research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Racemic cis-bis­­[bis­­(pyrimidin-2-yl)amine-κN]bis­(dicyanamido-κN1)iron(II) dihydrate: synthesis, crystal structure and Hirshfeld surface analysis

crossmark logo

aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, cCristallographie, Résonance Magnétique et Modélisations (CRM2), UMR CNRS 7036, Institut Jean Barriol, Université de Lorraine, BP 70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-les-Nancy, France, dChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen, and eSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
*Correspondence e-mail: fatima.setifi@univ-setif.dz

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 13 September 2023; accepted 18 September 2023; online 26 September 2023)

The title compound, [Fe(C2N3)2(C8H7N5)2]·2H2O, has been synthesized solvothermally and characterized by single-crystal X-ray diffraction. The octa­hedral iron coordination polyhedron contains two di(pyrimidin-2-yl)amine ligands coordinated in a bidentate fashion, and two monodentate dicyanimido ligands, each coordinated via a terminal N atom, with the latter in a cis orientation. The ligand configuration about the iron atom is chiral, although the compound crystallizes as a racemic mixture: the Fe—N distances (> 2.07 Å) are characteristic of high-spin iron(II). In the crystal, an extensive series of N—H⋯N, O—H⋯N and O—H⋯O hydrogen bonds links the independent mol­ecular components into a three-dimensional framework. The H atoms of both water mol­ecules are disordered. The structure also features some ππ and anion–π inter­actions. The inter­molecular inter­actions were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots. Comparisons are made with some related compounds.

1. Chemical context

Spin crossover (SCO) can occur for some transition-metal complexes where the metal ion is in one of the configurations d4, d5, d6 or d7 in which the spin state can be switched between high-spin (HS) and low-spin (LS) states by an external perturbation such as temperature, pressure, magnetic field or light irradiation (Goodwin, 2004[Goodwin, H. A. (2004). Top. Curr. Chem. 233, 59-90.]; Halcrow et al., 2019[Halcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811-9821.]). In addition to the magnetic changes resulting from the spin-state switching, this SCO behaviour can be accompanied by structural modifications and changes in the optical properties such as colour changes, making these SCO systems promising candidates for applications such as the development of new generations of memory devices and sensors (Sato, 2016[Sato, O. (2016). Nat. Chem. 8, 644-656.]; Bisoyi & Li, 2016[Bisoyi, H. K. & Li, Q. (2016). Chem. Rev. 116, 15089-15166.]). For the preparation of these compounds, our strategy is based on the use of cyano-carbanion ligands for designing such SCO materials. These organic anions are versatile and effective for developing mol­ecular architectures with different topologies and dimensionalities, as a result of their ability to coordinate and bridge metal ions in many different ways (see, for example, Gaamoune et al., 2010[Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044-m1045.]; Addala et al., 2019[Addala, A., Geiger, D. K., Setifi, Z. & Setifi, F. (2019). Acta Cryst. C75, 348-353.]; Setifi et al., 2017[Setifi, F., Konieczny, P., Glidewell, C., Arefian, M., Pelka, R., Setifi, Z. & Mirzaei, M. (2017). J. Mol. Struct. 1149, 149-154.]; Merabet et al., 2022[Merabet, L., Vologzhanina, A. V., Setifi, Z., Kaboub, L. & Setifi, F. (2022). CrystEngComm, 24, 4740-4747.], Dmitrienko et al., 2020[Dmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). Dalton Trans. 49, 7084-7092.]).

[Scheme 1]

Continuing our study of spin-crossover 3d-metal complexes formed by polydentate ligands (Benmansour et al., 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.]; Setifi, Charles et al., 2013[Setifi, F., Charles, C., Houille, S., Thétiot, F., Triki, S., Gómez-García, C. J. & Pillet, S. (2013). Polyhedron, 61, 242-247.]; Setifi, Milin et al., 2014[Setifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97-104.]; Cuza et al., 2021[Cuza, E., Motei, R., Setifi, F., Bentama, A., Gómez-García, C. J. & Triki, S. (2021). J. Appl. Phys. 129, 145501.]), we now describe the synthesis and structure of the title FeII complex, (I)[link], containing the dicyanamido anionic ligand and neutral di-2-pyrimidyl­amine (dipm) as co-ligand, which crystallizes as a dihydrate.

2. Structural commentary

In compound (I)[link], which crystallizes as a dihydrate (Fig. 1[link]), the iron(II) centre is coordinated by two monodentate dicyan­amido ligands, which occupy a pair of cis sites, and by two di(pyrimidin-2-yl)amine ligands, each coordinated to the FeII atom in a bidentate fashion by a pair of pyrimidine N atoms, one in each ring. The complex is thus chiral and in the arbitrarily chosen asymmetric unit, the complex has a Δ configuration, although the centrosymmetric space group confirms that the compound has crystallized as a racemic mixture. Although cis-complexes of the general type M(LL)2X2, where LL represents a bidentate ligand, can exhibit twofold rotation symmetry, that is not the case here, as the two dicyanamide ligands adopt different orientations relative to the rest of the complex (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing the hydrogen bonds as dashed lines. The water H-atom sites forming the hydrogen bonds to atoms N55 and N65 have full occupancy, but the other water H-atom sites have 0.5 occupancy (see text). Displacement ellipsoids are drawn at the 50% probability level.

Within the iron complex, the Fe—N distances span the range 2.077 (4)–2.230 (3) Å (Table 1[link]), indicating that the Fe centre adopts a high-spin configuration at 170 K: for a low-spin configuration, the Fe—N distances would be close to 1.95 Å (Orpen et al., 1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-S83.]). In the anionic ligands, there is a marked difference between the central C—N distances, all close to 1.30 Å and the terminal distances, all close to 1.15 Å (Table 1[link]). Combined with the C—N—C bond angles at the central atoms N53 and N63 of 119.7 (4) and 121.4 (4)°, respectively, these data indicate a strong degree of bond fixation in these ligands, with the negative charge localized primarily on the central N atoms. In this connection, it is inter­esting that the central atoms N53 and N63 participate in neither the hydrogen bonding nor the anion–π contacts (see Section 3, below).

Table 1
Selected geometric parameters (Å, °)

Fe1—N61 2.077 (4) C52—N53 1.301 (6)
Fe1—N51 2.144 (4) N53—C54 1.321 (6)
Fe1—N11 2.175 (3) C54—N55 1.156 (6)
Fe1—N31 2.176 (3) N61—C62 1.151 (5)
Fe1—N41 2.224 (3) C62—N63 1.297 (6)
Fe1—N21 2.230 (3) N63—C64 1.310 (6)
N51—C52 1.157 (6) C64—N65 1.129 (6)
       
N31—Fe1—N41 79.26 (12) C52—N53—C54 119.7 (4)
N11—Fe1—N21 78.51 (12) C62—N61—Fe1 170.6 (4)
C52—N51—Fe1 145.4 (3) C62—N63—C64 121.4 (4)

In each of the two independent water mol­ecules, the H atom (H71 or H81) forming an O—H⋯N hydrogen bond (Table 2[link]) is fully ordered, but the other H atom is disordered over two sites. For the selected asymmetric unit (Fig. 1[link]), inversion-related pairs of water mol­ecules containing atom O71 lie across the inversion centre at the origin with an O⋯O distances between them of 2.770 (6) Å, and they are linked by half-occupancy H atoms occupying two inversion-related sites separated by only 1.10 Å, so that for any such pair of water mol­ecules, if one site is occupied, the other must be vacant. A similar pair of water mol­ecules containing the atom O81 lies across the inversion centre at (1/2, 1, 1), with the O⋯O separation of 2.751 (5) Å and again linked by disordered H atoms occupying two sites. For the pairs of water mol­ecules containing atom O71, the partial-occupancy H atoms lie close to the O⋯O line, but for the pairs containing atom O81, the OHOH array describes a parallelogram. In addition, the atoms O71 at (x, y, z) and O81 at (−x, 1 − y, 1 − z), are separated by only 2.683 (6) Å and these also are linked by two half-occupancy H-atom sites (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N23i 0.84 (4) 2.11 (5) 2.942 (4) 170 (5)
N3—H3⋯N43ii 0.89 (5) 2.03 (5) 2.918 (4) 175 (5)
O71—H71⋯N55 0.86 (5) 2.11 (5) 2.959 (6) 173 (6)
O71—H72⋯O81iii 0.86 (6) 1.84 (5) 2.683 (6) 164 (11)
O71—H73⋯O71iv 0.85 (8) 1.99 (7) 2.770 (6) 152 (8)
O81—H81⋯N65 0.85 (4) 2.04 (4) 2.871 (5) 166 (7)
O81—H82⋯O71iii 0.86 (7) 1.89 (6) 2.683 (6) 153 (8)
O81—H83⋯O81v 0.86 (8) 2.04 (7) 2.751 (5) 140 (8)
C36—H36⋯N53iii 0.95 2.49 3.195 (6) 131
C46—H46⋯N65vi 0.95 2.53 3.309 (6) 139
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x, -y+1, -z]; (iii) [-x, -y+1, -z+1]; (iv) [-x, -y, -z]; (v) [-x+1, -y+2, -z+2]; (vi) [-x+1, -y+1, -z+1].

3. Supra­molecular features

The structure of compound (I)[link] contains N—H⋯H, O—H⋯N and O—H⋯·O hydrogen bonds (Table 2[link]) and together these link the independent mol­ecular components into a three-dimensional network. The structure contains no C—H⋯π hydrogen bonds but ππ stacking inter­actions and short anion–π contacts are both present.

The hydrogen-bonded framework structure is readily analysed in terms of simple one-dimensional substructures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). In the simplest of the sub-structures, the iron complexes are linked by N—H⋯N hydrogen bonds (Table 2[link]), forming a chain of rings running parallel to the [100] direction (Fig. 2[link]). Centrosymmetric R22(8) rings (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) in which atoms of type N1 act as the hydrogen-bond donors are centred at (n + ½, ½, 0) and these alternate with R22(8) rings in which atoms of type N3 act as the donors and which are centred at (n, ½, 0), where n represents an integer in each case.

[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link] showing the formation of a hydrogen-bonded chain of R22(8) rings formed by the Fe complexes and running parallel to the [100] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the water mol­ecules and the H atoms bonded to C atoms have been omitted.

It is possible to identify a number of one-dimensional sub-structures in which the iron complexes are linked into a variety of chains by the water mol­ecules and it is sufficient here to illustrate just two examples, running parallel to the [010] (Fig. 3[link]) and [001] (Fig. 4[link]) directions, respectively. It is also possible to identify chains consisting only of water mol­ecules and running along (x, 0, 0), (x, 0, 1), (x, 1, 0) and (x, 1, 1) (Fig. 5[link]). In each of these chains, there are two H-atom sites between successive O atoms (Fig. 5[link]), with H⋯H distances such that if one of these H sites is occupied, then the other must be vacant, leading to correlation of the H-atom occupancies along the whole chain, consistent with the overall half occupancy of these sites. However, there is no correlation of the H-atom site occupancies between neighbouring chains. The combination of chain motifs along [100], [010] and [001] (Figs. 2[link]–5[link][link][link]) is sufficient to confirm the three-dimensional nature of the hydrogen-bonded assembly, but other chain motifs, in which the iron complexes are linked by water mol­ecules, can be identified running parallel to [110], [011], [[\overline{1}]01], [012] and [111]. The two short inter­molecular C—H⋯N contacts both have small D—H⋯A angles (Table 2[link]), and so may be of limited structural significance (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]). The structure of (I)[link] also contains a single ππ stacking inter­action between iron complexes related by translation along [100]. The rings containing atoms N11 and N31, in the complexes at (x, y, z) and (1 + x, y, z) make a dihedral angle of 11.9 (2)° with a corresponding ring-centroid separation of 3.645 (2) Å, leading to the formation of a weakly π-stacked chain along [100] (Fig. 6[link]).

[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link] showing the linking of the iron complexes by the water mol­ecules to form a chain parallel to the [010] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link] showing the linking of the iron complexes by the water mol­ecules to form a chain parallel to the [001] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 5]
Figure 5
Part of the crystal structure of compound (I)[link] showing the formation of a chain of water mol­ecules running parallel to the [100] direction. Hydrogen bonds are drawn as dashed lines, and the H atoms involved in the hydrogen bonds shown have occupancy 0.5. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (−x, −y, −z), (x, −1 + y, −1 + z), (1 − x, 1 − y, 1 − z) and (1 + x, y, z), respectively.
[Figure 6]
Figure 6
Part of the crystal structure of compound (I)[link] showing the formation of a π-stacked chain running parallel to [100]. For the sake of clarity, the water mol­ecules and the H atoms have all been omitted.

We also note the presence of two short inter­molecular anion–π contacts (Table 3[link]), both involving the terminal N atom of a dicyanamido ligand. Since both these two N atoms also act as acceptors in O—H⋯N hydrogen bonds (Table 2[link]), it is unclear how significant the anion–π contacts might be.

Table 3
Geometrical parameters (Å, °) for short anion–π contacts

Cg1 and Cg2 represent the centroids of the rings (N31,C32,N33,C34,C35,C36) and (N11,C12,N13,C14,C15,C16), respectively.

C—N⋯Cg C—N N⋯Cg C⋯Cg C—N⋯Cg
C54—N55⋯Cg1i 1.156 (6) 3.720 (5) 4.469 (6) 123.9 (4)
C64—N65⋯Cg2ii 1.129 (6) 3.676 (5) 4.049 (5) 101.2 (3)
Symmetry codes: (i) x, −1 + y, z; (ii) 1 − x, 1 − y, 1 − z.

4. Database survey

While there do not appear to be any previous structural reports on iron complexes containing the di(pyrimidin-2-yl)amine ligand, there are a few reports of complexes with other metals, including some coordination polymers involving this ligand bound to copper(II) (Gamez et al., 2005[Gamez, P., van Albada, G. A., Mutikainen, L., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 1975-1980.]; van Albada et al., 2007[Albada, G. A. van, Mutikainen, L., Turpeinen, U. & Reedijk, J. (2007). J. Mol. Struct. 837, 43-47.]), and an isostructural pair of mononuclear zinc and cadmium complexes (van Albada et al., 2008[Albada, G. A. van, van der Horst, M. G., Mutikainen, L., Turpeinen, U. & Reedijk, J. (2008). J. Chem. Crystallogr. 38, 5190-523.]).

5. Hirshfeld surface analysis

MoProViewer software (Guillot et al., 2014[Guillot, B., Enrique, E., Huder, L. & Jelsch, C. (2014). Acta Cryst. A70, C279.]) was used to investigate the inter­molecular inter­actions and their enrichment on the Hirshfeld surface around the iron complex. The Hirshfeld two-dimensional fingerprint plots of contacts were generated with Crystal Explorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld contact surface of the iron complex is mainly constituted by C, H-c and N atoms, which represent 95% of the total. The largest contributions for the contacts in the crystal packing are of C—H⋯N and C—H⋯C types, where the C—H⋯N contacts are weak hydrogen bonds. These are followed by the stacking contacts of C⋯C and C⋯N types. In the fingerprint plots (Fig. 7[link]), there are two short spikes at short distance representing the N⋯H hydrogen bonds. The H⋯H contacts also show a widened spike around the main diagonal at short distances. On the other hand, the iron complex makes C—H⋯O contacts with the water oxygen atoms, at longer distances.

[Figure 7]
Figure 7
Hirshfeld surface fingerprint plots around the organic molecule.

The inter­molecular inter­actions were further evaluated by computing the contact enrichment ratios (supplementary Table 1[link]) in order to highlight which contacts are favoured. Contacts XY that are over-represented with respect to the share of X and Y chemical species on the Hirshfeld surface have enrichments larger than unity. They are likely to represent attractive inter­actions and thus to be the driving force in the crystal formation (Jelsch et al., 2014[Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119-128.]). The enrichment values are obtained as the ratio between the proportions of actual contacts Cxy and the equiprobable (random) contacts Rxy, the latter being obtained from the probability products (Rxy = SxSy). The strong hydrogen bonds of O—H⋯N and N—H⋯N types represent only 9.2% of the contacts surface but are the most over-represented (E = 1.84) among the significant contacts. The abundant C—H⋯N contacts are also quite enriched at E = 1.62. Among the major hydro­phobic inter­actions, C⋯C stacking is moderately enriched while the weak C⋯H contacts are marginally under-represented (E = 1.27 and 0.94, respectively).

6. Synthesis and crystallization

The ligand di(pyrimidin-2-yl)amine (dipm) was prepared according to the published method (Yao et al., 2000[Yao, W., Kavallieratos, K., de Gala, S. & Crabtree, R. H. (2000). Inorg. Chim. Acta, 311, 45-49.]). The title compound was prepared solvothermally under autogenous pressure from a mixture of iron(II) bis­(tetra­fluoro­borate) hexa­hydrate (34 mg, 0.1 mmol), dipm (35 mg, 0.2 mmol) and sodium dicyanamide (18 mg, 0.2 mmol) in a mixture of water and ethanol (4:1 v/v, 20 ml). This mixture was sealed in a Teflon-lined autoclave and held at 403 K for two days, and then cooled to ambient temperature at a rate of 10 K h−1 to give the product (yield 42%). Yellow needle-shaped crystals of the title compound were selected directly from the synthesized product.

7. Refinement

Crystal data, data collection and refinement details are summarized in Table 4[link]. One bad outlier reflection, ([\overline{5}][\overline{5}]9), was removed from the data set. The refinement was handled as a non-merohedral twin, with twin matrix (1.000, 0.000, 0.000/-0.016, −1.000, 0.000/–0.183, 0.000, −1.000) and with refined twin fractions of 0.178 (3) and 0.822 (3). All the H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances 0.95 Å and with Uiso(H) = 1.2Ueq(C). In each of the water mol­ecules, one of the H atoms was found to be disordered over two atomic sites: when the atomic coordinates of the water H atoms were refined with Uiso(H) = 1.5Ueq(O) but with no geometrical restraints, the resulting O—H distances were closely clustered around 0.86 Å, but the range of the H—O—H angles was too large to be regarded as satisfactory. Hence distance restraints of O—H = 0.86 (2) Å and H⋯H = 1.36 (2) Å were applied to both water mol­ecules. A number of apparently short inter­molecular H⋯H distances indicated strong correlation between the occupancies of the sites H72, H73, H82 and H83, and refinement of these occupancies, subject to such correlation, gave values well within one s.u. of 0.5: consequently these occupancies were all fixed at 0.5. The resulting hydrogen-bond parameters are given in Table 2[link]. For the H atoms bonded to N atoms or O atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N) giving N—H distances of 0.84 (4) and 0.89 (5) Å.

Table 4
Experimental details

Crystal data
Chemical formula [Fe(C2N3)2(C8H7N5)2]·2H2O
Mr 570.35
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 170
a, b, c (Å) 8.1960 (7), 10.4671 (11), 14.7926 (14)
α, β, γ (°) 105.254 (4), 92.903 (3), 90.356 (4)
V3) 1222.5 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.67
Crystal size (mm) 0.25 × 0.20 × 0.15
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.623, 0.906
No. of measured, independent and observed [I > 2σ(I)] reflections 6056, 6056, 5802
Rint 0.037
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.157, 1.12
No. of reflections 6056
No. of parameters 377
No. of restraints 12
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.47, −0.58
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip, 2010).

cis-Bis[bis(pyrimidin-2-yl)amine-κN]bis(dicyanamido-κN1)iron(II) dihydrate top
Crystal data top
[Fe(C2N3)2(C8H7N5)2]·2H2OZ = 2
Mr = 570.35F(000) = 584
Triclinic, P1Dx = 1.549 Mg m3
a = 8.1960 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4671 (11) ÅCell parameters from 6057 reflections
c = 14.7926 (14) Åθ = 2.5–28.4°
α = 105.254 (4)°µ = 0.67 mm1
β = 92.903 (3)°T = 170 K
γ = 90.356 (4)°Needle, yellow
V = 1222.5 (2) Å30.25 × 0.20 × 0.15 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, single source at offset/far, Eos
diffractometer
6056 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5802 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
ω scansθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1010
Tmin = 0.623, Tmax = 0.906k = 1313
6056 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.067H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.157 w = 1/[σ2(Fo2) + 5.9338P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
6056 reflectionsΔρmax = 1.47 e Å3
377 parametersΔρmin = 0.58 e Å3
12 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.28878 (7)0.59497 (5)0.32111 (3)0.01841 (13)
N10.5194 (4)0.5167 (3)0.1355 (2)0.0228 (7)
H10.547 (6)0.478 (5)0.081 (3)0.027*
N110.5331 (4)0.5184 (3)0.2957 (2)0.0219 (6)
C120.5903 (5)0.4757 (4)0.2095 (3)0.0215 (7)
N130.7127 (4)0.3911 (3)0.1857 (2)0.0278 (7)
C140.7890 (5)0.3528 (4)0.2551 (3)0.0306 (9)
H140.87420.29080.24050.037*
C150.7495 (5)0.3994 (4)0.3485 (3)0.0306 (9)
H150.81000.37570.39790.037*
C160.6190 (5)0.4812 (4)0.3648 (3)0.0286 (8)
H160.58700.51340.42750.034*
N210.3681 (4)0.6974 (3)0.2158 (2)0.0202 (6)
C220.4278 (5)0.6255 (3)0.1357 (3)0.0196 (7)
N230.4029 (4)0.6478 (3)0.0507 (2)0.0262 (7)
C240.3213 (6)0.7560 (4)0.0474 (3)0.0312 (9)
H240.29810.77330.01180.037*
C250.2687 (6)0.8452 (4)0.1280 (3)0.0290 (8)
H250.21860.92590.12570.035*
C260.2932 (5)0.8103 (4)0.2110 (3)0.0241 (8)
H260.25610.86760.26690.029*
N30.0205 (4)0.5704 (3)0.1378 (2)0.0221 (6)
H30.026 (6)0.586 (5)0.086 (3)0.027*
N310.0422 (4)0.6630 (3)0.3022 (2)0.0233 (7)
C320.0328 (5)0.6564 (4)0.2185 (3)0.0208 (7)
N330.1591 (4)0.7287 (3)0.2022 (2)0.0278 (7)
C340.2224 (5)0.8094 (4)0.2778 (3)0.0309 (9)
H340.31090.86390.26920.037*
C350.1622 (6)0.8155 (5)0.3684 (3)0.0344 (10)
H350.21210.86830.42180.041*
C360.0275 (5)0.7417 (4)0.3772 (3)0.0294 (9)
H360.01840.74610.43820.035*
N410.1913 (4)0.4328 (3)0.2006 (2)0.0206 (6)
C420.1115 (5)0.4589 (4)0.1268 (2)0.0198 (7)
N430.1116 (4)0.3831 (3)0.0374 (2)0.0253 (7)
C440.1914 (6)0.2702 (4)0.0234 (3)0.0289 (9)
H440.19780.21630.03890.035*
C450.2662 (5)0.2281 (4)0.0969 (3)0.0267 (8)
H450.31500.14370.08680.032*
C460.2661 (5)0.3141 (4)0.1844 (3)0.0211 (7)
H460.32020.29000.23560.025*
N510.2329 (5)0.4644 (4)0.4057 (2)0.0326 (8)
C520.1779 (5)0.3624 (4)0.4059 (3)0.0276 (8)
N530.1117 (7)0.2525 (4)0.4132 (3)0.0489 (12)
C540.0792 (6)0.1549 (5)0.3370 (3)0.0356 (10)
N550.0436 (6)0.0672 (4)0.2730 (3)0.0485 (11)
N610.3620 (5)0.7507 (4)0.4355 (2)0.0338 (8)
C620.4141 (6)0.8241 (4)0.5033 (3)0.0326 (9)
N630.4727 (9)0.9156 (5)0.5750 (3)0.0694 (19)
C640.4855 (6)0.8965 (4)0.6591 (3)0.0325 (9)
N650.5029 (6)0.8940 (4)0.7348 (3)0.0404 (9)
O710.0803 (5)0.0590 (4)0.0801 (3)0.0548 (10)
H710.037 (8)0.059 (7)0.134 (3)0.082*
H720.177 (6)0.025 (11)0.079 (6)0.082*0.5
H730.028 (11)0.002 (9)0.041 (4)0.082*0.5
O810.4001 (5)0.9987 (4)0.9222 (2)0.0492 (10)
H810.439 (8)0.981 (7)0.868 (2)0.074*
H820.309 (7)0.955 (9)0.915 (6)0.074*0.5
H830.464 (9)0.960 (9)0.954 (5)0.074*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0221 (3)0.0223 (3)0.0094 (2)0.0008 (2)0.00059 (18)0.00175 (18)
N10.0282 (17)0.0237 (16)0.0160 (14)0.0051 (13)0.0043 (12)0.0041 (12)
N110.0203 (15)0.0290 (16)0.0161 (14)0.0020 (12)0.0004 (11)0.0055 (12)
C120.0218 (17)0.0214 (17)0.0211 (17)0.0000 (14)0.0009 (14)0.0051 (14)
N130.0311 (18)0.0271 (17)0.0277 (17)0.0068 (14)0.0048 (14)0.0108 (14)
C140.027 (2)0.032 (2)0.036 (2)0.0074 (17)0.0041 (17)0.0158 (18)
C150.027 (2)0.037 (2)0.031 (2)0.0004 (17)0.0056 (16)0.0145 (18)
C160.030 (2)0.038 (2)0.0184 (17)0.0032 (17)0.0054 (15)0.0086 (16)
N210.0252 (16)0.0181 (14)0.0165 (14)0.0010 (12)0.0024 (12)0.0027 (11)
C220.0225 (17)0.0163 (16)0.0199 (16)0.0033 (13)0.0034 (13)0.0044 (13)
N230.0364 (19)0.0249 (16)0.0193 (15)0.0050 (14)0.0054 (13)0.0088 (13)
C240.046 (3)0.026 (2)0.026 (2)0.0066 (18)0.0070 (18)0.0135 (16)
C250.040 (2)0.0185 (17)0.032 (2)0.0050 (16)0.0084 (18)0.0099 (15)
C260.030 (2)0.0152 (16)0.0243 (18)0.0006 (14)0.0052 (15)0.0005 (14)
N30.0288 (17)0.0225 (15)0.0128 (13)0.0029 (13)0.0043 (12)0.0020 (12)
N310.0244 (16)0.0262 (16)0.0161 (14)0.0041 (13)0.0018 (12)0.0004 (12)
C320.0222 (17)0.0200 (17)0.0200 (16)0.0016 (14)0.0008 (14)0.0051 (13)
N330.0292 (18)0.0227 (16)0.0276 (17)0.0056 (14)0.0048 (14)0.0005 (13)
C340.025 (2)0.027 (2)0.037 (2)0.0053 (16)0.0007 (17)0.0029 (17)
C350.033 (2)0.037 (2)0.029 (2)0.0061 (18)0.0088 (17)0.0004 (18)
C360.034 (2)0.033 (2)0.0193 (18)0.0025 (17)0.0056 (16)0.0026 (16)
N410.0249 (16)0.0199 (15)0.0167 (14)0.0003 (12)0.0005 (12)0.0044 (11)
C420.0245 (18)0.0181 (16)0.0154 (15)0.0042 (13)0.0021 (13)0.0029 (13)
N430.0369 (19)0.0203 (15)0.0157 (14)0.0020 (13)0.0047 (13)0.0007 (12)
C440.045 (2)0.0206 (18)0.0182 (17)0.0039 (17)0.0035 (16)0.0005 (14)
C450.037 (2)0.0200 (17)0.0225 (18)0.0045 (16)0.0027 (16)0.0061 (14)
C460.0248 (18)0.0201 (17)0.0200 (16)0.0005 (14)0.0015 (14)0.0087 (14)
N510.044 (2)0.038 (2)0.0158 (15)0.0006 (17)0.0008 (14)0.0076 (14)
C520.035 (2)0.034 (2)0.0154 (16)0.0064 (17)0.0033 (15)0.0094 (15)
N530.083 (4)0.041 (2)0.0258 (19)0.007 (2)0.013 (2)0.0110 (17)
C540.035 (2)0.035 (2)0.040 (2)0.0089 (19)0.0094 (19)0.014 (2)
N550.052 (3)0.039 (2)0.049 (3)0.002 (2)0.006 (2)0.002 (2)
N610.043 (2)0.0331 (19)0.0202 (16)0.0012 (16)0.0024 (15)0.0008 (14)
C620.048 (3)0.027 (2)0.0219 (19)0.0028 (19)0.0040 (18)0.0072 (16)
N630.142 (6)0.037 (2)0.025 (2)0.033 (3)0.023 (3)0.0074 (18)
C640.044 (3)0.0227 (19)0.025 (2)0.0026 (18)0.0047 (18)0.0018 (16)
N650.050 (3)0.040 (2)0.0263 (19)0.0017 (19)0.0038 (17)0.0014 (16)
O710.046 (2)0.066 (3)0.048 (2)0.002 (2)0.0036 (18)0.005 (2)
O810.042 (2)0.070 (3)0.0287 (17)0.0037 (19)0.0054 (15)0.0011 (17)
Geometric parameters (Å, º) top
Fe1—N612.077 (4)N31—C361.350 (5)
Fe1—N512.144 (4)C32—N331.335 (5)
Fe1—N112.175 (3)N33—C341.342 (5)
Fe1—N312.176 (3)C34—C351.388 (6)
Fe1—N412.224 (3)C34—H340.9500
Fe1—N212.230 (3)C35—C361.372 (6)
N1—C221.367 (5)C35—H350.9500
N1—C121.381 (5)C36—H360.9500
N1—H10.84 (5)N41—C421.335 (5)
N11—C121.344 (5)N41—C461.357 (5)
N11—C161.354 (5)C42—N431.351 (4)
C12—N131.341 (5)N43—C441.327 (5)
N13—C141.327 (5)C44—C451.394 (5)
C14—C151.394 (6)C44—H440.9500
C14—H140.9500C45—C461.368 (5)
C15—C161.365 (6)C45—H450.9500
C15—H150.9500C46—H460.9500
C16—H160.9500N51—C521.157 (6)
N21—C221.343 (5)C52—N531.301 (6)
N21—C261.352 (5)N53—C541.321 (6)
C22—N231.343 (5)C54—N551.156 (6)
N23—C241.330 (5)N61—C621.151 (5)
C24—C251.396 (6)C62—N631.297 (6)
C24—H240.9500N63—C641.310 (6)
C25—C261.375 (6)C64—N651.129 (6)
C25—H250.9500O71—H710.860 (19)
C26—H260.9500O71—H720.86 (2)
N3—C421.367 (5)O71—H730.85 (2)
N3—C321.385 (5)O81—H810.858 (19)
N3—H30.89 (5)O81—H820.86 (2)
N31—C321.340 (5)O81—H830.86 (2)
N61—Fe1—N5193.91 (15)C42—N3—C32130.2 (3)
N61—Fe1—N1195.09 (14)C42—N3—H3117 (3)
N51—Fe1—N1193.49 (14)C32—N3—H3112 (3)
N61—Fe1—N3196.63 (14)C32—N31—C36115.9 (3)
N51—Fe1—N3197.71 (14)C32—N31—Fe1124.0 (3)
N11—Fe1—N31163.16 (11)C36—N31—Fe1118.5 (3)
N61—Fe1—N41175.73 (15)N33—C32—N31126.1 (3)
N51—Fe1—N4185.54 (13)N33—C32—N3113.3 (3)
N11—Fe1—N4189.17 (12)N31—C32—N3120.6 (3)
N31—Fe1—N4179.26 (12)C32—N33—C34116.4 (4)
N61—Fe1—N2194.04 (13)N33—C34—C35122.0 (4)
N51—Fe1—N21169.19 (13)N33—C34—H34119.0
N11—Fe1—N2178.51 (12)C35—C34—H34119.0
N31—Fe1—N2188.64 (12)C36—C35—C34116.9 (4)
N41—Fe1—N2187.07 (11)C36—C35—H35121.5
C22—N1—C12130.0 (3)C34—C35—H35121.5
C22—N1—H1112 (3)N31—C36—C35122.4 (4)
C12—N1—H1117 (3)N31—C36—H36118.8
C12—N11—C16115.6 (3)C35—C36—H36118.8
C12—N11—Fe1123.4 (3)C42—N41—C46116.1 (3)
C16—N11—Fe1119.1 (3)C42—N41—Fe1121.2 (2)
N13—C12—N11125.8 (4)C46—N41—Fe1117.7 (2)
N13—C12—N1114.0 (3)N41—C42—N43125.5 (3)
N11—C12—N1120.2 (3)N41—C42—N3120.4 (3)
C14—N13—C12116.3 (4)N43—C42—N3114.2 (3)
N13—C14—C15122.9 (4)C44—N43—C42116.7 (3)
N13—C14—H14118.5N43—C44—C45122.3 (4)
C15—C14—H14118.5N43—C44—H44118.9
C16—C15—C14116.1 (4)C45—C44—H44118.9
C16—C15—H15121.9C46—C45—C44116.7 (4)
C14—C15—H15121.9C46—C45—H45121.6
N11—C16—C15122.9 (4)C44—C45—H45121.6
N11—C16—H16118.5N41—C46—C45122.3 (3)
C15—C16—H16118.5N41—C46—H46118.8
C22—N21—C26115.9 (3)C45—C46—H46118.8
C22—N21—Fe1119.2 (2)C52—N51—Fe1145.4 (3)
C26—N21—Fe1118.4 (2)N51—C52—N53175.0 (4)
N23—C22—N21125.8 (3)C52—N53—C54119.7 (4)
N23—C22—N1114.0 (3)N55—C54—N53176.1 (6)
N21—C22—N1120.2 (3)C62—N61—Fe1170.6 (4)
C24—N23—C22116.6 (3)N61—C62—N63174.3 (5)
N23—C24—C25122.2 (4)C62—N63—C64121.4 (4)
N23—C24—H24118.9N65—C64—N63172.4 (5)
C25—C24—H24118.9H71—O71—H72105 (3)
C26—C25—C24116.7 (4)H71—O71—H73106 (3)
C26—C25—H25121.7H72—O71—H73106 (3)
C24—C25—H25121.7H81—O81—H82105 (3)
N21—C26—C25122.3 (3)H81—O81—H83104 (3)
N21—C26—H26118.8H82—O81—H83105 (3)
C25—C26—H26118.8
C16—N11—C12—N136.7 (6)C36—N31—C32—N336.5 (6)
Fe1—N11—C12—N13157.3 (3)Fe1—N31—C32—N33158.9 (3)
C16—N11—C12—N1174.9 (4)C36—N31—C32—N3174.7 (4)
Fe1—N11—C12—N121.1 (5)Fe1—N31—C32—N319.8 (5)
C22—N1—C12—N13159.5 (4)C42—N3—C32—N33159.9 (4)
C22—N1—C12—N1121.9 (6)C42—N3—C32—N3121.2 (6)
N11—C12—N13—C144.0 (6)N31—C32—N33—C344.5 (6)
N1—C12—N13—C14177.5 (4)N3—C32—N33—C34176.7 (4)
C12—N13—C14—C151.8 (6)C32—N33—C34—C351.3 (6)
N13—C14—C15—C164.3 (7)N33—C34—C35—C364.2 (7)
C12—N11—C16—C153.7 (6)C32—N31—C36—C353.0 (6)
Fe1—N11—C16—C15161.0 (3)Fe1—N31—C36—C35163.3 (4)
C14—C15—C16—N111.3 (6)C34—C35—C36—N312.0 (7)
C26—N21—C22—N238.3 (6)C46—N41—C42—N436.1 (6)
Fe1—N21—C22—N23143.1 (3)Fe1—N41—C42—N43148.2 (3)
C26—N21—C22—N1173.6 (3)C46—N41—C42—N3174.3 (3)
Fe1—N21—C22—N135.0 (5)Fe1—N41—C42—N331.4 (5)
C12—N1—C22—N23168.6 (4)C32—N3—C42—N4114.0 (6)
C12—N1—C22—N2113.1 (6)C32—N3—C42—N43166.4 (4)
N21—C22—N23—C245.0 (6)N41—C42—N43—C443.6 (6)
N1—C22—N23—C24176.8 (4)N3—C42—N43—C44176.8 (4)
C22—N23—C24—C252.2 (7)C42—N43—C44—C452.6 (6)
N23—C24—C25—C265.3 (7)N43—C44—C45—C465.5 (7)
C22—N21—C26—C254.6 (6)C42—N41—C46—C452.7 (6)
Fe1—N21—C26—C25147.1 (3)Fe1—N41—C46—C45152.6 (3)
C24—C25—C26—N211.7 (6)C44—C45—C46—N412.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N23i0.84 (4)2.11 (5)2.942 (4)170 (5)
N3—H3···N43ii0.89 (5)2.03 (5)2.918 (4)175 (5)
O71—H71···N550.86 (5)2.11 (5)2.959 (6)173 (6)
O71—H72···O81iii0.86 (6)1.84 (5)2.683 (6)164 (11)
O71—H73···O71iv0.85 (8)1.99 (7)2.770 (6)152 (8)
O81—H81···N650.85 (4)2.04 (4)2.871 (5)166 (7)
O81—H82···O71iii0.86 (7)1.89 (6)2.683 (6)153 (8)
O81—H83···O81v0.86 (8)2.04 (7)2.751 (5)140 (8)
C36—H36···N53iii0.952.493.195 (6)131
C46—H46···N65vi0.952.533.309 (6)139
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x, y, z; (v) x+1, y+2, z+2; (vi) x+1, y+1, z+1.
Geometrical parameters (Å, °) for short anion–π contacts top
Cg1 and Cg2 represent the centroids of the rings (N31,C32,N33,C34,C35,C36) and (N11,C12,N13,C14,C15,C16), respectively .
C—N···CgC—NN···CgC···CgC—N···Cg
C54—N55···Cg1i1.156 (6)3.720 (5)4.469 (6)123.9 (4)
C64—N65···Cg2ii1.129 (6)3.676 (5)4.049 (5)101.2 (3)
Symmetry codes: (i) x, -1 + y, z; (ii) 1 - x, 1 - y, 1 - z.
 

Acknowledgements

Author contributions are as follows. Conceptualization, ZS and FS; methodology, ZS and FS; investigation, YS, CJ and AS; writing (original draft), ZS, CG and CJ; writing (review and editing of the manuscript), CG, FS and ZS; visualization, ZS and SF; funding acquisition, ZS and MHAD; resources, FS; supervision, FS.

Funding information

Funding for this research was provided by: the Algerian MESRS (Ministère de l'Enseignement Supéerieur et de la Recherche Scientifique), the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and PRFU project (grant No. B00L01UN190120230003).

References

First citationAddala, A., Geiger, D. K., Setifi, Z. & Setifi, F. (2019). Acta Cryst. C75, 348–353.  CSD CrossRef IUCr Journals Google Scholar
First citationAlbada, G. A. van, Mutikainen, L., Turpeinen, U. & Reedijk, J. (2007). J. Mol. Struct. 837, 43–47.  Google Scholar
First citationAlbada, G. A. van, van der Horst, M. G., Mutikainen, L., Turpeinen, U. & Reedijk, J. (2008). J. Chem. Crystallogr. 38, 5190–523.  Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBisoyi, H. K. & Li, Q. (2016). Chem. Rev. 116, 15089–15166.  CrossRef CAS PubMed Google Scholar
First citationCuza, E., Motei, R., Setifi, F., Bentama, A., Gómez-García, C. J. & Triki, S. (2021). J. Appl. Phys. 129, 145501.  CSD CrossRef Google Scholar
First citationDmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). Dalton Trans. 49, 7084–7092.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044–m1045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGamez, P., van Albada, G. A., Mutikainen, L., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 1975–1980.  CSD CrossRef CAS Google Scholar
First citationGoodwin, H. A. (2004). Top. Curr. Chem. 233, 59–90.  Web of Science CrossRef CAS Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGuillot, B., Enrique, E., Huder, L. & Jelsch, C. (2014). Acta Cryst. A70, C279.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHalcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811–9821.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMerabet, L., Vologzhanina, A. V., Setifi, Z., Kaboub, L. & Setifi, F. (2022). CrystEngComm, 24, 4740–4747.  Web of Science CSD CrossRef CAS Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–S83.  CrossRef Web of Science Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationSato, O. (2016). Nat. Chem. 8, 644–656.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSetifi, F., Charles, C., Houille, S., Thétiot, F., Triki, S., Gómez-García, C. J. & Pillet, S. (2013). Polyhedron, 61, 242–247.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, F., Konieczny, P., Glidewell, C., Arefian, M., Pelka, R., Setifi, Z. & Mirzaei, M. (2017). J. Mol. Struct. 1149, 149–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97–104.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar
First citationYao, W., Kavallieratos, K., de Gala, S. & Crabtree, R. H. (2000). Inorg. Chim. Acta, 311, 45–49.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds