research communications
E)-1-[(carbamothioylamino)imino]ethyl}-4-methyl-1,3-thiazol-3-ium chloride monohydrate
and Hirshfeld surface analysis of 2-amino-5-{(1aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, cDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avenida Angamos 601, Casilla 170, Antofagasta 1240000, Chile, and dDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
In the hydrated title salt, C7H12N5S2+·Cl−·H2O, the comprises one 2-amino-5-{(1E)-1-[(carbamothioylamino)imino]ethyl}-4-methyl-1,3-thiazol-3-ium cation, one chloride anion and one water molecule of crystallization. The cation is nearly flat (r.m.s. deviation of non-H atoms is 0.0814 Å), with the largest deviation of 0.1484 (14) Å observed for one of the methyl C atoms. In the crystal, the cations are linked by O—H⋯Cl, N—H⋯Cl, N—H⋯O, N—H⋯S and C—H⋯S hydrogen bonds, forming a tri-periodic network. The most important contributions to the crystal packing are from H⋯H (35.4%), S⋯H/H⋯S (24.4%), N⋯H/H⋯N (8.7%), Cl⋯H/H⋯Cl (8.2%) and C⋯H/H⋯C (7.7%) interactions.
Keywords: crystal structure; 1,3-thiazol-3-ium; hydrogen bonds; hydrogen-bonded network; Hirshfeld surface analysis.
CCDC reference: 2288159
1. Chemical context
Heterocyclic systems account for many important organic compounds (Maharramov et al., 2011b; Abdelhamid et al., 2014). In particular, five- and six-membered heterocycles are applied in different branches of chemistry, including sustainable chemistry (Montes et al., 2018), drug design and development (Khalilov et al., 2021; Tas et al., 2023) or material science (Yin et al., 2020). The thiazole core is one of the most common five-membered heteroaromatic ring systems (Yadigarov et al., 2009; Khalilov, 2021). Thiazoles have potent biological applications and represent an essential core scaffold present in many natural (thiamine, penicillin) and synthetic medicinally important compounds (Chhabria et al., 2016), such as sulfazole, ritonavir, abafungin, fanetizole, meloxicam, fentiazac, nizatidine and thiamethoxam (Fig. 1). A variety of thiazole derivatives are also used as target products as well as synthetic intermediates (Maharramov et al., 2011a; Kekeçmuhammed et al., 2022).
In a continuation of our structural investigations of heterocyclic systems associated with biological activities (Akkurt et al., 2018; Askerov et al., 2020; Karimli et al., 2023), we report here the and Hirshfeld surface analysis of the hydrated title salt, C7H12N5S2+·Cl−·H2O, (I).
2. Structural commentary
The (Fig. 2) comprises one 2-amino-5-{(1E)-1-[(carbamothioylamino)imino]ethyl}-4-methyl-1,3-thiazol-3-ium cation, C7H12N5S2+, one chloride anion and one water molecule of crystallization. In the 1,3-thiazol-3-ium ring, as expected, the C1—N2 distance of 1.3309 (16) Å indicates double-bond character, while the C2—N2 distance of 1.3885 (14) Å has more single-bond character.
of (I)In the amino-N′-[(1Z)-ethylidene]ethanethiohydrazide group, the S2—C7—N4—N3, N5—C7—N4—N3, C7—N4—N3—C5 and N4—N3—C5—C6 torsion angles are 178.17 (8), −0.63 (16), 174.48 (10) and 0.16 (18)°, respectively. The title compound shows bond lengths and angles that are typical and are in agreement with those reported for the related compounds discussed in the Database survey section.
The cation is nearly flat (r.m.s. deviation of the 14 non-H atoms is 0.0814 Å), with the largest deviations observed for C6 [0.1484 (14) Å], N1 [0.1357 (10) Å], and S2 [0.1399 (6) Å].
3. Supramolecular features and Hirshfeld surface analysis
In the crystal of (I), the cations are linked by O—H⋯Cl, N—H⋯Cl, N—H⋯O, N—H⋯S and C—H⋯S hydrogen bonds (Table 1), forming a tri-periodic network (Figs. 3–5). Significant C—H⋯π or π–π interactions are not developed.
In order to visualize and quantify intermolecular interactions (Table 2) in (I), a Hirshfeld surface analysis was performed using Crystal Explorer 17.5 (Spackman et al., 2021), which was also used for generation of the associated two-dimensional fingerprint plots. The Hirshfeld surface mapped over dnorm shows the intermolecular contacts as red-colored spots, which indicate the O—H⋯Cl, N—H⋯Cl, N—H⋯O, N—H⋯S and C—H⋯S hydrogen bonds (Fig. 6).
|
The two-dimensional fingerprint plots of the most abundant contacts are presented in Fig. 7. H⋯H (35.4%) and S⋯H/H⋯S (24.4%) contacts are responsible for the largest contributions to the Hirshfeld surface. Besides these contacts, N⋯H/H⋯N (8.7%), Cl⋯H/H⋯Cl (8.2%) and C⋯H/H⋯C (7.7%) interactions contribute significantly to the total Hirshfeld surface. The contributions of further contacts are only minor and amount to C⋯H/H⋯C (4.5%), S⋯C/C⋯S (2.4%), N⋯C/C⋯N (2.1%), N⋯N (1.9%), C⋯C (1.6%), S⋯N/N⋯S (1.3%), Cl⋯S/S⋯Cl (0.6%), Cl⋯C/C⋯Cl (0.6%), S⋯S (0.4%), N⋯O/O⋯N (%0.1) and S⋯O/O⋯S (0.1%).
4. Database survey
A search of the Cambridge Crystallographic Database (updated 20 March 2023; Groom et al., 2016) using the 1,3-thiazol-3-ium moiety as the search fragment revealed four closely related compounds: 2-anilino-3-(2-hydroxypropyl)-4-methyl-1,3-thiazol-3-ium chloride (II) (Mohamed et al., 2012), 2-amino-5-butyl-4-methyl-1,3-thiazol-3-ium nitrate (III) (Zarychta et al., 2003), 2-(2-thioxo-1,3-thiazolidin-3-yl)-4,5-dihydro-l,3-thiazol-l-ium chloride (IV) (Raper et al., 1996) and 2-ureido-1,3-thiazol-3-ium dihydrogen phosphate (V) (Gubina et al., 2011).
In the crystal of (II), molecules are linked by O—H⋯Cl and N—H⋯Cl hydrogen bonds, forming zigzag chains along [001]. There is also a C—H⋯Cl interaction present. The via N—H⋯O hydrogen-bonding interactions. In the crystal of (IV), the molecular packing is determined by interionic N—H⋯Cl contacts. In the crystal of (V), the molecules of substituted urea are connected by O—H⋯O hydrogen bonds into sheets. In turn, these sheets are connected to each other via N—H⋯O hydrogen bonds with hydrogen phosphate anions, forming a tri-periodic network.
of (III) comprises a substituted thiazolium ring that is connected to a nitrate ion5. Synthesis and crystallization
The title compound was synthesized using a reported procedure (Gomha et al., 2016). Colorless crystals were obtained upon recrystallization from an ethanol/water (3:1 v:v) solution at room temperature
6. Refinement
Crystal data, data collection and structure . The H atoms of the methyl groups were positioned geometrically and refined as riding with C—H = 0.96 Å, with Uiso(H) = 1.5Ueq(C). The H atoms attached to the N atom and the H atoms of the water molecule were found in a difference-Fourier map. Their positional parameters were refined freely while setting Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2288159
https://doi.org/10.1107/S2056989023007090/wm5691sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023007090/wm5691Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023007090/wm5691Isup3.cml
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C7H12N5S2+·Cl−·H2O | Z = 2 |
Mr = 283.80 | F(000) = 296 |
Triclinic, P1 | Dx = 1.500 Mg m−3 |
a = 6.3279 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.7816 (6) Å | Cell parameters from 9921 reflections |
c = 14.1342 (10) Å | θ = 3.0–36.3° |
α = 77.191 (3)° | µ = 0.62 mm−1 |
β = 83.660 (3)° | T = 293 K |
γ = 67.860 (2)° | Prism, colourless |
V = 628.35 (8) Å3 | 0.04 × 0.03 × 0.03 mm |
Bruker APEXII CCD diffractometer | 4589 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.053 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015). | θmax = 36.3°, θmin = 3.0° |
Tmin = 0.570, Tmax = 0.747 | h = −10→10 |
34019 measured reflections | k = −12→12 |
6058 independent reflections | l = −23→21 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.0567P)2 + 0.0995P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
6058 reflections | Δρmax = 0.50 e Å−3 |
171 parameters | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.00052 (18) | 0.66580 (16) | 0.37114 (8) | 0.0336 (2) | |
C2 | 1.00425 (17) | 0.58328 (15) | 0.22387 (8) | 0.03023 (18) | |
C3 | 0.78120 (16) | 0.69558 (14) | 0.23070 (7) | 0.02811 (17) | |
C4 | 1.1391 (2) | 0.4821 (2) | 0.14588 (10) | 0.0429 (3) | |
H4A | 1.053893 | 0.420248 | 0.123677 | 0.064* | |
H4B | 1.281001 | 0.389685 | 0.171192 | 0.064* | |
H4C | 1.169126 | 0.571545 | 0.092670 | 0.064* | |
C5 | 0.59592 (16) | 0.76248 (15) | 0.16319 (7) | 0.02893 (17) | |
C6 | 0.6438 (2) | 0.7189 (2) | 0.06335 (10) | 0.0474 (3) | |
H6A | 0.648883 | 0.593175 | 0.065682 | 0.071* | |
H6B | 0.788013 | 0.727617 | 0.039126 | 0.071* | |
H6C | 0.525339 | 0.807944 | 0.021177 | 0.071* | |
C7 | 0.01732 (16) | 1.05991 (15) | 0.17123 (7) | 0.02918 (17) | |
N1 | 1.0867 (2) | 0.6736 (2) | 0.45014 (10) | 0.0471 (3) | |
H11 | 1.215 (4) | 0.611 (3) | 0.4604 (14) | 0.057* | |
H12 | 0.992 (4) | 0.756 (3) | 0.4827 (15) | 0.057* | |
N2 | 1.12182 (15) | 0.56820 (14) | 0.30449 (7) | 0.03419 (18) | |
H2 | 1.261 (3) | 0.496 (2) | 0.3136 (12) | 0.041* | |
N3 | 0.40159 (14) | 0.86322 (14) | 0.19705 (7) | 0.03073 (16) | |
N4 | 0.21575 (15) | 0.94127 (14) | 0.13782 (7) | 0.03273 (18) | |
H41 | 0.214 (3) | 0.927 (2) | 0.0734 (12) | 0.039* | |
N5 | 0.01285 (18) | 1.09259 (17) | 0.25930 (8) | 0.0395 (2) | |
H51 | −0.101 (3) | 1.160 (3) | 0.2836 (13) | 0.047* | |
H52 | 0.117 (3) | 1.046 (3) | 0.2953 (13) | 0.047* | |
S1 | 0.71982 (4) | 0.78020 (4) | 0.33975 (2) | 0.03514 (7) | |
S2 | −0.21036 (5) | 1.16255 (5) | 0.09918 (2) | 0.03939 (8) | |
Cl1 | 0.57747 (5) | 0.30475 (5) | 0.39936 (2) | 0.04264 (8) | |
OW1 | 0.23501 (19) | 0.07771 (18) | 0.43851 (9) | 0.0517 (3) | |
HW1 | 0.288 (4) | −0.009 (4) | 0.4806 (19) | 0.078* | |
HW2 | 0.308 (4) | 0.131 (4) | 0.4302 (19) | 0.078* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0290 (4) | 0.0352 (5) | 0.0351 (5) | −0.0092 (4) | −0.0118 (4) | −0.0030 (4) |
C2 | 0.0241 (4) | 0.0307 (4) | 0.0325 (4) | −0.0064 (3) | −0.0040 (3) | −0.0042 (3) |
C3 | 0.0230 (4) | 0.0313 (4) | 0.0283 (4) | −0.0065 (3) | −0.0052 (3) | −0.0062 (3) |
C4 | 0.0341 (5) | 0.0456 (6) | 0.0429 (6) | −0.0052 (5) | 0.0031 (4) | −0.0152 (5) |
C5 | 0.0240 (4) | 0.0324 (4) | 0.0296 (4) | −0.0081 (3) | −0.0065 (3) | −0.0057 (3) |
C6 | 0.0341 (5) | 0.0638 (8) | 0.0390 (6) | −0.0028 (5) | −0.0082 (4) | −0.0231 (6) |
C7 | 0.0230 (4) | 0.0327 (4) | 0.0301 (4) | −0.0080 (3) | −0.0063 (3) | −0.0037 (3) |
N1 | 0.0405 (5) | 0.0552 (7) | 0.0440 (6) | −0.0094 (5) | −0.0204 (4) | −0.0116 (5) |
N2 | 0.0236 (3) | 0.0361 (4) | 0.0378 (4) | −0.0047 (3) | −0.0092 (3) | −0.0043 (3) |
N3 | 0.0225 (3) | 0.0370 (4) | 0.0303 (4) | −0.0071 (3) | −0.0071 (3) | −0.0054 (3) |
N4 | 0.0236 (3) | 0.0403 (5) | 0.0309 (4) | −0.0050 (3) | −0.0076 (3) | −0.0086 (3) |
N5 | 0.0290 (4) | 0.0525 (6) | 0.0316 (4) | −0.0055 (4) | −0.0053 (3) | −0.0121 (4) |
S1 | 0.02593 (11) | 0.04268 (15) | 0.03359 (13) | −0.00389 (10) | −0.00727 (9) | −0.01324 (11) |
S2 | 0.02756 (12) | 0.04546 (16) | 0.03856 (14) | −0.00214 (10) | −0.01341 (10) | −0.00894 (12) |
Cl1 | 0.02891 (12) | 0.04757 (16) | 0.04456 (16) | −0.00184 (10) | −0.01143 (10) | −0.01183 (12) |
OW1 | 0.0426 (5) | 0.0549 (6) | 0.0542 (6) | −0.0121 (4) | −0.0169 (4) | −0.0060 (5) |
C1—N1 | 1.3181 (16) | C6—H6B | 0.9600 |
C1—N2 | 1.3309 (16) | C6—H6C | 0.9600 |
C1—S1 | 1.7180 (11) | C7—N5 | 1.3198 (15) |
C2—C3 | 1.3575 (13) | C7—N4 | 1.3567 (14) |
C2—N2 | 1.3885 (14) | C7—S2 | 1.6872 (10) |
C2—C4 | 1.4945 (16) | N1—H11 | 0.79 (2) |
C3—C5 | 1.4570 (14) | N1—H12 | 0.87 (2) |
C3—S1 | 1.7565 (10) | N2—H2 | 0.854 (18) |
C4—H4A | 0.9600 | N3—N4 | 1.3806 (12) |
C4—H4B | 0.9600 | N4—H41 | 0.943 (17) |
C4—H4C | 0.9600 | N5—H51 | 0.81 (2) |
C5—N3 | 1.2906 (13) | N5—H52 | 0.80 (2) |
C5—C6 | 1.4961 (16) | OW1—HW1 | 0.78 (3) |
C6—H6A | 0.9600 | OW1—HW2 | 0.71 (3) |
N1—C1—N2 | 124.00 (11) | C5—C6—H6C | 109.5 |
N1—C1—S1 | 124.99 (10) | H6A—C6—H6C | 109.5 |
N2—C1—S1 | 111.01 (8) | H6B—C6—H6C | 109.5 |
C3—C2—N2 | 111.36 (9) | N5—C7—N4 | 117.81 (9) |
C3—C2—C4 | 131.66 (10) | N5—C7—S2 | 122.67 (8) |
N2—C2—C4 | 116.95 (9) | N4—C7—S2 | 119.51 (8) |
C2—C3—C5 | 131.75 (10) | C1—N1—H11 | 118.0 (15) |
C2—C3—S1 | 111.21 (8) | C1—N1—H12 | 113.9 (14) |
C5—C3—S1 | 116.95 (7) | H11—N1—H12 | 127.9 (19) |
C2—C4—H4A | 109.5 | C1—N2—C2 | 115.94 (9) |
C2—C4—H4B | 109.5 | C1—N2—H2 | 120.9 (11) |
H4A—C4—H4B | 109.5 | C2—N2—H2 | 123.1 (11) |
C2—C4—H4C | 109.5 | C5—N3—N4 | 118.97 (9) |
H4A—C4—H4C | 109.5 | C7—N4—N3 | 118.45 (9) |
H4B—C4—H4C | 109.5 | C7—N4—H41 | 115.1 (10) |
N3—C5—C3 | 113.92 (9) | N3—N4—H41 | 126.3 (10) |
N3—C5—C6 | 126.22 (10) | C7—N5—H51 | 122.4 (14) |
C3—C5—C6 | 119.81 (9) | C7—N5—H52 | 125.2 (13) |
C5—C6—H6A | 109.5 | H51—N5—H52 | 112.4 (18) |
C5—C6—H6B | 109.5 | C1—S1—C3 | 90.43 (5) |
H6A—C6—H6B | 109.5 | HW1—OW1—HW2 | 106 (3) |
N2—C2—C3—C5 | 175.76 (11) | C4—C2—N2—C1 | 177.27 (11) |
C4—C2—C3—C5 | −2.4 (2) | C3—C5—N3—N4 | 177.15 (9) |
N2—C2—C3—S1 | −0.57 (12) | C6—C5—N3—N4 | −0.16 (18) |
C4—C2—C3—S1 | −178.69 (11) | N5—C7—N4—N3 | −0.63 (16) |
C2—C3—C5—N3 | 177.59 (11) | S2—C7—N4—N3 | 178.17 (8) |
S1—C3—C5—N3 | −6.25 (13) | C5—N3—N4—C7 | −174.48 (10) |
C2—C3—C5—C6 | −4.92 (19) | N1—C1—S1—C3 | 177.38 (12) |
S1—C3—C5—C6 | 171.25 (10) | N2—C1—S1—C3 | −2.17 (9) |
N1—C1—N2—C2 | −177.21 (12) | C2—C3—S1—C1 | 1.55 (9) |
S1—C1—N2—C2 | 2.34 (13) | C5—C3—S1—C1 | −175.38 (9) |
C3—C2—N2—C1 | −1.15 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
OW1—HW1···Cl1i | 0.79 (3) | 2.45 (3) | 3.2298 (13) | 171 (3) |
N2—H2···Cl1ii | 0.853 (18) | 2.277 (18) | 3.0812 (11) | 157.2 (15) |
OW1—HW2···Cl1 | 0.71 (3) | 2.50 (3) | 3.2111 (14) | 178 (3) |
N1—H11···Cl1iii | 0.78 (3) | 2.81 (2) | 3.2398 (15) | 117.0 (18) |
N1—H12···OW1iv | 0.87 (2) | 1.97 (2) | 2.8354 (19) | 174 (2) |
N4—H41···S2v | 0.943 (16) | 2.686 (16) | 3.6223 (11) | 172.0 (14) |
N5—H51···Cl1vi | 0.81 (2) | 2.54 (2) | 3.3243 (13) | 164.9 (18) |
N5—H52···OW1vii | 0.80 (2) | 2.326 (19) | 2.9899 (17) | 141.2 (19) |
N5—H52···N3 | 0.80 (2) | 2.36 (2) | 2.6306 (16) | 100.6 (15) |
C6—H6C···N4 | 0.96 | 2.48 | 2.8433 (18) | 102 |
C6—H6C···S2v | 0.96 | 2.67 | 3.4923 (15) | 143 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1, y, z; (iii) −x+2, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x, −y+2, −z; (vi) x−1, y+1, z; (vii) x, y+1, z. |
Contact | Distance | Symmetry code |
H52···OW1 | 2.33 | x, 1 + y, z |
C1···N5 | 3.37 | 1 + x, y, z |
C7···H4A | 2.83 | -1 + x, 1 + y, z |
H6C···S2 | 2.67 | -x, 2 - y, -z |
H4C···S2 | 3.08 | 1 - x, 2 - y, -z |
H2···Cl1 | 2.28 | 1 + x, y, z |
H11···Cl1 | 2.81 | 2 - x, 1 - y, 1 - z |
H12···OW1 | 1.97 | 1 - x, 1 - y, 1 - z |
N1···N1 | 3.27 | 2 - x, 1 - y, 1 - z |
H51···Cl1 | 2.54 | -1 + x, 1 + y, z |
C6···C4 | 3.55 | 2 - x, 1 - y, -z |
Cl1···HW2 | 2.50 | x, y, z |
Cl1···HW1 | 2.45 | 1 - x, -y, 1 - z |
Acknowledgements
This study was supported by Baku State University, Erciyes University, Tribhuvan University and Universidad de Antofagasta. Authors' contributions are as follows. Conceptualization, EZH, KAA and AMM; methodology, EZH, IB and MA; investigation, EZH and IB; writing (original draft), MA and AB; writing (review and editing of the manuscript), MA and EZH; visualization, MA, FNN and IB; funding acquisition, EZH, AB and IB; resources, AB, IB and MA; supervision, MA and AMM
References
Abdelhamid, A. A., Mohamed, S. K., Maharramov, A. M., Khalilov, A. N. & Allahverdiev, M. A. (2014). J. Saudi Chem. Soc. 18, 474–478. Web of Science CSD CrossRef Google Scholar
Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172. Web of Science CSD CrossRef IUCr Journals Google Scholar
Askerov, R. K., Maharramov, A. M., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A., Osmanov, V. K. & Borisov, A. V. (2020). Acta Cryst. E76, 1007–1011. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA. Google Scholar
Chhabria, M. T., Patel, S., Modi, P. & Brahmkshatriya, P. S. (2016). Curr. Top. Med. Chem. 16, 2841–2862. Web of Science CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gomha, S. M., Salaheldin, T. A., Hassaneen, H. M. E., Abdel-Aziz, H. M. & Khedr, M. A. (2016). Molecules, 21, 3. Web of Science CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gubina, K., Shatrava, I., Ovchynnikov, V. & Amirkhanov, V. (2011). Acta Cryst. E67, o1607. Web of Science CSD CrossRef IUCr Journals Google Scholar
Karimli, E. G., Khrustalev, V. N., Kurasova, M. N., Akkurt, M., Khalilov, A. N., Bhattarai, A. & Mamedov, İ. G. (2023). Acta Cryst. E79, 474–477. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kekeçmuhammed, H., Tapera, M., Tüzün, B., Akkoç, S., Zorlu, Y. & Sarıpınar, E. (2022). ChemistrySelect, 7, e202201502. Google Scholar
Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719–723. Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011a). Acta Cryst. E67, o721. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Brito, I. (2011b). Acta Cryst. E67, o1307. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Khalilov, A. N. (2012). Acta Cryst. E68, o1881–o1882. CSD CrossRef IUCr Journals Google Scholar
Montes, V., Miñambres, J. F., Khalilov, A. N., Boutonnet, M., Marinas, J. M., Urbano, F. J., Maharramov, A. M. & Marinas, A. (2018). Catal. Today, 306, 89–95. Web of Science CrossRef CAS Google Scholar
Raper, E. S., Kubiak, M. & Głowiak, T. (1996). Acta Cryst. C52, 2908–2910. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tas, A., Tüzün, B., Khalilov, A. N., Taslimi, P., Ağbektas, T. & Cakmak, N. K. (2023). J. Mol. Struct. 1273, 134282. Web of Science CrossRef Google Scholar
Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858. Web of Science CrossRef CAS Google Scholar
Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zarychta, B., Spaleniak, G. & Zaleski, J. (2003). Acta Cryst. E59, o304–o305. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.