research communications
Synthesis, structure and Hirshfeld surface analysis of a coordination compound of cadmium acetate with 2-aminobenzoxazole
aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent 100174, Uzbekistan, bInstitute of General and Inorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str 77a, Tashkent 100170, Uzbekistan, cInstitute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudosok korutja, H-1117 Budapest, Hungary, and dInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str 83, Tashkent 100125, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru
A first coordination compound of 2-aminobenzoxazole (2AB), namely, bis(2-aminobenzoxazole-κN3)bis(acetato-κ2O,O′)cadmium(II), [Cd(CH3COO)2(2AB)2], has been synthesized from ethanol solutions of Cd(CH3(COO)2 and 2AB. In the monoclinic crystals with the C21/c, the cadmium ions coordinate two neutral 2AB molecules in a monodentate fashion through the oxazole N atom, while two acetate ligands are coordinated through the O atoms in a bidentate manner. The of the central ion is substantially distorted octahedral. There are two relatively strong intramolecular hydrogen bonds in the complex molecule. Additionally, two intermolecular hydrogen bonds associate complex molecules into columns running in the [10] and [110] directions. The Hirshfeld surface analysis shows that 45.7% of the intermolecular interactions are from H⋯H contacts, 24.7% are from O⋯H/H⋯O contacts and 18.8% are from C⋯H/H⋯C contacts, while other contributions are from N⋯H/H⋯N and O⋯O contacts.
Keywords: crystal structure; molecular structure; cadmium complex; 2-aminobenzoxazole; Hirshfeld surface analysis.
CCDC reference: 2290113
1. Chemical context
Benzoxazole is an aromatic organic compound with a benzene-fused oxazole ring structure and an odour similar to pyridine (Katritzky et al., 2000; Clayden et al., 2001). Although benzoxazole itself is of little practical interest, many benzoxazole derivatives are commercially important. They play an important role in medicinal and biological chemistry (Potashman et al., 2007; Lachtova et al., 2018; Razzoqova et al., 2022), being described as potential therapeutic agents, including as various enzyme inhibitors (Chikhale et al., 2018). Aminobenzoxazoles, in particular derivatives of 2-aminobenzoxazole (2AB), have anticancer and antibacterial properties (Khajondetchairit et al., 2017; Ouyang et al., 2012). The 2-amino-5-chlorobenzoxazole derivative is a muscle relaxant and it has been used as an antispasmodic and uricosurics drug (Lynch, 2004).
An analysis of the Cambridge Structural Database (CSD, Version 5.43, update of March 2022; Groom et al., 2016) showed that there are no X-ray structures of 2AB and its metal complexes in the database. However, recently, we reported the structure and intermolecular interactions of a 2AB–fumaric acid organic salt in which the N atom of 2AB is protonated by a fumaric acid H atom (Razzoqova et al., 2022). Theoretically, metal complexes of 2AB may involve coordination through the N or O atoms of the oxazole ring and the N atom of the amino substituent. In order to define which way these possibilities will be realized, we have prepared a coordination complex of 2AB with cadmium and report here its molecular and as well as a Hirshfeld surface analysis.
2. Structural commentary
The structure of [Cd2+(CH3COO−)2(2AB)2] is shown in Fig. 1. The metal complex was obtained using the Cd(CH3COO)2 salt for the synthesis. The CdII ion coordinates two 2AB molecules through the oxazole N atom in a monodentate fashion. Furthermore, in order to compensate the positive charge of the central atom, two acetate ligands are coordinated in a bidentate manner through the O atoms. Despite the large ionic radius of the Cd atom, the of the central atom is six, in contrast to, for example, coordination numbers of four or eight in some mixed-ligand cadmium complexes (Kudiyarova et al., 2021; Ibragimov et al., 2017a). The two 2AB ligands and the two acetate ions are coordinated to the Cd centre in a cis arrangement. The bond lengths of the Cd ion are in the range 2.269 (2)–2.400 (2) Å, while the bond angles vary from 53.35 (8) to 139.71 (8)°. Such a large difference in the valence distances and angles leads to a significant distortion of the octahedral coordination environment, caused by the acetate ligands acting as bidentate, with chelating angles of O3—Cd1—O4 = 53.57 (8)° and O5—Cd1—O6 = 53.35 (8)° of the cadmium polyhedron. The geometric parameters of the arene ring are similar to standard values and to those in other structures (Ibragimov et al., 2017b; Ruzmetov et al., 2022). In the 2AB molecules, all the atoms are located on a plane, with the greatest r.m.s. deviations from the main planes seen for the amino atoms N2 (0.017 Å) and N4 (0.026 Å). The dihedral angle between the mean planes of the 2AB molecules around the cadmium polyhedron is 65.59°. The positions of the ligands allow the formation of two relatively strong intramolecular hydrogen bonds in the complex molecule: in particular, the amino groups N2H2 and N4H2 form hydrogen bonds with the nearest O atoms, O5 and O3, of the coordinated acetates, with distances of 2.762 (4) and 2.790 (4) Å, respectively (Table 1). These hydrogen bonds enclose six-membered rings with S(6) graph-set notations (Etter, 1990).
3. Supramolecular features
There are two proton-donor hydrogen-bonding groups in the complex molecule, i.e. N2—H2 and N4—H4. Both of these groups realize their hydrogen-bonding capabilities by forming intramolecular N2—H2A⋯O5 and N4—H4A⋯O3 (first two hydrogen bonds in Table 1), and two intermolecular N2—H2B⋯O4i and N4—H4B⋯O6ii hydrogen bonds (the remaining two hydrogen bonds in Table 1). These intermolecular hydrogen bonds between the N atoms of the amino groups and the O atoms of the acetate carboxylate groups associate complex molecules into columns running in the [10] and [110] directions (Fig. 2). The interaction energies of the hydrogen-bond system were calculated within the molecules using the HF method (HF/3-21G) in the CrystalExplorer17 program (Fig. 3). The result shows the total energy (Etot), which is the sum of the Coulombic (Eele), polar (Epol), dispersion (Edis) and repulsive (Erep) contributions. The four energy components were scaled in the total energy (Etot = 1.019Eele + 0651Epol + 0901Edis + 0.811Erep). The interaction energies were investigated for a 3.8 Å cluster around the reference molecule. The calculation reveals two stronger interactions within the neighbouring molecules. The strongest interaction total energy (Etot) is −113.4 kJ mol−1 (∼ −27 kcal mol−1), with the highest polar (−32.5 kJ mol−1), dispersion (−51.3 kJ mol−1) and repulsive (68.1 kJ mol−1) energies (green–yellow). The second interaction among neighbouring molecules is similar to the first, with Etot = −97.2 kJ mol−1. The main attractive interactions (Coulombic, dispersion and the sum total energy) show a stronger bonding effect along the crystallographic a direction (Fig. 3).
4. Hirshfeld surface analysis
To further investigate the intermolecular interactions present in the title compound, a Hirshfeld surface analysis was performed, and the two-dimensional (2D) fingerprint plots were generated with CrystalExplorer17 (Spackman et al., 2021). Fig. 4 shows the three-dimensional (3D) Hirshfeld surface of the complex with dnorm (normalized contact distance) plotted over the range from −0.6027 to 1.5939 a.u. The hydrogen-bond interactions given in Table 1 play a key role in the molecular packing of the complex. The overall 2D fingerprint plot and those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C, N⋯H/H⋯N and O⋯O interactions, are shown in Fig. 5. The percentage contributions to the Hirshfeld surfaces from the various interatomic contacts are as follows: H⋯H 45.7%, O⋯H/H⋯O 24.7%, C⋯H/H⋯C 18.8%, N⋯H/H⋯N 4.3% and O⋯O 2.5%. Other minor contributions to the Hirshfeld surface are: C⋯C 2.4% and O⋯C/C⋯O 1.6%.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, update of March 2022; Groom et al., 2016) for free 2AB and its metal complexes gave no hits. Cadmium(II) acetate complexes of the general formula [Cd(OAc)2L2], where cadmium is hexacoordinated, the acetate ligand is attached to cadmium in a bidentate manner and L is a monodentate ligand with a ligator N atom, have been reported in the CSD with refcodes ODONEC (Ma et al., 2012), ODONEC01 (Yan et al., 2014), PIBMIX (Zhao et al., 2007), TICDOY (Chotalia et al., 1996), TICMID (Hei et al., 2013) and UGOPOX (Liu et al., 2015).
6. Synthesis and crystallization
Cd(CH3COO)2·2H2O (0.266 g, 1 mmol) and 2AB (0.268 g, 2 mmol) were dissolved separately in ethanol (5 ml), mixed together and stirred for 1.5 h. The obtained colourless solution was filtered and left for crystallization. Single crystals of the title complex suitable for X-ray analysis were obtained by slow evaporation of the solution over a period of 10 d.
7. Refinement
Crystal data, data collection and structure . The H atoms of the acetate methyl groups were placed in calculated positions and refined in the riding-model approximation, with Uiso(H) = 1.5Ueq(C) and C—H = 0.96 Å. The remaining H atoms were located experimentally and refined freely.
details are summarized in Table 2Supporting information
CCDC reference: 2290113
https://doi.org/10.1107/S2056989023007399/jy2035sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023007399/jy2035Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2020); cell
CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Cd(C2H3O2)2(C7H6N2O)2] | F(000) = 2000 |
Mr = 498.76 | Dx = 1.609 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54184 Å |
a = 25.0497 (3) Å | Cell parameters from 6254 reflections |
b = 9.8428 (1) Å | θ = 3.5–70.8° |
c = 16.7577 (2) Å | µ = 8.87 mm−1 |
β = 94.534 (1)° | T = 293 K |
V = 4118.83 (8) Å3 | Block, colourless |
Z = 8 | 0.17 × 0.14 × 0.12 mm |
Rigaku XtaLAB Synergy diffractometer with a HyPix3000 detector | 3971 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3434 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.030 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 71.2°, θmin = 3.5° |
ω scans | h = −30→30 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2020) | k = −12→11 |
Tmin = 0.793, Tmax = 1.000 | l = −20→20 |
11316 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0384P)2 + 0.4924P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.078 | (Δ/σ)max = 0.002 |
S = 1.05 | Δρmax = 0.26 e Å−3 |
3971 reflections | Δρmin = −0.59 e Å−3 |
265 parameters | Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.000082 (13) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.62410 (2) | 0.36216 (2) | 0.51980 (2) | 0.05241 (10) | |
O1 | 0.73371 (8) | 0.0598 (2) | 0.64662 (14) | 0.0683 (6) | |
O2 | 0.47350 (9) | 0.2945 (3) | 0.63959 (16) | 0.0769 (7) | |
N1 | 0.67802 (9) | 0.2252 (2) | 0.60113 (14) | 0.0537 (6) | |
O6 | 0.59362 (9) | 0.3834 (3) | 0.38471 (16) | 0.0791 (7) | |
O4 | 0.68374 (9) | 0.5447 (2) | 0.52681 (17) | 0.0789 (7) | |
N3 | 0.54967 (9) | 0.2942 (3) | 0.57764 (16) | 0.0572 (6) | |
N2 | 0.72228 (10) | 0.0877 (3) | 0.51189 (17) | 0.0642 (7) | |
H2A | 0.707645 | 0.126500 | 0.469675 | 0.077* | |
H2B | 0.744585 | 0.022233 | 0.507514 | 0.077* | |
O3 | 0.60454 (10) | 0.5914 (3) | 0.5565 (2) | 0.0996 (10) | |
O5 | 0.66139 (11) | 0.2548 (3) | 0.40824 (15) | 0.0948 (9) | |
C15 | 0.65104 (13) | 0.6280 (3) | 0.5472 (2) | 0.0578 (7) | |
C1 | 0.71057 (11) | 0.1285 (3) | 0.5831 (2) | 0.0528 (7) | |
N4 | 0.50825 (10) | 0.5006 (3) | 0.6106 (2) | 0.0821 (9) | |
H4A | 0.532476 | 0.550805 | 0.591987 | 0.099* | |
H4B | 0.481505 | 0.537324 | 0.631454 | 0.099* | |
C17 | 0.62821 (12) | 0.3087 (3) | 0.36070 (19) | 0.0600 (7) | |
C7 | 0.67858 (11) | 0.2219 (3) | 0.68508 (18) | 0.0574 (7) | |
C9 | 0.53519 (12) | 0.1592 (3) | 0.5921 (2) | 0.0613 (8) | |
C2 | 0.71305 (13) | 0.1203 (4) | 0.7127 (2) | 0.0678 (9) | |
C8 | 0.51215 (13) | 0.3665 (3) | 0.6070 (2) | 0.0636 (8) | |
C14 | 0.48834 (14) | 0.1591 (4) | 0.6302 (2) | 0.0718 (9) | |
C16 | 0.66689 (16) | 0.7730 (3) | 0.5600 (2) | 0.0842 (11) | |
H16A | 0.704972 | 0.781517 | 0.558471 | 0.126* | |
H16B | 0.656663 | 0.802761 | 0.611189 | 0.126* | |
H16C | 0.649232 | 0.828000 | 0.518610 | 0.126* | |
C6 | 0.65278 (14) | 0.3000 (4) | 0.7383 (2) | 0.0777 (10) | |
H6 | 0.629353 | 0.369251 | 0.721214 | 0.093* | |
C10 | 0.55866 (14) | 0.0371 (4) | 0.5755 (3) | 0.0810 (11) | |
H10 | 0.590396 | 0.033844 | 0.550275 | 0.097* | |
C11 | 0.53352 (16) | −0.0804 (4) | 0.5975 (3) | 0.0931 (13) | |
H11 | 0.548254 | −0.164167 | 0.585847 | 0.112* | |
C13 | 0.46251 (17) | 0.0455 (5) | 0.6528 (3) | 0.0977 (13) | |
H13 | 0.430576 | 0.049423 | 0.677524 | 0.117* | |
C18 | 0.63098 (17) | 0.2827 (5) | 0.2729 (2) | 0.0957 (13) | |
H18A | 0.647214 | 0.195777 | 0.265397 | 0.144* | |
H18B | 0.652023 | 0.352341 | 0.250357 | 0.144* | |
H18C | 0.595468 | 0.283398 | 0.246754 | 0.144* | |
C3 | 0.72412 (17) | 0.0889 (6) | 0.7912 (3) | 0.1035 (15) | |
H3 | 0.747541 | 0.019434 | 0.807937 | 0.124* | |
C5 | 0.66360 (17) | 0.2699 (6) | 0.8190 (2) | 0.1001 (14) | |
H5 | 0.646981 | 0.320491 | 0.856801 | 0.120* | |
C12 | 0.48703 (18) | −0.0764 (5) | 0.6365 (3) | 0.1025 (15) | |
H12 | 0.471821 | −0.157333 | 0.652136 | 0.123* | |
C4 | 0.6980 (2) | 0.1678 (6) | 0.8445 (3) | 0.1133 (18) | |
H4 | 0.704006 | 0.151002 | 0.899045 | 0.136* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.04847 (14) | 0.04693 (14) | 0.06296 (15) | 0.00942 (8) | 0.01144 (9) | −0.00134 (9) |
O1 | 0.0585 (12) | 0.0626 (14) | 0.0837 (16) | 0.0146 (10) | 0.0057 (11) | 0.0158 (12) |
O2 | 0.0578 (13) | 0.0723 (16) | 0.1046 (19) | 0.0008 (11) | 0.0321 (12) | 0.0026 (14) |
N1 | 0.0502 (12) | 0.0513 (14) | 0.0604 (14) | 0.0101 (11) | 0.0094 (10) | 0.0017 (12) |
O6 | 0.0599 (13) | 0.0937 (18) | 0.0844 (17) | 0.0208 (12) | 0.0096 (12) | −0.0112 (14) |
O4 | 0.0608 (13) | 0.0584 (13) | 0.119 (2) | 0.0111 (11) | 0.0163 (12) | −0.0188 (14) |
N3 | 0.0455 (12) | 0.0487 (13) | 0.0788 (17) | 0.0061 (11) | 0.0131 (11) | 0.0024 (13) |
N2 | 0.0586 (14) | 0.0593 (15) | 0.0760 (18) | 0.0178 (13) | 0.0130 (12) | −0.0037 (14) |
O3 | 0.0752 (16) | 0.0610 (14) | 0.170 (3) | −0.0079 (13) | 0.0582 (17) | −0.0258 (17) |
O5 | 0.1068 (19) | 0.105 (2) | 0.0710 (16) | 0.0516 (17) | −0.0018 (14) | −0.0074 (15) |
C15 | 0.0681 (19) | 0.0468 (16) | 0.0608 (18) | 0.0067 (14) | 0.0200 (15) | 0.0019 (13) |
C1 | 0.0418 (14) | 0.0471 (15) | 0.0697 (19) | 0.0016 (12) | 0.0069 (13) | 0.0049 (14) |
N4 | 0.0599 (16) | 0.0578 (16) | 0.133 (3) | 0.0145 (13) | 0.0356 (16) | −0.0006 (18) |
C17 | 0.0547 (16) | 0.0640 (19) | 0.0621 (18) | 0.0020 (15) | 0.0092 (14) | 0.0002 (16) |
C7 | 0.0483 (15) | 0.0618 (18) | 0.0629 (18) | −0.0014 (14) | 0.0087 (13) | 0.0031 (16) |
C9 | 0.0523 (17) | 0.0525 (18) | 0.079 (2) | 0.0005 (13) | 0.0049 (15) | 0.0044 (16) |
C2 | 0.0567 (18) | 0.077 (2) | 0.070 (2) | 0.0027 (16) | 0.0054 (15) | 0.0133 (18) |
C8 | 0.0509 (17) | 0.062 (2) | 0.080 (2) | 0.0074 (14) | 0.0151 (15) | 0.0054 (16) |
C14 | 0.0602 (19) | 0.066 (2) | 0.090 (3) | 0.0000 (16) | 0.0145 (17) | 0.0017 (19) |
C16 | 0.095 (3) | 0.052 (2) | 0.111 (3) | −0.0050 (18) | 0.042 (2) | −0.005 (2) |
C6 | 0.071 (2) | 0.091 (3) | 0.072 (2) | 0.009 (2) | 0.0092 (17) | −0.007 (2) |
C10 | 0.062 (2) | 0.058 (2) | 0.122 (3) | 0.0036 (16) | 0.0091 (19) | −0.001 (2) |
C11 | 0.079 (3) | 0.055 (2) | 0.144 (4) | −0.0059 (19) | 0.005 (3) | 0.004 (2) |
C13 | 0.077 (2) | 0.092 (3) | 0.127 (4) | −0.021 (2) | 0.027 (2) | 0.011 (3) |
C18 | 0.105 (3) | 0.122 (4) | 0.061 (2) | −0.002 (3) | 0.016 (2) | −0.006 (2) |
C3 | 0.089 (3) | 0.132 (4) | 0.088 (3) | 0.018 (3) | 0.001 (2) | 0.037 (3) |
C5 | 0.092 (3) | 0.143 (4) | 0.067 (2) | 0.007 (3) | 0.013 (2) | −0.010 (3) |
C12 | 0.091 (3) | 0.068 (3) | 0.149 (5) | −0.020 (2) | 0.016 (3) | 0.016 (3) |
C4 | 0.094 (3) | 0.185 (6) | 0.062 (2) | 0.012 (3) | 0.008 (2) | 0.017 (3) |
Cd1—N1 | 2.282 (2) | C17—C18 | 1.501 (5) |
Cd1—O6 | 2.341 (3) | C7—C2 | 1.377 (4) |
Cd1—O4 | 2.333 (2) | C7—C6 | 1.377 (4) |
Cd1—N3 | 2.269 (2) | C9—C14 | 1.380 (5) |
Cd1—O3 | 2.399 (3) | C9—C10 | 1.376 (5) |
Cd1—O5 | 2.400 (2) | C2—C3 | 1.358 (5) |
Cd1—C15 | 2.732 (3) | C14—C13 | 1.360 (5) |
Cd1—C17 | 2.727 (3) | C16—H16A | 0.9600 |
O1—C1 | 1.353 (4) | C16—H16B | 0.9600 |
O1—C2 | 1.392 (4) | C16—H16C | 0.9600 |
O2—C8 | 1.349 (4) | C6—H6 | 0.9300 |
O2—C14 | 1.396 (4) | C6—C5 | 1.389 (5) |
N1—C1 | 1.304 (4) | C10—H10 | 0.9300 |
N1—C7 | 1.406 (4) | C10—C11 | 1.381 (5) |
O6—C17 | 1.228 (4) | C11—H11 | 0.9300 |
O4—C15 | 1.227 (4) | C11—C12 | 1.380 (6) |
N3—C9 | 1.404 (4) | C13—H13 | 0.9300 |
N3—C8 | 1.306 (4) | C13—C12 | 1.385 (6) |
N2—H2A | 0.8600 | C18—H18A | 0.9600 |
N2—H2B | 0.8600 | C18—H18B | 0.9600 |
N2—C1 | 1.314 (4) | C18—H18C | 0.9600 |
O3—C15 | 1.241 (4) | C3—H3 | 0.9300 |
O5—C17 | 1.226 (4) | C3—C4 | 1.386 (7) |
C15—C16 | 1.492 (4) | C5—H5 | 0.9300 |
N4—H4A | 0.8600 | C5—C4 | 1.369 (7) |
N4—H4B | 0.8600 | C12—H12 | 0.9300 |
N4—C8 | 1.325 (4) | C4—H4 | 0.9300 |
N1—Cd1—O6 | 139.71 (8) | O6—C17—C18 | 120.8 (3) |
N1—Cd1—O4 | 94.49 (8) | O5—C17—Cd1 | 61.59 (18) |
N1—Cd1—O3 | 121.70 (11) | O5—C17—O6 | 120.4 (3) |
N1—Cd1—O5 | 87.52 (8) | O5—C17—C18 | 118.8 (3) |
N1—Cd1—C15 | 109.79 (9) | C18—C17—Cd1 | 178.6 (3) |
N1—Cd1—C17 | 113.80 (9) | C2—C7—N1 | 108.0 (3) |
O6—Cd1—O3 | 96.12 (10) | C6—C7—N1 | 131.9 (3) |
O6—Cd1—O5 | 53.35 (8) | C6—C7—C2 | 120.1 (3) |
O6—Cd1—C15 | 97.73 (9) | C14—C9—N3 | 108.8 (3) |
O6—Cd1—C17 | 26.66 (8) | C10—C9—N3 | 132.2 (3) |
O4—Cd1—O6 | 97.96 (10) | C10—C9—C14 | 119.1 (3) |
O4—Cd1—O3 | 53.57 (8) | C7—C2—O1 | 107.8 (3) |
O4—Cd1—O5 | 95.22 (10) | C3—C2—O1 | 127.8 (3) |
O4—Cd1—C15 | 26.57 (8) | C3—C2—C7 | 124.4 (4) |
O4—Cd1—C17 | 97.13 (10) | N3—C8—O2 | 115.3 (3) |
N3—Cd1—N1 | 92.19 (9) | N3—C8—N4 | 128.1 (3) |
N3—Cd1—O6 | 102.90 (9) | N4—C8—O2 | 116.5 (3) |
N3—Cd1—O4 | 138.59 (9) | C9—C14—O2 | 107.2 (3) |
N3—Cd1—O3 | 88.65 (9) | C13—C14—O2 | 128.1 (4) |
N3—Cd1—O5 | 125.90 (11) | C13—C14—C9 | 124.8 (4) |
N3—Cd1—C15 | 114.27 (9) | C15—C16—H16A | 109.5 |
N3—Cd1—C17 | 117.16 (9) | C15—C16—H16B | 109.5 |
O3—Cd1—O5 | 135.54 (11) | C15—C16—H16C | 109.5 |
O3—Cd1—C15 | 27.00 (9) | H16A—C16—H16B | 109.5 |
O3—Cd1—C17 | 117.15 (11) | H16A—C16—H16C | 109.5 |
O5—Cd1—C15 | 116.52 (11) | H16B—C16—H16C | 109.5 |
O5—Cd1—C17 | 26.69 (8) | C7—C6—H6 | 121.8 |
C17—Cd1—C15 | 108.73 (10) | C7—C6—C5 | 116.5 (4) |
C1—O1—C2 | 104.4 (2) | C5—C6—H6 | 121.8 |
C8—O2—C14 | 104.5 (2) | C9—C10—H10 | 121.1 |
C1—N1—Cd1 | 130.1 (2) | C9—C10—C11 | 117.8 (4) |
C1—N1—C7 | 105.0 (2) | C11—C10—H10 | 121.1 |
C7—N1—Cd1 | 124.74 (18) | C10—C11—H11 | 119.3 |
C17—O6—Cd1 | 94.5 (2) | C12—C11—C10 | 121.4 (4) |
C15—O4—Cd1 | 95.2 (2) | C12—C11—H11 | 119.3 |
C9—N3—Cd1 | 125.8 (2) | C14—C13—H13 | 122.3 |
C8—N3—Cd1 | 129.8 (2) | C14—C13—C12 | 115.4 (4) |
C8—N3—C9 | 104.3 (3) | C12—C13—H13 | 122.3 |
H2A—N2—H2B | 120.0 | C17—C18—H18A | 109.5 |
C1—N2—H2A | 120.0 | C17—C18—H18B | 109.5 |
C1—N2—H2B | 120.0 | C17—C18—H18C | 109.5 |
C15—O3—Cd1 | 91.61 (19) | H18A—C18—H18B | 109.5 |
C17—O5—Cd1 | 91.7 (2) | H18A—C18—H18C | 109.5 |
O4—C15—Cd1 | 58.28 (16) | H18B—C18—H18C | 109.5 |
O4—C15—O3 | 119.7 (3) | C2—C3—H3 | 122.4 |
O4—C15—C16 | 120.2 (3) | C2—C3—C4 | 115.2 (4) |
O3—C15—Cd1 | 61.39 (17) | C4—C3—H3 | 122.4 |
O3—C15—C16 | 120.1 (3) | C6—C5—H5 | 119.0 |
C16—C15—Cd1 | 178.1 (3) | C4—C5—C6 | 122.0 (4) |
N1—C1—O1 | 114.8 (3) | C4—C5—H5 | 119.0 |
N1—C1—N2 | 128.5 (3) | C11—C12—C13 | 121.5 (4) |
N2—C1—O1 | 116.7 (3) | C11—C12—H12 | 119.2 |
H4A—N4—H4B | 120.0 | C13—C12—H12 | 119.2 |
C8—N4—H4A | 120.0 | C3—C4—H4 | 119.1 |
C8—N4—H4B | 120.0 | C5—C4—C3 | 121.8 (4) |
O6—C17—Cd1 | 58.82 (18) | C5—C4—H4 | 119.1 |
Cd1—N1—C1—O1 | −175.14 (18) | C1—N1—C7—C6 | 179.2 (3) |
Cd1—N1—C1—N2 | 2.7 (5) | C7—N1—C1—O1 | −0.4 (3) |
Cd1—N1—C7—C2 | 175.5 (2) | C7—N1—C1—N2 | 177.4 (3) |
Cd1—N1—C7—C6 | −5.7 (5) | C7—C2—C3—C4 | −0.2 (7) |
Cd1—O6—C17—O5 | 1.0 (4) | C7—C6—C5—C4 | −0.1 (7) |
Cd1—O6—C17—C18 | −178.5 (3) | C9—N3—C8—O2 | −0.4 (4) |
Cd1—O4—C15—O3 | 0.7 (4) | C9—N3—C8—N4 | 177.7 (4) |
Cd1—O4—C15—C16 | −178.7 (3) | C9—C14—C13—C12 | 1.3 (7) |
Cd1—N3—C9—C14 | 178.2 (2) | C9—C10—C11—C12 | −1.4 (7) |
Cd1—N3—C9—C10 | −1.8 (6) | C2—O1—C1—N1 | 0.2 (3) |
Cd1—N3—C8—O2 | −178.2 (2) | C2—O1—C1—N2 | −177.9 (3) |
Cd1—N3—C8—N4 | −0.2 (6) | C2—C7—C6—C5 | −0.1 (5) |
Cd1—O3—C15—O4 | −0.6 (4) | C2—C3—C4—C5 | 0.0 (8) |
Cd1—O3—C15—C16 | 178.7 (3) | C8—O2—C14—C9 | −0.2 (4) |
Cd1—O5—C17—O6 | −1.0 (4) | C8—O2—C14—C13 | −179.6 (4) |
Cd1—O5—C17—C18 | 178.5 (3) | C8—N3—C9—C14 | 0.2 (4) |
O1—C2—C3—C4 | 179.2 (4) | C8—N3—C9—C10 | −179.8 (4) |
O2—C14—C13—C12 | −179.4 (4) | C14—O2—C8—N3 | 0.4 (4) |
N1—C7—C2—O1 | −0.3 (4) | C14—O2—C8—N4 | −177.9 (4) |
N1—C7—C2—C3 | 179.1 (4) | C14—C9—C10—C11 | 0.5 (6) |
N1—C7—C6—C5 | −178.7 (4) | C14—C13—C12—C11 | −2.1 (8) |
N3—C9—C14—O2 | 0.0 (4) | C6—C7—C2—O1 | −179.2 (3) |
N3—C9—C14—C13 | 179.5 (4) | C6—C7—C2—C3 | 0.2 (6) |
N3—C9—C10—C11 | −179.5 (4) | C6—C5—C4—C3 | 0.2 (8) |
C1—O1—C2—C7 | 0.1 (3) | C10—C9—C14—O2 | 180.0 (3) |
C1—O1—C2—C3 | −179.4 (4) | C10—C9—C14—C13 | −0.5 (6) |
C1—N1—C7—C2 | 0.5 (3) | C10—C11—C12—C13 | 2.2 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O5 | 0.86 | 1.95 | 2.762 (4) | 157 |
N2—H2B···O4i | 0.86 | 2.04 | 2.811 (3) | 149 |
N4—H4A···O3 | 0.86 | 1.99 | 2.790 (4) | 155 |
N4—H4B···O6ii | 0.86 | 2.04 | 2.803 (3) | 148 |
Symmetry codes: (i) −x+3/2, −y+1/2, −z+1; (ii) −x+1, −y+1, −z+1. |
Funding information
Funding for this research was provided by: Ministry of Higher Education, Science and Innovation of the Republic of Uzbekistan.
References
Chikhale, R., Thorat, S., Choudhary, R. K., Gadewal, N. & Khedekar, P. (2018). Bioorg. Chem. 77, 84–100. CrossRef CAS PubMed Google Scholar
Chotalia, R., Hambley, T. W., Ridley, D. D. & Turner, P. (1996). Acta Cryst. C52, 3043–3045. CrossRef CAS IUCr Journals Google Scholar
Clayden, J., Greeves, N., Warren, S. & Wothers, P. (2001). In Organic Chemistry. Oxford University Press. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hei, J.-H., Zhi, Y.-X., Zhen, Y., Li, J. & Zhang, F.-X. (2013). J. Coord. Chem. 66, 1320–1329. CrossRef CAS Google Scholar
Ibragimov, A. B., Ashurov, Zh. M., Ibragimov, A. B. & Zakirov, B. S. (2017b). Russ. J. Inorg. Chem. 62, 439–445. CrossRef CAS Google Scholar
Ibragimov, A. B., Ashurov, Zh. M. & Zakirov, B. S. (2017a). J. Struct. Chem. 58, 588–590. CrossRef CAS Google Scholar
Katritzky, A. R. & Pozharskii, A. F. (2000). In Handbook of Heterocyclic Chemistry, 2nd ed. New York: Academic Press. Google Scholar
Khajondetchairit, P., Phuangsawai, O., Suphakun, P., Rattanabunyong, S., Choowongkomon, K. & Gleeson, M. P. (2017). Chem. Biol. Drug Des. 90, 987–994. CrossRef CAS PubMed Google Scholar
Kudiyarova, A. D., Ashurov, J. M., Ibragimov, A. B., Sabirov, V. K. & Ibragimov, B. T. (2021). Chem. Data Collect. 31, 100633. CrossRef Google Scholar
Lachtova, V. & Brulikova, L. (2018). ChemistrySelect, 3, 4653–4662. Google Scholar
Liu, Y., Wang, D., Zheng, X.-J. & Jin, L.-P. (2015). RSC Adv. 5, 36987–36992. CrossRef CAS Google Scholar
Lynch, D. E. (2004). Acta Cryst. E60, 1715–1716. CrossRef Google Scholar
Ma, W.-X., Qian, B.-H. & Ge, H.-Y. (2012). Asian J. Chem. 24, 3504–3506. CAS Google Scholar
Ouyang, L., Huang, Y., Zhao, Y., He, G., Xie, Y., Liu, J., He, J., Liu, B. & Wei, Y. (2012). Bioorg. Med. Chem. Lett. 22, 3044–3049. CrossRef CAS PubMed Google Scholar
Potashman, M. H., Bready, J., Coxon, A., DeMelfi, T. M., DiPietro, L., Doerr, N., Elbaum, D., Estrada, J., Gallant, P., Germain, J., Gu, Y., Harmange, J. C., Kaufman, S. A., Kendall, R., Kim, J. L., Kumar, G. N., Long, A. M., Neervannan, S., Patel, V. F., Polverino, A., Rose, P., van der Plas, S., Whittington, D., Zanon, R. & Zhao, H. (2007). J. Med. Chem. 50, 4351–4373. CrossRef PubMed CAS Google Scholar
Razzoqova, S., Torambetov, B., Amanova, M., Kadirova, S., Ibragimov, A. & Ashurov, J. (2022). Acta Cryst. E78, 1277–1283. CrossRef IUCr Journals Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Ruzmetov, A., Ibragimov, A., Ashurov, J., Boltaeva, Z., Ibragimov, B. & Usmanov, S. (2022). Acta Cryst. E78, 660–664. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yan, X., Fan, Y., Bi, C., Zhang, X., Zuo, J., Zhang, P. & Zhang, Z. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 603–610. CrossRef CAS Google Scholar
Zhao, X.-J., Li, J., Ding, B., Wang, X.-G. & Yang, E.-C. (2007). Inorg. Chem. Commun. 10, 605–609. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.