research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-amino-5-{(1E)-1-[(carbamo­thioyl­amino)­imino]eth­yl}-4-methyl-1,3-thia­zol-3-ium chloride monohydrate

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, cDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avenida Angamos 601, Casilla 170, Antofagasta 1240000, Chile, and dDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 August 2023; accepted 11 August 2023; online 17 August 2023)

In the hydrated title salt, C7H12N5S2+·Cl·H2O, the asymmetric unit comprises one 2-amino-5-{(1E)-1-[(carbamo­thioyl­amino)­imino]­eth­yl}-4-methyl-1,3-thia­zol-3-ium cation, one chloride anion and one water mol­ecule of crystallization. The cation is nearly flat (r.m.s. deviation of non-H atoms is 0.0814 Å), with the largest deviation of 0.1484 (14) Å observed for one of the methyl C atoms. In the crystal, the cations are linked by O—H⋯Cl, N—H⋯Cl, N—H⋯O, N—H⋯S and C—H⋯S hydrogen bonds, forming a tri-periodic network. The most important contributions to the crystal packing are from H⋯H (35.4%), S⋯H/H⋯S (24.4%), N⋯H/H⋯N (8.7%), Cl⋯H/H⋯Cl (8.2%) and C⋯H/H⋯C (7.7%) inter­actions.

1. Chemical context

Heterocyclic systems account for many important organic compounds (Maharramov et al., 2011b[Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Brito, I. (2011b). Acta Cryst. E67, o1307.]; Abdelhamid et al., 2014[Abdelhamid, A. A., Mohamed, S. K., Maharramov, A. M., Khalilov, A. N. & Allahverdiev, M. A. (2014). J. Saudi Chem. Soc. 18, 474-478.]). In particular, five- and six-membered heterocycles are applied in different branches of chemistry, including sustainable chemistry (Montes et al., 2018[Montes, V., Miñambres, J. F., Khalilov, A. N., Boutonnet, M., Marinas, J. M., Urbano, F. J., Maharramov, A. M. & Marinas, A. (2018). Catal. Today, 306, 89-95.]), drug design and development (Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]; Tas et al., 2023[Tas, A., Tüzün, B., Khalilov, A. N., Taslimi, P., Ağbektas, T. & Cakmak, N. K. (2023). J. Mol. Struct. 1273, 134282.]) or material science (Yin et al., 2020[Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60-63.]). The thia­zole core is one of the most common five-membered heteroaromatic ring systems (Yadigarov et al., 2009[Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856-1858.]; Khalilov, 2021[Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719-723.]). Thia­zoles have potent biological applications and represent an essential core scaffold present in many natural (thi­amine, penicillin) and synthetic medicinally important compounds (Chhabria et al., 2016[Chhabria, M. T., Patel, S., Modi, P. & Brahmkshatriya, P. S. (2016). Curr. Top. Med. Chem. 16, 2841-2862.]), such as sulfazole, ritonavir, abafungin, fanetizole, meloxicam, fenti­azac, nizatidine and thia­methoxam (Fig. 1[link]). A variety of thia­zole derivatives are also used as target products as well as synthetic inter­mediates (Maharramov et al., 2011a[Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011a). Acta Cryst. E67, o721.]; Kekeçmuhammed et al., 2022[Kekeçmuhammed, H., Tapera, M., Tüzün, B., Akkoç, S., Zorlu, Y. & Sarıpınar, E. (2022). ChemistrySelect, 7, e202201502.]).

[Scheme 1]
[Figure 1]
Figure 1
Chemical diagrams of some thia­zole-containing marketed drugs with trade names.

In a continuation of our structural investigations of heterocyclic systems associated with biological activities (Akkurt et al., 2018[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168-1172.]; Askerov et al., 2020[Askerov, R. K., Maharramov, A. M., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A., Osmanov, V. K. & Borisov, A. V. (2020). Acta Cryst. E76, 1007-1011.]; Karimli et al., 2023[Karimli, E. G., Khrustalev, V. N., Kurasova, M. N., Akkurt, M., Khalilov, A. N., Bhattarai, A. & Mamedov, İ. G. (2023). Acta Cryst. E79, 474-477.]), we report here the crystal structure and Hirshfeld surface analysis of the hydrated title salt, C7H12N5S2+·Cl·H2O, (I)[link].

2. Structural commentary

The asymmetric unit of (I)[link] (Fig. 2[link]) comprises one 2-amino-5-{(1E)-1-[(carbamo­thioyl­amino)­imino]­eth­yl}-4-methyl-1,3-thia­zol-3-ium cation, C7H12N5S2+, one chloride anion and one water mol­ecule of crystallization. In the 1,3-thia­zol-3-ium ring, as expected, the C1—N2 distance of 1.3309 (16) Å indicates double-bond character, while the C2—N2 distance of 1.3885 (14) Å has more single-bond character.

[Figure 2]
Figure 2
The mol­ecular structure of (I)[link], showing the atom labeling and displacement ellipsoids drawn at the 50% probability level.

In the amino-N′-[(1Z)-ethyl­idene]ethane­thio­hydrazide group, the S2—C7—N4—N3, N5—C7—N4—N3, C7—N4—N3—C5 and N4—N3—C5—C6 torsion angles are 178.17 (8), −0.63 (16), 174.48 (10) and 0.16 (18)°, respectively. The title compound shows bond lengths and angles that are typical and are in agreement with those reported for the related compounds discussed in the Database survey section.

The cation is nearly flat (r.m.s. deviation of the 14 non-H atoms is 0.0814 Å), with the largest deviations observed for C6 [0.1484 (14) Å], N1 [0.1357 (10) Å], and S2 [0.1399 (6) Å].

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal of (I)[link], the cations are linked by O—H⋯Cl, N—H⋯Cl, N—H⋯O, N—H⋯S and C—H⋯S hydrogen bonds (Table 1[link]), forming a tri-periodic network (Figs. 3[link]–5[link][link]). Significant C—H⋯π or ππ inter­actions are not developed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—HW1⋯Cl1i 0.79 (3) 2.45 (3) 3.2298 (13) 171 (3)
N2—H2⋯Cl1ii 0.853 (18) 2.277 (18) 3.0812 (11) 157.2 (15)
OW1—HW2⋯Cl1 0.71 (3) 2.50 (3) 3.2111 (14) 178 (3)
N1—H11⋯Cl1iii 0.78 (3) 2.81 (2) 3.2398 (15) 117.0 (18)
N1—H12⋯OW1iv 0.87 (2) 1.97 (2) 2.8354 (19) 174 (2)
N4—H41⋯S2v 0.943 (16) 2.686 (16) 3.6223 (11) 172.0 (14)
N5—H51⋯Cl1vi 0.81 (2) 2.54 (2) 3.3243 (13) 164.9 (18)
N5—H52⋯OW1vii 0.80 (2) 2.326 (19) 2.9899 (17) 141.2 (19)
C6—H6C⋯S2v 0.96 2.67 3.4923 (15) 143
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) x+1, y, z; (iii) [-x+2, -y+1, -z+1]; (iv) [-x+1, -y+1, -z+1]; (v) [-x, -y+2, -z]; (vi) [x-1, y+1, z]; (vii) x, y+1, z.
[Figure 3]
Figure 3
View of the packing of (I)[link] along the a axis with the O—H⋯Cl, N—H⋯Cl, N—H⋯O, N—H⋯S and C—H⋯S hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 4]
Figure 4
View of the same inter­actions as in Fig. 2[link] along the b axis.
[Figure 5]
Figure 5
View of the same inter­actions as in Fig. 2[link] along the c axis.

In order to visualize and qu­antify inter­molecular inter­actions (Table 2[link]) in (I)[link], a Hirshfeld surface analysis was performed using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), which was also used for generation of the associated two-dimensional fingerprint plots. The Hirshfeld surface mapped over dnorm shows the inter­molecular contacts as red-colored spots, which indicate the O—H⋯Cl, N—H⋯Cl, N—H⋯O, N—H⋯S and C—H⋯S hydrogen bonds (Fig. 6[link]).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry code
H52⋯OW1 2.33 x, 1 + y, z
C1⋯N5 3.37 1 + x, y, z
C7⋯H4A 2.83 −1 + x, 1 + y, z
H6C⋯S2 2.67 x, 2 − y, −z
H4C⋯S2 3.08 1 − x, 2 − y, −z
H2⋯Cl1 2.28 1 + x, y, z
H11⋯Cl1 2.81 2 − x, 1 − y, 1 − z
H12⋯OW1 1.97 1 − x, 1 − y, 1 − z
N1⋯N1 3.27 2 − x, 1 − y, 1 − z
H51⋯Cl1 2.54 −1 + x, 1 + y, z
C6⋯C4 3.55 2 − x, 1 − y, −z
Cl1⋯HW2 2.50 x, y, z
Cl1⋯HW1 2.45 1 − x, −y, 1 − z
[Figure 6]
Figure 6
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of (I)[link] mapped over dnorm.

The two-dimensional fingerprint plots of the most abundant contacts are presented in Fig. 7[link]. H⋯H (35.4%) and S⋯H/H⋯S (24.4%) contacts are responsible for the largest contributions to the Hirshfeld surface. Besides these contacts, N⋯H/H⋯N (8.7%), Cl⋯H/H⋯Cl (8.2%) and C⋯H/H⋯C (7.7%) inter­actions contribute significantly to the total Hirshfeld surface. The contributions of further contacts are only minor and amount to C⋯H/H⋯C (4.5%), S⋯C/C⋯S (2.4%), N⋯C/C⋯N (2.1%), N⋯N (1.9%), C⋯C (1.6%), S⋯N/N⋯S (1.3%), Cl⋯S/S⋯Cl (0.6%), Cl⋯C/C⋯Cl (0.6%), S⋯S (0.4%), N⋯O/O⋯N (%0.1) and S⋯O/O⋯S (0.1%).

[Figure 7]
Figure 7
The two-dimensional fingerprint plots of (I)[link], showing (a) all inter­actions, and delineated into (b) H⋯H, (c) S⋯H/H⋯S, (d) N⋯H/H⋯N, (e) Cl⋯H/H⋯Cl and (f) C⋯H/H⋯C inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Crystallographic Database (updated 20 March 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using the 1,3-thia­zol-3-ium moiety as the search fragment revealed four closely related compounds: 2-anilino-3-(2-hy­droxy­prop­yl)-4-methyl-1,3-thia­zol-3-ium chloride (II) (Mohamed et al., 2012[Mohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Khalilov, A. N. (2012). Acta Cryst. E68, o1881-o1882.]), 2-amino-5-butyl-4-methyl-1,3-thia­zol-3-ium nitrate (III) (Zarychta et al., 2003[Zarychta, B., Spaleniak, G. & Zaleski, J. (2003). Acta Cryst. E59, o304-o305.]), 2-(2-thioxo-1,3-thia­zolidin-3-yl)-4,5-di­hydro-l,3-thia­zol-l-ium chloride (IV) (Raper et al., 1996[Raper, E. S., Kubiak, M. & Głowiak, T. (1996). Acta Cryst. C52, 2908-2910.]) and 2-ureido-1,3-thia­zol-3-ium di­hydrogen phosphate (V) (Gubina et al., 2011[Gubina, K., Shatrava, I., Ovchynnikov, V. & Amirkhanov, V. (2011). Acta Cryst. E67, o1607.]).

In the crystal of (II), mol­ecules are linked by O—H⋯Cl and N—H⋯Cl hydrogen bonds, forming zigzag chains along [001]. There is also a C—H⋯Cl inter­action present. The crystal structure of (III) comprises a substituted thia­zolium ring that is connected to a nitrate ion via N—H⋯O hydrogen-bonding inter­actions. In the crystal of (IV), the mol­ecular packing is determined by inter­ionic N—H⋯Cl contacts. In the crystal of (V), the mol­ecules of substituted urea are connected by O—H⋯O hydrogen bonds into sheets. In turn, these sheets are connected to each other via N—H⋯O hydrogen bonds with hydrogen phosphate anions, forming a tri-periodic network.

5. Synthesis and crystallization

The title compound was synthesized using a reported procedure (Gomha et al., 2016[Gomha, S. M., Salaheldin, T. A., Hassaneen, H. M. E., Abdel-Aziz, H. M. & Khedr, M. A. (2016). Molecules, 21, 3.]). Colorless crystals were obtained upon recrystallization from an ethanol/water (3:1 v:v) solution at room temperature

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms of the methyl groups were positioned geometrically and refined as riding with C—H = 0.96 Å, with Uiso(H) = 1.5Ueq(C). The H atoms attached to the N atom and the H atoms of the water mol­ecule were found in a difference-Fourier map. Their positional parameters were refined freely while setting Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula C7H12N5S2+·Cl·H2O
Mr 283.80
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 6.3279 (4), 7.7816 (6), 14.1342 (10)
α, β, γ (°) 77.191 (3), 83.660 (3), 67.860 (2)
V3) 628.35 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.62
Crystal size (mm) 0.04 × 0.03 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]).
Tmin, Tmax 0.570, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 34019, 6058, 4589
Rint 0.053
(sin θ/λ)max−1) 0.833
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.115, 1.05
No. of reflections 6058
No. of parameters 171
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.29
Computer programs: APEX2 (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

2-Amino-5-{(1E)-1-[(carbamothioylamino)imino]ethyl}-4-methyl-1,3-thiazol-3-ium chloride monohydrate top
Crystal data top
C7H12N5S2+·Cl·H2OZ = 2
Mr = 283.80F(000) = 296
Triclinic, P1Dx = 1.500 Mg m3
a = 6.3279 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.7816 (6) ÅCell parameters from 9921 reflections
c = 14.1342 (10) Åθ = 3.0–36.3°
α = 77.191 (3)°µ = 0.62 mm1
β = 83.660 (3)°T = 293 K
γ = 67.860 (2)°Prism, colourless
V = 628.35 (8) Å30.04 × 0.03 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
4589 reflections with I > 2σ(I)
φ and ω scansRint = 0.053
Absorption correction: multi-scan
(SADABS; Krause et al., 2015).
θmax = 36.3°, θmin = 3.0°
Tmin = 0.570, Tmax = 0.747h = 1010
34019 measured reflectionsk = 1212
6058 independent reflectionsl = 2321
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.0995P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6058 reflectionsΔρmax = 0.50 e Å3
171 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.00052 (18)0.66580 (16)0.37114 (8)0.0336 (2)
C21.00425 (17)0.58328 (15)0.22387 (8)0.03023 (18)
C30.78120 (16)0.69558 (14)0.23070 (7)0.02811 (17)
C41.1391 (2)0.4821 (2)0.14588 (10)0.0429 (3)
H4A1.0538930.4202480.1236770.064*
H4B1.2810010.3896850.1711920.064*
H4C1.1691260.5715450.0926700.064*
C50.59592 (16)0.76248 (15)0.16319 (7)0.02893 (17)
C60.6438 (2)0.7189 (2)0.06335 (10)0.0474 (3)
H6A0.6488830.5931750.0656820.071*
H6B0.7880130.7276170.0391260.071*
H6C0.5253390.8079440.0211770.071*
C70.01732 (16)1.05991 (15)0.17123 (7)0.02918 (17)
N11.0867 (2)0.6736 (2)0.45014 (10)0.0471 (3)
H111.215 (4)0.611 (3)0.4604 (14)0.057*
H120.992 (4)0.756 (3)0.4827 (15)0.057*
N21.12182 (15)0.56820 (14)0.30449 (7)0.03419 (18)
H21.261 (3)0.496 (2)0.3136 (12)0.041*
N30.40159 (14)0.86322 (14)0.19705 (7)0.03073 (16)
N40.21575 (15)0.94127 (14)0.13782 (7)0.03273 (18)
H410.214 (3)0.927 (2)0.0734 (12)0.039*
N50.01285 (18)1.09259 (17)0.25930 (8)0.0395 (2)
H510.101 (3)1.160 (3)0.2836 (13)0.047*
H520.117 (3)1.046 (3)0.2953 (13)0.047*
S10.71982 (4)0.78020 (4)0.33975 (2)0.03514 (7)
S20.21036 (5)1.16255 (5)0.09918 (2)0.03939 (8)
Cl10.57747 (5)0.30475 (5)0.39936 (2)0.04264 (8)
OW10.23501 (19)0.07771 (18)0.43851 (9)0.0517 (3)
HW10.288 (4)0.009 (4)0.4806 (19)0.078*
HW20.308 (4)0.131 (4)0.4302 (19)0.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0290 (4)0.0352 (5)0.0351 (5)0.0092 (4)0.0118 (4)0.0030 (4)
C20.0241 (4)0.0307 (4)0.0325 (4)0.0064 (3)0.0040 (3)0.0042 (3)
C30.0230 (4)0.0313 (4)0.0283 (4)0.0065 (3)0.0052 (3)0.0062 (3)
C40.0341 (5)0.0456 (6)0.0429 (6)0.0052 (5)0.0031 (4)0.0152 (5)
C50.0240 (4)0.0324 (4)0.0296 (4)0.0081 (3)0.0065 (3)0.0057 (3)
C60.0341 (5)0.0638 (8)0.0390 (6)0.0028 (5)0.0082 (4)0.0231 (6)
C70.0230 (4)0.0327 (4)0.0301 (4)0.0080 (3)0.0063 (3)0.0037 (3)
N10.0405 (5)0.0552 (7)0.0440 (6)0.0094 (5)0.0204 (4)0.0116 (5)
N20.0236 (3)0.0361 (4)0.0378 (4)0.0047 (3)0.0092 (3)0.0043 (3)
N30.0225 (3)0.0370 (4)0.0303 (4)0.0071 (3)0.0071 (3)0.0054 (3)
N40.0236 (3)0.0403 (5)0.0309 (4)0.0050 (3)0.0076 (3)0.0086 (3)
N50.0290 (4)0.0525 (6)0.0316 (4)0.0055 (4)0.0053 (3)0.0121 (4)
S10.02593 (11)0.04268 (15)0.03359 (13)0.00389 (10)0.00727 (9)0.01324 (11)
S20.02756 (12)0.04546 (16)0.03856 (14)0.00214 (10)0.01341 (10)0.00894 (12)
Cl10.02891 (12)0.04757 (16)0.04456 (16)0.00184 (10)0.01143 (10)0.01183 (12)
OW10.0426 (5)0.0549 (6)0.0542 (6)0.0121 (4)0.0169 (4)0.0060 (5)
Geometric parameters (Å, º) top
C1—N11.3181 (16)C6—H6B0.9600
C1—N21.3309 (16)C6—H6C0.9600
C1—S11.7180 (11)C7—N51.3198 (15)
C2—C31.3575 (13)C7—N41.3567 (14)
C2—N21.3885 (14)C7—S21.6872 (10)
C2—C41.4945 (16)N1—H110.79 (2)
C3—C51.4570 (14)N1—H120.87 (2)
C3—S11.7565 (10)N2—H20.854 (18)
C4—H4A0.9600N3—N41.3806 (12)
C4—H4B0.9600N4—H410.943 (17)
C4—H4C0.9600N5—H510.81 (2)
C5—N31.2906 (13)N5—H520.80 (2)
C5—C61.4961 (16)OW1—HW10.78 (3)
C6—H6A0.9600OW1—HW20.71 (3)
N1—C1—N2124.00 (11)C5—C6—H6C109.5
N1—C1—S1124.99 (10)H6A—C6—H6C109.5
N2—C1—S1111.01 (8)H6B—C6—H6C109.5
C3—C2—N2111.36 (9)N5—C7—N4117.81 (9)
C3—C2—C4131.66 (10)N5—C7—S2122.67 (8)
N2—C2—C4116.95 (9)N4—C7—S2119.51 (8)
C2—C3—C5131.75 (10)C1—N1—H11118.0 (15)
C2—C3—S1111.21 (8)C1—N1—H12113.9 (14)
C5—C3—S1116.95 (7)H11—N1—H12127.9 (19)
C2—C4—H4A109.5C1—N2—C2115.94 (9)
C2—C4—H4B109.5C1—N2—H2120.9 (11)
H4A—C4—H4B109.5C2—N2—H2123.1 (11)
C2—C4—H4C109.5C5—N3—N4118.97 (9)
H4A—C4—H4C109.5C7—N4—N3118.45 (9)
H4B—C4—H4C109.5C7—N4—H41115.1 (10)
N3—C5—C3113.92 (9)N3—N4—H41126.3 (10)
N3—C5—C6126.22 (10)C7—N5—H51122.4 (14)
C3—C5—C6119.81 (9)C7—N5—H52125.2 (13)
C5—C6—H6A109.5H51—N5—H52112.4 (18)
C5—C6—H6B109.5C1—S1—C390.43 (5)
H6A—C6—H6B109.5HW1—OW1—HW2106 (3)
N2—C2—C3—C5175.76 (11)C4—C2—N2—C1177.27 (11)
C4—C2—C3—C52.4 (2)C3—C5—N3—N4177.15 (9)
N2—C2—C3—S10.57 (12)C6—C5—N3—N40.16 (18)
C4—C2—C3—S1178.69 (11)N5—C7—N4—N30.63 (16)
C2—C3—C5—N3177.59 (11)S2—C7—N4—N3178.17 (8)
S1—C3—C5—N36.25 (13)C5—N3—N4—C7174.48 (10)
C2—C3—C5—C64.92 (19)N1—C1—S1—C3177.38 (12)
S1—C3—C5—C6171.25 (10)N2—C1—S1—C32.17 (9)
N1—C1—N2—C2177.21 (12)C2—C3—S1—C11.55 (9)
S1—C1—N2—C22.34 (13)C5—C3—S1—C1175.38 (9)
C3—C2—N2—C11.15 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1···Cl1i0.79 (3)2.45 (3)3.2298 (13)171 (3)
N2—H2···Cl1ii0.853 (18)2.277 (18)3.0812 (11)157.2 (15)
OW1—HW2···Cl10.71 (3)2.50 (3)3.2111 (14)178 (3)
N1—H11···Cl1iii0.78 (3)2.81 (2)3.2398 (15)117.0 (18)
N1—H12···OW1iv0.87 (2)1.97 (2)2.8354 (19)174 (2)
N4—H41···S2v0.943 (16)2.686 (16)3.6223 (11)172.0 (14)
N5—H51···Cl1vi0.81 (2)2.54 (2)3.3243 (13)164.9 (18)
N5—H52···OW1vii0.80 (2)2.326 (19)2.9899 (17)141.2 (19)
N5—H52···N30.80 (2)2.36 (2)2.6306 (16)100.6 (15)
C6—H6C···N40.962.482.8433 (18)102
C6—H6C···S2v0.962.673.4923 (15)143
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1; (v) x, y+2, z; (vi) x1, y+1, z; (vii) x, y+1, z.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry code
H52···OW12.33x, 1 + y, z
C1···N53.371 + x, y, z
C7···H4A2.83-1 + x, 1 + y, z
H6C···S22.67-x, 2 - y, -z
H4C···S23.081 - x, 2 - y, -z
H2···Cl12.281 + x, y, z
H11···Cl12.812 - x, 1 - y, 1 - z
H12···OW11.971 - x, 1 - y, 1 - z
N1···N13.272 - x, 1 - y, 1 - z
H51···Cl12.54-1 + x, 1 + y, z
C6···C43.552 - x, 1 - y, -z
Cl1···HW22.50x, y, z
Cl1···HW12.451 - x, -y, 1 - z
 

Acknowledgements

This study was supported by Baku State University, Erciyes University, Tribhuvan University and Universidad de Antofagasta. Authors' contributions are as follows. Conceptualization, EZH, KAA and AMM; methodology, EZH, IB and MA; investigation, EZH and IB; writing (original draft), MA and AB; writing (review and editing of the manuscript), MA and EZH; visualization, MA, FNN and IB; funding acquisition, EZH, AB and IB; resources, AB, IB and MA; supervision, MA and AMM

References

First citationAbdelhamid, A. A., Mohamed, S. K., Maharramov, A. M., Khalilov, A. N. & Allahverdiev, M. A. (2014). J. Saudi Chem. Soc. 18, 474–478.  Web of Science CSD CrossRef Google Scholar
First citationAkkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAskerov, R. K., Maharramov, A. M., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A., Osmanov, V. K. & Borisov, A. V. (2020). Acta Cryst. E76, 1007–1011.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA.  Google Scholar
First citationChhabria, M. T., Patel, S., Modi, P. & Brahmkshatriya, P. S. (2016). Curr. Top. Med. Chem. 16, 2841–2862.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGomha, S. M., Salaheldin, T. A., Hassaneen, H. M. E., Abdel-Aziz, H. M. & Khedr, M. A. (2016). Molecules, 21, 3.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGubina, K., Shatrava, I., Ovchynnikov, V. & Amirkhanov, V. (2011). Acta Cryst. E67, o1607.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarimli, E. G., Khrustalev, V. N., Kurasova, M. N., Akkurt, M., Khalilov, A. N., Bhattarai, A. & Mamedov, İ. G. (2023). Acta Cryst. E79, 474–477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKekeçmuhammed, H., Tapera, M., Tüzün, B., Akkoç, S., Zorlu, Y. & Sarıpınar, E. (2022). ChemistrySelect, 7, e202201502.  Google Scholar
First citationKhalilov, A. N. (2021). Rev. Roum. Chim. 66, 719–723.  Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMaharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011a). Acta Cryst. E67, o721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Brito, I. (2011b). Acta Cryst. E67, o1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Khalilov, A. N. (2012). Acta Cryst. E68, o1881–o1882.  CSD CrossRef IUCr Journals Google Scholar
First citationMontes, V., Miñambres, J. F., Khalilov, A. N., Boutonnet, M., Marinas, J. M., Urbano, F. J., Maharramov, A. M. & Marinas, A. (2018). Catal. Today, 306, 89–95.  Web of Science CrossRef CAS Google Scholar
First citationRaper, E. S., Kubiak, M. & Głowiak, T. (1996). Acta Cryst. C52, 2908–2910.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTas, A., Tüzün, B., Khalilov, A. N., Taslimi, P., Ağbektas, T. & Cakmak, N. K. (2023). J. Mol. Struct. 1273, 134282.  Web of Science CrossRef Google Scholar
First citationYadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858.  Web of Science CrossRef CAS Google Scholar
First citationYin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZarychta, B., Spaleniak, G. & Zaleski, J. (2003). Acta Cryst. E59, o304–o305.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds