C3 is −117.9 (5)°. In the extended structure, two bmib ligands bridge two NiII atoms and construct a [Ni2(bmib)2] 26-membered ring with an Ni⋯Ni distance of 12.100 (2) Å. Two carboxylate groups of one adc ligand exhibit an O,O-chelating mode such that two adc ligands link two NiII atoms and construct an [Ni2(adc)2] 16-membered ring with Ni⋯Ni = 8.0978 (16) Å. The NiII atoms are alternately connected by the bridging bmib and adc moieties, resulting in a chain containing alternative [Ni2(bmib)2] and [Ni2(adc)2] loops propagating along the b-axis direction (Fig. 2).
3. Supramolecular features
Each [Ni(bmib)(adc)]n chain is surrounded by six further chains (Fig. 3). There are no C—H⋯O hydrogen bond interactions or aromatic π–π stacking interactions between the rings, thus the three-dimensional supramolecular architecture of (I) must therefore be established by van der Waals interactions.
4. Luminescence properties
The solid-state luminescence spectra of (I) and the bmib ligand were measured at room temperature (Fig. 4). Compound (I) and bmib exhibit strong emissions at 442 nm and 410 nm, respectively, upon excitation at 340 nm. The emissions can be attributed to an intraligand charge-transfer transition (Yang et al., 2014).
5. Database survey
The bmib ligand is widely used in coordination chemistry but for Ni–bmib compounds, a search of the Cambridge Structural Database (CSD, version 5.42, update of September 2021; Groom et al., 2016) revealed only the four coordination polymers noted in the Chemical context section.
6. Synthesis and crystallization
A mixture of bmib (0.22 mmol), Ni(NO3)2.6H2O (0.28 mmol), H2adc (0.22 mmol), NaOH (0.38 mmol) and H2O (14.0 ml) was added to a 20.0 ml Teflon-lined stainless steel autoclave, which was then sealed and heated to 393 K for 5 d. Green crystals of (I) were obtained when the mixture was cooled to room temperature.
7. Refinement
Crystal data, data collection and structure . The hydrogen atoms (CH, CH2, CH3 groups) were placed geometrically (C—H = 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) for CH and CH2 or 1.5Ueq(C) for CH3 groups.
details are summarized in Table 2Supporting information
CCDC reference: 2280450
https://doi.org/10.1107/S2056989023006059/hb8041sup1.cif
contains datablock . DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023006059/hb8041Isup3.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).[Ni(C12H14O4)(C16H18N4)] | F(000) = 1152 |
Mr = 547.28 | Dx = 1.457 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
a = 14.489 (3) Å | Cell parameters from 4170 reflections |
b = 20.198 (4) Å | θ = 3.1–25.3° |
c = 10.741 (2) Å | µ = 0.82 mm−1 |
β = 127.46 (3)° | T = 293 K |
V = 2495.2 (12) Å3 | Block, green |
Z = 4 | 0.60 × 0.20 × 0.10 mm |
Rigaku Mercury CCD diffractometer | 2343 independent reflections |
Graphite monochromator | 1975 reflections with I > 2σ(I) |
Detector resolution: 7.31 pixels mm-1 | Rint = 0.060 |
ω scans | θmax = 25.4°, θmin = 3.1° |
Absorption correction: multi-scan (Jacobson, 1998) | h = −17→17 |
Tmin = 0.639, Tmax = 0.922 | k = −20→24 |
12149 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.065 | H-atom parameters constrained |
wR(F2) = 0.148 | w = 1/[σ2(Fo2) + (0.058P)2 + 5.3646P] where P = (Fo2 + 2Fc2)/3 |
S = 1.15 | (Δ/σ)max < 0.001 |
2343 reflections | Δρmax = 0.39 e Å−3 |
174 parameters | Δρmin = −0.42 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.500000 | 0.20046 (3) | 0.000000 | 0.0398 (3) | |
O1 | 0.3442 (2) | 0.16556 (13) | −0.0328 (3) | 0.0482 (7) | |
O2 | 0.5165 (3) | 0.12656 (14) | 0.1494 (4) | 0.0516 (8) | |
N1 | 0.3458 (3) | 0.32448 (17) | −0.3947 (4) | 0.0485 (9) | |
N2 | 0.4156 (3) | 0.26772 (16) | −0.1800 (4) | 0.0443 (8) | |
C1 | 0.3348 (4) | 0.4311 (2) | −0.5188 (5) | 0.0451 (10) | |
C2 | 0.4275 (5) | 0.4655 (3) | −0.4023 (7) | 0.107 (3) | |
H2 | 0.492752 | 0.442846 | −0.320417 | 0.129* | |
C3 | 0.2413 (4) | 0.4653 (2) | −0.6326 (6) | 0.0684 (15) | |
H3 | 0.175274 | 0.442626 | −0.712964 | 0.082* | |
C4 | 0.3337 (5) | 0.3562 (2) | −0.5266 (5) | 0.0570 (12) | |
H4A | 0.261252 | 0.341958 | −0.623726 | 0.068* | |
H4B | 0.396716 | 0.341706 | −0.528253 | 0.068* | |
C5 | 0.4370 (4) | 0.28896 (19) | −0.2772 (5) | 0.0435 (10) | |
C6 | 0.3077 (4) | 0.2912 (2) | −0.2387 (6) | 0.0532 (12) | |
H6 | 0.270297 | 0.284149 | −0.193745 | 0.064* | |
C7 | 0.2632 (4) | 0.3262 (2) | −0.3714 (6) | 0.0593 (13) | |
H7 | 0.191169 | 0.347080 | −0.433802 | 0.071* | |
C8 | 0.5450 (4) | 0.2746 (3) | −0.2605 (6) | 0.0625 (13) | |
H8A | 0.540177 | 0.295302 | −0.344794 | 0.094* | |
H8B | 0.611035 | 0.291763 | −0.162159 | 0.094* | |
H8C | 0.553297 | 0.227662 | −0.263841 | 0.094* | |
C9 | 0.3562 (3) | 0.06300 (18) | 0.0957 (4) | 0.0350 (9) | |
C10 | 0.2234 (3) | 0.06224 (19) | −0.0132 (5) | 0.0437 (10) | |
H10A | 0.194962 | 0.063122 | −0.121488 | 0.052* | |
H10B | 0.194416 | 0.101283 | 0.005507 | 0.052* | |
C11 | 0.4003 (4) | 0.06176 (19) | 0.2666 (5) | 0.0449 (10) | |
H11A | 0.374414 | 0.101241 | 0.288638 | 0.054* | |
H11B | 0.484678 | 0.061300 | 0.336412 | 0.054* | |
C12 | 0.4004 (5) | 0.000000 | 0.0664 (6) | 0.0355 (12) | |
H12A | 0.484704 | 0.000000 | 0.135236 | 0.043* | |
H12B | 0.374053 | 0.000001 | −0.041030 | 0.043* | |
C13 | 0.1788 (5) | 0.000000 | 0.0159 (7) | 0.0460 (15) | |
H13 | 0.093556 | −0.000001 | −0.054721 | 0.055* | |
C14 | 0.2219 (6) | 0.000000 | 0.1860 (8) | 0.0551 (17) | |
H14A | 0.193036 | 0.038915 | 0.205261 | 0.066* | 0.5 |
H14B | 0.193036 | −0.038915 | 0.205261 | 0.066* | 0.5 |
C15 | 0.3539 (6) | 0.000000 | 0.2952 (7) | 0.0476 (15) | |
H15 | 0.381400 | 0.000000 | 0.404170 | 0.057* | |
C16 | 0.4075 (4) | 0.12241 (18) | 0.0692 (5) | 0.0409 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0486 (5) | 0.0269 (4) | 0.0458 (5) | 0.000 | 0.0297 (4) | 0.000 |
O1 | 0.0517 (17) | 0.0344 (15) | 0.0601 (19) | 0.0081 (13) | 0.0348 (16) | 0.0121 (14) |
O2 | 0.0451 (18) | 0.0369 (16) | 0.0623 (19) | −0.0034 (13) | 0.0273 (15) | 0.0097 (14) |
N1 | 0.067 (2) | 0.0355 (19) | 0.044 (2) | 0.0131 (17) | 0.035 (2) | 0.0066 (16) |
N2 | 0.056 (2) | 0.0316 (18) | 0.052 (2) | 0.0027 (16) | 0.0361 (19) | 0.0022 (16) |
C1 | 0.057 (3) | 0.037 (2) | 0.037 (2) | 0.0043 (19) | 0.026 (2) | 0.0010 (18) |
C2 | 0.075 (4) | 0.056 (3) | 0.075 (4) | 0.015 (3) | −0.014 (3) | 0.006 (3) |
C3 | 0.051 (3) | 0.039 (2) | 0.063 (3) | −0.004 (2) | 0.008 (2) | −0.004 (2) |
C4 | 0.089 (4) | 0.039 (2) | 0.044 (3) | 0.008 (2) | 0.040 (3) | 0.003 (2) |
C5 | 0.059 (3) | 0.030 (2) | 0.048 (2) | 0.0016 (19) | 0.036 (2) | 0.0002 (18) |
C6 | 0.064 (3) | 0.045 (3) | 0.067 (3) | 0.013 (2) | 0.049 (3) | 0.008 (2) |
C7 | 0.062 (3) | 0.050 (3) | 0.069 (3) | 0.020 (2) | 0.041 (3) | 0.011 (2) |
C8 | 0.066 (3) | 0.061 (3) | 0.073 (3) | 0.010 (2) | 0.049 (3) | 0.018 (3) |
C9 | 0.040 (2) | 0.0280 (19) | 0.038 (2) | 0.0037 (16) | 0.0242 (18) | 0.0045 (16) |
C10 | 0.044 (2) | 0.035 (2) | 0.047 (2) | 0.0057 (18) | 0.026 (2) | 0.0032 (18) |
C11 | 0.057 (3) | 0.034 (2) | 0.046 (2) | 0.0007 (19) | 0.033 (2) | −0.0039 (18) |
C12 | 0.043 (3) | 0.027 (3) | 0.037 (3) | 0.000 | 0.025 (3) | 0.000 |
C13 | 0.032 (3) | 0.046 (3) | 0.056 (4) | 0.000 | 0.024 (3) | 0.000 |
C14 | 0.073 (5) | 0.044 (3) | 0.078 (5) | 0.000 | 0.061 (4) | 0.000 |
C15 | 0.063 (4) | 0.048 (3) | 0.040 (3) | 0.000 | 0.036 (3) | 0.000 |
C16 | 0.050 (3) | 0.028 (2) | 0.050 (2) | 0.0044 (18) | 0.033 (2) | 0.0029 (19) |
Ni1—O1 | 2.179 (3) | C6—C7 | 1.352 (6) |
Ni1—O1i | 2.179 (3) | C7—H7 | 0.9300 |
Ni1—O2i | 2.096 (3) | C8—H8A | 0.9600 |
Ni1—O2 | 2.096 (3) | C8—H8B | 0.9600 |
Ni1—N2i | 2.050 (3) | C8—H8C | 0.9600 |
Ni1—N2 | 2.050 (3) | C9—C10 | 1.528 (5) |
O1—C16 | 1.257 (5) | C9—C11 | 1.534 (5) |
O2—C16 | 1.260 (5) | C9—C12 | 1.540 (5) |
N1—C4 | 1.465 (5) | C9—C16 | 1.526 (5) |
N1—C5 | 1.351 (5) | C10—H10A | 0.9700 |
N1—C7 | 1.364 (6) | C10—H10B | 0.9700 |
N2—C5 | 1.328 (5) | C10—C13 | 1.530 (5) |
N2—C6 | 1.367 (5) | C11—H11A | 0.9700 |
C1—C2 | 1.345 (7) | C11—H11B | 0.9700 |
C1—C3 | 1.339 (6) | C11—C15 | 1.535 (5) |
C1—C4 | 1.513 (6) | C12—H12A | 0.9700 |
C2—C2ii | 1.395 (11) | C12—H12B | 0.9700 |
C2—H2 | 0.9300 | C13—H13 | 0.9800 |
C3—C3ii | 1.403 (9) | C13—C14 | 1.529 (9) |
C3—H3 | 0.9300 | C14—H14A | 0.9700 |
C4—H4A | 0.9700 | C14—H14B | 0.9700 |
C4—H4B | 0.9700 | C14—C15 | 1.518 (9) |
C5—C8 | 1.491 (6) | C15—H15 | 0.9800 |
C6—H6 | 0.9300 | ||
O1—Ni1—O1i | 142.26 (15) | H8B—C8—H8C | 109.5 |
O2—Ni1—O1 | 61.20 (11) | C10—C9—C11 | 109.2 (3) |
O2—Ni1—O1i | 91.22 (12) | C10—C9—C12 | 108.8 (3) |
O2i—Ni1—O1 | 91.22 (12) | C11—C9—C12 | 108.0 (3) |
O2i—Ni1—O1i | 61.20 (11) | C16—C9—C10 | 113.3 (3) |
O2—Ni1—O2i | 89.19 (18) | C16—C9—C11 | 109.9 (3) |
N2—Ni1—O1i | 109.38 (12) | C16—C9—C12 | 107.6 (3) |
N2—Ni1—O1 | 95.55 (12) | C9—C10—H10A | 109.6 |
N2i—Ni1—O1 | 109.38 (12) | C9—C10—H10B | 109.6 |
N2i—Ni1—O1i | 95.55 (12) | C9—C10—C13 | 110.1 (4) |
N2—Ni1—O2i | 91.42 (13) | H10A—C10—H10B | 108.1 |
N2—Ni1—O2 | 156.75 (13) | C13—C10—H10A | 109.6 |
N2i—Ni1—O2i | 156.75 (13) | C13—C10—H10B | 109.6 |
N2i—Ni1—O2 | 91.42 (13) | C9—C11—H11A | 109.7 |
N2—Ni1—N2i | 97.01 (19) | C9—C11—H11B | 109.7 |
C5—N1—C4 | 127.6 (4) | C9—C11—C15 | 109.8 (4) |
C5—N1—C7 | 108.1 (4) | H11A—C11—H11B | 108.2 |
C7—N1—C4 | 124.3 (4) | C15—C11—H11A | 109.7 |
C5—N2—Ni1 | 131.7 (3) | C15—C11—H11B | 109.7 |
C5—N2—C6 | 105.9 (4) | C9—C12—C9iii | 111.4 (4) |
C6—N2—Ni1 | 121.6 (3) | C9iii—C12—H12A | 109.3 |
C2—C1—C4 | 122.6 (4) | C9—C12—H12A | 109.3 |
C3—C1—C2 | 117.8 (4) | C9iii—C12—H12B | 109.3 |
C3—C1—C4 | 119.6 (4) | C9—C12—H12B | 109.3 |
C1—C2—C2ii | 121.1 (3) | H12A—C12—H12B | 108.0 |
C1—C2—H2 | 119.4 | C10—C13—C10iii | 110.5 (5) |
C2ii—C2—H2 | 119.4 | C10—C13—H13 | 109.4 |
C1—C3—C3ii | 121.1 (3) | C10iii—C13—H13 | 109.4 |
C1—C3—H3 | 119.5 | C14—C13—C10 | 109.1 (3) |
C3ii—C3—H3 | 119.5 | C14—C13—C10iii | 109.1 (3) |
N1—C4—C1 | 113.1 (4) | C14—C13—H13 | 109.4 |
N1—C4—H4A | 109.0 | C13—C14—H14A | 109.8 |
N1—C4—H4B | 109.0 | C13—C14—H14B | 109.8 |
C1—C4—H4A | 109.0 | H14A—C14—H14B | 108.3 |
C1—C4—H4B | 109.0 | C15—C14—C13 | 109.3 (5) |
H4A—C4—H4B | 107.8 | C15—C14—H14A | 109.8 |
N1—C5—C8 | 125.0 (4) | C15—C14—H14B | 109.8 |
N2—C5—N1 | 110.1 (4) | C11—C15—C11iii | 108.7 (5) |
N2—C5—C8 | 124.9 (4) | C11iii—C15—H15 | 109.2 |
N2—C6—H6 | 124.9 | C11—C15—H15 | 109.2 |
C7—C6—N2 | 110.2 (4) | C14—C15—C11 | 110.2 (3) |
C7—C6—H6 | 124.9 | C14—C15—C11iii | 110.2 (3) |
N1—C7—H7 | 127.1 | C14—C15—H15 | 109.2 |
C6—C7—N1 | 105.7 (4) | O1—C16—Ni1 | 62.3 (2) |
C6—C7—H7 | 127.1 | O1—C16—O2 | 119.8 (4) |
C5—C8—H8A | 109.5 | O1—C16—C9 | 121.8 (4) |
C5—C8—H8B | 109.5 | O2—C16—Ni1 | 58.5 (2) |
C5—C8—H8C | 109.5 | O2—C16—C9 | 118.4 (3) |
H8A—C8—H8B | 109.5 | C9—C16—Ni1 | 167.7 (3) |
H8A—C8—H8C | 109.5 | ||
Ni1—O1—C16—O2 | 11.1 (4) | C9—C10—C13—C14 | 60.6 (5) |
Ni1—O1—C16—C9 | −166.6 (3) | C9—C11—C15—C11iii | 61.8 (6) |
Ni1—O2—C16—O1 | −11.6 (4) | C9—C11—C15—C14 | −59.1 (5) |
Ni1—O2—C16—C9 | 166.2 (3) | C10—C9—C11—C15 | 58.2 (4) |
Ni1—N2—C5—N1 | 168.9 (3) | C10—C9—C12—C9iii | −58.9 (5) |
Ni1—N2—C5—C8 | −10.1 (6) | C10—C9—C16—Ni1 | −105.9 (14) |
Ni1—N2—C6—C7 | −170.2 (3) | C10—C9—C16—O1 | 0.1 (5) |
N2—C6—C7—N1 | −0.3 (5) | C10—C9—C16—O2 | −177.6 (4) |
C2—C1—C3—C3ii | 1.7 (7) | C10—C13—C14—C15 | −60.4 (3) |
C2—C1—C4—N1 | 63.2 (7) | C10iii—C13—C14—C15 | 60.4 (3) |
C3—C1—C2—C2ii | −1.8 (7) | C11—C9—C10—C13 | −59.4 (4) |
C3—C1—C4—N1 | −117.9 (5) | C11—C9—C12—C9iii | 59.6 (5) |
C4—N1—C5—N2 | −179.6 (4) | C11—C9—C16—Ni1 | 131.7 (13) |
C4—N1—C5—C8 | −0.6 (7) | C11—C9—C16—O1 | −122.4 (4) |
C4—N1—C7—C6 | 179.8 (4) | C11—C9—C16—O2 | 59.9 (5) |
C4—C1—C2—C2ii | 177.1 (3) | C12—C9—C10—C13 | 58.2 (5) |
C4—C1—C3—C3ii | −177.2 (3) | C12—C9—C11—C15 | −60.0 (5) |
C5—N1—C4—C1 | −111.5 (5) | C12—C9—C16—Ni1 | 14.4 (15) |
C5—N1—C7—C6 | 0.0 (5) | C12—C9—C16—O1 | 120.3 (4) |
C5—N2—C6—C7 | 0.4 (5) | C12—C9—C16—O2 | −57.4 (5) |
C6—N2—C5—N1 | −0.4 (5) | C13—C14—C15—C11 | 60.0 (3) |
C6—N2—C5—C8 | −179.4 (4) | C13—C14—C15—C11iii | −60.0 (3) |
C7—N1—C4—C1 | 68.7 (6) | C16—C9—C10—C13 | 177.8 (4) |
C7—N1—C5—N2 | 0.2 (5) | C16—C9—C11—C15 | −177.0 (4) |
C7—N1—C5—C8 | 179.2 (4) | C16—C9—C12—C9iii | 178.1 (3) |
C9—C10—C13—C10iii | −59.4 (6) |
Symmetry codes: (i) −x+1, y, −z; (ii) x, −y+1, z; (iii) x, −y, z. |
Funding information
The authors thank Suzhou Industrial Park Institute of Services Outsourcing for financial support.
References
Bao, S. S., Shimizu, G. K. H. & Zheng, L. M. (2019). Coord. Chem. Rev. 378, 577–594. Web of Science CrossRef CAS Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fan, L. M., Zhang, X. T., Zhang, W., Ding, Y. H., Fan, W. L., Sun, L. M., Pang, Y. & Zhao, X. (2014b). Dalton Trans. 43, 6701–6710. Web of Science CSD CrossRef CAS PubMed Google Scholar
Fan, L. M., Zhang, X. T., Zhang, W., Ding, Y. S., Fan, W. L., Sun, L. M. & Zhao, X. (2014a). CrystEngComm, 16, 2144–2157. Web of Science CSD CrossRef CAS Google Scholar
Fan, L. M., Zhao, D. S., Zhang, H. H., Wang, F., Li, B., Yang, L. L., Deng, Y. X. & Zhang, X. T. (2021). Microporous Mesoporous Mater. 326, 111396. Web of Science CSD CrossRef Google Scholar
Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan. Google Scholar
Jiang, D., Xu, P., Wang, H., Zeng, G., Huang, D., Chen, M., Lai, C., Zhang, C., Wan, J. & Xue, W. (2018). Coord. Chem. Rev. 376, 449–466. Web of Science CrossRef CAS Google Scholar
Li, G., Huang, J., Xue, C., Chen, J., Deng, Z., Huang, Q., Liu, Z., Gong, C., Guo, W. & Cao, R. (2019). Cryst. Growth Des. 19, 3584–3591. Web of Science CrossRef CAS Google Scholar
Parmar, B., Bisht, K. K., Rajput, G. & Suresh, E. (2021). Dalton Trans. 50, 3083–3108. Web of Science CrossRef CAS PubMed Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, Z., Ding, Y. S., Tian, L. J. & Zhang, X. T. (2013). J. Coord. Chem. 66, 763–771. Web of Science CSD CrossRef CAS Google Scholar
Wang, H. P., Wang, H. L. & Li, B. L. (2020). Chin. J. Struct. Chem. 39, 1835–1840. Google Scholar
Yang, G. P., Luo, X. X., Liu, Y. F., Li, K. & Wu, X. L. (2021b). Appl. Mater. Interfaces, 13, 46902–46908. Web of Science CSD CrossRef CAS Google Scholar
Yang, T. H., Wang, S. F., Lin, C. L., Wang, X., Zhu, B. & Wu, D. (2021a). Dalton Trans. 50, 1293–1299. Web of Science CSD CrossRef CAS PubMed Google Scholar
Yang, Z., Zhao, S., Han, S. S., Zheng, L. Y., Li, B. L. & Wu, B. (2014). Inorg. Chem. Commun. 46, 24–28. Web of Science CSD CrossRef CAS Google Scholar
Zhang, T. & Lin, W. (2014). Chem. Soc. Rev. 43, 5982–5993. Web of Science CrossRef CAS PubMed Google Scholar
Zhang, Y., Qian, H. N., Li, B. L. & Wu, B. (2021a). Chin. J. Struct. Chem. 40, 595–602. CAS Google Scholar
Zhang, Y., Wang, Z. X., Qin, H. N., Zha, M., Li, B. L. & Li, H. Y. (2021b). J. Coord. Chem. 74, 2617–2630. Web of Science CSD CrossRef CAS Google Scholar
Zhao, F.-H., Li, Z.-L., Zhang, S.-F., Han, J.-H., Zhang, M., Han, J., Lin, Y.-W. & You, J.-M. (2020). Acta Cryst. C76, 148–158. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhao, S., Zheng, T. R., Zhang, Y. Q., Lv, X. X., Li, B. L. & Zhang, Y. (2017). Polyhedron, 121, 148–158. Web of Science CSD CrossRef Google Scholar
Zhou, T., Liu, S., Guo, X., Wang, Q., Fu, L., Mi, S., Gao, P., Su, Q. & Guo, H. (2021). Cryst. Growth Des. 21, 5108–5115. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.