research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diastereotopic groups in two new single-enanti­omer structures (R2)P(O)[NH-(+)CH(C2H5)(C6H5)] (R = OC6H5 and C6H5)

crossmark logo

aDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, bDepartment of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran, cDepartment of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran, and dInstitute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
*Correspondence e-mail: pourayoubi@um.ac.ir

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 17 March 2023; accepted 19 July 2023; online 1 August 2023)

The crystal structures of two single-enanti­omer compounds, i.e. diphenyl [(R)-(+)-α-ethyl­benzyl­amido]­phosphate, C21H22NO3P or (C6H5O)2P(O)[NH-(R)-(+)CH(C2H5)(C6H5)] (I), and N-[(R)-(+)-α-ethyl­benz­yl]-P,P-di­phenyl­phosphinic amide, C21H22NOP or (C6H5)2P(O)[NH-R-(+)CH(C2H5)(C6H5)] (II), were studied. The different environments at the phospho­rus atoms, (O)2P(O)(N) and (C)2P(O)(N), allow the P=O/P—N bond strengths to be compared, as well as the N—H⋯O=P hydrogen-bond strengths, and P=O/N—H vibrations. The following characteristics related to diastereotopic C6H5O/C6H5 groups in I/II were considered: geometry parameters, contributions to the crystal packing, solution 13C/1H NMR chemical shifts, conformations, and NMR coupling constants. The phospho­rus-carbon coupling constants nJPC (n = 2 and 3) in I and mJPC (m = 1, 2, 3 and 4) in II were evaluated. For a comparative study, chiral analogous structures were retrieved from the Cambridge Structural Database (CSD) and their geometries and conformations are discussed.

1. Chemical context

Phospho­ramide/phosphinamide moieties are well-known structural motifs of some bioactive products and drugs (Warren et al., 2016[Warren, T. K., Jordan, R., Lo, M. K., Ray, A. S., Mackman, R. L., Soloveva, V., Siegel, D., Perron, M., Bannister, R., Hui, H. C., Larson, N., Strickley, R., Wells, J., Stuthman, K. S., Van Tongeren, S. A., Garza, N. L., Donnelly, G., Shurtleff, A. C., Retterer, C. J., Gharaibeh, D., Zamani, R., Kenny, T., Eaton, B. P., Grimes, E., Welch, L. S., Gomba, L., Wilhelmsen, C. L., Nichols, D. K., Nuss, J. E., Nagle, E. R., Kugelman, J. R., Palacios, G., Doerffler, E., Neville, S., Carra, E., Clarke, M. O., Zhang, L., Lew, W., Ross, B., Wang, Q., Chun, K., Wolfe, L., Babusis, D., Park, Y., Stray, K. M., Trancheva, I., Feng, J. Y., Barauskas, O., Xu, Y., Wong, P., Braun, M. R., Flint, M., McMullan, L. K., Chen, S. S., Fearns, R., Swaminathan, S., Mayers, D. L., Spiropoulou, C. F., Lee, W. A., Nichol, S. T., Cihlar, T. & Bavari, S. (2016). Nature, 531, 381-385.]; Palacios et al., 2005[Palacios, F., Alonso, C. & de los Santos, J. M. (2005). Chem. Rev. 105, 899-932.]). There are also reports on their applications in flame retardants (Nguyen & Kim, 2008[Nguyen, C. & Kim, A. (2008). Macromol. Res. 16, 620-625.]), ligands (Wang et al., 2021[Wang, P., Douair, I., Zhao, Y., Wang, S., Zhu, J., Maron, L. & Zhu, C. (2021). Angew. Chem. Int. Ed. 60, 473-479.]; Ferentinos et al., 2019[Ferentinos, E., Xu, M., Grigoropoulos, A., Bratsos, I., Raptopoulou, C. P., Psycharis, V., Jiang, S.-D. & Kyritsis, P. (2019). Inorg. Chem. Front. 6, 1405-1414.]; Zhang et al., 2019[Zhang, Y., Jia, A.-Q., Zhang, J.-J., Xin, Z. & Zhang, Q.-F. (2019). J. Coord. Chem. 72, 1036-1048.]), extractants (Akbari et al., 2019[Akbari, S., Khoshnood, R. S., Ahmadabad, F. K., Pourayoubi, M., Dušek, M. & Shchegravina, E. S. (2019). RSC Adv. 9, 9153-9159.]), anion transporters (Cranwell et al., 2013[Cranwell, P. B., Hiscock, J. R., Haynes, C. J. E., Light, M. E., Wells, N. J. & Gale, P. A. (2013). Chem. Commun. 49, 874-876.]) and catalysts (Klare et al., 2014[Klare, H., Neudörfl, J. M. & Goldfuss, B. (2014). Beilstein J. Org. Chem. 10, 224-236.]).

[Scheme 1]

Some of these characteristics are general for phospho­r­amide/phosphinamide compounds, and can be influenced by the groups attached to the common NP=O unit. Typically, the donor property of the phosphoryl group is beneficial in sorption processes, inter­actions with some enzymes and the formation of hydrogen bonds (Corbridge, 2000[Corbridge, D. E. C. (2000). In Phosphorus 2000: Chemistry, Biochemistry & Technology, First ed. Amsterdam: Elsevier.]). The subfamily to which the compounds belong also plays a role. For example, phosphinicamides with the (C)2P(O)(N) skeleton are found to have higher electron-donor properties with respect to amido­phospho­diesters with the (O)2P(O)(N) skeleton. The chirality may also be essential for some partic­ular applications, such as the manufacture of drugs and the planning of some reactions related to different reactivities of diastereotopic groups (Nakayama & Thompson, 1990[Nakayama, K. & Thompson, W. J. (1990). J. Am. Chem. Soc. 112, 6936-6942.]), enanti­oseparation (Ahmadabad et al., 2019[Ahmadabad, F. K., Pourayoubi, M. & Bakhshi, H. (2019). J. Appl. Polym. Sci. 136, 48034.]) and enanti­o­selective catalysis (Liao et al., 2019[Liao, K., Hu, X.-S., Zhu, R.-Y., Rao, R.-H., Yu, J.-S., Zhou, F. & Zhou, J. (2019). Chin. J. Chem. 37, 799-806.]).

Recently, we have reported some single-enanti­omer small mol­ecules, belonging to the phospho­ramide family, and phosphor­amide-based macromolecules/hydro­gels (Ahmadabad et al., 2019[Ahmadabad, F. K., Pourayoubi, M. & Bakhshi, H. (2019). J. Appl. Polym. Sci. 136, 48034.]; Taherzadeh et al., 2021[Taherzadeh, M., Pourayoubi, M., Vahdani Alviri, B., Shoghpour Bayraq, S., Ariani, M., Nečas, M., Dušek, M., Eigner, V., Amiri Rudbari, H., Bruno, G., Mancilla Percino, T., Leyva-Ramírez, M. A. & Damodaran, K. (2021). Acta Cryst. B77, 384-396.]; Sabbaghi et al., 2019[Sabbaghi, F., Pourayoubi, M., Nečas, M. & Damodaran, K. (2019). Acta Cryst. C75, 77-84.]). The related synthesis procedure could also be developed for manufacturing phosphinamide-based materials. Moreover, we are inter­ested in studying the differences between two diastereotopic groups in chiral structures. The reason for such attention is the asymmetric induction at phospho­rus by the chiral group, which causes different reactivities of two diastereotopic groups (Nakayama & Thompson, 1990[Nakayama, K. & Thompson, W. J. (1990). J. Am. Chem. Soc. 112, 6936-6942.]). These differences were investigated in organic syntheses for the creation of new stereocentres and also can be used for the design and synthesis of ligands with different donor properties of the diastereotopic groups.

In the present work, we continue with the synthesis of new chiral (C6H5O)2P(O)[NH-(+)CH(C2H5)(C6H5)] phospho­r­amide, (I), and (C6H5)2P(O)[NH-(+)CH(C2H5)(C6H5)] phosphinamide, (II) to study structural differences of two diastereotopic C6H5O/C6H5 groups, caused by the same chiral amine. Structure I is the enanti­omer of the previously reported (C6H5O)2P(O)[NH-(–)CH(C2H5)(C6H5)] (Sabbaghi et al., 2011[Sabbaghi, F., Pourayoubi, M., Negari, M. & Nečas, M. (2011). Acta Cryst. E67, o2512.]). The investigation is completed by considering structural differences/similarities of diastereotopic groups in analogous chiral structures retrieved from the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The main features of the NMR parameters of the diastereotopic groups in I and II are also discussed.

2. Structural commentary

Compound I crystallizes in the ortho­rhom­bic chiral space group P212121, with the asymmetric unit composed of one amido­phospho­diester mol­ecule (Fig. 1[link]). Compound II is triclinic in chiral space group P1, and its asymmetric unit consists of two phosphinicamide mol­ecules (Fig. 2[link]). Selected bond lengths and angles are presented in Tables 1[link] and 2[link]. All bond distances and angles are within the values observed in analogous structures (Vahdani Alviri et al., 2020[Vahdani Alviri, B., Pourayoubi, M., Abdul Salam, A. A., Nečas, M., Lee, A. van der, Chithran, A. & Damodaran, K. (2020). Acta Cryst. C76, 104-116.]; Hamzehee et al., 2017[Hamzehee, F., Pourayoubi, M., Farhadipour, A. & Choquesillo-Lazarte, D. (2017). Phosphorus Sulfur Silicon, 192, 359-367.]).

Table 1
Selected geometric parameters (Å, °) for I[link]

P1—O2 1.5814 (18) O2—C3 1.390 (3)
P1—O9 1.469 (2) O10—C11 1.411 (3)
P1—O10 1.5924 (19) N17—C18 1.482 (3)
P1—N17 1.619 (2)    
       
O2—P1—O9 113.77 (11) O2—C3—C8 114.9 (2)
O2—P1—O10 99.62 (10) P1—O10—C11 121.91 (16)
O9—P1—O10 116.45 (11) O10—C11—C12 119.5 (2)
O2—P1—N17 106.00 (11) O10—C11—C16 118.5 (3)
O9—P1—N17 114.90 (12) P1—N17—C18 120.34 (18)
O10—P1—N17 104.43 (11) N17—C18—C19 112.8 (2)
P1—O2—C3 127.68 (17) N17—C18—C25 108.4 (2)
O2—C3—C4 123.5 (2)    

Table 2
Selected geometric parameters (Å, °) for II[link]

P1—O2 1.4846 (15) P25—O26 1.4933 (15)
P1—N3 1.6367 (19) P25—N27 1.6426 (19)
P1—C13 1.802 (2) P25—C37 1.808 (2)
P1—C19 1.808 (2) P25—C43 1.797 (2)
N3—C4 1.474 (2) N27—C28 1.469 (3)
       
O2—P1—N3 119.94 (9) O26—P25—N27 119.61 (9)
O2—P1—C13 111.80 (9) O26—P25—C37 109.99 (9)
N3—P1—C13 102.43 (10) N27—P25—C37 102.69 (10)
O2—P1—C19 110.23 (9) O26—P25—C43 110.87 (9)
N3—P1—C19 105.15 (10) N27—P25—C43 104.84 (10)
C13—P1—C19 106.21 (9) C37—P25—C43 108.07 (10)
P1—N3—C4 120.91 (14) P25—N27—C28 122.16 (15)
N3—C4—C5 110.46 (17) N27—C28—C29 114.02 (17)
N3—C4—C11 110.64 (17) N27—C28—C35 107.53 (17)
P1—C13—C14 121.84 (17) P25—C37—C38 117.22 (16)
P1—C13—C18 118.28 (17) P25—C37—C42 123.28 (17)
P1—C19—C20 119.48 (17) P25—C43—C44 118.93 (17)
P1—C19—C24 121.36 (18) P25—C43—C48 122.26 (18)
[Figure 1]
Figure 1
The asymmetric unit of I, showing the atom-numbering scheme for non-hydrogen atoms and displacement ellipsoids at 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.
[Figure 2]
Figure 2
Displacement ellipsoid plot (50% probability) of the asymmetric unit of II, showing the atom-numbering scheme for non-hydrogen atoms. Hydrogen atoms are drawn as spheres of arbitrary radii.

The P atoms display a distorted tetra­hedral environment, (O)2P(O)(N) for I and (C)2P(O)(N) for II, and the maximum/minimum bond angles at phospho­rus are related to O=P—O/O—P—O and O=P—N/N—P—C. The differences between maximum and minimum values are about 16.8° for I and 17.5°/16.9° for the two symmetry-independent mol­ecules of II. The P—N—C angles in I and II, for example, P1—N3—C4 angle in II of 120.91 (14)° (Table 2[link]), demonstrate that the hybridization state of nitro­gen atoms is close to sp2. The P—O—C angles of I, 127.68 (17)°/121.91 (16)°, similarly show the hybridization state of the ester oxygen atoms is close to sp2.

The structure I is similar to its S-enanti­omer (EXIQIM; Sabbaghi et al., 2011[Sabbaghi, F., Pourayoubi, M., Negari, M. & Nečas, M. (2011). Acta Cryst. E67, o2512.]) regarding space group, unit cell and other structural parameters; the only substantial difference is related to the configuration at dissymmetric carbon atoms. Fig. 3[link]a shows the overlay of the inverted structure of I with EXIQIM. The overlay is calculated with a root-mean-square deviation (r.m.s.d.) of 0.0089 Å and a maximum deviation of 0.0153 Å.

[Figure 3]
Figure 3
(a) Overlay of EXIQIM (grey) and inverted I (blue). (b) Overlay of two symmetry-independent mol­ecules of II (green and blue show mol­ecules P1 and P25, respectively).

The P=O bond in I, 1.469 (2) Å, is shorter than the P=O bonds in II, 1.4846 (15)/1.4933 (15) Å, and the same is true about the P—N bonds [1.619 (2) Å in I, and 1.6367 (19)/1.6426 (19) Å in II]. The differences result from the effect of electronegative oxygen atoms of two C6H5O groups in I attached to phospho­rus, while in II, there are two C6H5 groups. The longer P—N bond in II is also caused by the steric effects of two phenyl groups directly attached to phospho­rus. Minor differences are observed for the bond lengths related to the diastereotopic pairs. Typically, the P—O and P—C bonds in I and two independent mol­ecules of II are 1.581 (2)/1.592 (2) Å, 1.802 (2)/1.808 (2) Å and 1.808 (2)/1.797 (2) Å.

In compound I, the N—H unit adopts an anti­periplanar (–ap) orientation with respect to the P=O group (based on the O=P—N—H torsion angle of −157.18°), and in two symmetry-independent mol­ecules of II, the same units adopt synclinal (–sc and +sc) conformations (the torsion angles are −80.63° and +84.78°). The different conformation of II (in comparison to I) results from intra­molecular rotations of the chiral amine, and the two independent mol­ecules feature different rotations, but with a similar O=P—N—H conformation.

In II, the symmetry-independent mol­ecules are similar concerning the bond lengths and angles (see Table 2[link]). However, they show some differences in torsion angles (and conformations). Typically, the conformations in the CH3—CH2—CH—NH—P=O segment are defined by the C—C—C—N/C—C—N—P/C—N—P=O torsion angles, and the values in the P1 molecule of +173.7 (2)°/−98.2 (2)°/60.7 (2)° correspond to +ap/−ac/+sc conformations (ac = anti­clinal). Similar torsion angles in the other mol­ecule, −178.3 (2)°/−158.6 (2)°/−62.0 (2)°, define −ap/–ap/−sc conformations. The other notable difference between the two mol­ecules is reflected in the direction of the phenyl ring of the chiral segment with respect to the P=O group (an opposite direction in the mol­ecule P1 and the same direction in the second mol­ecule). Fig. 3[link]b shows the overlay of two mol­ecules, and the root-mean-square deviation (r.m.s.d.) of the fit of them is 1.3533 Å with a maximum deviation of 4.6684 Å. The noted difference is reflected in the spatial distances of phenyl groups bonded to P and the phenyl group of chiral amine in the two mol­ecules. The differences in diastereotopic phenyl rings in each mol­ecule can also be described by their distances from the phenyl ring of the chiral amine.

For I, the distances between the centroid of the phenyl ring of chiral amine and the centroids of two diastereotopic phenyl groups are 5.0848 (1) and 7.9514 (1) Å. For the two symmetry-independent mol­ecules of II, equivalent distances are 5.5767 (5)/7.0325 (6) Å and 7.1614 (6)/6.4951 (3) Å. These spatial distances show that one of the diastereotopic phenyl rings is significantly closer to the phenyl of the chiral amine. The differences in these spatial distances are pronounced in I, where the flexibility is greater (because of the existence of the P—O—C segment and the possibility of rotation).

In I, the conformations of phenyl rings can be introduced by the C—C—O—P torsion angles, which are 32.1 (3)°/−149.9 (2)° and 86.7 (3)°/−98.0 (3)° according to the +scac conformations for both phenyl rings. In the structure of II, the C—C—P=O torsion angles were considered for checking the conformations of the phenyl rings. The values are 173.8 (2)°/−10.4 (2)° and 25.4 (2)°/−158.0 (2)° (+apsp and +spap) in one mol­ecule and 10.8 (2)°/−169.6 (2)° and −18.4 (2)°/163.0 (2)° (+spap and −sp+ap) in the other mol­ecule, which also show similar conformations.

3. Supra­molecular features

In the crystal structures of I and II, the mol­ecules are assembled in a chain arrangement through N—H⋯O(P) hydrogen bonds along [100] (Fig. 4[link], Tables 3[link] and 4[link]). The N—H⋯O(P) hydrogen bond in I is weaker than in II (H⋯O distances are 2.24 and 1.97/2.08 Å, respectively). This weakness is the result of the lower hydrogen-bond acceptor capability expected for the phosphoryl group of an (O)2(N)P(O)-based structure, compared to the phosphoryl group of a (C)2(N)P(O)-based structure, and is due to the two atoms with a higher electronegativity bonded to the phospho­rus atom. The effect of different electronegativities was previously noted (see above) for different P=O bond lengths.

Table 3
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H121⋯O9i 0.94 2.55 3.474 (4) 170
N17—H171⋯O9i 0.85 2.24 3.074 (4) 166 (2)
Symmetry code: (i) x+1, y, z.

Table 4
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N27—H271⋯O2i 0.84 2.08 2.923 (4) 176 (2)
N3—H31⋯O26 0.86 1.97 2.817 (4) 173 (2)
Symmetry code: (i) [x-1, y, z].
[Figure 4]
Figure 4
Crystal packing of I (top) and II (bottom). The red, orange, light-blue and pink balls show oxygen, phospho­rus, nitro­gen and hydrogen attached to nitro­gen atoms. For I, carbon atoms and attached hydrogen atoms are shown in light green. For II, two-symmetry independent mol­ecules are shown in light green and blue. The dotted lines show N—H⋯O hydrogen bonds.

C—H⋯π inter­actions in I assemble the mol­ecules in a two-dimensional array in the ab plane. Fig. 5[link] shows the mol­ecular assembly formed by the N—H⋯O, C—H⋯O and possible C—H⋯π inter­actions, where the C—H⋯O inter­action does not change the dimensionality made by the N—H⋯O hydrogen bond. To show better the contact(s) contributing by each phenyl ring, the rings are distinguished by colours: green (C3–C8) and magenta (C11–C16) for the diastereotopic rings and grey (C19–C24) for the phenyl ring of the chiral amine. The green ring takes part in a C—H⋯π inter­action as a donor (the acceptor is the grey ring) (H⋯Cg = 2.81 Å). The magenta ring takes part in a C—H⋯π inter­action with an adjacent symmetry-related magenta ring (H⋯Cg = 3.23 Å) and also in a C—H⋯OP inter­action (H⋯O = 2.55 Å). The formed two-dimensional assembly is double-layered and has a thickness of 18.057 Å in the c-axis direction.

[Figure 5]
Figure 5
A view of the two-dimensional double-layered arrangement of I formed by N—H⋯O, C—H⋯O and C—H⋯π inter­actions (shown as black, blue and red dotted lines, respectively). The centroids of the phenyl rings taking part as acceptors in C—H⋯π inter­actions are shown as balls of the same colours as the corresponding ring.

In the structure of II, two possible C—H⋯π inter­actions exist (H⋯Cg distances of 3.41 and 3.49 Å), which do not change the dimensionality made by the N—H⋯O hydrogen bonds. In both C—H⋯π inter­actions, the H donors are chiral amines of two symmetry-independent mol­ecules (the ortho-hydrogen atom and the hydrogen of the CH2 unit, as shown in Fig. 6[link]). The acceptors are one of the diastereotopic phenyl rings of the molecule including atom P1 and the phenyl ring of the chiral amine in the other molecule.

[Figure 6]
Figure 6
A view of the one-dimensional arrangement of structure II formed by N—H⋯O and C—H⋯π inter­actions (shown as black and red dotted lines). Only the hydrogen atoms participating in these hydrogen-bond interactions are shown.

4. An overview of diastereotopic groups in analogous structures

The chiral structures with an R2P(=X)—N—C(H)(C)(C—C) fragment (X = O, S, N; C is a dissymmetric carbon atom) were retrieved from the CSD to study possible structural differences for diastereotopic R groups; the metal complexes were not considered. The CSD (version 5.42 updated on Feb. 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) comprises 48 such structures, of which two were unavailable. The remaining 46 structures include 79 pairs of diastereotopic P—Y (Y = C, O, N) bonds, and the structures have different skeletons, (C)2P(O)(N), (C)2P(S)(N), (C)2P(N)(N), (O)2P(O)(N) and (N)2P(O)(N). The related bond lengths are given in Table S1 of the supporting inform­ation. The largest difference for the P—C bond lengths made by diastereotopic groups (0.025 Å) exceeds the largest differences for the P—O (0.017 Å) and P—N bond lengths (0.015 Å). The P—C, P—N and P—O bond lengths in these structures vary from 1.773 to 1.837 Å, 1.629 to 1.652 Å and 1.555 to 1.607 Å, respectively, with averages of 1.805, 1.643 and 1.580 Å.

The conformations of diastereotopic groups attached to phospho­rus were analysed in the structures analogous to I and II, i.e. with the O2P and C2P skeletons. Only three O2P-based structures (with the oxygen atom attached to an arene ring) were found in the CSD. For the C2P skeleton, 36 structures, including 64 R2PX fragments, were checked, and the C—C—P=X (X = O, N, S) torsion angles were evaluated.

The C2P-based structures mainly include Ph2P(O) fragment (28 structures), similar to compound II; however, structures with Ph2P(S) (seven structures), and (C6H11)2P(=N) (one structure) fragments were also found. Both similar and different conformations were observed for diastereotopic groups. Details of the analysis are given in Table S2 and Fig. S1 of the supporting information. The torsion angles such as C—C—P=O of 0.04° in the structure with refcode MEFCIK (Sweeney et al., 2006[Sweeney, J. B., Cantrill, A. A., Drew, M. G. B., McLaren, A. B. & Thobhani, S. (2006). Tetrahedron, 62, 3694-3703.]) show the P=O group nearly in a plane where the phenyl ring also exists. Its complementary torsion angle for the other C—C—P=O related to this phenyl ring is 176.54°, and these two torsion angles define the sp+ap conformation of this phenyl ring with respect to the P=O group. On the other hand, most of the structures also include ±sp±ap conformations at least for one phenyl ring. The most populated conformations for diastereotopic fragments (sep­arated by "/") are ±sp±apsp±ap (26 entries) and ±sp±apsc±ac (23 entries). In the systems with phenyl rings directly attached to the phospho­rus atom, as a result of crowding, the simultaneous torsion angles around ±90° (a perpendicular conformation) for both phenyl rings were not found for any structure. In some cases, like in the structure with refcode VUGSOG (Yin et al., 2009[Yin, L., Kanai, M. & Shibasaki, M. (2009). J. Am. Chem. Soc. 131, 9610-9611.]) with close phenyl rings, the CH unit of one phenyl ring is directed toward the centroid of the second phenyl ring because of the formation of an intra­molecular C—H⋯π inter­action.

As a result of the existence of C—O—P moiety in the O2P-based structures, the flexibility is expected to be higher than for Ph2P-based structures; the three structures show different conformations but they include ±sc±ac conformations at least in one arene ring.

5. Hirshfeld surface analyses and fingerprint plots of structures I and II

To visualize and compare the inter­molecular contacts of I and II, the Hirshfeld surfaces (HS) mapped with dnorm and two-dimensional fingerprint plots (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) were generated using the CrystalExplorer program (Wolff et al., 2013[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2013). CrystalExplorer. The University of Western Australia. https://crystalexplorer.scb.uwa.edu.au/.]). In the HS map of I (Fig. 7[link]), the red areas are associated with the N—H⋯O, C—H⋯O and 2×C—H⋯π inter­actions [labels (i), (ii) and (iii)]. The contacts of I, obtained from the fingerprint plots, are H⋯H (57.3%), H⋯C (28.8%), H⋯O (12.7%) and O⋯C (1.2%). The O⋯C contact results from the near distance of two symmetry-related phen­oxy groups [O2(C3–C8)], through the ester oxygen atom and π-system.

[Figure 7]
Figure 7
Hirshfeld surface map generated for the structure I. Two mol­ecules are shown outside the surface to represent the N—H⋯O [label (i)], C—H⋯O [label (ii)] and typical C—H⋯π [label (iii)] inter­actions with the mol­ecule within the surface.

For II, the HS map was generated around two symmetry-independent mol­ecules step by step. Besides N—H⋯O hydrogen bonds, a significant H⋯H contact develops a red area, as seen in Fig. 8[link]. This inter­action is between H231 of the phenyl ring of mol­ecule P1 connected to H301 of the chiral amine of the other mol­ecule. The H⋯H separation was obtained as 2.291 Å and 2.026 Å in the X-ray and Hirshfeld analyses, respectively (the neutron-normalized CH distance is 1.083 Å in Hirshfeld in comparison with 0.941/0.943 Å in X-ray).

[Figure 8]
Figure 8
Hirshfeld surface map generated step by step around two symmetry-independent mol­ecules of II. The two mol­ecules outside the surface were given to show the hydrogen-bond inter­actions with the mol­ecules within the surface. The red region labelled (i) is related to a close H⋯H contact between the mol­ecules within and outside the surface (not shown).

The contribution percentages of various contacts were obtained for the two symmetry-independent mol­ecules. Compared with I, the structure of II shows fewer H⋯O, H⋯C and O⋯C contacts (7.1%/7.0%, 26.1%/25.6%, 0.1% for both), which were compensated with remarkable H⋯H (64.2%/64.8%), and C⋯C contacts (2.5% for both). The smaller volume/Z ratio in II is reflected by the crowding, manifested in increased H⋯H contacts and the observation of C⋯C contacts.

6. Spectroscopy of I and II

In the IR spectra, the N—H stretching bands are centred at 3268 cm−1 for I and 3152 cm−1 for II. The lower NH stretching wave number of II is attributed to stronger N—H⋯OP hydrogen bonds as discussed in the X-ray crystallography section. The bands at 1244 cm−1 for I and 1192 cm−1 for II are assigned to the P=O vibrations, and the higher wave number for I is in accordance with the presence of more electronegative atoms in the (O)2P(O)N skeleton [versus (C)2P(O)N for II].

In the 13C NMR spectra, the doublet signals at 31.80 p.p.m. (3J = 8.1 Hz) for I and at 32.62 p.p.m. (3J = 4.7 Hz) for II correspond to the CH2 group. The dissymmetric carbon atom does not show coupling with phospho­rus, and the ipso-C atom attached to it, i.e. with a three-bond separation from phospho­rus, shows a doublet at 143.04 p.p.m. (3J = 3.0 Hz) in I and at 145.50 p.p.m. (3J = 4.6 Hz) in II.

For the two diastereotopic C6H5O groups in I, two sets of carbon signals are observed. For example, the doublets at 150.74/150.92 p.p.m. and 120.12/120.23 p.p.m., with 2J = 7.0 Hz for the first pair and 3J = 4.0 Hz for the second pair, are associated with the diastereotopic ipso-C atoms and diastereotopic ortho-C atoms, respectively. All carbon atoms of diastereotopic phenyl groups in compound II show couplings with phospho­rus (1J, 2J, 3J and 4J).

The doublet signals at 131.74/131.86 p.p.m. (J = 1.9/2.1 Hz) are assigned to the para-carbon atoms of the phenyl rings with four bonds separation from the phospho­rus atom. The doublets at 132.20/132.38 p.p.m. (J = 9.4/9.5 Hz) and at 128.62/128.82 p.p.m. (J = 12.2/12.1 Hz) are assigned to the diastereotopic ortho- and meta-carbon atoms. The doublets centred at 134.44 and 134.77 p.p.m. (J = 127.4 and 126.4 Hz) are related to the diastereotopic ipso-carbon atoms. The separation of these signals is comparable with previously investigated 1J coupling constants for analogous compounds, typically in (C6H5)2P(O)(NH-cyclo-C7H13) with 1J = 129.4 Hz (Hamzehee et al., 2017[Hamzehee, F., Pourayoubi, M., Farhadipour, A. & Choquesillo-Lazarte, D. (2017). Phosphorus Sulfur Silicon, 192, 359-367.]).

A brief discussion of 31P NMR and 1H NMR spectroscopy is given in the supporting information (Figures S2 to S11).

7. Conclusions

The differences/similarities of diastereotopic pairs, 2×C6H5O/2×C6H5, were discussed for two new single-enanti­omer structures, (C6H5O)2P(O)[NH-(+)CH(C2H5)(C6H5)] (I), and (C6H5)2P(O)[NH-(+)CH(C2H5)(C6H5)] (II). The pronounced differences are related to the contributions in the crystal packing by diastereotopic groups, especially in the C—H⋯π inter­actions, and the NMR chemical shifts of corresponding 13C signals. The geometry parameters, conformations and NMR coupling constants of diastereotopic groups show minor differences (and/or similarities in some cases). In I with the O2P(O)N skeleton, the shorter P=O/P—N bonds and weaker N—H⋯O=P hydrogen bond are observed with respect to the structure II with the C2P(O)N skeleton. These structural features, resulting from different electronegativities of atoms, are reflected in the higher stretching frequencies of P=O and N—H bonds in the structure I (the latter because of a weaker N—H⋯O=P hydrogen bond). The lower volume/Z ratio of II is reflected by the crowding and observation of C⋯C contacts and raising H⋯H contacts, while I includes more H⋯O and O⋯C contacts. The study of analogous chiral structures retrieved from the CSD shows minor differences in bond lengths for diastereotopic P—C, P—O, and P—N bonds and more significant differences in torsion angles of diastereotopic groups.

8. Synthesis and crystallization

Preparation of (C6H5O)2P(O)[NH-(R)-(+)CH(C2H5)(C6H5)], (I)[link]. To a solution of (C6H5O)2P(O)Cl in dry chloro­form, a solution of R-(+)-1-phenyl­propyl­amine and tri­ethyl­amine (1:1:1 molar ratio) in the same solvent was added at 273 K. After stirring for 4 h, the solvent was removed in a vacuum, and the obtained solid was washed with distilled water to remove (C2H5)3NHCl. Colourless crystals were obtained from a solution of the title compound in CHCl3/CH3CN (1:2 v/v) after slow evaporation at room temperature.

Analytical data: IR (KBr, ν, cm−1): 3268, 3063, 3029, 2970, 2929, 2854, 1592, 1492, 1453, 1420, 1244, 1200, 1167, 1058, 1020, 949, 900, 750, 689, 634, 579, 552, 520, 496, 457. 1H NMR (400.22 MHz, CDCl3): δ = 0.84 (t, J = 7.2 Hz, 3H), 1.81 (m, 2H), 3.84 (t, J = 10.8 Hz, 1H, NH), 4.32 (m, 1H), 6.99 (d, J = 8.4 Hz, 2H), 7.10 (t, J = 7.2 Hz, 1H), 7.16 – 7.35 (m, 12H); 13C{1H} NMR (100.64 MHz, CDCl3): δ = 10.59, 31.80 (d, J = 8.1 Hz), 58.20, 120.12 (d, J = 4.0 Hz), 120.23 (d, J = 4.0 Hz), 124.63, 124.83, 126.50, 127.21, 128.44, 129.43, 129.64, 143.04 (d, J = 3.0 Hz), 150.74 (d, J = 7.0 Hz), 150.92 (d, J = 7.0 Hz); 31P{1H} NMR (162.01 MHz, CDCl3): δ = −2.16.

Preparation of (C6H5)2P(O)[NH-(R)-(+)CH(C2H5)(C6H5)], (II)[link]. To a solution of (C6H5)2P(O)Cl in dry chloro­form, a solution of R-(+)-1-phenyl­propyl­amine and tri­ethyl­amine (1:1:1 mole ratio) in the same solvent was added at 273 K. After stirring for 4 h, the solvent was removed in a vacuum, and the obtained solid was washed with distilled water to remove (C2H5)3NHCl. Colourless crystals were obtained from a solution of the title compound in CHCl3/CH3CN (1:2 v/v) after slow evaporation at room temperature.

Analytical data: IR (KBr, ν, cm−1): 3152, 3057, 3027, 2962, 2928, 2868, 1488, 1440, 1383, 1337, 1305, 1192, 1117, 1056, 1017, 929, 904, 838, 751, 721, 695, 603, 564, 533. 1H NMR (400.22 MHz, DMSO-d6): δ = 0.79 (t, J = 7.6 Hz, 3H), 1.69 (m, 1H), 1.82 (m, 1H), 3.84 (m, 1H), 5.91 (t, J = 10.2 Hz, 1H, NH), 7.26 (m, 5H), 7.37 (m, 2H), 7.50 (m, 4H), 7.64 (m, 2H), 7.79 (m, 2H); 13C{1H} NMR (100.64 MHz, DMSO-d6): δ = 11.60, 32.62 (d, J = 4.7 Hz), 57.10, 126.87, 126.97, 128.45, 128.62 (d, J = 12.2 Hz), 128.82 (d, J = 12.1 Hz), 131.74 (d, J = 1.9 Hz), 131.86 (d, J = 2.1 Hz), 132.20 (d, J = 9.4 Hz), 132.38 (d, J = 9.5 Hz), 134.44 (d, J = 127.4 Hz), 134.77 (d, J = 126.4 Hz), 145.50 (d, J = 4.6 Hz); 31P{1H} NMR (162.01 MHz, DMSO-d6): δ = 21.13.

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The H atoms were all located in difference-Fourier maps, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometries (C—H in the range 0.93–0.98 Å, N—H in the range 0.86–0.89 Å) and Uiso(H) values in the range 1.2–1.5×Ueq of the parent atom, after which the positions were refined with riding constraints (Cooper et al., 2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]; Watkin & Cooper, 2016[Watkin, D. J. & Cooper, R. I. (2016). Acta Cryst. B72, 661-683.]). The absolute configuration was determined from the refinement of the Flack parameter (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).

Table 5
Experimental details

  I II
Crystal data
Chemical formula C21H22NO3P C21H22NOP
Mr 367.38 335.39
Crystal system, space group Orthorhombic, P212121 Triclinic, P1
Temperature (K) 120 95
a, b, c (Å) 5.4947 (1), 8.1503 (1), 41.1096 (7) 9.0483 (7), 10.5533 (8), 11.0036 (6)
α, β, γ (°) 90, 90, 90 70.065 (6), 86.368 (5), 66.571 (7)
V3) 1841.03 (5) 903.15 (13)
Z 4 2
Radiation type Cu Kα Cu Kα
μ (mm−1) 1.49 1.39
Crystal size (mm) 0.90 × 0.27 × 0.07 0.62 × 0.09 × 0.07
 
Data collection
Diffractometer Oxford Diffraction Gemini Oxford Diffraction SuperNova
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.34, 0.90 0.49, 0.91
No. of measured, independent and observed [I > 2.0σ(I)] reflections 34246, 3356, 3262 15035, 6781, 6648
Rint 0.067 0.036
(sin θ/λ)max−1) 0.626 0.626
 
Refinement
R[F > 2σ(F)], wR(F), S 0.037, 0.102, 1.02 0.034, 0.092, 0.97
No. of reflections 3355 6779
No. of parameters 240 443
No. of restraints 4 11
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.38 0.49, −0.40
Absolute structure Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]), 1324 Friedel pairs Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]), 3140 Friedel pairs
Absolute structure parameter 0.013 (9) −0.013 (7)
Computer programs: CrysAlis PRO (Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]), JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and MCE (Rohlíček & Hušák, 2007[Rohlíček, J. & Hušák, M. (2007). J. Appl. Cryst. 40, 600-601.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2017); cell refinement: CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003), JANA2006 (Petricek et al., 2014); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003), MCE (Rohlicek & Husak, 2007).

Diphenyl [(R)-(+)-α-ethylbenzylamido]phosphate (I) top
Crystal data top
C21H22NO3PDx = 1.325 Mg m3
Mr = 367.38Cu Kα radiation, λ = 1.54180 Å
Orthorhombic, P212121Cell parameters from 19519 reflections
a = 5.4947 (1) Åθ = 4–68°
b = 8.1503 (1) ŵ = 1.49 mm1
c = 41.1096 (7) ÅT = 120 K
V = 1841.03 (5) Å3Blade, clear colourless
Z = 40.90 × 0.27 × 0.07 mm
F(000) = 776
Data collection top
Oxford Diffraction Gemini
diffractometer
3262 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 74.9°, θmin = 4.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2017)
h = 66
Tmin = 0.34, Tmax = 0.90k = 99
34246 measured reflectionsl = 4948
3356 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F > 3σ(F)] = 0.037 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.03P)2 + 3.0P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F) = 0.102(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.33 e Å3
3355 reflectionsΔρmin = 0.38 e Å3
240 parametersAbsolute structure: Parsons wt al. (2013), 1324 Friedel pairs
4 restraintsAbsolute structure parameter: 0.013 (9)
Primary atom site location: other
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Refinement. X-ray analyses of I and II were performed on two different diffractometers, both using mirror-collimated Cu-Kα radiation (λ = 1.5418 Å), and CCD detector Atlas S2. The 120 K data set was acquired on a Gemini diffractometer with a classical sealed X-ray tube, while the 95 K data set was obtained on a SuperNova diffractometer with a micro-focus sealed tube. The data reduction and absorption correction were made with CrysAlis PRO software (Rigaku, 2017). The structures were solved by charge flipping methods using SUPERFLIP (Palatinus & Chapuis, 2007) software and refined by full-matrix least-squares on F squared value using Crystals (Betteridge et al., 2003) and JANA2006 (Petricek et al., 2014) software programs. MCE (Rohlicek & Husak, 2007) software was used to visualize residual electron density maps.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.47169 (12)0.71916 (8)0.639453 (15)0.0179
O20.4682 (3)0.7590 (2)0.60181 (4)0.0229
C30.2732 (5)0.8149 (3)0.58334 (6)0.0194
C40.0936 (5)0.9153 (3)0.59535 (7)0.0218
C50.0889 (5)0.9701 (4)0.57438 (7)0.0264
C60.0868 (6)0.9248 (4)0.54188 (7)0.0274
C70.0950 (6)0.8226 (4)0.53038 (7)0.0287
C80.2758 (5)0.7663 (4)0.55103 (6)0.0244
O90.2348 (3)0.6673 (2)0.65240 (5)0.0226
O100.5773 (4)0.8880 (2)0.65292 (4)0.0221
C110.6063 (5)0.9175 (3)0.68651 (7)0.0204
C120.8179 (5)0.8689 (3)0.70180 (7)0.0232
C130.8488 (6)0.9095 (4)0.73416 (7)0.0293
C140.6729 (6)0.9975 (4)0.75073 (7)0.0323
C150.4628 (6)1.0441 (4)0.73500 (8)0.0335
C160.4291 (6)1.0050 (4)0.70255 (7)0.0284
N170.6906 (4)0.5889 (3)0.64476 (5)0.0183
C180.6554 (5)0.4134 (3)0.63655 (7)0.0190
C190.6338 (5)0.3836 (3)0.60013 (7)0.0191
C200.8049 (6)0.4457 (3)0.57846 (7)0.0236
C210.7840 (6)0.4160 (4)0.54532 (7)0.0267
C220.5918 (6)0.3231 (3)0.53328 (7)0.0265
C230.4216 (5)0.2595 (4)0.55459 (7)0.0264
C240.4427 (5)0.2905 (3)0.58786 (6)0.0230
C250.8638 (5)0.3149 (3)0.65162 (7)0.0246
C260.8837 (6)0.3359 (4)0.68815 (7)0.0306
H410.09530.94400.61760.0258*
H510.21691.03780.58250.0333*
H610.21260.96290.52840.0334*
H710.09710.79210.50810.0351*
H810.40060.69710.54320.0311*
H1210.94070.81030.69100.0282*
H1310.99010.87820.74490.0362*
H1410.69621.02450.77320.0385*
H1510.34061.10200.74660.0414*
H1610.28691.03860.69190.0336*
H1810.49950.37820.64650.0220*
H2010.93390.50880.58630.0278*
H2110.90210.45910.53090.0327*
H2210.58090.30420.51050.0308*
H2310.28890.19500.54640.0310*
H2410.32170.24880.60180.0291*
H2511.01830.35220.64200.0296*
H2520.83020.19790.64700.0306*
H2631.01510.26550.69670.0474*
H2620.91990.44960.69340.0469*
H2610.73020.30520.69810.0460*
H1710.837 (3)0.625 (2)0.6445 (7)0.0219 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0183 (3)0.0169 (3)0.0184 (3)0.0003 (3)0.0003 (3)0.0009 (3)
O20.0178 (9)0.0304 (10)0.0207 (9)0.0051 (9)0.0004 (8)0.0012 (7)
C30.0166 (13)0.0204 (14)0.0212 (13)0.0002 (11)0.0014 (10)0.0027 (10)
C40.0241 (15)0.0203 (13)0.0209 (13)0.0005 (12)0.0004 (12)0.0009 (11)
C50.0215 (15)0.0214 (14)0.0364 (16)0.0047 (12)0.0003 (13)0.0024 (12)
C60.0241 (15)0.0249 (15)0.0331 (16)0.0028 (12)0.0096 (13)0.0053 (12)
C70.0328 (17)0.0320 (16)0.0213 (14)0.0007 (13)0.0056 (12)0.0009 (12)
C80.0246 (14)0.0262 (15)0.0224 (13)0.0035 (12)0.0018 (11)0.0007 (11)
O90.0194 (10)0.0225 (10)0.0259 (9)0.0001 (8)0.0017 (8)0.0009 (8)
O100.0248 (10)0.0183 (9)0.0233 (9)0.0007 (8)0.0009 (8)0.0003 (8)
C110.0222 (14)0.0154 (12)0.0235 (13)0.0048 (11)0.0023 (11)0.0024 (11)
C120.0244 (15)0.0221 (14)0.0232 (14)0.0012 (12)0.0029 (12)0.0018 (11)
C130.0314 (16)0.0315 (16)0.0252 (15)0.0041 (14)0.0009 (13)0.0024 (13)
C140.0430 (19)0.0289 (16)0.0251 (15)0.0109 (15)0.0066 (14)0.0058 (13)
C150.0321 (17)0.0298 (16)0.0385 (17)0.0019 (14)0.0098 (15)0.0117 (13)
C160.0239 (15)0.0232 (14)0.0380 (16)0.0030 (13)0.0011 (13)0.0046 (12)
N170.0173 (11)0.0173 (11)0.0204 (12)0.0029 (9)0.0010 (10)0.0020 (9)
C180.0209 (13)0.0146 (12)0.0215 (13)0.0010 (11)0.0033 (11)0.0024 (11)
C190.0204 (13)0.0138 (13)0.0230 (13)0.0030 (11)0.0017 (11)0.0028 (10)
C200.0235 (15)0.0211 (14)0.0261 (14)0.0029 (12)0.0015 (12)0.0018 (11)
C210.0282 (16)0.0245 (15)0.0275 (15)0.0017 (13)0.0069 (13)0.0021 (12)
C220.0339 (17)0.0265 (15)0.0191 (13)0.0081 (13)0.0017 (12)0.0018 (11)
C230.0232 (15)0.0270 (15)0.0288 (14)0.0019 (12)0.0056 (12)0.0075 (12)
C240.0211 (13)0.0225 (13)0.0254 (13)0.0020 (13)0.0020 (11)0.0004 (12)
C250.0295 (15)0.0183 (14)0.0261 (14)0.0034 (12)0.0001 (12)0.0018 (11)
C260.0413 (18)0.0226 (15)0.0279 (15)0.0024 (14)0.0047 (13)0.0016 (12)
Geometric parameters (Å, º) top
P1—O21.5814 (18)C15—C161.384 (4)
P1—O91.469 (2)C15—H1510.948
P1—O101.5924 (19)C16—H1610.937
P1—N171.619 (2)N17—C181.482 (3)
O2—C31.390 (3)N17—H1710.854 (17)
C3—C41.373 (4)C18—C191.522 (4)
C3—C81.386 (4)C18—C251.530 (4)
C4—C51.396 (4)C18—H1810.991
C4—H410.945C19—C201.391 (4)
C5—C61.386 (4)C19—C241.390 (4)
C5—H510.954C20—C211.388 (4)
C6—C71.383 (4)C20—H2010.933
C6—H610.939C21—C221.390 (4)
C7—C81.385 (4)C21—H2110.946
C7—H710.948C22—C231.383 (4)
C8—H810.945C22—H2210.953
O10—C111.411 (3)C23—C241.396 (4)
C11—C121.380 (4)C23—H2310.960
C11—C161.375 (4)C24—H2410.940
C12—C131.382 (4)C25—C261.516 (4)
C12—H1210.938C25—H2510.985
C13—C141.383 (5)C25—H2520.989
C13—H1310.929C26—H2630.987
C14—C151.377 (5)C26—H2620.972
C14—H1410.959C26—H2610.970
O2—P1—O9113.77 (11)C15—C16—H161119.7
O2—P1—O1099.62 (10)C11—C16—H161121.2
O9—P1—O10116.45 (11)P1—N17—C18120.34 (18)
O2—P1—N17106.00 (11)P1—N17—H171118.2 (12)
O9—P1—N17114.90 (12)C18—N17—H171116.6 (12)
O10—P1—N17104.43 (11)N17—C18—C19112.8 (2)
P1—O2—C3127.68 (17)N17—C18—C25108.4 (2)
O2—C3—C4123.5 (2)C19—C18—C25111.9 (2)
O2—C3—C8114.9 (2)N17—C18—H181107.4
C4—C3—C8121.5 (3)C19—C18—H181107.0
C3—C4—C5119.0 (3)C25—C18—H181109.2
C3—C4—H41119.3C18—C19—C20121.3 (2)
C5—C4—H41121.7C18—C19—C24120.2 (2)
C4—C5—C6120.3 (3)C20—C19—C24118.5 (3)
C4—C5—H51120.0C19—C20—C21120.6 (3)
C6—C5—H51119.7C19—C20—H201119.6
C5—C6—C7119.7 (3)C21—C20—H201119.8
C5—C6—H61118.4C20—C21—C22120.5 (3)
C7—C6—H61121.9C20—C21—H211119.5
C6—C7—C8120.5 (3)C22—C21—H211120.1
C6—C7—H71119.7C21—C22—C23119.5 (3)
C8—C7—H71119.7C21—C22—H221119.1
C3—C8—C7119.0 (3)C23—C22—H221121.4
C3—C8—H81120.3C22—C23—C24119.8 (3)
C7—C8—H81120.7C22—C23—H231119.7
P1—O10—C11121.91 (16)C24—C23—H231120.5
O10—C11—C12119.5 (2)C23—C24—C19121.1 (3)
O10—C11—C16118.5 (3)C23—C24—H241118.1
C12—C11—C16121.8 (3)C19—C24—H241120.7
C11—C12—C13118.2 (3)C18—C25—C26113.3 (2)
C11—C12—H121122.5C18—C25—H251108.7
C13—C12—H121119.3C26—C25—H251107.6
C12—C13—C14120.9 (3)C18—C25—H252106.8
C12—C13—H131119.6C26—C25—H252108.1
C14—C13—H131119.5H251—C25—H252112.4
C13—C14—C15119.8 (3)C25—C26—H263110.0
C13—C14—H141120.0C25—C26—H262109.9
C15—C14—H141120.1H263—C26—H262109.0
C14—C15—C16120.1 (3)C25—C26—H261109.0
C14—C15—H151119.7H263—C26—H261109.6
C16—C15—H151120.2H262—C26—H261109.3
C15—C16—C11119.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H121···O9i0.942.553.474 (4)170
N17—H171···O9i0.852.243.074 (4)166 (2)
Symmetry code: (i) x+1, y, z.
N-[(R)-(+)-α-Ethylbenzyl]-P,P-diphenylphosphinic amide (II) top
Crystal data top
C21H22NOPZ = 2
Mr = 335.39F(000) = 356
Triclinic, P1Dx = 1.233 Mg m3
a = 9.0483 (7) ÅCu Kα radiation, λ = 1.54180 Å
b = 10.5533 (8) ÅCell parameters from 11237 reflections
c = 11.0036 (6) Åθ = 4–74°
α = 70.065 (6)°µ = 1.39 mm1
β = 86.368 (5)°T = 95 K
γ = 66.571 (7)°Needle, colorless
V = 903.15 (13) Å30.62 × 0.09 × 0.07 mm
Data collection top
Oxford Diffraction SuperNova
diffractometer
6648 reflections with I > 2.0σ(I)
Focussing mirrors monochromatorRint = 0.036
ω scansθmax = 74.8°, θmin = 4.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2017)
h = 1011
Tmin = 0.49, Tmax = 0.91k = 1313
15035 measured reflectionsl = 1313
6781 independent reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.05P)2 + 0.53P] ,
where P = (max(Fo2,0) + 2Fc2)/3
R[F > 3σ(F)] = 0.034(Δ/σ)max = 0.001
wR(F) = 0.092Δρmax = 0.49 e Å3
S = 0.97Δρmin = 0.40 e Å3
6779 reflectionsExtinction correction: Larson (1970), Equation 22
443 parametersExtinction coefficient: 12 (2)
11 restraintsAbsolute structure: Parsons et al. (2013), 3140 Friedel pairs
Primary atom site location: otherAbsolute structure parameter: 0.013 (7)
Hydrogen site location: difference Fourier map
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.65963 (7)0.68073 (7)0.14489 (6)0.0147
O20.68651 (18)0.78920 (16)0.18817 (15)0.0192
N30.5062 (2)0.7351 (2)0.04120 (17)0.0183
C40.4906 (3)0.8436 (2)0.0895 (2)0.0186
C50.4419 (3)0.7964 (2)0.1908 (2)0.0200
C60.3292 (3)0.7336 (2)0.1687 (2)0.0246
C70.2863 (3)0.6919 (3)0.2628 (3)0.0311
C80.3541 (3)0.7134 (3)0.3805 (3)0.0375
C90.4638 (3)0.7781 (3)0.4047 (3)0.0358
C100.5082 (3)0.8189 (3)0.3100 (2)0.0280
C110.3751 (3)0.9980 (2)0.0941 (2)0.0224
C120.3668 (3)1.1186 (3)0.2214 (2)0.0301
C130.6291 (3)0.5395 (2)0.2788 (2)0.0171
C140.5864 (3)0.4341 (2)0.2599 (2)0.0231
C150.5756 (3)0.3206 (3)0.3661 (3)0.0283
C160.6061 (3)0.3133 (3)0.4908 (2)0.0326
C170.6464 (3)0.4184 (3)0.5101 (2)0.0339
C180.6596 (3)0.5315 (3)0.4045 (2)0.0244
C190.8355 (3)0.5873 (2)0.0723 (2)0.0163
C200.9871 (3)0.5761 (2)0.1080 (2)0.0228
C211.1249 (3)0.4987 (3)0.0594 (3)0.0291
C221.1132 (3)0.4300 (3)0.0238 (3)0.0370
C230.9630 (4)0.4415 (3)0.0610 (3)0.0366
C240.8248 (3)0.5197 (3)0.0129 (2)0.0266
P250.07166 (8)0.86743 (7)0.21332 (6)0.0153
O260.19971 (18)0.79311 (17)0.13860 (15)0.0191
N270.1158 (2)0.9595 (2)0.14867 (17)0.0186
C280.1622 (3)1.0887 (2)0.0291 (2)0.0190
C290.1193 (3)1.0513 (2)0.0942 (2)0.0181
C300.0560 (3)1.1317 (3)0.1945 (2)0.0246
C310.0237 (3)1.1016 (3)0.3093 (2)0.0284
C320.0532 (3)0.9893 (3)0.3247 (2)0.0273
C330.1146 (3)0.9065 (3)0.2249 (2)0.0255
C340.1478 (3)0.9383 (2)0.1108 (2)0.0217
C350.3445 (3)1.1792 (2)0.0259 (2)0.0236
C360.4123 (3)1.3159 (3)0.0958 (3)0.0292
C370.0538 (3)0.7326 (2)0.3613 (2)0.0170
C380.1730 (3)0.5907 (2)0.3955 (2)0.0199
C390.1665 (3)0.4812 (3)0.5077 (2)0.0262
C400.0416 (3)0.5138 (3)0.5867 (2)0.0262
C410.0766 (3)0.6557 (3)0.5537 (2)0.0258
C420.0719 (3)0.7651 (2)0.4412 (2)0.0216
C430.1205 (3)0.9967 (2)0.2565 (2)0.0189
C440.2809 (3)0.9847 (2)0.2533 (2)0.0212
C450.3232 (3)1.0805 (3)0.2895 (2)0.0264
C460.2078 (3)1.1884 (3)0.3291 (2)0.0277
C470.0476 (3)1.2019 (2)0.3324 (2)0.0243
C480.0055 (3)1.1064 (2)0.2959 (2)0.0209
H410.59740.84440.10910.0220*
H610.27950.72050.08950.0305*
H710.21130.64640.24490.0358*
H810.32360.68700.44640.0453*
H910.50920.79470.48480.0425*
H1010.58340.86200.32680.0343*
H1110.26800.99670.07690.0261*
H1120.40901.01740.02310.0257*
H1210.29821.21490.21680.0438*
H1220.32131.10640.29280.0436*
H1230.47341.11610.24300.0437*
H1410.56500.43890.17580.0280*
H1510.55050.24860.35380.0328*
H1610.60240.23560.56240.0404*
H1710.66280.41390.59620.0414*
H1810.68840.60260.41730.0270*
H2010.99260.62450.16700.0274*
H2111.22680.49210.08520.0351*
H2211.20680.37690.05540.0433*
H2310.95370.39610.11870.0442*
H2410.72510.52730.03810.0319*
H2810.10331.14850.03350.0213*
H3010.03821.21040.18550.0287*
H3110.01761.15930.37710.0337*
H3210.03040.96850.40400.0327*
H3310.12830.82490.23320.0317*
H3410.18560.87930.04200.0267*
H3520.40111.11470.03180.0272*
H3510.36271.21110.10160.0271*
H3620.52271.37610.08670.0432*
H3610.41241.28550.17010.0425*
H3630.34661.37300.11330.0432*
H3810.25880.56800.34280.0238*
H3910.24750.38490.52790.0309*
H4010.03610.43870.66280.0323*
H4110.16040.68000.60710.0306*
H4210.15080.86030.41750.0247*
H4410.36060.91010.22670.0238*
H4510.42861.07310.28560.0318*
H4610.23601.25290.35330.0341*
H4710.03041.27560.35810.0302*
H4810.10121.11420.29880.0256*
H2710.169 (2)0.907 (2)0.159 (2)0.0223 (19)*
H310.417 (2)0.746 (2)0.0763 (17)0.0229 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0160 (2)0.0161 (2)0.0131 (2)0.0080 (2)0.00316 (19)0.00467 (19)
O20.0189 (7)0.0201 (7)0.0238 (8)0.0108 (6)0.0052 (6)0.0110 (6)
N30.0187 (9)0.0216 (9)0.0146 (8)0.0111 (7)0.0048 (7)0.0032 (7)
C40.0205 (11)0.0233 (10)0.0133 (10)0.0131 (9)0.0033 (8)0.0029 (8)
C50.0182 (10)0.0200 (10)0.0175 (10)0.0056 (8)0.0008 (8)0.0034 (8)
C60.0256 (12)0.0231 (11)0.0242 (11)0.0097 (10)0.0016 (9)0.0064 (9)
C70.0285 (13)0.0254 (12)0.0378 (14)0.0069 (10)0.0096 (11)0.0114 (11)
C80.0388 (16)0.0336 (14)0.0335 (14)0.0003 (12)0.0143 (12)0.0176 (12)
C90.0352 (15)0.0427 (15)0.0233 (12)0.0044 (12)0.0001 (11)0.0170 (11)
C100.0258 (12)0.0350 (13)0.0194 (11)0.0093 (10)0.0028 (9)0.0083 (10)
C110.0272 (12)0.0213 (11)0.0186 (11)0.0121 (9)0.0014 (9)0.0040 (9)
C120.0397 (14)0.0233 (12)0.0225 (12)0.0141 (11)0.0003 (10)0.0001 (10)
C130.0144 (10)0.0177 (10)0.0171 (10)0.0054 (8)0.0031 (8)0.0051 (8)
C140.0205 (11)0.0238 (11)0.0248 (11)0.0097 (9)0.0071 (9)0.0079 (9)
C150.0253 (12)0.0183 (11)0.0378 (14)0.0108 (9)0.0103 (10)0.0042 (10)
C160.0266 (12)0.0243 (12)0.0279 (13)0.0050 (10)0.0102 (10)0.0060 (10)
C170.0347 (14)0.0377 (14)0.0159 (11)0.0096 (11)0.0062 (10)0.0002 (10)
C180.0272 (12)0.0258 (11)0.0187 (11)0.0090 (10)0.0015 (9)0.0081 (9)
C190.0165 (10)0.0156 (9)0.0161 (10)0.0077 (8)0.0061 (8)0.0042 (8)
C200.0228 (11)0.0210 (11)0.0228 (11)0.0086 (9)0.0035 (9)0.0059 (9)
C210.0209 (12)0.0276 (12)0.0373 (14)0.0124 (10)0.0089 (10)0.0073 (11)
C220.0331 (14)0.0324 (14)0.0502 (17)0.0149 (11)0.0257 (13)0.0216 (13)
C230.0477 (17)0.0424 (15)0.0403 (15)0.0287 (13)0.0258 (13)0.0298 (13)
C240.0326 (13)0.0336 (13)0.0270 (12)0.0223 (11)0.0116 (10)0.0171 (10)
P250.0168 (3)0.0172 (2)0.0135 (2)0.0086 (2)0.00278 (19)0.00540 (19)
O260.0208 (8)0.0215 (7)0.0173 (7)0.0112 (6)0.0044 (6)0.0068 (6)
N270.0201 (9)0.0207 (9)0.0179 (9)0.0133 (8)0.0021 (7)0.0043 (7)
C280.0222 (11)0.0156 (10)0.0183 (10)0.0091 (8)0.0003 (8)0.0026 (8)
C290.0162 (10)0.0167 (9)0.0192 (10)0.0068 (8)0.0006 (8)0.0030 (8)
C300.0288 (12)0.0226 (11)0.0233 (11)0.0142 (10)0.0007 (10)0.0040 (9)
C310.0291 (12)0.0342 (13)0.0165 (10)0.0147 (11)0.0007 (9)0.0002 (9)
C320.0240 (12)0.0327 (13)0.0183 (11)0.0056 (10)0.0000 (9)0.0073 (10)
C330.0259 (12)0.0293 (12)0.0250 (12)0.0125 (10)0.0028 (10)0.0120 (10)
C340.0226 (11)0.0250 (11)0.0201 (11)0.0132 (9)0.0042 (9)0.0069 (9)
C350.0237 (12)0.0228 (11)0.0259 (12)0.0096 (9)0.0015 (9)0.0099 (9)
C360.0240 (12)0.0218 (11)0.0359 (14)0.0056 (10)0.0056 (10)0.0058 (10)
C370.0187 (10)0.0215 (10)0.0152 (9)0.0113 (8)0.0000 (8)0.0075 (8)
C380.0201 (11)0.0220 (11)0.0181 (10)0.0091 (9)0.0040 (8)0.0070 (9)
C390.0303 (13)0.0199 (11)0.0216 (11)0.0085 (10)0.0028 (9)0.0012 (9)
C400.0331 (13)0.0263 (12)0.0170 (10)0.0155 (10)0.0023 (10)0.0005 (9)
C410.0258 (12)0.0318 (12)0.0199 (11)0.0125 (10)0.0078 (9)0.0087 (9)
C420.0230 (11)0.0224 (11)0.0200 (11)0.0096 (9)0.0032 (9)0.0076 (9)
C430.0221 (11)0.0182 (10)0.0142 (9)0.0069 (8)0.0026 (8)0.0047 (8)
C440.0200 (11)0.0258 (11)0.0198 (11)0.0115 (9)0.0025 (9)0.0074 (9)
C450.0259 (12)0.0289 (12)0.0321 (13)0.0177 (10)0.0013 (10)0.0117 (10)
C460.0379 (14)0.0257 (12)0.0261 (12)0.0186 (11)0.0003 (10)0.0093 (10)
C470.0296 (13)0.0207 (11)0.0238 (11)0.0089 (9)0.0038 (9)0.0108 (9)
C480.0226 (11)0.0220 (10)0.0187 (10)0.0112 (9)0.0035 (9)0.0055 (8)
Geometric parameters (Å, º) top
P1—O21.4846 (15)P25—O261.4933 (15)
P1—N31.6367 (19)P25—N271.6426 (19)
P1—C131.802 (2)P25—C371.808 (2)
P1—C191.808 (2)P25—C431.797 (2)
N3—C41.474 (2)N27—C281.469 (3)
N3—H310.856 (16)N27—H2710.841 (16)
C4—C51.517 (3)C28—C291.524 (3)
C4—C111.532 (3)C28—C351.538 (3)
C4—H410.980C28—H2810.988
C5—C61.391 (3)C29—C301.391 (3)
C5—C101.391 (3)C29—C341.386 (3)
C6—C71.383 (3)C30—C311.391 (3)
C6—H610.948C30—H3010.944
C7—C81.383 (4)C31—C321.378 (4)
C7—H710.953C31—H3110.951
C8—C91.380 (4)C32—C331.390 (3)
C8—H810.950C32—H3210.961
C9—C101.389 (4)C33—C341.392 (3)
C9—H910.940C33—H3310.952
C10—H1010.936C34—H3410.945
C11—C121.520 (3)C35—C361.527 (3)
C11—H1110.980C35—H3520.986
C11—H1120.967C35—H3510.982
C12—H1210.975C36—H3620.968
C12—H1220.977C36—H3610.975
C12—H1230.971C36—H3630.972
C13—C141.393 (3)C37—C381.390 (3)
C13—C181.395 (3)C37—C421.397 (3)
C14—C151.390 (3)C38—C391.391 (3)
C14—H1410.938C38—H3810.941
C15—C161.387 (4)C39—C401.387 (3)
C15—H1510.928C39—H3910.945
C16—C171.379 (4)C40—C411.387 (3)
C16—H1610.934C40—H4010.952
C17—C181.392 (3)C41—C421.387 (3)
C17—H1710.949C41—H4110.937
C18—H1810.940C42—H4210.929
C19—C201.399 (3)C43—C441.406 (3)
C19—C241.387 (3)C43—C481.392 (3)
C20—C211.383 (3)C44—C451.389 (3)
C20—H2010.967C44—H4410.950
C21—C221.379 (4)C45—C461.382 (4)
C21—H2110.951C45—H4510.925
C22—C231.391 (4)C46—C471.398 (4)
C22—H2210.933C46—H4610.932
C23—C241.384 (3)C47—C481.388 (3)
C23—H2310.942C47—H4710.933
C24—H2410.925C48—H4810.935
O2—P1—N3119.94 (9)O26—P25—N27119.61 (9)
O2—P1—C13111.80 (9)O26—P25—C37109.99 (9)
N3—P1—C13102.43 (10)N27—P25—C37102.69 (10)
O2—P1—C19110.23 (9)O26—P25—C43110.87 (9)
N3—P1—C19105.15 (10)N27—P25—C43104.84 (10)
C13—P1—C19106.21 (9)C37—P25—C43108.07 (10)
P1—N3—C4120.91 (14)P25—N27—C28122.16 (15)
P1—N3—H31113.3 (12)P25—N27—H271114.1 (12)
C4—N3—H31114.3 (12)C28—N27—H271115.3 (12)
N3—C4—C5110.46 (17)N27—C28—C29114.02 (17)
N3—C4—C11110.64 (17)N27—C28—C35107.53 (17)
C5—C4—C11113.02 (18)C29—C28—C35111.51 (18)
N3—C4—H41108.1N27—C28—H281108.1
C5—C4—H41106.1C29—C28—H281106.9
C11—C4—H41108.3C35—C28—H281108.7
C4—C5—C6121.51 (19)C28—C29—C30121.5 (2)
C4—C5—C10119.7 (2)C28—C29—C34120.35 (19)
C6—C5—C10118.8 (2)C30—C29—C34118.2 (2)
C5—C6—C7120.4 (2)C29—C30—C31121.3 (2)
C5—C6—H61120.3C29—C30—H301119.1
C7—C6—H61119.3C31—C30—H301119.5
C6—C7—C8120.3 (3)C30—C31—C32119.9 (2)
C6—C7—H71119.1C30—C31—H311119.8
C8—C7—H71120.5C32—C31—H311120.3
C7—C8—C9119.8 (2)C31—C32—C33119.6 (2)
C7—C8—H81120.9C31—C32—H321119.7
C9—C8—H81119.2C33—C32—H321120.7
C8—C9—C10120.0 (2)C32—C33—C34120.1 (2)
C8—C9—H91120.5C32—C33—H331119.6
C10—C9—H91119.5C34—C33—H331120.2
C5—C10—C9120.6 (3)C33—C34—C29120.9 (2)
C5—C10—H101120.0C33—C34—H341119.7
C9—C10—H101119.4C29—C34—H341119.3
C4—C11—C12113.76 (19)C28—C35—C36113.74 (19)
C4—C11—H111107.7C28—C35—H352108.0
C12—C11—H111110.6C36—C35—H352109.3
C4—C11—H112108.3C28—C35—H351107.8
C12—C11—H112109.8C36—C35—H351108.2
H111—C11—H112106.4H352—C35—H351109.8
C11—C12—H121110.4C35—C36—H362110.1
C11—C12—H122110.6C35—C36—H361109.1
H121—C12—H122108.0H362—C36—H361108.1
C11—C12—H123111.5C35—C36—H363111.5
H121—C12—H123109.3H362—C36—H363110.1
H122—C12—H123106.9H361—C36—H363107.8
P1—C13—C14121.84 (17)P25—C37—C38117.22 (16)
P1—C13—C18118.28 (17)P25—C37—C42123.28 (17)
C14—C13—C18119.8 (2)C38—C37—C42119.5 (2)
C13—C14—C15120.0 (2)C37—C38—C39120.3 (2)
C13—C14—H141120.4C37—C38—H381120.1
C15—C14—H141119.6C39—C38—H381119.6
C14—C15—C16119.9 (2)C38—C39—C40120.0 (2)
C14—C15—H151120.2C38—C39—H391118.8
C16—C15—H151119.9C40—C39—H391121.2
C15—C16—C17120.3 (2)C39—C40—C41119.9 (2)
C15—C16—H161120.3C39—C40—H401120.1
C17—C16—H161119.4C41—C40—H401120.1
C16—C17—C18120.2 (2)C40—C41—C42120.4 (2)
C16—C17—H171119.2C40—C41—H411120.9
C18—C17—H171120.5C42—C41—H411118.7
C13—C18—C17119.7 (2)C37—C42—C41119.9 (2)
C13—C18—H181119.8C37—C42—H421118.8
C17—C18—H181120.5C41—C42—H421121.3
P1—C19—C20119.48 (17)P25—C43—C44118.93 (17)
P1—C19—C24121.36 (18)P25—C43—C48122.26 (18)
C20—C19—C24119.1 (2)C44—C43—C48118.8 (2)
C19—C20—C21120.8 (2)C43—C44—C45120.2 (2)
C19—C20—H201118.2C43—C44—H441119.6
C21—C20—H201121.0C45—C44—H441120.1
C20—C21—C22119.6 (2)C44—C45—C46120.3 (2)
C20—C21—H211119.4C44—C45—H451119.7
C22—C21—H211120.9C46—C45—H451120.0
C21—C22—C23120.1 (2)C45—C46—C47120.1 (2)
C21—C22—H221119.2C45—C46—H461120.4
C23—C22—H221120.7C47—C46—H461119.5
C22—C23—C24120.3 (2)C46—C47—C48119.6 (2)
C22—C23—H231120.7C46—C47—H471120.0
C24—C23—H231119.1C48—C47—H471120.4
C19—C24—C23120.1 (2)C43—C48—C47121.0 (2)
C19—C24—H241119.9C43—C48—H481119.0
C23—C24—H241120.0C47—C48—H481120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N27—H271···O2i0.842.082.923 (4)176 (2)
N3—H31···O260.861.972.817 (4)173 (2)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors appreciatively acknowledge the Cambridge Crystallographic Data Centre for access to CSD Enterprise. Crystallography used the CzechNanoLab Research Infrastructure supported by MEYS CR (project LM2023051). Authors' contributions are as follows: Conceptualization, MP, FE and FS; methodology, FE, MP and FS; X-ray crystallography, MD and ES; investigation, FE and MP; writing (original draft), MP; writing (review and editing of the manuscript), MP, MD and ES; visualization, MP and ES; funding acquisition, FE and SB; resources, MD, ES, FE, FS and SB; supervision, MP, FS and SB.

References

First citationAhmadabad, F. K., Pourayoubi, M. & Bakhshi, H. (2019). J. Appl. Polym. Sci. 136, 48034.  Web of Science CrossRef Google Scholar
First citationAkbari, S., Khoshnood, R. S., Ahmadabad, F. K., Pourayoubi, M., Dušek, M. & Shchegravina, E. S. (2019). RSC Adv. 9, 9153–9159.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCorbridge, D. E. C. (2000). In Phosphorus 2000: Chemistry, Biochemistry & Technology, First ed. Amsterdam: Elsevier.  Google Scholar
First citationCranwell, P. B., Hiscock, J. R., Haynes, C. J. E., Light, M. E., Wells, N. J. & Gale, P. A. (2013). Chem. Commun. 49, 874–876.  Web of Science CSD CrossRef CAS Google Scholar
First citationFerentinos, E., Xu, M., Grigoropoulos, A., Bratsos, I., Raptopoulou, C. P., Psycharis, V., Jiang, S.-D. & Kyritsis, P. (2019). Inorg. Chem. Front. 6, 1405–1414.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHamzehee, F., Pourayoubi, M., Farhadipour, A. & Choquesillo-Lazarte, D. (2017). Phosphorus Sulfur Silicon, 192, 359–367.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlare, H., Neudörfl, J. M. & Goldfuss, B. (2014). Beilstein J. Org. Chem. 10, 224–236.  Web of Science CSD CrossRef PubMed Google Scholar
First citationLiao, K., Hu, X.-S., Zhu, R.-Y., Rao, R.-H., Yu, J.-S., Zhou, F. & Zhou, J. (2019). Chin. J. Chem. 37, 799–806.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNakayama, K. & Thompson, W. J. (1990). J. Am. Chem. Soc. 112, 6936–6942.  CSD CrossRef CAS Web of Science Google Scholar
First citationNguyen, C. & Kim, A. (2008). Macromol. Res. 16, 620–625.  Web of Science CrossRef CAS Google Scholar
First citationPalacios, F., Alonso, C. & de los Santos, J. M. (2005). Chem. Rev. 105, 899–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationRigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRohlíček, J. & Hušák, M. (2007). J. Appl. Cryst. 40, 600–601.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSabbaghi, F., Pourayoubi, M., Nečas, M. & Damodaran, K. (2019). Acta Cryst. C75, 77–84.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSabbaghi, F., Pourayoubi, M., Negari, M. & Nečas, M. (2011). Acta Cryst. E67, o2512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSweeney, J. B., Cantrill, A. A., Drew, M. G. B., McLaren, A. B. & Thobhani, S. (2006). Tetrahedron, 62, 3694–3703.  Web of Science CSD CrossRef CAS Google Scholar
First citationTaherzadeh, M., Pourayoubi, M., Vahdani Alviri, B., Shoghpour Bayraq, S., Ariani, M., Nečas, M., Dušek, M., Eigner, V., Amiri Rudbari, H., Bruno, G., Mancilla Percino, T., Leyva-Ramírez, M. A. & Damodaran, K. (2021). Acta Cryst. B77, 384–396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVahdani Alviri, B., Pourayoubi, M., Abdul Salam, A. A., Nečas, M., Lee, A. van der, Chithran, A. & Damodaran, K. (2020). Acta Cryst. C76, 104–116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, P., Douair, I., Zhao, Y., Wang, S., Zhu, J., Maron, L. & Zhu, C. (2021). Angew. Chem. Int. Ed. 60, 473–479.  Web of Science CSD CrossRef CAS Google Scholar
First citationWarren, T. K., Jordan, R., Lo, M. K., Ray, A. S., Mackman, R. L., Soloveva, V., Siegel, D., Perron, M., Bannister, R., Hui, H. C., Larson, N., Strickley, R., Wells, J., Stuthman, K. S., Van Tongeren, S. A., Garza, N. L., Donnelly, G., Shurtleff, A. C., Retterer, C. J., Gharaibeh, D., Zamani, R., Kenny, T., Eaton, B. P., Grimes, E., Welch, L. S., Gomba, L., Wilhelmsen, C. L., Nichols, D. K., Nuss, J. E., Nagle, E. R., Kugelman, J. R., Palacios, G., Doerffler, E., Neville, S., Carra, E., Clarke, M. O., Zhang, L., Lew, W., Ross, B., Wang, Q., Chun, K., Wolfe, L., Babusis, D., Park, Y., Stray, K. M., Trancheva, I., Feng, J. Y., Barauskas, O., Xu, Y., Wong, P., Braun, M. R., Flint, M., McMullan, L. K., Chen, S. S., Fearns, R., Swaminathan, S., Mayers, D. L., Spiropoulou, C. F., Lee, W. A., Nichol, S. T., Cihlar, T. & Bavari, S. (2016). Nature, 531, 381–385.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWatkin, D. J. & Cooper, R. I. (2016). Acta Cryst. B72, 661–683.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2013). CrystalExplorer. The University of Western Australia. https://crystalexplorer.scb.uwa.edu.au/Google Scholar
First citationYin, L., Kanai, M. & Shibasaki, M. (2009). J. Am. Chem. Soc. 131, 9610–9611.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, Y., Jia, A.-Q., Zhang, J.-J., Xin, Z. & Zhang, Q.-F. (2019). J. Coord. Chem. 72, 1036–1048.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds