research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and luminescence spectrum of a one-dimensional nickel(II) coordination polymer incorporating 1,4-bis­­[(2-methyl­imidazol-1-yl)meth­yl]benzene and adamantane-1,3-di­carboxyl­ate co-ligands

crossmark logo

aSuzhou Industrial Park Institute of Services Outsourcing, Suzhou 215123, Jiangsu, People's Republic of China, and bCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
*Correspondence e-mail: zhangyong@siso.edu.cn

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 17 October 2022; accepted 10 July 2023; online 14 July 2023)

An NiII coordination polymer, namely, poly[(μ2-adamantane-1,3-di­carboxyl­ato-κ4O1,O1′:O3,O3′)[μ2-1,4-bis­(2-methyl-imidazol-1-ylmeth­yl)benzene-κ2N3:N3′]nickel(II)], [Ni(C12H14O4)(C16H18N4)]n or [Ni(adc)(bmib)]n, (I) [adc = adamantane-1,3-di­carboxyl­ate, C12H14O42– and bmib = 1,4-bis­(2-methyl-imidazol-1-ylmeth­yl)benzene, C16H18N4] was synthesized and characterized. It exhibits a one-dimensional extended structure built up from alternating [Ni2(bmib)2] 26-membered rings and [Ni2(adc)2] 16-membered rings. The nickel atom lies on a crystallographic twofold axis and both ligands are completed by mirror symmetry. The solid-state luminescence spectra of (I) and the bmib ligand show strong emissions at 442 and 410 nm, respectively.

1. Chemical context

Coordination polymers have been widely studied because of their diverse and inter­esting structures (Bao et al., 2019[Bao, S. S., Shimizu, G. K. H. & Zheng, L. M. (2019). Coord. Chem. Rev. 378, 577-594.]; Zhang & Lin 2014[Zhang, T. & Lin, W. (2014). Chem. Soc. Rev. 43, 5982-5993.]; Wang et al., 2020[Wang, H. P., Wang, H. L. & Li, B. L. (2020). Chin. J. Struct. Chem. 39, 1835-1840.]; Parmar et al., 2021[Parmar, B., Bisht, K. K., Rajput, G. & Suresh, E. (2021). Dalton Trans. 50, 3083-3108.]) and potential applications in sorption (Fan et al., 2021[Fan, L. M., Zhao, D. S., Zhang, H. H., Wang, F., Li, B., Yang, L. L., Deng, Y. X. & Zhang, X. T. (2021). Microporous Mesoporous Mater. 326, 111396.]), luminescent materials (Zhou et al., 2021[Zhou, T., Liu, S., Guo, X., Wang, Q., Fu, L., Mi, S., Gao, P., Su, Q. & Guo, H. (2021). Cryst. Growth Des. 21, 5108-5115.]), magnetism (Yang et al., 2021a[Yang, T. H., Wang, S. F., Lin, C. L., Wang, X., Zhu, B. & Wu, D. (2021a). Dalton Trans. 50, 1293-1299.]), catalytic splitting of water (Li et al., 2019[Li, G., Huang, J., Xue, C., Chen, J., Deng, Z., Huang, Q., Liu, Z., Gong, C., Guo, W. & Cao, R. (2019). Cryst. Growth Des. 19, 3584-3591.]), catalytic degrading of pollutants (Jiang et al., 2018[Jiang, D., Xu, P., Wang, H., Zeng, G., Huang, D., Chen, M., Lai, C., Zhang, C., Wan, J. & Xue, W. (2018). Coord. Chem. Rev. 376, 449-466.]) and battery mat­erials (Yang et al., 2021b[Yang, G. P., Luo, X. X., Liu, Y. F., Li, K. & Wu, X. L. (2021b). Appl. Mater. Interfaces, 13, 46902-46908.]; Bao et al., 2019[Bao, S. S., Shimizu, G. K. H. & Zheng, L. M. (2019). Coord. Chem. Rev. 378, 577-594.]). In the construction of coordination polymers, N-donor (imidazole or triazole ligands) and O-donor (polycarboxyl­ate ligands) co-ligand systems lead to various inter­esting networks (Yang et al., 2014[Yang, Z., Zhao, S., Han, S. S., Zheng, L. Y., Li, B. L. & Wu, B. (2014). Inorg. Chem. Commun. 46, 24-28.]; Sun et al., 2013[Sun, Z., Ding, Y. S., Tian, L. J. & Zhang, X. T. (2013). J. Coord. Chem. 66, 763-771.]; Zhang et al., 2021a[Zhang, Y., Qian, H. N., Li, B. L. & Wu, B. (2021a). Chin. J. Struct. Chem. 40, 595-602.],b[Zhang, Y., Wang, Z. X., Qin, H. N., Zha, M., Li, B. L. & Li, H. Y. (2021b). J. Coord. Chem. 74, 2617-2630.]). 1,4-Bis(2-methyl-imidazol-1-ylmeth­yl)benzene (C16H18N4; bmib) is a semi-flexible bidentate N-donor ligand and is widely used in the construction of different coordination polymers (Yang et al., 2014[Yang, Z., Zhao, S., Han, S. S., Zheng, L. Y., Li, B. L. & Wu, B. (2014). Inorg. Chem. Commun. 46, 24-28.]; Sun et al., 2013[Sun, Z., Ding, Y. S., Tian, L. J. & Zhang, X. T. (2013). J. Coord. Chem. 66, 763-771.]). Four Ni-bmib coordination polymers are documented: [Ni(bcpb)(bmib)0.5]n (H2bcpb = 3,5-bis­(4-carb­oxy­phen­yl)pyridine) has a (3,4)-connected three-dimensional amd network, with the point symbol of (62.8)(63.8.102) (Fan et al., 2014a[Fan, L. M., Zhang, X. T., Zhang, W., Ding, Y. S., Fan, W. L., Sun, L. M. & Zhao, X. (2014a). CrystEngComm, 16, 2144-2157.]). {[Ni(tptc)0.5(bmib)]·0.25H2O}n (H4tptc = terphenyl-2,5,2′,5′-tetra­carb­oxy­lic acid) shows a (4,4)-coord­inated three-dimensional network with a point symbol of (4.64.82)2(42.84) (Fan et al., 2014b[Fan, L. M., Zhang, X. T., Zhang, W., Ding, Y. H., Fan, W. L., Sun, L. M., Pang, Y. & Zhao, X. (2014b). Dalton Trans. 43, 6701-6710.]). [Ni(bmib)(bpda)] (H2bpda = biphenyl-3,4′-di­carb­oxy­lic acid) exhibits a threefold inter­penetrated (65.8) network (Sun et al., 2013[Sun, Z., Ding, Y. S., Tian, L. J. & Zhang, X. T. (2013). J. Coord. Chem. 66, 763-771.]). {[Ni2(glu)2(bmib)2(H2O)2]·H2O}n (glu = glutarate) exhibits a 4-connected three-dimensional framework with point symbol 66, but is not a typical dia network (Zhao et al., 2020[Zhao, F.-H., Li, Z.-L., Zhang, S.-F., Han, J.-H., Zhang, M., Han, J., Lin, Y.-W. & You, J.-M. (2020). Acta Cryst. C76, 148-158.]). The adamantane-1,3-di­carboxyl­ate dianion (C12H14O42–; adc) is a good O-donor bridging ligand for constructing coordination polymers (Zhao et al., 2017[Zhao, S., Zheng, T. R., Zhang, Y. Q., Lv, X. X., Li, B. L. & Zhang, Y. (2017). Polyhedron, 121, 148-158.]). In this work, the title NiII coordination polymer [Ni(adc)(bmib)]n, (I)[link], was synthesized and its crystal structure was determined.

[Scheme 1]

2. Structural commentary

The structural motif of the title coordination polymer (I)[link] is a one-dimensional chain. The NiII atom in (I)[link] lies on a crystallographic twofold axis and adopts a distorted cis-NiN2O4 octa­hedral coordination geometry arising from four oxygen atoms from two carboxyl­ate groups in two adc ligands [Ni1—O1 = 2.179 (3) Å; Ni1—O2 = 2.096 (3) Å] and two nitro­gen atoms of two bmib ligands [Ni1—N2 = 2.050 (3) Å] (Table 1[link], Fig. 1[link]). Atoms O1 and O1i lie opposite to each other with the bond angle O1—Ni1—O1i [symmetry code: (i) 1 – x, y, –z] = 142.26 (15)°. These Ni—O and Ni—N bond lengths are typical and show no deviations from those in other distorted octa­hedral NiII coordination polymers (Fan et al., 2014a[Fan, L. M., Zhang, X. T., Zhang, W., Ding, Y. S., Fan, W. L., Sun, L. M. & Zhao, X. (2014a). CrystEngComm, 16, 2144-2157.],b[Fan, L. M., Zhang, X. T., Zhang, W., Ding, Y. H., Fan, W. L., Sun, L. M., Pang, Y. & Zhao, X. (2014b). Dalton Trans. 43, 6701-6710.]). The other bond angles are in the range 61.20 (11)–156.75 (13)° (Fan et al., 2014a[Fan, L. M., Zhang, X. T., Zhang, W., Ding, Y. S., Fan, W. L., Sun, L. M. & Zhao, X. (2014a). CrystEngComm, 16, 2144-2157.],b[Fan, L. M., Zhang, X. T., Zhang, W., Ding, Y. H., Fan, W. L., Sun, L. M., Pang, Y. & Zhao, X. (2014b). Dalton Trans. 43, 6701-6710.]). The dihedral angle between the imidazole and benzene rings of the bmib mol­ecule is 78.8 (2)° and that between the imidazole rings is 67.1 (2)°. The bmib ligand exhibits a gauche conformation and the torsion angle N1—C4—C1—C3 is −117.9 (5)°. In the extended structure, two bmib ligands bridge two NiII atoms and construct a [Ni2(bmib)2] 26-membered ring with an Ni⋯Ni distance of 12.100 (2) Å. Two carboxyl­ate groups of one adc ligand exhibit an O,O-chelating mode such that two adc ligands link two NiII atoms and construct an [Ni2(adc)2] 16-membered ring with Ni⋯Ni = 8.0978 (16) Å. The NiII atoms are alternately connected by the bridging bmib and adc moieties, resulting in a chain containing alternative [Ni2(bmib)2] and [Ni2(adc)2] loops propagating along the b-axis direction (Fig. 2[link]).

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 2.179 (3) Ni1—N2 2.050 (3)
Ni1—O2 2.096 (3)    
       
O1—Ni1—O1i 142.26 (15) N2—Ni1—O1 95.55 (12)
O2—Ni1—O1 61.20 (11) N2—Ni1—O2i 91.42 (13)
O2—Ni1—O1i 91.22 (12) N2—Ni1—O2 156.75 (13)
O2—Ni1—O2i 89.19 (18) N2—Ni1—N2i 97.01 (19)
N2—Ni1—O1i 109.38 (12)    
Symmetry code: (i) [-x+1, y, -z].
[Figure 1]
Figure 1
A view of the title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) −x + 1, y, −z; (ii) x, −y + 1, z; (iii) x, −y, z.
[Figure 2]
Figure 2
The one-dimensional supra­molecular structure of (I)[link].

3. Supra­molecular features

Each [Ni(bmib)(adc)]n chain is surrounded by six further chains (Fig. 3[link]). There are no C—H⋯O hydrogen bond inter­actions or aromatic ππ stacking inter­actions between the rings, thus the three-dimensional supra­molecular architecture of (I)[link] must therefore be established by van der Waals inter­actions.

[Figure 3]
Figure 3
The stacking of [010] chains in the crystal structure of (I)[link]. The bonds of one chain are shown in blue and the bonds of six adjacent chains are shown in purple.

4. Luminescence properties

The solid-state luminescence spectra of (I)[link] and the bmib ligand were measured at room temperature (Fig. 4[link]). Compound (I)[link] and bmib exhibit strong emissions at 442 nm and 410 nm, respectively, upon excitation at 340 nm. The emissions can be attributed to an intra­ligand charge-transfer transition (Yang et al., 2014[Yang, Z., Zhao, S., Han, S. S., Zheng, L. Y., Li, B. L. & Wu, B. (2014). Inorg. Chem. Commun. 46, 24-28.]).

[Figure 4]
Figure 4
Solid-state luminescence spectra of (I)[link] and the bmib ligand at room temperature.

5. Database survey

The bmib ligand is widely used in coordination chemistry but for Ni–bmib compounds, a search of the Cambridge Structural Database (CSD, version 5.42, update of September 2021; Groom et al., 2016) revealed only the four coordination polymers noted in the Chemical context section.

6. Synthesis and crystallization

A mixture of bmib (0.22 mmol), Ni(NO3)2.6H2O (0.28 mmol), H2adc (0.22 mmol), NaOH (0.38 mmol) and H2O (14.0 ml) was added to a 20.0 ml Teflon-lined stainless steel autoclave, which was then sealed and heated to 393 K for 5 d. Green crystals of (I)[link] were obtained when the mixture was cooled to room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms (CH, CH2, CH3 groups) were placed geometrically (C—H = 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) for CH and CH2 or 1.5Ueq(C) for CH3 groups.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C12H14O4)(C16H18N4)]
Mr 547.28
Crystal system, space group Monoclinic, C2/m
Temperature (K) 293
a, b, c (Å) 14.489 (3), 20.198 (4), 10.741 (2)
β (°) 127.46 (3)
V3) 2495.2 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.82
Crystal size (mm) 0.60 × 0.20 × 0.10
 
Data collection
Diffractometer Rigaku Mercury CCD
Absorption correction Multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.639, 0.922
No. of measured, independent and observed [I > 2σ(I)] reflections 12149, 2343, 1975
Rint 0.060
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.148, 1.15
No. of reflections 2343
No. of parameters 174
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.42
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Poly[(µ2-adamantane-1,3-dicarboxylato-κ4O1,O1':O3,O3')[µ2-1,4-bis(2-methyl-imidazol-1-ylmethyl)benzene-κ2N3:N3']nickel(II)] top
Crystal data top
[Ni(C12H14O4)(C16H18N4)]F(000) = 1152
Mr = 547.28Dx = 1.457 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 14.489 (3) ÅCell parameters from 4170 reflections
b = 20.198 (4) Åθ = 3.1–25.3°
c = 10.741 (2) ŵ = 0.82 mm1
β = 127.46 (3)°T = 293 K
V = 2495.2 (12) Å3Block, green
Z = 40.60 × 0.20 × 0.10 mm
Data collection top
Rigaku Mercury CCD
diffractometer
2343 independent reflections
Graphite monochromator1975 reflections with I > 2σ(I)
Detector resolution: 7.31 pixels mm-1Rint = 0.060
ω scansθmax = 25.4°, θmin = 3.1°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 1717
Tmin = 0.639, Tmax = 0.922k = 2024
12149 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.058P)2 + 5.3646P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2343 reflectionsΔρmax = 0.39 e Å3
174 parametersΔρmin = 0.42 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.5000000.20046 (3)0.0000000.0398 (3)
O10.3442 (2)0.16556 (13)0.0328 (3)0.0482 (7)
O20.5165 (3)0.12656 (14)0.1494 (4)0.0516 (8)
N10.3458 (3)0.32448 (17)0.3947 (4)0.0485 (9)
N20.4156 (3)0.26772 (16)0.1800 (4)0.0443 (8)
C10.3348 (4)0.4311 (2)0.5188 (5)0.0451 (10)
C20.4275 (5)0.4655 (3)0.4023 (7)0.107 (3)
H20.4927520.4428460.3204170.129*
C30.2413 (4)0.4653 (2)0.6326 (6)0.0684 (15)
H30.1752740.4426260.7129640.082*
C40.3337 (5)0.3562 (2)0.5266 (5)0.0570 (12)
H4A0.2612520.3419580.6237260.068*
H4B0.3967160.3417060.5282530.068*
C50.4370 (4)0.28896 (19)0.2772 (5)0.0435 (10)
C60.3077 (4)0.2912 (2)0.2387 (6)0.0532 (12)
H60.2702970.2841490.1937450.064*
C70.2632 (4)0.3262 (2)0.3714 (6)0.0593 (13)
H70.1911690.3470800.4338020.071*
C80.5450 (4)0.2746 (3)0.2605 (6)0.0625 (13)
H8A0.5401770.2953020.3447940.094*
H8B0.6110350.2917630.1621590.094*
H8C0.5532970.2276620.2638410.094*
C90.3562 (3)0.06300 (18)0.0957 (4)0.0350 (9)
C100.2234 (3)0.06224 (19)0.0132 (5)0.0437 (10)
H10A0.1949620.0631220.1214880.052*
H10B0.1944160.1012830.0055070.052*
C110.4003 (4)0.06176 (19)0.2666 (5)0.0449 (10)
H11A0.3744140.1012410.2886380.054*
H11B0.4846780.0613000.3364120.054*
C120.4004 (5)0.0000000.0664 (6)0.0355 (12)
H12A0.4847040.0000000.1352360.043*
H12B0.3740530.0000010.0410300.043*
C130.1788 (5)0.0000000.0159 (7)0.0460 (15)
H130.0935560.0000010.0547210.055*
C140.2219 (6)0.0000000.1860 (8)0.0551 (17)
H14A0.1930360.0389150.2052610.066*0.5
H14B0.1930360.0389150.2052610.066*0.5
C150.3539 (6)0.0000000.2952 (7)0.0476 (15)
H150.3814000.0000000.4041700.057*
C160.4075 (4)0.12241 (18)0.0692 (5)0.0409 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0486 (5)0.0269 (4)0.0458 (5)0.0000.0297 (4)0.000
O10.0517 (17)0.0344 (15)0.0601 (19)0.0081 (13)0.0348 (16)0.0121 (14)
O20.0451 (18)0.0369 (16)0.0623 (19)0.0034 (13)0.0273 (15)0.0097 (14)
N10.067 (2)0.0355 (19)0.044 (2)0.0131 (17)0.035 (2)0.0066 (16)
N20.056 (2)0.0316 (18)0.052 (2)0.0027 (16)0.0361 (19)0.0022 (16)
C10.057 (3)0.037 (2)0.037 (2)0.0043 (19)0.026 (2)0.0010 (18)
C20.075 (4)0.056 (3)0.075 (4)0.015 (3)0.014 (3)0.006 (3)
C30.051 (3)0.039 (2)0.063 (3)0.004 (2)0.008 (2)0.004 (2)
C40.089 (4)0.039 (2)0.044 (3)0.008 (2)0.040 (3)0.003 (2)
C50.059 (3)0.030 (2)0.048 (2)0.0016 (19)0.036 (2)0.0002 (18)
C60.064 (3)0.045 (3)0.067 (3)0.013 (2)0.049 (3)0.008 (2)
C70.062 (3)0.050 (3)0.069 (3)0.020 (2)0.041 (3)0.011 (2)
C80.066 (3)0.061 (3)0.073 (3)0.010 (2)0.049 (3)0.018 (3)
C90.040 (2)0.0280 (19)0.038 (2)0.0037 (16)0.0242 (18)0.0045 (16)
C100.044 (2)0.035 (2)0.047 (2)0.0057 (18)0.026 (2)0.0032 (18)
C110.057 (3)0.034 (2)0.046 (2)0.0007 (19)0.033 (2)0.0039 (18)
C120.043 (3)0.027 (3)0.037 (3)0.0000.025 (3)0.000
C130.032 (3)0.046 (3)0.056 (4)0.0000.024 (3)0.000
C140.073 (5)0.044 (3)0.078 (5)0.0000.061 (4)0.000
C150.063 (4)0.048 (3)0.040 (3)0.0000.036 (3)0.000
C160.050 (3)0.028 (2)0.050 (2)0.0044 (18)0.033 (2)0.0029 (19)
Geometric parameters (Å, º) top
Ni1—O12.179 (3)C6—C71.352 (6)
Ni1—O1i2.179 (3)C7—H70.9300
Ni1—O2i2.096 (3)C8—H8A0.9600
Ni1—O22.096 (3)C8—H8B0.9600
Ni1—N2i2.050 (3)C8—H8C0.9600
Ni1—N22.050 (3)C9—C101.528 (5)
O1—C161.257 (5)C9—C111.534 (5)
O2—C161.260 (5)C9—C121.540 (5)
N1—C41.465 (5)C9—C161.526 (5)
N1—C51.351 (5)C10—H10A0.9700
N1—C71.364 (6)C10—H10B0.9700
N2—C51.328 (5)C10—C131.530 (5)
N2—C61.367 (5)C11—H11A0.9700
C1—C21.345 (7)C11—H11B0.9700
C1—C31.339 (6)C11—C151.535 (5)
C1—C41.513 (6)C12—H12A0.9700
C2—C2ii1.395 (11)C12—H12B0.9700
C2—H20.9300C13—H130.9800
C3—C3ii1.403 (9)C13—C141.529 (9)
C3—H30.9300C14—H14A0.9700
C4—H4A0.9700C14—H14B0.9700
C4—H4B0.9700C14—C151.518 (9)
C5—C81.491 (6)C15—H150.9800
C6—H60.9300
O1—Ni1—O1i142.26 (15)H8B—C8—H8C109.5
O2—Ni1—O161.20 (11)C10—C9—C11109.2 (3)
O2—Ni1—O1i91.22 (12)C10—C9—C12108.8 (3)
O2i—Ni1—O191.22 (12)C11—C9—C12108.0 (3)
O2i—Ni1—O1i61.20 (11)C16—C9—C10113.3 (3)
O2—Ni1—O2i89.19 (18)C16—C9—C11109.9 (3)
N2—Ni1—O1i109.38 (12)C16—C9—C12107.6 (3)
N2—Ni1—O195.55 (12)C9—C10—H10A109.6
N2i—Ni1—O1109.38 (12)C9—C10—H10B109.6
N2i—Ni1—O1i95.55 (12)C9—C10—C13110.1 (4)
N2—Ni1—O2i91.42 (13)H10A—C10—H10B108.1
N2—Ni1—O2156.75 (13)C13—C10—H10A109.6
N2i—Ni1—O2i156.75 (13)C13—C10—H10B109.6
N2i—Ni1—O291.42 (13)C9—C11—H11A109.7
N2—Ni1—N2i97.01 (19)C9—C11—H11B109.7
C5—N1—C4127.6 (4)C9—C11—C15109.8 (4)
C5—N1—C7108.1 (4)H11A—C11—H11B108.2
C7—N1—C4124.3 (4)C15—C11—H11A109.7
C5—N2—Ni1131.7 (3)C15—C11—H11B109.7
C5—N2—C6105.9 (4)C9—C12—C9iii111.4 (4)
C6—N2—Ni1121.6 (3)C9iii—C12—H12A109.3
C2—C1—C4122.6 (4)C9—C12—H12A109.3
C3—C1—C2117.8 (4)C9iii—C12—H12B109.3
C3—C1—C4119.6 (4)C9—C12—H12B109.3
C1—C2—C2ii121.1 (3)H12A—C12—H12B108.0
C1—C2—H2119.4C10—C13—C10iii110.5 (5)
C2ii—C2—H2119.4C10—C13—H13109.4
C1—C3—C3ii121.1 (3)C10iii—C13—H13109.4
C1—C3—H3119.5C14—C13—C10109.1 (3)
C3ii—C3—H3119.5C14—C13—C10iii109.1 (3)
N1—C4—C1113.1 (4)C14—C13—H13109.4
N1—C4—H4A109.0C13—C14—H14A109.8
N1—C4—H4B109.0C13—C14—H14B109.8
C1—C4—H4A109.0H14A—C14—H14B108.3
C1—C4—H4B109.0C15—C14—C13109.3 (5)
H4A—C4—H4B107.8C15—C14—H14A109.8
N1—C5—C8125.0 (4)C15—C14—H14B109.8
N2—C5—N1110.1 (4)C11—C15—C11iii108.7 (5)
N2—C5—C8124.9 (4)C11iii—C15—H15109.2
N2—C6—H6124.9C11—C15—H15109.2
C7—C6—N2110.2 (4)C14—C15—C11110.2 (3)
C7—C6—H6124.9C14—C15—C11iii110.2 (3)
N1—C7—H7127.1C14—C15—H15109.2
C6—C7—N1105.7 (4)O1—C16—Ni162.3 (2)
C6—C7—H7127.1O1—C16—O2119.8 (4)
C5—C8—H8A109.5O1—C16—C9121.8 (4)
C5—C8—H8B109.5O2—C16—Ni158.5 (2)
C5—C8—H8C109.5O2—C16—C9118.4 (3)
H8A—C8—H8B109.5C9—C16—Ni1167.7 (3)
H8A—C8—H8C109.5
Ni1—O1—C16—O211.1 (4)C9—C10—C13—C1460.6 (5)
Ni1—O1—C16—C9166.6 (3)C9—C11—C15—C11iii61.8 (6)
Ni1—O2—C16—O111.6 (4)C9—C11—C15—C1459.1 (5)
Ni1—O2—C16—C9166.2 (3)C10—C9—C11—C1558.2 (4)
Ni1—N2—C5—N1168.9 (3)C10—C9—C12—C9iii58.9 (5)
Ni1—N2—C5—C810.1 (6)C10—C9—C16—Ni1105.9 (14)
Ni1—N2—C6—C7170.2 (3)C10—C9—C16—O10.1 (5)
N2—C6—C7—N10.3 (5)C10—C9—C16—O2177.6 (4)
C2—C1—C3—C3ii1.7 (7)C10—C13—C14—C1560.4 (3)
C2—C1—C4—N163.2 (7)C10iii—C13—C14—C1560.4 (3)
C3—C1—C2—C2ii1.8 (7)C11—C9—C10—C1359.4 (4)
C3—C1—C4—N1117.9 (5)C11—C9—C12—C9iii59.6 (5)
C4—N1—C5—N2179.6 (4)C11—C9—C16—Ni1131.7 (13)
C4—N1—C5—C80.6 (7)C11—C9—C16—O1122.4 (4)
C4—N1—C7—C6179.8 (4)C11—C9—C16—O259.9 (5)
C4—C1—C2—C2ii177.1 (3)C12—C9—C10—C1358.2 (5)
C4—C1—C3—C3ii177.2 (3)C12—C9—C11—C1560.0 (5)
C5—N1—C4—C1111.5 (5)C12—C9—C16—Ni114.4 (15)
C5—N1—C7—C60.0 (5)C12—C9—C16—O1120.3 (4)
C5—N2—C6—C70.4 (5)C12—C9—C16—O257.4 (5)
C6—N2—C5—N10.4 (5)C13—C14—C15—C1160.0 (3)
C6—N2—C5—C8179.4 (4)C13—C14—C15—C11iii60.0 (3)
C7—N1—C4—C168.7 (6)C16—C9—C10—C13177.8 (4)
C7—N1—C5—N20.2 (5)C16—C9—C11—C15177.0 (4)
C7—N1—C5—C8179.2 (4)C16—C9—C12—C9iii178.1 (3)
C9—C10—C13—C10iii59.4 (6)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x, y, z.
 

Funding information

The authors thank Suzhou Industrial Park Institute of Services Outsourcing for financial support.

References

First citationBao, S. S., Shimizu, G. K. H. & Zheng, L. M. (2019). Coord. Chem. Rev. 378, 577–594.  Web of Science CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFan, L. M., Zhang, X. T., Zhang, W., Ding, Y. H., Fan, W. L., Sun, L. M., Pang, Y. & Zhao, X. (2014b). Dalton Trans. 43, 6701–6710.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFan, L. M., Zhang, X. T., Zhang, W., Ding, Y. S., Fan, W. L., Sun, L. M. & Zhao, X. (2014a). CrystEngComm, 16, 2144–2157.  Web of Science CSD CrossRef CAS Google Scholar
First citationFan, L. M., Zhao, D. S., Zhang, H. H., Wang, F., Li, B., Yang, L. L., Deng, Y. X. & Zhang, X. T. (2021). Microporous Mesoporous Mater. 326, 111396.  Web of Science CSD CrossRef Google Scholar
First citationJacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJiang, D., Xu, P., Wang, H., Zeng, G., Huang, D., Chen, M., Lai, C., Zhang, C., Wan, J. & Xue, W. (2018). Coord. Chem. Rev. 376, 449–466.  Web of Science CrossRef CAS Google Scholar
First citationLi, G., Huang, J., Xue, C., Chen, J., Deng, Z., Huang, Q., Liu, Z., Gong, C., Guo, W. & Cao, R. (2019). Cryst. Growth Des. 19, 3584–3591.  Web of Science CrossRef CAS Google Scholar
First citationParmar, B., Bisht, K. K., Rajput, G. & Suresh, E. (2021). Dalton Trans. 50, 3083–3108.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, Z., Ding, Y. S., Tian, L. J. & Zhang, X. T. (2013). J. Coord. Chem. 66, 763–771.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, H. P., Wang, H. L. & Li, B. L. (2020). Chin. J. Struct. Chem. 39, 1835–1840.  Google Scholar
First citationYang, G. P., Luo, X. X., Liu, Y. F., Li, K. & Wu, X. L. (2021b). Appl. Mater. Interfaces, 13, 46902–46908.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, T. H., Wang, S. F., Lin, C. L., Wang, X., Zhu, B. & Wu, D. (2021a). Dalton Trans. 50, 1293–1299.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYang, Z., Zhao, S., Han, S. S., Zheng, L. Y., Li, B. L. & Wu, B. (2014). Inorg. Chem. Commun. 46, 24–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, T. & Lin, W. (2014). Chem. Soc. Rev. 43, 5982–5993.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, Y., Qian, H. N., Li, B. L. & Wu, B. (2021a). Chin. J. Struct. Chem. 40, 595–602.  CAS Google Scholar
First citationZhang, Y., Wang, Z. X., Qin, H. N., Zha, M., Li, B. L. & Li, H. Y. (2021b). J. Coord. Chem. 74, 2617–2630.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, F.-H., Li, Z.-L., Zhang, S.-F., Han, J.-H., Zhang, M., Han, J., Lin, Y.-W. & You, J.-M. (2020). Acta Cryst. C76, 148–158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, S., Zheng, T. R., Zhang, Y. Q., Lv, X. X., Li, B. L. & Zhang, Y. (2017). Polyhedron, 121, 148–158.  Web of Science CSD CrossRef Google Scholar
First citationZhou, T., Liu, S., Guo, X., Wang, Q., Fu, L., Mi, S., Gao, P., Su, Q. & Guo, H. (2021). Cryst. Growth Des. 21, 5108–5115.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds