research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure, Hirshfeld surface analysis, DFT and NBO study of ethyl 1-(4-fluoro­phen­yl)-4-[(4-fluoro­phen­yl)amino]-2,6-di­phenyl-1,2,5,6-tetra­hydro­pyridine-3-carboxyl­ate

crossmark logo

aSchool of Studies in Chemistry, Jiwaji University, Gwalior 474011, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: skggwr@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 14 August 2023; accepted 26 August 2023; online 8 September 2023)

The title com­pound, C32H28F2N2O2, a highly functionalized tetra­hydro­pyridine, was synthesized by a one-pot multi-com­ponent reaction of 4-fluoro­aniline, ethyl aceto­acetate and benzaldehyde at room temperature using sodium lauryl sulfate as a catalyst. The com­pound crystallizes with two mol­ecules in the asymmetric unit. The tetra­hydro­pyridine ring adopts a distorted boat conformation in both mol­ecules and the dihedral angles between the planes of the fluoro-substituted rings are 77.1 (6) and 77.3 (6)°. The amino group and carbonyl O atom are involved in an intra­molecular N—H⋯O hydrogen bond, thereby generating an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯F hydrogen bonds forming a three-dimensional network and C—H⋯π inter­actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (47.9%), C⋯H/H⋯C (30.7%) and F⋯H/H⋯F (12.4%) contacts. The optimized structure calculated using density functional theory (DFT) at the B3LYP/6-311+G(2d,p) level is compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was used to determine the energy gap and the Natural Bond Orbital (NBO) analysis was done to study donor–acceptor interconnections.

1. Chemical context

Highly functionalized tetra­hydro­pyridines are widely present in naturally occurring and synthetic drugs (Watson et al., 2000[Watson, P. S., Jiang, B. & Scott, B. (2000). Org. Lett. 2, 3679-3681.]), which exhibit many desirable pharmacological activities, such as hyperglycemic (Yeung et al., 1982[Yeung, J. M., Corleto, L. A. & Knaus, E. E. (1982). J. Med. Chem. 25, 720-723.]), analgesic (Rao et al., 1995[Rao, K. N., Redda, K. K., Onayemi, F. Y., Melles, H. & Choi, J. (1995). J. Heterocycl. Chem. 32, 307-315.]; Gangapuram et al., 2006[Gangapuram, M. & Redda, K. K. (2006). J. Heterocycl. Chem. 43, 709-718.]), anti­malarial (Misra et al., 2009[Misra, M., Pandey, S. K., Pandey, V. P., Pandey, J., Tripathi, R. & Tripathi, R. P. (2009). Bioorg. Med. Chem. 17, 625-633.]), nicotinic (Olesen et al., 1998[Olesen, P. H., Swedberg, M. D. B. & Rimvall, K. (1998). Bioorg. Med. Chem. 6, 1623-1629.]), anti-influenza (Chand et al., 2001[Chand, P., Kotian, P. L., Dehghani, A., El-Kattan, Y., Lin, T. H., Hutchison, T. L., Babu, Y. S., Bantia, S., Elliott, A. J. & Montgomery, J. A. (2001). J. Med. Chem. 44, 4379-4392.]) and anti­convulsant properties (Ho et al., 2001[Ho, B., Michael Crider, A. & Stables, J. P. (2001). Eur. J. Med. Chem. 36, 265-286.]). Earlier literature shows that a lot of effort was devoted to develop a simple and easy protocol for the synthesis of substituted tetra­hydro­pyridines using various catalytic systems, such as bromo­dimethyl­sulfonium bromide (BDMS) (Khan et al., 2008[Khan, A. T., Parvin, T. & Choudhury, L. H. (2008). J. Org. Chem. 73, 8398-8402.]), iodine, tetra­butyl­ammonium tribromide (TBATB) (Khan et al., 2010[Khan, A. T., Khan, M. M. & Bannuru, K. K. (2010). Tetrahedron, 66, 7762-7772.]), cerium ammonium nitrate (Wang et al., 2010[Wang, H. J., Mo, L. P. & Zhang, Z. H. (2010). ACS Comb. Sci. 13, 181-185.]), BF3·SiO2 (Ramachandran et al., 2012[Ramachandran, R., Jayanthi, S. & Jeong, Y. T. (2012). Tetrahedron, 68, 363-369.]), ZrOCl2·8H2O (Mishra & Ghosh, 2011[Mishra, S. & Ghosh, R. (2011). Tetrahedron Lett. 52, 2857-2861.]), Bi(NO3)3·5H2O (Brahmchari & Das, 2012[Brahmachari, G. & Das, S. (2012), Tetrahedron Lett. 53, 1479-1484.]), oxalic acid (Sajadikhah et al., 2012[Sajadikhah, S. S., Maghsoodlou, M. T., Hazeri, N., Habibi-Khorassani, S. M. & Willis, A. C. (2012). Chin. Chem. Lett. 23, 569-572.]), picric acid (Mukhopadhyay et al., 2011[Mukhopadhyay, C., Rana, S., Butcher, R. J. & Schmiedekamp, A. M. (2011). Tetrahedron Lett. 52, 5835-5840.]), AcOH (Lashkari et al., 2013[Lashkari, M., Maghsoodlou, M. T., Hazeri, N., Habibi-Khorassani, S. M., Sajadikhah, S. S. & Doostmohamadi, R. (2013). Synth. Commun. 43, 635-644.]), L-proline/TFA (Misra et al., 2009[Misra, M., Pandey, S. K., Pandey, V. P., Pandey, J., Tripathi, R. & Tripathi, R. P. (2009). Bioorg. Med. Chem. 17, 625-633.]), InCl3 (Clarke et al., 2008[Clarke, P. A., Zaytsev, A. V. & Whitwood, A. C. (2008). Synthesis, 2008, 3530-3532.]), zirconia pillared clay–polyphospho­ric acid (Kar et al., 2014[Kar, P., Mishra, B. G. & Pradhan, S. R. (2014). J. Mol. Catal. A Chem. 387, 103-111.]), silica sulfuric acid (Daraei et al., 2015[Daraei, M., Zolfigol, M. A., Derakhshan-Panah, F., Shiri, M., Kruger, H. G. & Mokhlesi, M. (2015). J. Iran. Chem. Soc. 12, 855-861.]), graphene oxide (Gupta et al., 2017[Gupta, A., Kaur, R., Singh, D. K. & Kapoor, K. K. (2017). Tetrahedron Lett. 58, 2583-2587.]), cyanuric chloride (Ramesh et al., 2017[Ramesh, R., Maheswari, S., Arivazhagan, M., Malecki, J. G. & Lalitha, A. (2017). Tetrahedron Lett. 58, 3905-3909.]), aluminized polyborate (Mali et al., 2018[Mali, A. S., Potnis, C. S. & Chaturbhuj, G. U. (2018). J. Iran. Chem. Soc. 15, 1399-1409.]) and thi­amine hydro­chloride (Singh et al., 2020[Singh, S., Gupta, A. & Kapoor, K. K. (2020). Synth. Commun. 50, 1056-1063.]). These methodologies suffer from one or other disadvantages, such as a multi-step synthetic sequence, the requirement for expensive reagents or catalysts, etc.

[Scheme 1]

The development of improved synthetic procedures with an objective of green chemistry and technology, and the use of recyclable catalysts for organic synthesis to maximize efficiency and minimize waste, has been currently in demand. To accom­plish this objective, our laboratory has developed an ecofriendly catalyst for organic transformations; herein, this article describes the application of sodium lauryl sulfate (SLS) as an efficient and ecofriendly catalyst for tetra­hydro­pyridine synthesis in water at room temperature by the reaction of benzaldehyde, 4-fluoro­aniline and β-ketoester. This catalyst is environmentally benign due to its reusability and nontoxic nature; it is readily available and inexpensive, and this reaction can be regarded as an efficient approach for the preparation of synthetically and pharmaceutically important functionalized tetra­hydro­pyridine systems. To the best of our knowledge, this is the second report on the use of SLS for the synthesis of a highly functionalized tetra­hydro­pyridine (Bansal et al., 2017[Bansal, R., Soni, P. K., Sharma, J., Bhardwaj, S. K. & Halve, A. K. (2017). Curr. Chem. Lett. 7, 135-142.]). Herein, we report the synthesis, crystal structure and Hirshfeld surface analysis of ethyl 1-(4-fluoro­phen­yl)-4-[(4-fluoro­phen­yl)amino]-2,6-diphenyl-1,2,5,6-tetra­hydro­pyridine-3-carboxyl­ate, (I), using sodium lauryl sulfate as catalyst.

2. Structural commentary

The title com­pound, (I) (Fig. 1[link]), which is a rare example of fluoro­phenyl groups attached to the N atom of a central tetra­hydro­pyridine ring, crystallizes in a noncentrosymmetric space group (monoclinic, P21). There are two mol­ecules in the asymmetric unit (Z = 4). In the arbitrarily chosen asymmetric unit, the stereogenic atoms C1A, C5A, C1B and C5B all have an S configuration. The absolute structure is not well established, but the racemic mol­ecule presumably spontaneously resolves into its enanti­omers upon crystallization. The tetra­hydro­pyridine ring adopts a distorted boat conformation in both mol­ecules. The fluoro­phenyl groups are attached to the tetra­hydro­pyridine ring in a pseudo-para orientation. The C—N—C—C torsion angles are 171.8 (10) and 161.0 (11)° in mol­ecule A (containing C1A), and 172.2 (9) and 160.9 (12)° in mol­ecule B containing C1B. The dihedral angles between the planes of the C12A–C17A/C18A–C23A and C12B–C17B/C18B–C23B rings are 77.1 (6) and 77.3 (6)°, respectively. The mean plane of the central tetra­hydro­pyridine N1A/C1A–C5A ring subtends dihedral angles of 74.0 (6), 45.9 (6), 46.4 (6) and 70.4 (6)° with the pendant phenyl C6A–C11A, C12A–C17A, C18A–C23A and C24A–C29A rings, respectively. Equivalent data for the N1B/C1B–C5B ring and the C6B–C11B, C12B–C17B, C18B–C23B and C24B–C29B phenyl groups are 76.2 (6), 48.7 (6), 45.0 (6), 71.5 (6)°, respectively. In both mol­ecules, the amine N atoms are clearly nonplanar, with the sum of the bond angles around N1A and N2A being 351.0 and 359.0°, respectively, and those around N1B and N2B being 351.4 and 347.3°, respectively. Otherwise, all bond lengths and angles are com­parable to those observed in related structures (Anthal et al., 2013a[Anthal, S., Brahmachari, G., Das, S., Kant, R. & Gupta, V. K. (2013a). Acta Cryst. E69, o299-o300.]; Yu et al., 2013[Yu, J., Tang, S., Zeng, J. & Yan, Z. (2013). Acta Cryst. E69, o947-o948.]). In both mol­ecules, the amine N atom participates in an intra­molecular N—H⋯O hydrogen bond of length ca 2.65 Å with the O1 atom of the carbonyl group, thereby generating an S(6) ring, essentially similar to those in [Ph(C6H4N)Ph(NH)(FC6H4)2(OCOC2H5)] [2.672 (3) Å; Anthal et al., 2013a[Anthal, S., Brahmachari, G., Das, S., Kant, R. & Gupta, V. K. (2013a). Acta Cryst. E69, o299-o300.]] and [Ph(C6H4N)Ph(NH)(ClC6H4)2(OCOC2H5)] [2.659 (5) Å; Yu et al., 2013[Yu, J., Tang, S., Zeng, J. & Yan, Z. (2013). Acta Cryst. E69, o947-o948.]].

[Figure 1]
Figure 1
The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. The N—H⋯O hydrogen bonds are depicted by dashed lines.

3. Supra­molecular features

The crystal packing of (I), viewed along the a axis, is presented in Fig. 2[link]. The com­pound packs in a way that allows close contacts between the F and H atoms of adjacent mol­ecules, leading to a network of C—H⋯F inter­actions (Table 1[link]). Furthermore, there are six C—H⋯π inter­actions (Table 1[link]), which may help to consolidate the packing.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg4, Cg7 and Cg9 are the centroids of the C6A–C11A, C18A–C23A, C6B–C11B and C18B–C23B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2AA⋯O1A 0.85 (3) 1.98 (10) 2.652 (13) 136 (12)
N2B—H2BA⋯O1B 0.88 2.04 2.664 (13) 127
C31A—H31A⋯F2B 0.99 2.43 3.327 (14) 151
C31A—H31B⋯F1B 0.99 2.40 3.257 (15) 144
C31B—H31C⋯F2A 0.99 2.45 3.213 (15) 134
C31B—H31D⋯F1A 0.99 2.32 3.281 (13) 165
C5A—H5AACg9i 1.00 2.91 3.907 (13) 178
C5B—H5BACg4ii 1.00 2.96 3.958 (14) 174
C22A—H22ACg7i 0.95 2.87 3.770 (14) 159
C22B—H22BCg2ii 0.95 2.94 3.857 (15) 162
C29A—H29ACg7iii 0.95 2.71 3.437 (13) 134
C29B—H29BCg2iv 0.95 2.84 3.595 (13) 138
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) [-x, y+{\script{1\over 2}}, -z]; (iii) [x-1, y, z+1]; (iv) x+1, y, z.
[Figure 2]
Figure 2
Packing diagram of (I), viewed along the a axis. Dashed lines indicate N—H⋯O hydrogen bonds and inter­molecular C—H⋯F inter­actions.

4. Hirshfeld surface analysis and com­putational chemistry

The Hirshfeld surface analysis was performed with CrystalExplorer (Version 21.5; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 3[link] shows views of the dnorm surfaces for the two mol­ecules in the asym­metric unit plotted over the limits from −0.25 to 1.48 a.u. for mol­ecule 1 and −0.25 to 1.43 a.u. for mol­ecule 2. The red spots that appear around atoms F1 and F2 in mol­ecules A and B are caused by inter­molecular C31A—H31A⋯F2B, C31A—H31B⋯F1B, C31B—H31C⋯F2A and C31B—H31D⋯F1A inter­actions (Table 2[link]). An intra­molecular N—H⋯O hydrogen bond is also indicated by the red spots near the H and O atoms [Figs. 3[link](a) and 3(b)].

Table 2
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title com­pound

Contact Percentage contribution
H⋯H 47.9
C⋯H/H⋯C 30.7
F⋯H/H⋯F 12.4
O⋯H/H⋯O 4.9
N⋯H/H⋯N 1.3
F⋯C/C⋯F 0.8
C⋯C 0.7
C⋯O/O⋯C 0.6
F⋯F 0.5
F⋯O/O⋯F 0.2
[Figure 3]
Figure 3
A view of the three-dimensional Hirshfeld surface mapped over dnorm in the range from −0.25 to 1.48 a.u. for mol­ecule A and from −0.25 to 1.43 a.u. for mol­ecule B.

The two-dimensional fingerprint plots were generated using CrystalExplorer encom­passing all inter­molecular contacts, as well as the delineated specific contacts (Fig. 4[link]). The most significant contacts and their percentage contributions to the Hirshfeld surface are given in Table 2[link]. The most important inter­action is H⋯H, contributing 47.9% to the crystal packing. The presence of C—H⋯F inter­actions is indicated by pairs of characteristic wings in the fingerprint plot representing C⋯H/H⋯C and F⋯H/H⋯F contacts, with contributions of 30.7 and 12.4%, respectively, to the HS. The lowest contributions are from O⋯H/H⋯O (4.9%), N⋯H/H⋯N (1.3%) and F⋯C/C⋯F (0.8%) contacts.

[Figure 4]
Figure 4
A view of the two-dimensional fingerprint plots for the title com­pound, showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) F⋯H/H⋯F, (e) O⋯H/H⋯O and (f) N⋯H/H⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

A density functional theory (DFT) geometry-optimized mol­ecular orbital calculation (WebMOPro; Polik & Schmidt, 2021[Polik, W. F. & Schmidt, J. R. (2021). WIREs Comput. Mol. Sci. 12, e1554.]) with the GAUSSIAN16 program package employing the B3LYP functional and 6-311+G(2d,p) basis set (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) was performed on (I) with the starting geometries taken from the X-ray refinement data. The theoretical and experimental results related to bond lengths and angles are in good agreement (see Table S1 in the supporting information) and calculated numerical values are collated in Table S2. The calculated HOMO–LUMO energy gap is 4.22 eV (Fig. 5[link]). An NBO analysis was performed on (I) at the DFT level using the B3LYP method and 6-311+G(2d,p) basis set. The perturbation energies of the donor–acceptor inter­actions are tabulated in Table S3.

[Figure 5]
Figure 5
HOMO–LUMO energy diagram for the title com­pound.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.44, update April 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the basic skeleton of this com­pound gave 50 hits. Most of these contain the search fragment as part of a larger mol­ecule, but three are considered similar to the title com­pound. These are ethyl 4-anilino-2,6-bis­(4-fluoro­phen­yl)-1-phenyl-1,2,5,6-tetra­hydro­pyridine-3-carboxyl­ate (CSD refcode LETBET; Anthal et al., 2013a[Anthal, S., Brahmachari, G., Das, S., Kant, R. & Gupta, V. K. (2013a). Acta Cryst. E69, o299-o300.]), in which the central tetra­hydro­pyridine ring unit is similar to that in (I), anti-ethyl 4-anilino-1,2,6-triphenyl-1,2,5,6-tetra­hydro­pyridine-3-carboxyl­ate (VOLDIK; Khan et al., 2008[Khan, A. T., Parvin, T. & Choudhury, L. H. (2008). J. Org. Chem. 73, 8398-8402.]), in which the 2- and 6-positions of the piperidine was shown to be anti, and ethyl 2,6-bis­(4-chloro­phen­yl)-1-(4-fluoro­phen­yl)-4-[(4-fluoro­phen­yl)amino]-1,2,5,6-tetra­hydro­pyridine-3-carboxyl­ate (WIHCOH; Anthal et al., 2013b[Anthal, S., Brahmachari, G., Das, S., Kant, R. & Gupta, V. K. (2013b). Acta Cryst. E69, o506-o507.]), in which the tetra­hydro­pyridine unit is similar to that in (I).

6. Synthesis and crystallization

The title com­pound was obtained by the one-pot multi-com­ponent reaction using sodium lauryl sulfate (SLS) as catalyst. In a typical experiment, a mixture of 4-fluoro­aniline (2 mmol) and ethyl aceto­acetate (1 mmol) in 10 ml water was stirred for 10 min in the presence of 0.02 g SLS at room temperature. To this solution was added benzaldehyde (2 mmol) and the reaction mixture was stirred for 30 min. The progress of reactions was monitored by thin-layer chromatography (TLC), eluted with an ethyl acetate and n-hexane (3:7 v/v) mixture. After com­pletion of the reaction, a thick precipitate was filtered off and washed with water. Colourless plate-shaped crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from ethanol solution.

Yield 81%, m.p. 443 K. FT–IR (selected): (ν, cm−1): 3246, 3190, 3080, 2974, 1680, 1645, 1604, 1585, 1492, 1450, 1249, 1072, 941, 802, 698. 1H NMR [400 MHz, CDCl3, δ (ppm)]: 10.26 (br s, 1H), 7.31–7.27 (m, 8H), 7.19–7.17 (d, J = 8.0 Hz, 1H), 7.09–7.07 (d, J = 8.0 Hz, 2H), 7.04–7.02 (d, J = 8.2 Hz, 2H), 6.48–6.46 (d, J = 8.0 Hz, 2H), 6.43 (s, 1H), 6.21–6.19 (d, J = 8.0 Hz, 2H), 5.14–5.13 (s, 1H), 4.50–4.46 (d, J = 16.0 Hz, 2H), 4.38–4.35 (q, J = 12.0 Hz, 2H), 2.75–2.72 (t, J = 24.0 Hz, 1H), 1.52–1.49 (t, J = 12.0 Hz, 3H). 13C NMR (100 MHz, CDCl3, ppm): 14.8, 33.5, 55.3, 58.3, 114.0, 121.2, 126.3, 126.5, 126.6, 127.0, 127.5, 128.4, 128.7, 128.8, 129.0, 131.4, 136.4, 142.3, 143.3, 145.5, 155.4, 168.1.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms attached to carbon were placed in calculated positions (C—H = 0.95–1.00 Å), while those attached to nitro­gen were placed in locations derived from a difference map and their coordinates were adjusted to give N—H = 0.85 Å. All were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms.

Table 3
Experimental details

Crystal data
Chemical formula C32H28F2N2O2
Mr 510.56
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 8.8072 (12), 17.795 (2), 16.222 (2)
β (°) 91.317 (9)
V3) 2541.7 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.31 × 0.24 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.544, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 44124, 10842, 8132
Rint 0.153
(sin θ/λ)max−1) 0.636
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.118, 0.324, 1.17
No. of reflections 10842
No. of parameters 689
No. of restraints 75
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.04, −0.54
Absolute structure Flack x determined using 2653 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.4 (7)
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Ethyl 1-(4-fluorophenyl)-4-[(4-fluorophenyl)amino]-2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate top
Crystal data top
C32H28F2N2O2F(000) = 1072
Mr = 510.56Dx = 1.334 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.8072 (12) ÅCell parameters from 8110 reflections
b = 17.795 (2) Åθ = 2.5–25.9°
c = 16.222 (2) ŵ = 0.09 mm1
β = 91.317 (9)°T = 100 K
V = 2541.7 (6) Å3Plate, colorless
Z = 40.31 × 0.24 × 0.09 mm
Data collection top
Bruker APEX-II CCD
diffractometer
8132 reflections with I > 2σ(I)
ω scansRint = 0.153
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 26.9°, θmin = 1.7°
Tmin = 0.544, Tmax = 0.745h = 1111
44124 measured reflectionsk = 2222
10842 independent reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.118H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.324 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 0.001
10842 reflectionsΔρmax = 1.04 e Å3
689 parametersΔρmin = 0.54 e Å3
75 restraintsAbsolute structure: Flack x determined using 2653 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.4 (7)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1A1.2145 (9)0.6537 (4)0.0730 (4)0.0282 (18)
F2A0.5317 (9)0.4785 (4)0.6692 (4)0.0288 (18)
O1A0.9193 (11)0.8004 (4)0.4287 (5)0.0213 (18)
O2A0.9079 (10)0.8507 (4)0.3013 (5)0.0202 (19)
N1A0.8252 (12)0.6508 (6)0.1882 (6)0.019 (2)
N2A0.8030 (13)0.6640 (5)0.4451 (6)0.021 (2)
H2AA0.854 (14)0.700 (5)0.466 (8)0.025*
C1A0.7854 (14)0.7253 (6)0.2229 (7)0.017 (2)
H1AA0.8538930.7627240.1967910.020*
C2A0.8189 (14)0.7291 (6)0.3160 (7)0.017 (2)
C3A0.7776 (13)0.6676 (7)0.3607 (7)0.016 (2)
C4A0.7204 (14)0.6012 (6)0.3143 (7)0.018 (2)
H4AA0.6167570.6111380.2919430.021*
H4AB0.7160950.5569890.3511910.021*
C5A0.8287 (14)0.5858 (6)0.2437 (7)0.016 (2)
H5AA0.9340990.5786330.2665290.019*
C6A0.6241 (13)0.7476 (6)0.1984 (7)0.017 (2)
C7A0.5398 (14)0.8000 (7)0.2428 (8)0.024 (3)
H7AA0.5828000.8196020.2925660.028*
C8A0.3983 (14)0.8244 (7)0.2180 (8)0.022 (3)
H8AA0.3436920.8577680.2521090.027*
C9A0.3332 (17)0.8006 (7)0.1425 (8)0.028 (3)
H9AA0.2368740.8188450.1240480.033*
C10A0.4142 (14)0.7492 (6)0.0953 (8)0.020 (2)
H10A0.3714900.7314080.0445880.024*
C11A0.5557 (14)0.7239 (7)0.1215 (8)0.023 (3)
H11A0.6092100.6898180.0877170.028*
C12A0.9314 (13)0.6528 (6)0.1248 (6)0.013 (2)
C13A0.9190 (13)0.7101 (7)0.0646 (7)0.018 (2)
H13A0.8445320.7483450.0693600.021*
C14A1.0168 (15)0.7099 (7)0.0016 (8)0.021 (3)
H14A1.0113860.7484550.0420930.026*
C15A1.1210 (14)0.6530 (7)0.0073 (7)0.020 (2)
C16A1.1361 (15)0.5967 (7)0.0496 (7)0.021 (3)
H16A1.2118690.5591630.0442660.025*
C17A1.0379 (13)0.5957 (7)0.1156 (7)0.018 (2)
H17A1.0435350.5559310.1546140.021*
C18A0.7769 (13)0.5144 (7)0.1994 (7)0.017 (2)
C19A0.6800 (14)0.5125 (7)0.1287 (7)0.019 (2)
H19A0.6461790.5587040.1054210.023*
C20A0.6324 (14)0.4458 (8)0.0921 (8)0.025 (3)
H20A0.5706010.4462420.0433020.029*
C21A0.6779 (17)0.3771 (7)0.1290 (7)0.025 (3)
H21A0.6467130.3305650.1054620.029*
C22A0.7687 (16)0.3787 (7)0.2000 (8)0.025 (3)
H22A0.7974990.3325830.2254360.030*
C23A0.8181 (15)0.4449 (7)0.2344 (7)0.021 (3)
H23A0.8811450.4437830.2826420.025*
C24A0.7268 (13)0.6141 (7)0.4997 (7)0.015 (2)
C25A0.5808 (13)0.5914 (7)0.4869 (7)0.017 (2)
H25A0.5249470.6075590.4393950.021*
C26A0.5136 (15)0.5440 (7)0.5442 (7)0.019 (2)
H26A0.4144610.5244020.5344330.023*
C27A0.5950 (14)0.5262 (7)0.6154 (7)0.019 (3)
C28A0.7379 (13)0.5508 (7)0.6313 (7)0.020 (2)
H28A0.7897020.5370410.6810680.024*
C29A0.8093 (15)0.5970 (7)0.5731 (7)0.021 (3)
H29A0.9089360.6159460.5828080.025*
C30A0.8857 (13)0.7933 (6)0.3544 (7)0.017 (2)
C31A0.9685 (15)0.9203 (6)0.3367 (8)0.020 (2)
H31A1.0192820.9495620.2932810.024*
H31B1.0452220.9082440.3802410.024*
C32A0.8443 (17)0.9665 (7)0.3726 (8)0.029 (3)
H32A0.8873151.0128850.3959320.044*
H32B0.7692170.9791200.3292560.044*
H32C0.7951210.9378570.4160990.044*
F1B0.7271 (9)0.3382 (5)0.5895 (4)0.0304 (18)
F2B0.0100 (10)0.5223 (4)0.1668 (4)0.0329 (19)
O1B0.4225 (11)0.2050 (5)0.0798 (5)0.0229 (19)
O2B0.4196 (10)0.1528 (4)0.2072 (5)0.0198 (18)
N1B0.3238 (11)0.3488 (5)0.3190 (5)0.0145 (19)
N2B0.2858 (12)0.3375 (6)0.0594 (6)0.018 (2)
H2BA0.3545570.3081900.0375690.022*
C1B0.2806 (12)0.2748 (7)0.2817 (7)0.017 (2)
H1BA0.3480350.2362050.3085000.021*
C2B0.3132 (13)0.2727 (7)0.1889 (7)0.016 (2)
C3B0.2687 (13)0.3315 (6)0.1419 (7)0.017 (2)
C4B0.2144 (13)0.3993 (7)0.1903 (7)0.017 (2)
H4BA0.1111020.3897690.2107470.021*
H4BB0.2099760.4440220.1539930.021*
C5B0.3249 (15)0.4137 (6)0.2634 (7)0.019 (3)
H5BA0.4296340.4200710.2419090.022*
C6B0.1226 (13)0.2530 (6)0.2997 (6)0.013 (2)
C7B0.0376 (14)0.1990 (6)0.2501 (7)0.017 (2)
H7BA0.0825550.1792320.2020450.020*
C8B0.1027 (16)0.1759 (8)0.2695 (8)0.026 (3)
H8BA0.1556720.1423120.2335500.031*
C9B0.1726 (14)0.2003 (7)0.3418 (8)0.022 (3)
H9BA0.2686370.1814560.3574520.026*
C10B0.0921 (16)0.2548 (8)0.3905 (8)0.030 (3)
H10B0.1379230.2757060.4377900.036*
C11B0.0476 (13)0.2767 (7)0.3700 (7)0.015 (2)
H11B0.0993520.3107850.4058300.018*
C12B0.4325 (12)0.3468 (7)0.3852 (7)0.016 (2)
C13B0.4196 (16)0.2909 (7)0.4453 (7)0.023 (3)
H13B0.3410360.2545650.4396330.027*
C14B0.5194 (16)0.2871 (7)0.5134 (7)0.023 (3)
H14B0.5105080.2480770.5528970.028*
C15B0.6305 (14)0.3409 (7)0.5221 (7)0.020 (2)
C16B0.6480 (14)0.3964 (7)0.4645 (7)0.021 (2)
H16B0.7270420.4323960.4708030.025*
C17B0.5467 (14)0.3994 (6)0.3957 (7)0.017 (2)
H17B0.5573150.4382150.3560670.020*
C18B0.2774 (14)0.4867 (6)0.3053 (7)0.019 (3)
C19B0.1929 (14)0.4892 (7)0.3747 (8)0.023 (3)
H19B0.1628080.4439800.4008260.028*
C20B0.1509 (16)0.5585 (7)0.4072 (7)0.026 (3)
H20B0.0921360.5592600.4555610.031*
C21B0.1912 (13)0.6262 (7)0.3719 (8)0.023 (3)
H21B0.1588690.6726920.3943000.027*
C22B0.2821 (16)0.6237 (8)0.3014 (8)0.027 (3)
H22B0.3159150.6687610.2764490.033*
C23B0.3213 (13)0.5542 (6)0.2691 (7)0.017 (2)
H23B0.3800270.5525530.2207580.020*
C24B0.2059 (14)0.3854 (6)0.0048 (6)0.016 (2)
C25B0.0596 (13)0.4079 (7)0.0145 (7)0.017 (2)
H25B0.0064010.3917560.0616300.020*
C26B0.0124 (15)0.4534 (7)0.0424 (7)0.022 (3)
H26B0.1136030.4696110.0338480.026*
C27B0.0630 (14)0.4757 (7)0.1124 (7)0.020 (2)
C28B0.2055 (13)0.4519 (7)0.1262 (7)0.018 (2)
H28B0.2549650.4661500.1751800.022*
C29B0.2809 (14)0.4058 (6)0.0677 (7)0.019 (2)
H29B0.3812490.3886590.0769740.023*
C30B0.3901 (13)0.2085 (6)0.1534 (7)0.015 (2)
C31B0.4960 (13)0.0880 (6)0.1744 (8)0.018 (2)
H31C0.5498660.0610680.2197840.022*
H31D0.5724140.1046100.1344890.022*
C32B0.3846 (19)0.0354 (7)0.1322 (8)0.032 (3)
H32D0.4392030.0080360.1105120.048*
H32E0.3099210.0183180.1719260.048*
H32F0.3324430.0618100.0867290.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.035 (4)0.028 (4)0.022 (4)0.003 (3)0.015 (3)0.000 (3)
F2A0.049 (5)0.023 (4)0.015 (3)0.002 (3)0.007 (3)0.011 (3)
O1A0.032 (5)0.017 (4)0.015 (4)0.001 (4)0.001 (4)0.004 (3)
O2A0.036 (5)0.010 (4)0.014 (4)0.005 (3)0.003 (4)0.002 (3)
N1A0.023 (5)0.018 (5)0.017 (5)0.005 (4)0.011 (4)0.001 (4)
N2A0.039 (6)0.013 (5)0.010 (4)0.006 (4)0.006 (4)0.004 (4)
C1A0.032 (7)0.010 (5)0.009 (5)0.001 (5)0.006 (5)0.005 (4)
C2A0.024 (6)0.012 (5)0.015 (6)0.001 (4)0.005 (5)0.001 (4)
C3A0.015 (5)0.022 (6)0.013 (5)0.002 (5)0.008 (4)0.001 (4)
C4A0.025 (6)0.012 (5)0.016 (5)0.002 (5)0.007 (5)0.000 (4)
C5A0.018 (6)0.015 (5)0.015 (6)0.001 (5)0.005 (4)0.003 (4)
C6A0.009 (5)0.017 (5)0.025 (6)0.003 (4)0.010 (4)0.008 (5)
C7A0.012 (6)0.027 (7)0.032 (7)0.004 (5)0.013 (5)0.010 (5)
C8A0.018 (6)0.029 (7)0.020 (6)0.005 (5)0.007 (5)0.000 (5)
C9A0.039 (8)0.019 (6)0.025 (7)0.000 (6)0.000 (6)0.006 (5)
C10A0.024 (6)0.015 (5)0.022 (6)0.006 (5)0.004 (5)0.002 (5)
C11A0.017 (6)0.027 (6)0.027 (6)0.011 (5)0.014 (5)0.018 (5)
C12A0.019 (6)0.008 (5)0.014 (5)0.003 (4)0.006 (4)0.005 (4)
C13A0.014 (4)0.020 (5)0.020 (5)0.003 (4)0.007 (4)0.003 (4)
C14A0.031 (7)0.021 (6)0.012 (5)0.002 (5)0.003 (5)0.004 (5)
C15A0.019 (5)0.023 (5)0.017 (4)0.002 (4)0.013 (4)0.001 (4)
C16A0.038 (7)0.017 (5)0.008 (5)0.002 (5)0.009 (5)0.001 (4)
C17A0.016 (6)0.023 (6)0.014 (5)0.005 (5)0.005 (4)0.001 (5)
C18A0.017 (6)0.021 (6)0.014 (5)0.003 (5)0.011 (4)0.005 (4)
C19A0.020 (6)0.027 (6)0.010 (5)0.001 (5)0.002 (4)0.003 (5)
C20A0.021 (6)0.030 (6)0.023 (6)0.006 (6)0.000 (5)0.003 (5)
C21A0.048 (9)0.012 (5)0.014 (6)0.008 (5)0.008 (5)0.008 (5)
C22A0.037 (8)0.017 (6)0.021 (6)0.011 (6)0.006 (6)0.001 (5)
C23A0.024 (6)0.018 (6)0.020 (6)0.003 (5)0.002 (5)0.000 (5)
C24A0.013 (4)0.017 (4)0.016 (4)0.007 (4)0.007 (4)0.003 (4)
C25A0.016 (5)0.023 (5)0.013 (4)0.007 (4)0.008 (4)0.004 (4)
C26A0.027 (6)0.015 (5)0.016 (5)0.001 (5)0.006 (5)0.003 (4)
C27A0.021 (6)0.020 (6)0.017 (6)0.005 (5)0.012 (5)0.007 (5)
C28A0.018 (6)0.028 (6)0.014 (5)0.013 (5)0.004 (5)0.006 (5)
C29A0.031 (7)0.019 (6)0.013 (5)0.003 (5)0.003 (5)0.002 (5)
C30A0.012 (5)0.016 (5)0.022 (6)0.001 (4)0.006 (4)0.001 (5)
C31A0.030 (5)0.012 (4)0.019 (5)0.002 (4)0.001 (4)0.006 (4)
C32A0.043 (8)0.018 (6)0.026 (7)0.003 (6)0.001 (6)0.006 (5)
F1B0.037 (5)0.038 (4)0.016 (3)0.002 (4)0.005 (3)0.003 (3)
F2B0.058 (6)0.026 (4)0.015 (3)0.010 (4)0.001 (3)0.004 (3)
O1B0.036 (5)0.016 (4)0.017 (4)0.002 (4)0.010 (4)0.002 (3)
O2B0.026 (5)0.012 (4)0.022 (4)0.004 (3)0.010 (3)0.002 (3)
N1B0.020 (5)0.011 (4)0.013 (4)0.002 (4)0.002 (4)0.001 (4)
N2B0.022 (5)0.018 (5)0.015 (5)0.002 (4)0.006 (4)0.005 (4)
C1B0.005 (5)0.028 (6)0.019 (6)0.006 (4)0.003 (4)0.007 (5)
C2B0.010 (5)0.023 (6)0.016 (5)0.003 (4)0.010 (4)0.007 (5)
C3B0.018 (6)0.012 (5)0.023 (6)0.002 (4)0.008 (5)0.000 (4)
C4B0.013 (4)0.019 (5)0.020 (5)0.002 (4)0.010 (4)0.000 (4)
C5B0.035 (7)0.011 (5)0.011 (5)0.002 (5)0.011 (5)0.002 (4)
C6B0.017 (4)0.014 (4)0.009 (3)0.005 (3)0.002 (3)0.001 (3)
C7B0.024 (6)0.015 (5)0.011 (5)0.000 (5)0.003 (4)0.002 (4)
C8B0.026 (7)0.030 (7)0.023 (6)0.001 (6)0.000 (5)0.010 (5)
C9B0.015 (5)0.026 (5)0.025 (5)0.004 (4)0.007 (4)0.002 (4)
C10B0.026 (5)0.034 (5)0.031 (5)0.011 (5)0.004 (4)0.010 (5)
C11B0.014 (4)0.020 (4)0.012 (4)0.003 (4)0.003 (4)0.005 (4)
C12B0.007 (5)0.027 (6)0.015 (5)0.004 (5)0.005 (4)0.002 (5)
C13B0.039 (7)0.014 (5)0.015 (5)0.001 (5)0.001 (5)0.002 (4)
C14B0.041 (8)0.018 (6)0.011 (5)0.006 (5)0.000 (5)0.001 (5)
C15B0.024 (6)0.023 (6)0.013 (5)0.005 (5)0.004 (5)0.002 (5)
C16B0.018 (6)0.019 (6)0.025 (6)0.002 (5)0.001 (5)0.002 (5)
C17B0.025 (6)0.007 (5)0.019 (6)0.001 (4)0.007 (5)0.003 (4)
C18B0.031 (7)0.008 (5)0.020 (6)0.002 (5)0.003 (5)0.001 (4)
C19B0.023 (6)0.023 (6)0.023 (6)0.006 (5)0.012 (5)0.001 (5)
C20B0.040 (8)0.022 (6)0.016 (6)0.008 (6)0.003 (5)0.007 (5)
C21B0.010 (5)0.022 (6)0.036 (7)0.003 (5)0.001 (5)0.011 (5)
C22B0.035 (8)0.020 (6)0.027 (7)0.000 (6)0.005 (6)0.004 (5)
C23B0.011 (5)0.016 (5)0.023 (6)0.004 (4)0.006 (5)0.005 (5)
C24B0.026 (6)0.016 (5)0.007 (5)0.006 (5)0.006 (4)0.002 (4)
C25B0.010 (5)0.027 (6)0.013 (5)0.008 (5)0.004 (4)0.002 (5)
C26B0.025 (6)0.024 (6)0.016 (6)0.005 (5)0.008 (5)0.001 (5)
C27B0.026 (6)0.019 (6)0.015 (5)0.003 (5)0.004 (5)0.004 (5)
C28B0.022 (5)0.021 (5)0.012 (4)0.005 (4)0.001 (4)0.009 (4)
C29B0.022 (6)0.018 (6)0.017 (6)0.001 (5)0.005 (5)0.000 (5)
C30B0.020 (6)0.014 (5)0.013 (5)0.001 (4)0.008 (4)0.002 (4)
C31B0.011 (5)0.016 (5)0.027 (6)0.002 (4)0.007 (4)0.002 (5)
C32B0.059 (10)0.009 (5)0.028 (7)0.004 (6)0.005 (7)0.005 (5)
Geometric parameters (Å, º) top
F1A—C15A1.362 (12)F1B—C15B1.370 (13)
F2A—C27A1.347 (13)F2B—C27B1.361 (14)
O1A—C30A1.242 (15)O1B—C30B1.235 (14)
O2A—C30A1.352 (14)O2B—C30B1.343 (14)
O2A—C31A1.461 (14)O2B—C31B1.442 (13)
N1A—C12A1.407 (13)N1B—C12B1.423 (15)
N1A—C5A1.466 (14)N1B—C5B1.465 (14)
N1A—C1A1.485 (14)N1B—C1B1.496 (15)
N2A—C3A1.383 (15)N2B—C3B1.354 (15)
N2A—C24A1.432 (14)N2B—C24B1.407 (16)
N2A—H2AA0.85 (3)N2B—H2BA0.8800
C1A—C6A1.520 (17)C1B—C6B1.480 (15)
C1A—C2A1.533 (16)C1B—C2B1.540 (15)
C1A—H1AA1.0000C1B—H1BA1.0000
C2A—C3A1.366 (16)C2B—C3B1.347 (17)
C2A—C30A1.423 (16)C2B—C30B1.454 (15)
C3A—C4A1.484 (16)C3B—C4B1.523 (15)
C4A—C5A1.532 (15)C4B—C5B1.539 (18)
C4A—H4AA0.9900C4B—H4BA0.9900
C4A—H4AB0.9900C4B—H4BB0.9900
C5A—C18A1.524 (16)C5B—C18B1.529 (15)
C5A—H5AA1.0000C5B—H5BA1.0000
C6A—C7A1.402 (15)C6B—C11B1.395 (14)
C6A—C11A1.436 (17)C6B—C7B1.451 (16)
C7A—C8A1.372 (18)C7B—C8B1.347 (18)
C7A—H7AA0.9500C7B—H7BA0.9500
C8A—C9A1.406 (19)C8B—C9B1.405 (17)
C8A—H8AA0.9500C8B—H8BA0.9500
C9A—C10A1.399 (17)C9B—C10B1.430 (19)
C9A—H9AA0.9500C9B—H9BA0.9500
C10A—C11A1.383 (19)C10B—C11B1.340 (18)
C10A—H10A0.9500C10B—H10B0.9500
C11A—H11A0.9500C11B—H11B0.9500
C12A—C17A1.392 (16)C12B—C17B1.382 (16)
C12A—C13A1.413 (16)C12B—C13B1.398 (16)
C13A—C14A1.393 (16)C13B—C14B1.397 (18)
C13A—H13A0.9500C13B—H13B0.9500
C14A—C15A1.370 (18)C14B—C15B1.373 (19)
C14A—H14A0.9500C14B—H14B0.9500
C15A—C16A1.367 (16)C15B—C16B1.371 (17)
C16A—C17A1.392 (15)C16B—C17B1.414 (17)
C16A—H16A0.9500C16B—H16B0.9500
C17A—H17A0.9500C17B—H17B0.9500
C18A—C23A1.406 (17)C18B—C19B1.365 (16)
C18A—C19A1.413 (17)C18B—C23B1.395 (16)
C19A—C20A1.389 (18)C19B—C20B1.394 (17)
C19A—H19A0.9500C19B—H19B0.9500
C20A—C21A1.415 (19)C20B—C21B1.384 (18)
C20A—H20A0.9500C20B—H20B0.9500
C21A—C22A1.387 (19)C21B—C22B1.411 (18)
C21A—H21A0.9500C21B—H21B0.9500
C22A—C23A1.370 (18)C22B—C23B1.390 (18)
C22A—H22A0.9500C22B—H22B0.9500
C23A—H23A0.9500C23B—H23B0.9500
C24A—C25A1.359 (17)C24B—C25B1.362 (17)
C24A—C29A1.413 (17)C24B—C29B1.409 (15)
C25A—C26A1.396 (16)C25B—C26B1.373 (17)
C25A—H25A0.9500C25B—H25B0.9500
C26A—C27A1.382 (17)C26B—C27B1.386 (16)
C26A—H26A0.9500C26B—H26B0.9500
C27A—C28A1.352 (18)C27B—C28B1.349 (18)
C28A—C29A1.412 (16)C28B—C29B1.409 (17)
C28A—H28A0.9500C28B—H28B0.9500
C29A—H29A0.9500C29B—H29B0.9500
C31A—C32A1.498 (18)C31B—C32B1.509 (18)
C31A—H31A0.9900C31B—H31C0.9900
C31A—H31B0.9900C31B—H31D0.9900
C32A—H32A0.9800C32B—H32D0.9800
C32A—H32B0.9800C32B—H32E0.9800
C32A—H32C0.9800C32B—H32F0.9800
C30A—O2A—C31A116.6 (9)C30B—O2B—C31B115.9 (8)
C12A—N1A—C5A117.6 (9)C12B—N1B—C5B118.2 (10)
C12A—N1A—C1A115.0 (9)C12B—N1B—C1B116.3 (9)
C5A—N1A—C1A118.2 (8)C5B—N1B—C1B116.8 (9)
C3A—N2A—C24A125.0 (11)C3B—N2B—C24B127.3 (10)
C3A—N2A—H2AA116 (9)C3B—N2B—H2BA116.4
C24A—N2A—H2AA118 (9)C24B—N2B—H2BA116.4
N1A—C1A—C6A111.2 (10)C6B—C1B—N1B112.5 (9)
N1A—C1A—C2A111.8 (10)C6B—C1B—C2B112.6 (10)
C6A—C1A—C2A113.9 (9)N1B—C1B—C2B111.4 (10)
N1A—C1A—H1AA106.5C6B—C1B—H1BA106.7
C6A—C1A—H1AA106.5N1B—C1B—H1BA106.7
C2A—C1A—H1AA106.5C2B—C1B—H1BA106.7
C3A—C2A—C30A121.5 (11)C3B—C2B—C30B121.2 (10)
C3A—C2A—C1A116.1 (10)C3B—C2B—C1B118.5 (10)
C30A—C2A—C1A122.3 (10)C30B—C2B—C1B120.3 (10)
C2A—C3A—N2A121.6 (11)C2B—C3B—N2B125.7 (10)
C2A—C3A—C4A117.3 (10)C2B—C3B—C4B114.5 (10)
N2A—C3A—C4A120.7 (10)N2B—C3B—C4B119.3 (10)
C3A—C4A—C5A108.2 (9)C3B—C4B—C5B109.2 (10)
C3A—C4A—H4AA110.1C3B—C4B—H4BA109.8
C5A—C4A—H4AA110.1C5B—C4B—H4BA109.8
C3A—C4A—H4AB110.1C3B—C4B—H4BB109.8
C5A—C4A—H4AB110.1C5B—C4B—H4BB109.8
H4AA—C4A—H4AB108.4H4BA—C4B—H4BB108.3
N1A—C5A—C18A111.5 (9)N1B—C5B—C18B112.9 (9)
N1A—C5A—C4A108.2 (9)N1B—C5B—C4B109.3 (10)
C18A—C5A—C4A108.5 (9)C18B—C5B—C4B108.1 (10)
N1A—C5A—H5AA109.5N1B—C5B—H5BA108.8
C18A—C5A—H5AA109.5C18B—C5B—H5BA108.8
C4A—C5A—H5AA109.5C4B—C5B—H5BA108.8
C7A—C6A—C11A115.2 (11)C11B—C6B—C7B113.9 (10)
C7A—C6A—C1A122.8 (11)C11B—C6B—C1B123.2 (10)
C11A—C6A—C1A121.5 (10)C7B—C6B—C1B122.7 (10)
C8A—C7A—C6A123.2 (13)C8B—C7B—C6B122.5 (10)
C8A—C7A—H7AA118.4C8B—C7B—H7BA118.7
C6A—C7A—H7AA118.4C6B—C7B—H7BA118.7
C7A—C8A—C9A120.7 (12)C7B—C8B—C9B121.5 (12)
C7A—C8A—H8AA119.7C7B—C8B—H8BA119.2
C9A—C8A—H8AA119.7C9B—C8B—H8BA119.2
C10A—C9A—C8A118.1 (13)C8B—C9B—C10B116.8 (11)
C10A—C9A—H9AA120.9C8B—C9B—H9BA121.6
C8A—C9A—H9AA120.9C10B—C9B—H9BA121.6
C11A—C10A—C9A120.7 (12)C11B—C10B—C9B120.4 (11)
C11A—C10A—H10A119.6C11B—C10B—H10B119.8
C9A—C10A—H10A119.6C9B—C10B—H10B119.8
C10A—C11A—C6A121.9 (11)C10B—C11B—C6B124.8 (12)
C10A—C11A—H11A119.0C10B—C11B—H11B117.6
C6A—C11A—H11A119.0C6B—C11B—H11B117.6
C17A—C12A—N1A121.4 (10)C17B—C12B—C13B117.8 (11)
C17A—C12A—C13A119.6 (10)C17B—C12B—N1B123.4 (11)
N1A—C12A—C13A118.7 (10)C13B—C12B—N1B118.7 (11)
C14A—C13A—C12A119.5 (11)C14B—C13B—C12B121.7 (12)
C14A—C13A—H13A120.3C14B—C13B—H13B119.2
C12A—C13A—H13A120.3C12B—C13B—H13B119.2
C15A—C14A—C13A118.7 (11)C15B—C14B—C13B118.8 (11)
C15A—C14A—H14A120.7C15B—C14B—H14B120.6
C13A—C14A—H14A120.7C13B—C14B—H14B120.6
F1A—C15A—C16A118.9 (11)F1B—C15B—C16B119.4 (11)
F1A—C15A—C14A117.7 (11)F1B—C15B—C14B119.1 (11)
C16A—C15A—C14A123.4 (10)C16B—C15B—C14B121.5 (11)
C15A—C16A—C17A118.4 (11)C15B—C16B—C17B119.1 (11)
C15A—C16A—H16A120.8C15B—C16B—H16B120.4
C17A—C16A—H16A120.8C17B—C16B—H16B120.4
C16A—C17A—C12A120.3 (11)C12B—C17B—C16B121.0 (11)
C16A—C17A—H17A119.8C12B—C17B—H17B119.5
C12A—C17A—H17A119.8C16B—C17B—H17B119.5
C23A—C18A—C19A116.8 (11)C19B—C18B—C23B118.7 (11)
C23A—C18A—C5A118.1 (10)C19B—C18B—C5B123.7 (10)
C19A—C18A—C5A124.8 (11)C23B—C18B—C5B117.5 (10)
C20A—C19A—C18A122.6 (11)C18B—C19B—C20B119.7 (12)
C20A—C19A—H19A118.7C18B—C19B—H19B120.2
C18A—C19A—H19A118.7C20B—C19B—H19B120.2
C19A—C20A—C21A118.5 (11)C21B—C20B—C19B122.8 (11)
C19A—C20A—H20A120.7C21B—C20B—H20B118.6
C21A—C20A—H20A120.7C19B—C20B—H20B118.6
C22A—C21A—C20A119.1 (11)C20B—C21B—C22B117.6 (11)
C22A—C21A—H21A120.4C20B—C21B—H21B121.2
C20A—C21A—H21A120.4C22B—C21B—H21B121.2
C23A—C22A—C21A121.8 (12)C23B—C22B—C21B119.0 (12)
C23A—C22A—H22A119.1C23B—C22B—H22B120.5
C21A—C22A—H22A119.1C21B—C22B—H22B120.5
C22A—C23A—C18A121.1 (12)C22B—C23B—C18B122.2 (11)
C22A—C23A—H23A119.5C22B—C23B—H23B118.9
C18A—C23A—H23A119.5C18B—C23B—H23B118.9
C25A—C24A—C29A122.0 (10)C25B—C24B—N2B124.4 (10)
C25A—C24A—N2A123.1 (11)C25B—C24B—C29B119.0 (11)
C29A—C24A—N2A114.5 (11)N2B—C24B—C29B116.4 (10)
C24A—C25A—C26A119.5 (11)C24B—C25B—C26B121.3 (10)
C24A—C25A—H25A120.2C24B—C25B—H25B119.4
C26A—C25A—H25A120.2C26B—C25B—H25B119.4
C27A—C26A—C25A118.3 (12)C25B—C26B—C27B119.8 (11)
C27A—C26A—H26A120.8C25B—C26B—H26B120.1
C25A—C26A—H26A120.8C27B—C26B—H26B120.1
F2A—C27A—C28A118.5 (11)C28B—C27B—F2B120.7 (10)
F2A—C27A—C26A118.1 (11)C28B—C27B—C26B120.8 (11)
C28A—C27A—C26A123.2 (11)F2B—C27B—C26B118.5 (11)
C27A—C28A—C29A119.2 (11)C27B—C28B—C29B119.8 (10)
C27A—C28A—H28A120.4C27B—C28B—H28B120.1
C29A—C28A—H28A120.4C29B—C28B—H28B120.1
C28A—C29A—C24A117.5 (11)C28B—C29B—C24B119.3 (11)
C28A—C29A—H29A121.3C28B—C29B—H29B120.4
C24A—C29A—H29A121.3C24B—C29B—H29B120.4
O1A—C30A—O2A120.4 (10)O1B—C30B—O2B123.0 (10)
O1A—C30A—C2A126.4 (11)O1B—C30B—C2B122.9 (11)
O2A—C30A—C2A113.1 (10)O2B—C30B—C2B114.1 (9)
O2A—C31A—C32A110.8 (10)O2B—C31B—C32B111.0 (10)
O2A—C31A—H31A109.5O2B—C31B—H31C109.4
C32A—C31A—H31A109.5C32B—C31B—H31C109.4
O2A—C31A—H31B109.5O2B—C31B—H31D109.4
C32A—C31A—H31B109.5C32B—C31B—H31D109.4
H31A—C31A—H31B108.1H31C—C31B—H31D108.0
C31A—C32A—H32A109.5C31B—C32B—H32D109.5
C31A—C32A—H32B109.5C31B—C32B—H32E109.5
H32A—C32A—H32B109.5H32D—C32B—H32E109.5
C31A—C32A—H32C109.5C31B—C32B—H32F109.5
H32A—C32A—H32C109.5H32D—C32B—H32F109.5
H32B—C32A—H32C109.5H32E—C32B—H32F109.5
C12A—N1A—C1A—C6A109.5 (11)C12B—N1B—C1B—C6B110.8 (11)
C5A—N1A—C1A—C6A104.3 (12)C5B—N1B—C1B—C6B102.2 (12)
C12A—N1A—C1A—C2A122.0 (11)C12B—N1B—C1B—C2B121.7 (10)
C5A—N1A—C1A—C2A24.2 (15)C5B—N1B—C1B—C2B25.2 (13)
N1A—C1A—C2A—C3A43.2 (14)C6B—C1B—C2B—C3B80.7 (14)
C6A—C1A—C2A—C3A83.8 (13)N1B—C1B—C2B—C3B46.7 (14)
N1A—C1A—C2A—C30A138.3 (11)C6B—C1B—C2B—C30B99.2 (12)
C6A—C1A—C2A—C30A94.6 (13)N1B—C1B—C2B—C30B133.4 (11)
C30A—C2A—C3A—N2A2.1 (18)C30B—C2B—C3B—N2B1.5 (19)
C1A—C2A—C3A—N2A179.4 (11)C1B—C2B—C3B—N2B178.4 (11)
C30A—C2A—C3A—C4A175.2 (11)C30B—C2B—C3B—C4B170.2 (10)
C1A—C2A—C3A—C4A6.3 (16)C1B—C2B—C3B—C4B9.9 (15)
C24A—N2A—C3A—C2A160.7 (11)C24B—N2B—C3B—C2B160.3 (12)
C24A—N2A—C3A—C4A26.4 (18)C24B—N2B—C3B—C4B28.4 (18)
C2A—C3A—C4A—C5A47.0 (14)C2B—C3B—C4B—C5B44.4 (13)
N2A—C3A—C4A—C5A126.2 (12)N2B—C3B—C4B—C5B127.8 (12)
C12A—N1A—C5A—C18A68.8 (13)C12B—N1B—C5B—C18B67.5 (13)
C1A—N1A—C5A—C18A145.9 (10)C1B—N1B—C5B—C18B146.2 (10)
C12A—N1A—C5A—C4A171.9 (10)C12B—N1B—C5B—C4B172.2 (9)
C1A—N1A—C5A—C4A26.6 (14)C1B—N1B—C5B—C4B25.9 (13)
C3A—C4A—C5A—N1A62.8 (12)C3B—C4B—C5B—N1B62.7 (11)
C3A—C4A—C5A—C18A176.1 (10)C3B—C4B—C5B—C18B174.1 (9)
N1A—C1A—C6A—C7A157.8 (11)N1B—C1B—C6B—C11B27.8 (15)
C2A—C1A—C6A—C7A30.4 (15)C2B—C1B—C6B—C11B154.6 (11)
N1A—C1A—C6A—C11A30.9 (15)N1B—C1B—C6B—C7B158.7 (10)
C2A—C1A—C6A—C11A158.3 (11)C2B—C1B—C6B—C7B31.9 (15)
C11A—C6A—C7A—C8A3.5 (18)C11B—C6B—C7B—C8B1.8 (17)
C1A—C6A—C7A—C8A175.3 (12)C1B—C6B—C7B—C8B175.8 (12)
C6A—C7A—C8A—C9A4 (2)C6B—C7B—C8B—C9B3 (2)
C7A—C8A—C9A—C10A2.5 (19)C7B—C8B—C9B—C10B4.3 (19)
C8A—C9A—C10A—C11A1.3 (18)C8B—C9B—C10B—C11B4.5 (19)
C9A—C10A—C11A—C6A1.4 (18)C9B—C10B—C11B—C6B4 (2)
C7A—C6A—C11A—C10A2.3 (17)C7B—C6B—C11B—C10B2.1 (17)
C1A—C6A—C11A—C10A174.2 (11)C1B—C6B—C11B—C10B176.1 (13)
C5A—N1A—C12A—C17A1.1 (16)C5B—N1B—C12B—C17B5.6 (15)
C1A—N1A—C12A—C17A145.3 (11)C1B—N1B—C12B—C17B140.9 (11)
C5A—N1A—C12A—C13A172.6 (10)C5B—N1B—C12B—C13B171.2 (10)
C1A—N1A—C12A—C13A41.0 (15)C1B—N1B—C12B—C13B42.3 (13)
C17A—C12A—C13A—C14A2.0 (17)C17B—C12B—C13B—C14B0.9 (17)
N1A—C12A—C13A—C14A175.7 (11)N1B—C12B—C13B—C14B177.8 (10)
C12A—C13A—C14A—C15A1.2 (19)C12B—C13B—C14B—C15B1.5 (18)
C13A—C14A—C15A—F1A179.4 (11)C13B—C14B—C15B—F1B178.9 (10)
C13A—C14A—C15A—C16A1 (2)C13B—C14B—C15B—C16B1.9 (18)
F1A—C15A—C16A—C17A178.7 (11)F1B—C15B—C16B—C17B179.2 (10)
C14A—C15A—C16A—C17A2 (2)C14B—C15B—C16B—C17B1.6 (18)
C15A—C16A—C17A—C12A2.7 (18)C13B—C12B—C17B—C16B0.6 (16)
N1A—C12A—C17A—C16A176.3 (11)N1B—C12B—C17B—C16B177.4 (10)
C13A—C12A—C17A—C16A2.8 (17)C15B—C16B—C17B—C12B1.0 (17)
N1A—C5A—C18A—C23A160.1 (10)N1B—C5B—C18B—C19B22.1 (18)
C4A—C5A—C18A—C23A80.8 (13)C4B—C5B—C18B—C19B98.9 (14)
N1A—C5A—C18A—C19A25.1 (15)N1B—C5B—C18B—C23B159.1 (11)
C4A—C5A—C18A—C19A94.0 (12)C4B—C5B—C18B—C23B79.9 (13)
C23A—C18A—C19A—C20A3.1 (16)C23B—C18B—C19B—C20B0.8 (19)
C5A—C18A—C19A—C20A178.0 (11)C5B—C18B—C19B—C20B178.0 (13)
C18A—C19A—C20A—C21A2.6 (17)C18B—C19B—C20B—C21B0 (2)
C19A—C20A—C21A—C22A0.3 (18)C19B—C20B—C21B—C22B2 (2)
C20A—C21A—C22A—C23A1.4 (19)C20B—C21B—C22B—C23B3 (2)
C21A—C22A—C23A—C18A0.8 (19)C21B—C22B—C23B—C18B2 (2)
C19A—C18A—C23A—C22A1.4 (16)C19B—C18B—C23B—C22B0.1 (19)
C5A—C18A—C23A—C22A176.6 (11)C5B—C18B—C23B—C22B178.9 (13)
C3A—N2A—C24A—C25A32.1 (18)C3B—N2B—C24B—C25B31.2 (19)
C3A—N2A—C24A—C29A154.7 (11)C3B—N2B—C24B—C29B153.9 (11)
C29A—C24A—C25A—C26A5.9 (17)N2B—C24B—C25B—C26B178.5 (11)
N2A—C24A—C25A—C26A178.6 (10)C29B—C24B—C25B—C26B3.8 (18)
C24A—C25A—C26A—C27A4.7 (17)C24B—C25B—C26B—C27B1.6 (19)
C25A—C26A—C27A—F2A177.9 (10)C25B—C26B—C27B—C28B1.4 (19)
C25A—C26A—C27A—C28A1.9 (18)C25B—C26B—C27B—F2B178.5 (11)
F2A—C27A—C28A—C29A176.1 (10)F2B—C27B—C28B—C29B177.8 (10)
C26A—C27A—C28A—C29A0.1 (18)C26B—C27B—C28B—C29B2.1 (19)
C27A—C28A—C29A—C24A1.1 (17)C27B—C28B—C29B—C24B0.2 (18)
C25A—C24A—C29A—C28A4.1 (17)C25B—C24B—C29B—C28B3.1 (17)
N2A—C24A—C29A—C28A177.4 (10)N2B—C24B—C29B—C28B178.2 (10)
C31A—O2A—C30A—O1A1.6 (15)C31B—O2B—C30B—O1B1.5 (17)
C31A—O2A—C30A—C2A176.8 (10)C31B—O2B—C30B—C2B179.9 (10)
C3A—C2A—C30A—O1A3.2 (19)C3B—C2B—C30B—O1B2.1 (19)
C1A—C2A—C30A—O1A178.4 (12)C1B—C2B—C30B—O1B178.0 (11)
C3A—C2A—C30A—O2A175.1 (11)C3B—C2B—C30B—O2B176.4 (11)
C1A—C2A—C30A—O2A3.3 (15)C1B—C2B—C30B—O2B3.4 (15)
C30A—O2A—C31A—C32A82.5 (13)C30B—O2B—C31B—C32B82.7 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AA···O1A0.85 (3)1.98 (10)2.652 (13)136 (12)
N2B—H2BA···O1B0.882.042.664 (13)127
C31A—H31A···F2Bi0.992.433.327 (14)151
C31A—H31B···F1Bii0.992.403.257 (15)144
C31B—H31C···F2Aiii0.992.453.213 (15)134
C31B—H31D···F1Aiv0.992.323.281 (13)165
C5A—H5AA···Cg9v1.002.913.907 (13)178
C5B—H5BA···Cg4vi1.002.963.958 (14)174
C22A—H22A···Cg7v0.952.873.770 (14)159
C22B—H22B···Cg2vi0.952.943.857 (15)162
C29A—H29A···Cg7vii0.952.713.437 (13)134
C29B—H29B···Cg2viii0.952.843.595 (13)138
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+2, y+1/2, z+1; (iii) x+1, y1/2, z+1; (iv) x+2, y1/2, z; (v) x+1, y1/2, z; (vi) x, y+1/2, z; (vii) x1, y, z+1; (viii) x+1, y, z.
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H47.9
C···H/H···C30.7
F···H/H···F12.4
O···H/H···O4.9
N···H/H···N1.3
F···C/C···F0.8
C···C0.7
C···O/O···C0.6
F···F0.5
F···O/O···F0.2
Comparison of selected (X-ray and DFT) bond lengths and angles (Å, °). top
Bonds/anglesX-rayB3LYP/6-311+G(2d,p)
F1A—C15A1.363 (12)1.3636
F2A—C27A1.346 (13)1.3463
O1A—C30A1.242 (15)1.2407
O2A—C30A1.351 (14)1.3509
O2A—C31A1.464 (14)1.4637
N1A—C12A1.408 (13)1.4078
N1A—C5A1.467 (14)1.466
N1A—C1A1.485 (14)1.4854
N2A—C24A1.431 (14)1.4318
C30A—O2—C31A116.6 (9)116.5807
C12A—N1A—C1A115.1 (9)115.088
C5A—N1A—C1A118.2 (8)117.6837
C3A—N2A—C24A125.0 (11)124.9578
N1A—C1A—C6A111.1 (10)111.1474
N1A—C1A—C2A111.9 (10)111.8615
F1A—C15A—C14A117.7 (11)118.7741
F1A—C15A—C16A118.8 (11)119.0320
F2A—C27A—C28A118.8 (11)119.5501
F2A—C27A—C26A118.1 (11)119.3655
O1A—C30A –O2A120.4 (10)120.4296
O1A—C30A)—C2A126.4 (11)126.4327
O2A—C30A –C2A113.2 (10)113.1168
O2A—C31A –C32A110.7 (10)110.7128
Calculated energies top
Molecular propertyTitle compound
Total energy, TE (eV)-46146
EHOMO-5.6182
ELUMO-1.3986
Gap, ΔE (eV)4.22
Dipole moment, µ (Debye)3.5082
Ionization enthalpy, IE (eV)5.6182
Electron gain enthalpy, EE (eV)1.3986
Electronegativity, χ3.508
Hardness, η2.1098
Softness, σ0.2369
Electrophilicity index, ω2.9167
Second-order perturbation theory analysis of Fock matrix in NBO basis for (I) top
NBODonorOccupancyNBOAcceptorOccupancyE(2)aE(j) –F(ij)c
No.No.(kcalE(i)b(a.u.)
mol-1)(a.u.)(a.u.)
59π(C44-C53)1.644361170π*(C45-C47)0.3582819.090.280.065
59π(C44-C53)1.644361175π*(C49-C51)0.3836619.140.310.069
45π(C33-C42)1.660351156π*(C34-C36)0.3217117.470.320.067
45π(C33-C42)1.660351161π*(C38-C40)0.3327620.750.280.069
19π(C7-C8)1.657891133π*(C10-C12)0.3746319.760.280.067
19π(C7-C8)1.657891138π*(C14-C16)0.3395520.060.290.068
72π(C56-C57)1.654261186π*(C59-C61)0.3315119.540.300.069
53π(C38-C40)1.661531153π*(C33-C42)0.3551119.120.290.067
53π(C38-C40)1.661531156π*(C34-C36)0.3217118.310.320.068
48π(C34-C36)1.655911161π*(C38-C40)0.3327620.460.280.068
48π(C34-C36)1.655911153π*(C33-C42)0.3551121.060.290.070
30π(C14-C16)1.693061133π*(C11-C13)0.3746321.430.280.070
30π(C14-C16)1.693061127π*(C8-C9)0.3921719.230.280.067
25π(C10-C12)1.657971138π*(C15-C17)0.3395519.960.290.068
25π(C10-C12)1.657971127π*(C8-C9)0.3921720.130.290.069
15π(C5-C19)1.798911142π*(C20-O21)0.3621730.340.270.084
62π(C45-C47)1.720211167π*(C44-C53)0.4060118.640.290.068
62π(C45-C47)1.720211175π*(C49-C51)0.3836617.530.310.068
67π(C49-C51)1.676091167π*(C44-C53)0.4060117.810.290.066
67π(C49-C51)1.676091170π*(C45-C47)0.3582821.200.290.071
73π(C56-C65)1.971021191π*(C63-C65)0.3281114.601.980.152
78π(C59-C61)1.668531180π*(C56-C57)0.3432315.720.340.066
83π(C63-C65)1.670361180π*(C56-C57)0.3432313.270.340.061
83π(C63-C65)1.670361186π*(C59-C61)0.3315116.270.300.063
124(LP1-N6)1.643381123π*(C5-C19)0.3039354.490.290.114
124(LP1-N6)1.643381127π*(C8-C9)0.3921720.260.270.067
130(LP1-O22)1.960951142σ*(C20-21)0.362177.891.130.085
127(LP2-F13)1.929111133π*(C11-C13)0.3746318.000.430.085
126(LP2-F13)1.972371133σ*(C11-C13)0.374636.040.970.068
133(LP2-F50)1.972821175σ*(C49-C51)0.383665.940.980.068
131(LP2-O22)1.803161142π*(C20-O21)0.3621746.330.320.114
134(LP3-F50)1.935071175π*(C49-C51)0.3836615.940.460.084
Notes: (a) (2) means energy of hyperconjugative interactions; (b) energy difference between donor and accepter i and j NBO orbitals; (c) F(i,j) is the Fock matrix element between i and j NBO orbitals

Acknowledgements

SKG remembers the long-time association and research collaboration of the late Professor Jerry P. Jasinski, Keene State College, New Hampshire. RB thanks JUG for the award of a Post-doctoral Fellowship. RJB acknowledges the NSF–MRI program for funds to purchase the X-ray diffractometer.

Funding information

The following funding is acknowledged: Jiwaji University, Gwalior (award No. F/Dev/2019/612).

References

First citationAnthal, S., Brahmachari, G., Das, S., Kant, R. & Gupta, V. K. (2013a). Acta Cryst. E69, o299–o300.  CSD CrossRef IUCr Journals Google Scholar
First citationAnthal, S., Brahmachari, G., Das, S., Kant, R. & Gupta, V. K. (2013b). Acta Cryst. E69, o506–o507.  CSD CrossRef IUCr Journals Google Scholar
First citationBansal, R., Soni, P. K., Sharma, J., Bhardwaj, S. K. & Halve, A. K. (2017). Curr. Chem. Lett. 7, 135–142.  CrossRef Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBrahmachari, G. & Das, S. (2012), Tetrahedron Lett. 53, 1479–1484.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChand, P., Kotian, P. L., Dehghani, A., El-Kattan, Y., Lin, T. H., Hutchison, T. L., Babu, Y. S., Bantia, S., Elliott, A. J. & Montgomery, J. A. (2001). J. Med. Chem. 44, 4379–4392.  Web of Science CrossRef PubMed CAS Google Scholar
First citationClarke, P. A., Zaytsev, A. V. & Whitwood, A. C. (2008). Synthesis, 2008, 3530–3532.  Web of Science CSD CrossRef Google Scholar
First citationDaraei, M., Zolfigol, M. A., Derakhshan-Panah, F., Shiri, M., Kruger, H. G. & Mokhlesi, M. (2015). J. Iran. Chem. Soc. 12, 855–861.  Web of Science CrossRef CAS Google Scholar
First citationGangapuram, M. & Redda, K. K. (2006). J. Heterocycl. Chem. 43, 709–718.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, A., Kaur, R., Singh, D. K. & Kapoor, K. K. (2017). Tetrahedron Lett. 58, 2583–2587.  Web of Science CrossRef CAS Google Scholar
First citationHo, B., Michael Crider, A. & Stables, J. P. (2001). Eur. J. Med. Chem. 36, 265–286.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKar, P., Mishra, B. G. & Pradhan, S. R. (2014). J. Mol. Catal. A Chem. 387, 103–111.  Web of Science CrossRef CAS Google Scholar
First citationKhan, A. T., Khan, M. M. & Bannuru, K. K. (2010). Tetrahedron, 66, 7762–7772.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhan, A. T., Parvin, T. & Choudhury, L. H. (2008). J. Org. Chem. 73, 8398–8402.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLashkari, M., Maghsoodlou, M. T., Hazeri, N., Habibi-Khorassani, S. M., Sajadikhah, S. S. & Doostmohamadi, R. (2013). Synth. Commun. 43, 635–644.  Web of Science CrossRef CAS Google Scholar
First citationMali, A. S., Potnis, C. S. & Chaturbhuj, G. U. (2018). J. Iran. Chem. Soc. 15, 1399–1409.  Web of Science CrossRef CAS Google Scholar
First citationMishra, S. & Ghosh, R. (2011). Tetrahedron Lett. 52, 2857–2861.  Web of Science CSD CrossRef CAS Google Scholar
First citationMisra, M., Pandey, S. K., Pandey, V. P., Pandey, J., Tripathi, R. & Tripathi, R. P. (2009). Bioorg. Med. Chem. 17, 625–633.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMukhopadhyay, C., Rana, S., Butcher, R. J. & Schmiedekamp, A. M. (2011). Tetrahedron Lett. 52, 5835–5840.  Web of Science CSD CrossRef CAS Google Scholar
First citationOlesen, P. H., Swedberg, M. D. B. & Rimvall, K. (1998). Bioorg. Med. Chem. 6, 1623–1629.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPolik, W. F. & Schmidt, J. R. (2021). WIREs Comput. Mol. Sci. 12, e1554.  Google Scholar
First citationRamachandran, R., Jayanthi, S. & Jeong, Y. T. (2012). Tetrahedron, 68, 363–369.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamesh, R., Maheswari, S., Arivazhagan, M., Malecki, J. G. & Lalitha, A. (2017). Tetrahedron Lett. 58, 3905–3909.  Web of Science CSD CrossRef CAS Google Scholar
First citationRao, K. N., Redda, K. K., Onayemi, F. Y., Melles, H. & Choi, J. (1995). J. Heterocycl. Chem. 32, 307–315.  CrossRef CAS Web of Science Google Scholar
First citationSajadikhah, S. S., Maghsoodlou, M. T., Hazeri, N., Habibi-Khorassani, S. M. & Willis, A. C. (2012). Chin. Chem. Lett. 23, 569–572.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, S., Gupta, A. & Kapoor, K. K. (2020). Synth. Commun. 50, 1056–1063.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H. J., Mo, L. P. & Zhang, Z. H. (2010). ACS Comb. Sci. 13, 181–185.  Web of Science CrossRef PubMed Google Scholar
First citationWatson, P. S., Jiang, B. & Scott, B. (2000). Org. Lett. 2, 3679–3681.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYeung, J. M., Corleto, L. A. & Knaus, E. E. (1982). J. Med. Chem. 25, 720–723.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYu, J., Tang, S., Zeng, J. & Yan, Z. (2013). Acta Cryst. E69, o947–o948.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds