research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, structure and Hirshfeld surface analysis of a coordination compound of cadmium acetate with 2-amino­benzoxazole

crossmark logo

aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent 100174, Uzbekistan, bInstitute of General and Inorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str 77a, Tashkent 100170, Uzbekistan, cInstitute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudosok korutja, H-1117 Budapest, Hungary, and dInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str 83, Tashkent 100125, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru

Edited by J. Reibenspies, Texas A & M University, USA (Received 8 August 2023; accepted 22 August 2023; online 30 August 2023)

A first coordination compound of 2-amino­benzoxazole (2AB), namely, bis­(2-amino­benzoxazole-κN3)bis­(acetato-κ2O,O′)cadmium(II), [Cd(CH3COO)2(2AB)2], has been synthesized from ethanol solutions of Cd(CH3(COO)2 and 2AB. In the monoclinic crystals with the space group C21/c, the cadmium ions coordinate two neutral 2AB mol­ecules in a monodentate fashion through the oxazole N atom, while two acetate ligands are coordinated through the O atoms in a bidentate manner. The coordination polyhedron of the central ion is substanti­ally distorted octa­hedral. There are two relatively strong intra­molecular hydrogen bonds in the complex mol­ecule. Additionally, two inter­molecular hydrogen bonds associate complex mol­ecules into columns running in the [1[\overline{1}]0] and [110] directions. The Hirshfeld surface analysis shows that 45.7% of the inter­molecular inter­actions are from H⋯H contacts, 24.7% are from O⋯H/H⋯O contacts and 18.8% are from C⋯H/H⋯C contacts, while other contributions are from N⋯H/H⋯N and O⋯O contacts.

1. Chemical context

Benzoxazole is an aromatic organic compound with a ben­zene-fused oxazole ring structure and an odour similar to pyridine (Katritzky et al., 2000[Katritzky, A. R. & Pozharskii, A. F. (2000). In Handbook of Heterocyclic Chemistry, 2nd ed. New York: Academic Press.]; Clayden et al., 2001[Clayden, J., Greeves, N., Warren, S. & Wothers, P. (2001). In Organic Chemistry. Oxford University Press.]). Although benzoxazole itself is of little practical inter­est, many benzoxazole derivatives are commercially important. They play an important role in medicinal and biological chemistry (Potashman et al., 2007[Potashman, M. H., Bready, J., Coxon, A., DeMelfi, T. M., DiPietro, L., Doerr, N., Elbaum, D., Estrada, J., Gallant, P., Germain, J., Gu, Y., Harmange, J. C., Kaufman, S. A., Kendall, R., Kim, J. L., Kumar, G. N., Long, A. M., Neervannan, S., Patel, V. F., Polverino, A., Rose, P., van der Plas, S., Whittington, D., Zanon, R. & Zhao, H. (2007). J. Med. Chem. 50, 4351-4373.]; Lachtova et al., 2018[Lachtova, V. & Brulikova, L. (2018). ChemistrySelect, 3, 4653-4662.]; Razzoqova et al., 2022[Razzoqova, S., Torambetov, B., Amanova, M., Kadirova, S., Ibragimov, A. & Ashurov, J. (2022). Acta Cryst. E78, 1277-1283.]), being described as potential therapeutic agents, including as various enzyme inhibitors (Chikhale et al., 2018[Chikhale, R., Thorat, S., Choudhary, R. K., Gadewal, N. & Khedekar, P. (2018). Bioorg. Chem. 77, 84-100.]). Amino­benzoxazoles, in particular derivatives of 2-amino­benzoxazole (2AB), have anti­cancer and anti­bacterial properties (Khajondetchairit et al., 2017[Khajondetchairit, P., Phuangsawai, O., Suphakun, P., Rattanabunyong, S., Choowongkomon, K. & Gleeson, M. P. (2017). Chem. Biol. Drug Des. 90, 987-994.]; Ouyang et al., 2012[Ouyang, L., Huang, Y., Zhao, Y., He, G., Xie, Y., Liu, J., He, J., Liu, B. & Wei, Y. (2012). Bioorg. Med. Chem. Lett. 22, 3044-3049.]). The 2-amino-5-chloro­benzoxazole derivative is a muscle relaxant and it has been used as an anti­spasmodic and uricosurics drug (Lynch, 2004[Lynch, D. E. (2004). Acta Cryst. E60, 1715-1716.]).

An analysis of the Cambridge Structural Database (CSD, Version 5.43, update of March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) showed that there are no X-ray structures of 2AB and its metal complexes in the database. However, recently, we reported the structure and inter­molecular inter­actions of a 2AB–fumaric acid organic salt in which the N atom of 2AB is protonated by a fumaric acid H atom (Razzoqova et al., 2022[Razzoqova, S., Torambetov, B., Amanova, M., Kadirova, S., Ibragimov, A. & Ashurov, J. (2022). Acta Cryst. E78, 1277-1283.]). Theoretically, metal complexes of 2AB may involve coordination through the N or O atoms of the oxazole ring and the N atom of the amino substituent. In order to define which way these possibilities will be realized, we have prepared a coordination complex of 2AB with cadmium and report here its mol­ecular and crystal structure, as well as a Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The structure of [Cd2+(CH3COO)2(2AB)2] is shown in Fig. 1[link]. The metal complex was obtained using the Cd(CH3COO)2 salt for the synthesis. The CdII ion coordinates two 2AB mol­ecules through the oxazole N atom in a monodentate fashion. Furthermore, in order to compensate the positive charge of the central atom, two acetate ligands are coordinated in a bidentate manner through the O atoms. Despite the large ionic radius of the Cd atom, the coordination number of the central atom is six, in contrast to, for example, coordination numbers of four or eight in some mixed-ligand cadmium complexes (Kudiyarova et al., 2021[Kudiyarova, A. D., Ashurov, J. M., Ibragimov, A. B., Sabirov, V. K. & Ibragimov, B. T. (2021). Chem. Data Collect. 31, 100633.]; Ibragimov et al., 2017a[Ibragimov, A. B., Ashurov, Zh. M. & Zakirov, B. S. (2017a). J. Struct. Chem. 58, 588-590.]). The two 2AB ligands and the two acetate ions are coordinated to the Cd centre in a cis arrangement. The bond lengths of the Cd ion are in the range 2.269 (2)–2.400 (2) Å, while the bond angles vary from 53.35 (8) to 139.71 (8)°. Such a large difference in the valence distances and angles leads to a significant distortion of the octahedral coordination environment, caused by the acetate ligands acting as bidentate, with chelating angles of O3—Cd1—O4 = 53.57 (8)° and O5—Cd1—O6 = 53.35 (8)° of the cadmium polyhedron. The geo­metric parameters of the arene ring are similar to standard values and to those in other structures (Ibragimov et al., 2017b[Ibragimov, A. B., Ashurov, Zh. M., Ibragimov, A. B. & Zakirov, B. S. (2017b). Russ. J. Inorg. Chem. 62, 439-445.]; Ruzmetov et al., 2022[Ruzmetov, A., Ibragimov, A., Ashurov, J., Boltaeva, Z., Ibragimov, B. & Usmanov, S. (2022). Acta Cryst. E78, 660-664.]). In the 2AB mol­ecules, all the atoms are located on a plane, with the greatest r.m.s. deviations from the main planes seen for the amino atoms N2 (0.017 Å) and N4 (0.026 Å). The dihedral angle between the mean planes of the 2AB mol­ecules around the cadmium polyhedron is 65.59°. The positions of the ligands allow the formation of two relatively strong intra­molecular hydrogen bonds in the complex mol­ecule: in particular, the amino groups N2H2 and N4H2 form hydrogen bonds with the nearest O atoms, O5 and O3, of the coordinated acetates, with distances of 2.762 (4) and 2.790 (4) Å, respectively (Table 1[link]). These hydrogen bonds enclose six-membered rings with S(6) graph-set notations (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5 0.86 1.95 2.762 (4) 157
N2—H2B⋯O4i 0.86 2.04 2.811 (3) 149
N4—H4A⋯O3 0.86 1.99 2.790 (4) 155
N4—H4B⋯O6ii 0.86 2.04 2.803 (3) 148
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title complex with the atom-numbering scheme. Intra­molecular hydrogen bonds are indicated by dashed lines. Displacement ellipsoids are plotted at the 30% probability level.

3. Supra­molecular features

There are two proton-donor hydrogen-bonding groups in the complex mol­ecule, i.e. N2—H2 and N4—H4. Both of these groups realize their hydrogen-bonding capabilities by forming intra­molecular N2—H2A⋯O5 and N4—H4A⋯O3 (first two hydrogen bonds in Table 1[link]), and two inter­molecular N2—H2B⋯O4i and N4—H4B⋯O6ii hydrogen bonds (the remaining two hydrogen bonds in Table 1[link]). These inter­molecular hydrogen bonds between the N atoms of the amino groups and the O atoms of the acetate carboxyl­ate groups associate complex mol­ecules into columns running in the [1[\overline{1}]0] and [110] directions (Fig. 2[link]). The interaction energies of the hydrogen-bond system were calculated within the mol­ecules using the HF method (HF/3-21G) in the CrystalExplorer17 program (Fig. 3[link]). The result shows the total energy (Etot), which is the sum of the Coulombic (Eele), polar (Epol), dispersion (Edis) and repulsive (Erep) contributions. The four energy components were scaled in the total energy (Etot = 1.019Eele + 0651Epol + 0901Edis + 0.811Erep). The inter­action energies were investigated for a 3.8 Å cluster around the reference mol­ecule. The calculation reveals two stronger inter­actions within the neighbouring mol­ecules. The strongest inter­action total energy (Etot) is −113.4 kJ mol−1 (∼ −27 kcal mol−1), with the highest polar (−32.5 kJ mol−1), dispersion (−51.3 kJ mol−1) and repulsive (68.1 kJ mol−1) energies (green–yellow). The second inter­action among neighbouring mol­ecules is similar to the first, with Etot = −97.2 kJ mol−1. The main attractive inter­actions (Coulombic, dispersion and the sum total energy) show a stronger bonding effect along the crystallographic a direction (Fig. 3[link]).

[Figure 2]
Figure 2
The formation of columns by hydrogen bonds in the crystal structure of the title complex. Generic atom labels without symmetry codes have been used.
[Figure 3]
Figure 3
Inter­action energy calculations within the mol­ecules was performed using the HF method (HF/3-21G) in the CrystalExplorer17 program. The thickness of the tube represents the value of the energy. The distribution of the inter­actions according to type shows strong inter­actions along the crystallographic a direction (the largest values are represented here). The total energy framework (in blue) and its two main components, dispersion (in green) and Coulombic energy (in red), are shown for a cluster around a reference molecule. also exhibit stronger interactions along the crystallographic a direction.

4. Hirshfeld surface analysis

To further investigate the inter­molecular inter­actions present in the title compound, a Hirshfeld surface analysis was performed, and the two-dimensional (2D) fingerprint plots were generated with CrystalExplorer17 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 4[link] shows the three-dimensional (3D) Hirshfeld surface of the complex with dnorm (normalized contact distance) plotted over the range from −0.6027 to 1.5939 a.u. The hydrogen-bond inter­actions given in Table 1[link] play a key role in the mol­ecular packing of the complex. The overall 2D fingerprint plot and those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C, N⋯H/H⋯N and O⋯O inter­actions, are shown in Fig. 5[link]. The percentage contributions to the Hirshfeld surfaces from the various inter­atomic contacts are as follows: H⋯H 45.7%, O⋯H/H⋯O 24.7%, C⋯H/H⋯C 18.8%, N⋯H/H⋯N 4.3% and O⋯O 2.5%. Other minor contributions to the Hirshfeld surface are: C⋯C 2.4% and O⋯C/C⋯O 1.6%.

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the complex plotted over dnorm in the range from −0.6027 to 1.5939 a.u.
[Figure 5]
Figure 5
The full 2D fingerprint plots for the title complex, showing all inter­actions and delineated into separate inter­actions. The di and de values are the closest inter­nal and external distances (Å) from given points on the Hirshfeld surface contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, update of March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for free 2AB and its metal complexes gave no hits. Cadmium(II) acetate complexes of the general formula [Cd(OAc)2L2], where cadmium is hexa­coordinated, the acetate ligand is attached to cadmium in a bidentate manner and L is a monodentate ligand with a ligator N atom, have been reported in the CSD with refcodes ODONEC (Ma et al., 2012[Ma, W.-X., Qian, B.-H. & Ge, H.-Y. (2012). Asian J. Chem. 24, 3504-3506.]), ODONEC01 (Yan et al., 2014[Yan, X., Fan, Y., Bi, C., Zhang, X., Zuo, J., Zhang, P. & Zhang, Z. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 603-610.]), PIBMIX (Zhao et al., 2007[Zhao, X.-J., Li, J., Ding, B., Wang, X.-G. & Yang, E.-C. (2007). Inorg. Chem. Commun. 10, 605-609.]), TICDOY (Chotalia et al., 1996[Chotalia, R., Hambley, T. W., Ridley, D. D. & Turner, P. (1996). Acta Cryst. C52, 3043-3045.]), TICMID (Hei et al., 2013[Hei, J.-H., Zhi, Y.-X., Zhen, Y., Li, J. & Zhang, F.-X. (2013). J. Coord. Chem. 66, 1320-1329.]) and UGOPOX (Liu et al., 2015[Liu, Y., Wang, D., Zheng, X.-J. & Jin, L.-P. (2015). RSC Adv. 5, 36987-36992.]).

6. Synthesis and crystallization

Cd(CH3COO)2·2H2O (0.266 g, 1 mmol) and 2AB (0.268 g, 2 mmol) were dissolved separately in ethanol (5 ml), mixed together and stirred for 1.5 h. The obtained colourless solution was filtered and left for crystallization. Single crystals of the title complex suitable for X-ray analysis were obtained by slow evaporation of the solution over a period of 10 d.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms of the acetate methyl groups were placed in calculated positions and refined in the riding-model approximation, with Uiso(H) = 1.5Ueq(C) and C—H = 0.96 Å. The remaining H atoms were located experimentally and refined freely.

Table 2
Experimental details

Crystal data
Chemical formula [Cd(C2H3O2)2(C7H6N2O)2]
Mr 498.76
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 25.0497 (3), 9.8428 (1), 16.7577 (2)
β (°) 94.534 (1)
V3) 4118.83 (8)
Z 8
Radiation type Cu Kα
μ (mm−1) 8.87
Crystal size (mm) 0.17 × 0.14 × 0.12
 
Data collection
Diffractometer Rigaku XtaLAB Synergy diffrac­tometer with a HyPix3000 detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.793, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11316, 3971, 3434
Rint 0.030
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.078, 1.05
No. of reflections 3971
No. of parameters 265
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.59
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(2-aminobenzoxazole-κN3)bis(acetato-κ2O,O')cadmium(II) top
Crystal data top
[Cd(C2H3O2)2(C7H6N2O)2]F(000) = 2000
Mr = 498.76Dx = 1.609 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 25.0497 (3) ÅCell parameters from 6254 reflections
b = 9.8428 (1) Åθ = 3.5–70.8°
c = 16.7577 (2) ŵ = 8.87 mm1
β = 94.534 (1)°T = 293 K
V = 4118.83 (8) Å3Block, colourless
Z = 80.17 × 0.14 × 0.12 mm
Data collection top
Rigaku XtaLAB Synergy
diffractometer with a HyPix3000 detector
3971 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3434 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.0000 pixels mm-1θmax = 71.2°, θmin = 3.5°
ω scansh = 3030
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2020)
k = 1211
Tmin = 0.793, Tmax = 1.000l = 2020
11316 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.4924P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max = 0.002
S = 1.05Δρmax = 0.26 e Å3
3971 reflectionsΔρmin = 0.59 e Å3
265 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.000082 (13)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.62410 (2)0.36216 (2)0.51980 (2)0.05241 (10)
O10.73371 (8)0.0598 (2)0.64662 (14)0.0683 (6)
O20.47350 (9)0.2945 (3)0.63959 (16)0.0769 (7)
N10.67802 (9)0.2252 (2)0.60113 (14)0.0537 (6)
O60.59362 (9)0.3834 (3)0.38471 (16)0.0791 (7)
O40.68374 (9)0.5447 (2)0.52681 (17)0.0789 (7)
N30.54967 (9)0.2942 (3)0.57764 (16)0.0572 (6)
N20.72228 (10)0.0877 (3)0.51189 (17)0.0642 (7)
H2A0.7076450.1265000.4696750.077*
H2B0.7445850.0222330.5075140.077*
O30.60454 (10)0.5914 (3)0.5565 (2)0.0996 (10)
O50.66139 (11)0.2548 (3)0.40824 (15)0.0948 (9)
C150.65104 (13)0.6280 (3)0.5472 (2)0.0578 (7)
C10.71057 (11)0.1285 (3)0.5831 (2)0.0528 (7)
N40.50825 (10)0.5006 (3)0.6106 (2)0.0821 (9)
H4A0.5324760.5508050.5919870.099*
H4B0.4815050.5373240.6314540.099*
C170.62821 (12)0.3087 (3)0.36070 (19)0.0600 (7)
C70.67858 (11)0.2219 (3)0.68508 (18)0.0574 (7)
C90.53519 (12)0.1592 (3)0.5921 (2)0.0613 (8)
C20.71305 (13)0.1203 (4)0.7127 (2)0.0678 (9)
C80.51215 (13)0.3665 (3)0.6070 (2)0.0636 (8)
C140.48834 (14)0.1591 (4)0.6302 (2)0.0718 (9)
C160.66689 (16)0.7730 (3)0.5600 (2)0.0842 (11)
H16A0.7049720.7815170.5584710.126*
H16B0.6566630.8027610.6111890.126*
H16C0.6492320.8280000.5186100.126*
C60.65278 (14)0.3000 (4)0.7383 (2)0.0777 (10)
H60.6293530.3692510.7212140.093*
C100.55866 (14)0.0371 (4)0.5755 (3)0.0810 (11)
H100.5903960.0338440.5502750.097*
C110.53352 (16)0.0804 (4)0.5975 (3)0.0931 (13)
H110.5482540.1641670.5858470.112*
C130.46251 (17)0.0455 (5)0.6528 (3)0.0977 (13)
H130.4305760.0494230.6775240.117*
C180.63098 (17)0.2827 (5)0.2729 (2)0.0957 (13)
H18A0.6472140.1957770.2653970.144*
H18B0.6520230.3523410.2503570.144*
H18C0.5954680.2833980.2467540.144*
C30.72412 (17)0.0889 (6)0.7912 (3)0.1035 (15)
H30.7475410.0194340.8079370.124*
C50.66360 (17)0.2699 (6)0.8190 (2)0.1001 (14)
H50.6469810.3204910.8568010.120*
C120.48703 (18)0.0764 (5)0.6365 (3)0.1025 (15)
H120.4718210.1573330.6521360.123*
C40.6980 (2)0.1678 (6)0.8445 (3)0.1133 (18)
H40.7040060.1510020.8990450.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04847 (14)0.04693 (14)0.06296 (15)0.00942 (8)0.01144 (9)0.00134 (9)
O10.0585 (12)0.0626 (14)0.0837 (16)0.0146 (10)0.0057 (11)0.0158 (12)
O20.0578 (13)0.0723 (16)0.1046 (19)0.0008 (11)0.0321 (12)0.0026 (14)
N10.0502 (12)0.0513 (14)0.0604 (14)0.0101 (11)0.0094 (10)0.0017 (12)
O60.0599 (13)0.0937 (18)0.0844 (17)0.0208 (12)0.0096 (12)0.0112 (14)
O40.0608 (13)0.0584 (13)0.119 (2)0.0111 (11)0.0163 (12)0.0188 (14)
N30.0455 (12)0.0487 (13)0.0788 (17)0.0061 (11)0.0131 (11)0.0024 (13)
N20.0586 (14)0.0593 (15)0.0760 (18)0.0178 (13)0.0130 (12)0.0037 (14)
O30.0752 (16)0.0610 (14)0.170 (3)0.0079 (13)0.0582 (17)0.0258 (17)
O50.1068 (19)0.105 (2)0.0710 (16)0.0516 (17)0.0018 (14)0.0074 (15)
C150.0681 (19)0.0468 (16)0.0608 (18)0.0067 (14)0.0200 (15)0.0019 (13)
C10.0418 (14)0.0471 (15)0.0697 (19)0.0016 (12)0.0069 (13)0.0049 (14)
N40.0599 (16)0.0578 (16)0.133 (3)0.0145 (13)0.0356 (16)0.0006 (18)
C170.0547 (16)0.0640 (19)0.0621 (18)0.0020 (15)0.0092 (14)0.0002 (16)
C70.0483 (15)0.0618 (18)0.0629 (18)0.0014 (14)0.0087 (13)0.0031 (16)
C90.0523 (17)0.0525 (18)0.079 (2)0.0005 (13)0.0049 (15)0.0044 (16)
C20.0567 (18)0.077 (2)0.070 (2)0.0027 (16)0.0054 (15)0.0133 (18)
C80.0509 (17)0.062 (2)0.080 (2)0.0074 (14)0.0151 (15)0.0054 (16)
C140.0602 (19)0.066 (2)0.090 (3)0.0000 (16)0.0145 (17)0.0017 (19)
C160.095 (3)0.052 (2)0.111 (3)0.0050 (18)0.042 (2)0.005 (2)
C60.071 (2)0.091 (3)0.072 (2)0.009 (2)0.0092 (17)0.007 (2)
C100.062 (2)0.058 (2)0.122 (3)0.0036 (16)0.0091 (19)0.001 (2)
C110.079 (3)0.055 (2)0.144 (4)0.0059 (19)0.005 (3)0.004 (2)
C130.077 (2)0.092 (3)0.127 (4)0.021 (2)0.027 (2)0.011 (3)
C180.105 (3)0.122 (4)0.061 (2)0.002 (3)0.016 (2)0.006 (2)
C30.089 (3)0.132 (4)0.088 (3)0.018 (3)0.001 (2)0.037 (3)
C50.092 (3)0.143 (4)0.067 (2)0.007 (3)0.013 (2)0.010 (3)
C120.091 (3)0.068 (3)0.149 (5)0.020 (2)0.016 (3)0.016 (3)
C40.094 (3)0.185 (6)0.062 (2)0.012 (3)0.008 (2)0.017 (3)
Geometric parameters (Å, º) top
Cd1—N12.282 (2)C17—C181.501 (5)
Cd1—O62.341 (3)C7—C21.377 (4)
Cd1—O42.333 (2)C7—C61.377 (4)
Cd1—N32.269 (2)C9—C141.380 (5)
Cd1—O32.399 (3)C9—C101.376 (5)
Cd1—O52.400 (2)C2—C31.358 (5)
Cd1—C152.732 (3)C14—C131.360 (5)
Cd1—C172.727 (3)C16—H16A0.9600
O1—C11.353 (4)C16—H16B0.9600
O1—C21.392 (4)C16—H16C0.9600
O2—C81.349 (4)C6—H60.9300
O2—C141.396 (4)C6—C51.389 (5)
N1—C11.304 (4)C10—H100.9300
N1—C71.406 (4)C10—C111.381 (5)
O6—C171.228 (4)C11—H110.9300
O4—C151.227 (4)C11—C121.380 (6)
N3—C91.404 (4)C13—H130.9300
N3—C81.306 (4)C13—C121.385 (6)
N2—H2A0.8600C18—H18A0.9600
N2—H2B0.8600C18—H18B0.9600
N2—C11.314 (4)C18—H18C0.9600
O3—C151.241 (4)C3—H30.9300
O5—C171.226 (4)C3—C41.386 (7)
C15—C161.492 (4)C5—H50.9300
N4—H4A0.8600C5—C41.369 (7)
N4—H4B0.8600C12—H120.9300
N4—C81.325 (4)C4—H40.9300
N1—Cd1—O6139.71 (8)O6—C17—C18120.8 (3)
N1—Cd1—O494.49 (8)O5—C17—Cd161.59 (18)
N1—Cd1—O3121.70 (11)O5—C17—O6120.4 (3)
N1—Cd1—O587.52 (8)O5—C17—C18118.8 (3)
N1—Cd1—C15109.79 (9)C18—C17—Cd1178.6 (3)
N1—Cd1—C17113.80 (9)C2—C7—N1108.0 (3)
O6—Cd1—O396.12 (10)C6—C7—N1131.9 (3)
O6—Cd1—O553.35 (8)C6—C7—C2120.1 (3)
O6—Cd1—C1597.73 (9)C14—C9—N3108.8 (3)
O6—Cd1—C1726.66 (8)C10—C9—N3132.2 (3)
O4—Cd1—O697.96 (10)C10—C9—C14119.1 (3)
O4—Cd1—O353.57 (8)C7—C2—O1107.8 (3)
O4—Cd1—O595.22 (10)C3—C2—O1127.8 (3)
O4—Cd1—C1526.57 (8)C3—C2—C7124.4 (4)
O4—Cd1—C1797.13 (10)N3—C8—O2115.3 (3)
N3—Cd1—N192.19 (9)N3—C8—N4128.1 (3)
N3—Cd1—O6102.90 (9)N4—C8—O2116.5 (3)
N3—Cd1—O4138.59 (9)C9—C14—O2107.2 (3)
N3—Cd1—O388.65 (9)C13—C14—O2128.1 (4)
N3—Cd1—O5125.90 (11)C13—C14—C9124.8 (4)
N3—Cd1—C15114.27 (9)C15—C16—H16A109.5
N3—Cd1—C17117.16 (9)C15—C16—H16B109.5
O3—Cd1—O5135.54 (11)C15—C16—H16C109.5
O3—Cd1—C1527.00 (9)H16A—C16—H16B109.5
O3—Cd1—C17117.15 (11)H16A—C16—H16C109.5
O5—Cd1—C15116.52 (11)H16B—C16—H16C109.5
O5—Cd1—C1726.69 (8)C7—C6—H6121.8
C17—Cd1—C15108.73 (10)C7—C6—C5116.5 (4)
C1—O1—C2104.4 (2)C5—C6—H6121.8
C8—O2—C14104.5 (2)C9—C10—H10121.1
C1—N1—Cd1130.1 (2)C9—C10—C11117.8 (4)
C1—N1—C7105.0 (2)C11—C10—H10121.1
C7—N1—Cd1124.74 (18)C10—C11—H11119.3
C17—O6—Cd194.5 (2)C12—C11—C10121.4 (4)
C15—O4—Cd195.2 (2)C12—C11—H11119.3
C9—N3—Cd1125.8 (2)C14—C13—H13122.3
C8—N3—Cd1129.8 (2)C14—C13—C12115.4 (4)
C8—N3—C9104.3 (3)C12—C13—H13122.3
H2A—N2—H2B120.0C17—C18—H18A109.5
C1—N2—H2A120.0C17—C18—H18B109.5
C1—N2—H2B120.0C17—C18—H18C109.5
C15—O3—Cd191.61 (19)H18A—C18—H18B109.5
C17—O5—Cd191.7 (2)H18A—C18—H18C109.5
O4—C15—Cd158.28 (16)H18B—C18—H18C109.5
O4—C15—O3119.7 (3)C2—C3—H3122.4
O4—C15—C16120.2 (3)C2—C3—C4115.2 (4)
O3—C15—Cd161.39 (17)C4—C3—H3122.4
O3—C15—C16120.1 (3)C6—C5—H5119.0
C16—C15—Cd1178.1 (3)C4—C5—C6122.0 (4)
N1—C1—O1114.8 (3)C4—C5—H5119.0
N1—C1—N2128.5 (3)C11—C12—C13121.5 (4)
N2—C1—O1116.7 (3)C11—C12—H12119.2
H4A—N4—H4B120.0C13—C12—H12119.2
C8—N4—H4A120.0C3—C4—H4119.1
C8—N4—H4B120.0C5—C4—C3121.8 (4)
O6—C17—Cd158.82 (18)C5—C4—H4119.1
Cd1—N1—C1—O1175.14 (18)C1—N1—C7—C6179.2 (3)
Cd1—N1—C1—N22.7 (5)C7—N1—C1—O10.4 (3)
Cd1—N1—C7—C2175.5 (2)C7—N1—C1—N2177.4 (3)
Cd1—N1—C7—C65.7 (5)C7—C2—C3—C40.2 (7)
Cd1—O6—C17—O51.0 (4)C7—C6—C5—C40.1 (7)
Cd1—O6—C17—C18178.5 (3)C9—N3—C8—O20.4 (4)
Cd1—O4—C15—O30.7 (4)C9—N3—C8—N4177.7 (4)
Cd1—O4—C15—C16178.7 (3)C9—C14—C13—C121.3 (7)
Cd1—N3—C9—C14178.2 (2)C9—C10—C11—C121.4 (7)
Cd1—N3—C9—C101.8 (6)C2—O1—C1—N10.2 (3)
Cd1—N3—C8—O2178.2 (2)C2—O1—C1—N2177.9 (3)
Cd1—N3—C8—N40.2 (6)C2—C7—C6—C50.1 (5)
Cd1—O3—C15—O40.6 (4)C2—C3—C4—C50.0 (8)
Cd1—O3—C15—C16178.7 (3)C8—O2—C14—C90.2 (4)
Cd1—O5—C17—O61.0 (4)C8—O2—C14—C13179.6 (4)
Cd1—O5—C17—C18178.5 (3)C8—N3—C9—C140.2 (4)
O1—C2—C3—C4179.2 (4)C8—N3—C9—C10179.8 (4)
O2—C14—C13—C12179.4 (4)C14—O2—C8—N30.4 (4)
N1—C7—C2—O10.3 (4)C14—O2—C8—N4177.9 (4)
N1—C7—C2—C3179.1 (4)C14—C9—C10—C110.5 (6)
N1—C7—C6—C5178.7 (4)C14—C13—C12—C112.1 (8)
N3—C9—C14—O20.0 (4)C6—C7—C2—O1179.2 (3)
N3—C9—C14—C13179.5 (4)C6—C7—C2—C30.2 (6)
N3—C9—C10—C11179.5 (4)C6—C5—C4—C30.2 (8)
C1—O1—C2—C70.1 (3)C10—C9—C14—O2180.0 (3)
C1—O1—C2—C3179.4 (4)C10—C9—C14—C130.5 (6)
C1—N1—C7—C20.5 (3)C10—C11—C12—C132.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O50.861.952.762 (4)157
N2—H2B···O4i0.862.042.811 (3)149
N4—H4A···O30.861.992.790 (4)155
N4—H4B···O6ii0.862.042.803 (3)148
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: Ministry of Higher Education, Science and Innovation of the Republic of Uzbekistan.

References

First citationChikhale, R., Thorat, S., Choudhary, R. K., Gadewal, N. & Khedekar, P. (2018). Bioorg. Chem. 77, 84–100.  CrossRef CAS PubMed Google Scholar
First citationChotalia, R., Hambley, T. W., Ridley, D. D. & Turner, P. (1996). Acta Cryst. C52, 3043–3045.  CrossRef CAS IUCr Journals Google Scholar
First citationClayden, J., Greeves, N., Warren, S. & Wothers, P. (2001). In Organic Chemistry. Oxford University Press.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHei, J.-H., Zhi, Y.-X., Zhen, Y., Li, J. & Zhang, F.-X. (2013). J. Coord. Chem. 66, 1320–1329.  CrossRef CAS Google Scholar
First citationIbragimov, A. B., Ashurov, Zh. M., Ibragimov, A. B. & Zakirov, B. S. (2017b). Russ. J. Inorg. Chem. 62, 439–445.  CrossRef CAS Google Scholar
First citationIbragimov, A. B., Ashurov, Zh. M. & Zakirov, B. S. (2017a). J. Struct. Chem. 58, 588–590.  CrossRef CAS Google Scholar
First citationKatritzky, A. R. & Pozharskii, A. F. (2000). In Handbook of Heterocyclic Chemistry, 2nd ed. New York: Academic Press.  Google Scholar
First citationKhajondetchairit, P., Phuangsawai, O., Suphakun, P., Rattanabunyong, S., Choowongkomon, K. & Gleeson, M. P. (2017). Chem. Biol. Drug Des. 90, 987–994.  CrossRef CAS PubMed Google Scholar
First citationKudiyarova, A. D., Ashurov, J. M., Ibragimov, A. B., Sabirov, V. K. & Ibragimov, B. T. (2021). Chem. Data Collect. 31, 100633.  CrossRef Google Scholar
First citationLachtova, V. & Brulikova, L. (2018). ChemistrySelect, 3, 4653–4662.  Google Scholar
First citationLiu, Y., Wang, D., Zheng, X.-J. & Jin, L.-P. (2015). RSC Adv. 5, 36987–36992.  CrossRef CAS Google Scholar
First citationLynch, D. E. (2004). Acta Cryst. E60, 1715–1716.  CrossRef Google Scholar
First citationMa, W.-X., Qian, B.-H. & Ge, H.-Y. (2012). Asian J. Chem. 24, 3504–3506.  CAS Google Scholar
First citationOuyang, L., Huang, Y., Zhao, Y., He, G., Xie, Y., Liu, J., He, J., Liu, B. & Wei, Y. (2012). Bioorg. Med. Chem. Lett. 22, 3044–3049.  CrossRef CAS PubMed Google Scholar
First citationPotashman, M. H., Bready, J., Coxon, A., DeMelfi, T. M., DiPietro, L., Doerr, N., Elbaum, D., Estrada, J., Gallant, P., Germain, J., Gu, Y., Harmange, J. C., Kaufman, S. A., Kendall, R., Kim, J. L., Kumar, G. N., Long, A. M., Neervannan, S., Patel, V. F., Polverino, A., Rose, P., van der Plas, S., Whittington, D., Zanon, R. & Zhao, H. (2007). J. Med. Chem. 50, 4351–4373.  CrossRef PubMed CAS Google Scholar
First citationRazzoqova, S., Torambetov, B., Amanova, M., Kadirova, S., Ibragimov, A. & Ashurov, J. (2022). Acta Cryst. E78, 1277–1283.  CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRuzmetov, A., Ibragimov, A., Ashurov, J., Boltaeva, Z., Ibragimov, B. & Usmanov, S. (2022). Acta Cryst. E78, 660–664.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, X., Fan, Y., Bi, C., Zhang, X., Zuo, J., Zhang, P. & Zhang, Z. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 603–610.  CrossRef CAS Google Scholar
First citationZhao, X.-J., Li, J., Ding, B., Wang, X.-G. & Yang, E.-C. (2007). Inorg. Chem. Commun. 10, 605–609.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds