research communications
Synthesis, a]pyridin-1-ium chloride monohydrate
and Hirshfeld surface analysis of 3-(4-fluorophenyl)-2-formyl-7-methylimidazo[1,2-aKosygin State University of Russia, 117997 Moscow, Russian Federation, bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, cMIREA, Russian Technology University, Lomonosov Institute of Fine Chemical Technology, Moscow 119571, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, eDepartment of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Türkiye, and fDepartment of Chemistry, M.M.A.M.C. (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
In the title salt, C15H12FN2O+·Cl−·H2O, the imidazo[1,2-a]pyridin-1-ium ring system of the cation is almostly planar [maximum deviaition = −0.047 (2) Å for the ring C atom with the attached arene ring] and forms a dihedral angle of 61.81 (6)° with the plane of the fluorophenyl ring. In the crystal, water molecules form an R24(8) motif parallel to the (100) plane by bonding with the chloride ions via O—H⋯Cl hydrogen bonds. The cations are connected along the b axis via N—H⋯O hydrogen bonds involving the O atoms of water molecules, and C—H⋯O, C—H⋯Cl and π–π interactions [centroid-to-centroid distance = 3.6195 (8) Å] form layers parallel to the (100) plane. Furthermore, these layers are connected via π–π interactions [centroid-to-centroid distance = 3.8051 (9) Å] that further consolidate the crystal structure.
Keywords: crystal structure; imidazo[1,2-a]pyridin-1-ium; hydrogen bonds; π–π interactions; Hirshfeld surface analysis.
CCDC reference: 2289534
1. Chemical context
Imidazo[1,2-a]pyridine is considered to be the most important derivative in the imidazopyridine system, with many important biological activities (Ribeiro et al., 1998; Khalilov et al., 2021). These derivatives exhibit a number of interesting properties, such as anticancer, antifungal, anti-inflammatory, antibacterial, antiprotozoal, antipyretic and anti-infective, as well as analgesic and pain relief and sedative properties (Ribeiro et al., 1998; Almirante et al., 1965; Safavora et al., 2019). Imidazo[1,2-a]pyridine is present in various pharmaceutical products, such as zolpidem (used to treat insomnia), alpidem (sedative) (Lacerda et al., 2014), zolimidine (used to treat peptic ulcers) (Tyagi et al., 2012; Martins et al., 2017), olprinone (acute heart failure), saripidem (sedative), necopidem (sedative), soraprazan, miroprofen and minodronic acid (Kielesiński et al., 2015). Due to its importance in the pharmaceutical industry, much effort has been devoted to this heterocycle in order to develop an efficient, feasible and low-cost synthesis of imidazo[1,2-a]pyridine derivatives (Ribeiro et al., 1998). Besides their biological activity, the transition-metal complexes of imidazole ligands have been found to possess a wide variety of functional properties, for example, as catalysts, supramolecular building blocks, analytical reagents, etc. (Gurbanov et al., 2020a,b; Kopylovich et al., 2011; Mahmudov et al., 2010, 2012). By the functionalization of the imidazole synthon their functional properties can be improved (Gurbanov et al., 2022; Mahmoudi et al., 2017a,b, 2019). In addition, the functional groups on the imidazole ring can participate in various types of intermolecular interactions (Mahmudov et al., 2022). Acetal-containing 2-chloro-2-(diethoxymethyl)-3-(4-fluorophenyl)oxirane (1) or 1-chloro-3,3-diethoxy-1-(4-fluorophenyl)propan-2-one (2) in reactions with bi- and polyfunctional nucleophiles (Fig. 1) turned out to be convenient in the molecular design of various heterocyclic systems, in particular, heterocyclic carbaldehydes and their derivatives (Guseinov et al., 1994, 1995, 1998, 2006, 2017, 2020; Pistsov et al., 2017). We have found that electrophilic reagents (1 or 2) react with 2-amino-4-methylpyridine under certain conditions to transform into 3-(4-fluorophenyl)-2-formyl-7-methylimidazo[1,2-a]pyridin-1-ium chloride (3) whose structure has been determined by NMR spectroscopy and X-ray diffraction methods (Fig. 1).
2. Structural commentary
In the title salt (Fig. 2), the imidazo[1,2-a]pyridin-1-ium ring system (atoms N1/N4/C2/C3/C5–C8/C8A) of the cation is almost planar [maximum deviaition = −0.047 (2) Å for atom C3] and forms a dihedral angle of 61.81 (6)° with the plane of the fluorophenyl ring (C11–C16).
The bond lengths and angles in the molecule of the title salt are comparable with those of closely related structures detailed in Section 4 (Database survey).
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, water molecules form an (8) motif (Bernstein et al., 1995) parallel to the (100) plane by bonding with the chloride ions via O—H⋯Cl hydrogen bonds (Table 1 and Figs. 3 and 4). The cations are also connected along the b axis via N—H⋯O hydrogen bonds involving the O atoms of the water molecules, and C—H⋯O, C—H⋯Cl and π–π interactions [Cg2⋯Cg2iv = 3.6195 (8) Å; symmetry code: (iv) −x + 1, −y + 1, −z + 1; Cg2 is a centroid of the six-membered ring (N4/C5–C8/C8A) of the imidazo[1,2-a]pyridin-1-ium ring system (N1/N4/C2/C3/C5–C8/C8A)] form layers parallel to the (100) plane (Fig. 5). Furthermore, these layers are connected to each other via π–π interactions [Cg3⋯Cg3vii = 3.8051 (9) Å; symmetry code: (vii) −x + 1, −y, −z + 2; Cg3 is a centroid of the fluorophenyl ring (C11–C16)] that consolidate the (Fig. 6).
The Hirshfeld surface mapped over dnorm was generated using CrystalExplorer17.5 (Spackman et al., 2021) with a colour scale from −0.7283 a.u. for red to +1.3376 a.u. for blue. The front and rear views of the Hirshfeld surface mapped over dnorm are depicted in Fig. 7. The bright-red circular spots on dnorm indicate the presence of intermolecular N1—H1⋯O18i, C8—H8⋯Cl1iv, C12—H12⋯Cl1v and C13—H13⋯O10vi interactions (Table 1). The percentage contributions from different intermolecular interactions towards the formation of a three-dimensional Hirshfeld surface were computed using two-dimensional fingerprint calculations (Fig. 8).
Fig. 8 shows the full two-dimensional fingerprint plots for the molecule and those delineated into the major contacts. H⋯H interactions [Fig. 8(b)] are the major contributor (35.2%) to the crystal packing, with C⋯H/H⋯C [Fig. 8(c); 19.0%], O⋯H/H⋯O [Fig. 8(d); 15.5%] and F⋯H/H⋯F [Fig. 8(e); 9.9%] interactions representing the next highest contributions. The percentage contributions of comparatively weaker interactions are C⋯C (4.6%), N⋯H/H⋯N (2.8%), F⋯O/O⋯F (1.5%), Cl⋯C/C⋯Cl (1.3%), Cl⋯H/H⋯Cl (1.3%), N⋯C/C⋯N (1.3%), F⋯F (1.2%), F⋯C/C⋯F (1.1%) and O⋯O (0.1%). Relevant short intermolecular atomic contacts are summarized in Table 2.
|
The results show that the H⋯H (35.2%) contacts give the major contribution to the crystal packing, and that the C⋯H/H⋯C (19.0%), O⋯H/H⋯O (15.5%) and F⋯H/H⋯F (9.9%) contacts also give a significant contribution to the total area of the Hirshfeld surface.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for compounds most closely related to the imidazo[1,2-a]pyridin-1-ium unit of the title compound gave the following hits: refcodes LESMAZ (Yin, 2013), UREPIR (Nichol et al., 2011), ABAJOE (Rybakov & Babaev, 2011), BIZWAI02 (Airoldi et al., 2015), UREYIA (Türkyılmaz et al., 2011) and NEQPOP (Qiao et al., 2006).
In the crystal of LESMAZ, the cations and anions are linked into chains parallel to [021] by O—H⋯Cl and N—H⋯Cl hydrogen bonds. In the crystal of UREPIR, N—H⋯O interactions form a one-dimensional chain, which propagates in the b-axis direction. C—H⋯O interactions are also found in the crystal packing. The of ABAJOE is consolidated by weak C—H⋯O and C—H⋯Cl interactions involving the `olate' O atom and the Cl atom attached to the benzoyl group as acceptors. In the crystal of BIZWAI02, molecules are linked by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, and π–π interactions [centroid-to-centroid distance = 3.5822 (11) Å], forming a three-dimensional structure. In the crystal of UREYIA, the components are linked by N—H⋯O and C—H⋯O hydrogen bonds and π–π stacking interactions [centroid–centroid separation = 3.642 (3) Å]. In the crystal of NEQPOP, intermolecular O—H⋯O and N—H⋯O hydrogen bonds link the molecules into two-dimensional layers.
5. Synthesis and crystallization
A solution of equimolar amounts of 2-aminopyridine (410 mg, 3.8 mmol) and 2-chloro-2-(diethoxymethyl)-3-(4-fluorophenyl)oxirane (1) or 1-chloro-3,3-diethoxy-1-(4-fluorophenyl) propan-2-one (2) (1.05 g, 3.8 mmol) in 25 ml of 95% aqueous ethanol was heated at reflux for 8 h. The solvent was removed in vacuo. After purification by using a chloroform/ethyl acetate mixture (3:1 v/v), 2-(diethoxymethyl)-3-(4-fluorophenyl)imidazo[1,2-a]pyridine was obtained as a white powder. Gaseous HCl was passed through a solution of 2-(diethoxymethyl)-3-(4-fluorophenyl)imidazo[1,2-a]pyridine in chloroform, leading to the main product, 3-(4-fluorophenyl)-2-formyl-7-methylimidazo[1,2-a]pyridin-1-ium chloride (3) in the form of a white precipitate; this was insoluble in chloroform and was filtered off and recrystallized from acetonitrile (Fig. 1). Yield 0.61 g (55%); m.p. 509–510 K. Analysis calculated (%) for C15H12ClFN2O: C 70.58, H 4.74, F 7.44, N 10.97, O 6.27; found: C 70.60, H 4.78, F 7.42, N 10.93, O 6.27. 1H NMR (300 MHz, DMSO-d6): δ 2.54 (s, 3H, CH3), 7.28 (d, J = 6.6 Hz, 1H, 6CH), 7.55 (dd, J = 8.8, 5.5 Hz, 2H, Ar), 7.75 (s, 1H, NH), 7.90 (dd, J = 8.6, 5.5 Hz, 2H, Ar), 8.35 (s, 1H, 8CH), 8.47 (d, J = 7.1 Hz, 1H, 5CH), 9.85 (s, 1H, CHO). 13C NMR (200 MHz, DMSO-d6): δ 21.27, 111.92, 116.44, 116.87, 119.67, 120.02, 126.18, 130.39, 131.39, 133.59 (d, J = 35 Hz, CF), 141.40, 147.07, 161.11, 166.06, 182.45. ESI–MS: m/z: 255.0928 [M + H]+.
6. Refinement
Crystal data, data collection and structure . The N-bound H atom and the H atoms of the water molecule were located in a difference Fourier map and refined freely along with their isotropic displacement parameters. C-bound H atoms were included in calculated positions and treated as riding atoms (C—H = 0.95–0.98 Å), with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2289534
https://doi.org/10.1107/S2056989023007272/jy2034sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023007272/jy2034Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023007272/jy2034Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2023); cell
CrysAlis PRO (Rigaku OD, 2023); data reduction: CrysAlis PRO (Rigaku OD, 2023); program(s) used to solve structure: SHELXT2019 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C15H12FN2O+·Cl−·H2O | Z = 2 |
Mr = 308.73 | F(000) = 320 |
Triclinic, P1 | Dx = 1.413 Mg m−3 |
a = 7.45681 (13) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 8.41737 (10) Å | Cell parameters from 11896 reflections |
c = 12.8928 (2) Å | θ = 3.6–77.3° |
α = 74.0382 (12)° | µ = 2.50 mm−1 |
β = 73.7634 (14)° | T = 100 K |
γ = 72.7034 (13)° | Prism, colorless |
V = 725.40 (2) Å3 | 0.33 × 0.19 × 0.15 mm |
Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector | 3082 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3033 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.027 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 77.9°, θmin = 3.7° |
ω scans | h = −9→9 |
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2023) | k = −10→9 |
Tmin = 0.404, Tmax = 1.000 | l = −16→16 |
15845 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: mixed |
wR(F2) = 0.086 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0415P)2 + 0.4038P] where P = (Fo2 + 2Fc2)/3 |
3082 reflections | (Δ/σ)max = 0.001 |
203 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.01542 (4) | 0.11097 (4) | 0.64700 (3) | 0.02403 (11) | |
F1 | 0.56045 (14) | −0.35098 (11) | 1.02878 (8) | 0.0367 (2) | |
O18 | 0.90723 (15) | 0.80467 (12) | 0.61002 (9) | 0.0241 (2) | |
N4 | 0.37156 (15) | 0.27422 (14) | 0.62115 (9) | 0.0190 (2) | |
N1 | 0.14182 (17) | 0.49767 (15) | 0.65794 (10) | 0.0215 (2) | |
C8A | 0.26290 (18) | 0.42655 (16) | 0.57537 (11) | 0.0196 (3) | |
C11 | 0.37885 (19) | 0.08741 (17) | 0.81151 (11) | 0.0210 (3) | |
C5 | 0.51012 (19) | 0.17210 (16) | 0.55569 (12) | 0.0214 (3) | |
H5 | 0.586532 | 0.067821 | 0.587952 | 0.026* | |
C12 | 0.5714 (2) | 0.03302 (17) | 0.81846 (11) | 0.0233 (3) | |
H12 | 0.660070 | 0.098082 | 0.773040 | 0.028* | |
C3 | 0.30886 (19) | 0.24618 (17) | 0.73582 (11) | 0.0208 (3) | |
C7 | 0.4192 (2) | 0.37812 (17) | 0.39448 (11) | 0.0228 (3) | |
C2 | 0.16899 (19) | 0.38788 (17) | 0.75689 (11) | 0.0217 (3) | |
C8 | 0.28524 (19) | 0.48118 (17) | 0.46032 (11) | 0.0215 (3) | |
H8 | 0.209704 | 0.586666 | 0.428855 | 0.026* | |
C14 | 0.5015 (2) | −0.20644 (18) | 0.95627 (12) | 0.0267 (3) | |
C16 | 0.2482 (2) | −0.00887 (19) | 0.87709 (12) | 0.0271 (3) | |
H16 | 0.117247 | 0.027457 | 0.871462 | 0.032* | |
C6 | 0.5351 (2) | 0.22342 (17) | 0.44449 (12) | 0.0232 (3) | |
H6 | 0.631903 | 0.154967 | 0.398747 | 0.028* | |
C13 | 0.6343 (2) | −0.11584 (18) | 0.89146 (12) | 0.0256 (3) | |
H13 | 0.765513 | −0.154250 | 0.896619 | 0.031* | |
C17 | 0.4406 (2) | 0.4222 (2) | 0.27152 (12) | 0.0295 (3) | |
H17A | 0.374708 | 0.355153 | 0.250243 | 0.044* | |
H17B | 0.577414 | 0.396555 | 0.235805 | 0.044* | |
H17C | 0.383705 | 0.543651 | 0.248116 | 0.044* | |
C15 | 0.3103 (2) | −0.1578 (2) | 0.95051 (12) | 0.0303 (3) | |
H15 | 0.223073 | −0.224471 | 0.995677 | 0.036* | |
C9 | 0.0719 (2) | 0.4320 (2) | 0.86403 (12) | 0.0305 (3) | |
H9 | 0.092957 | 0.349329 | 0.929217 | 0.037* | |
H18A | 0.937 (3) | 0.887 (3) | 0.6243 (19) | 0.046 (6)* | |
H18B | 0.926 (3) | 0.830 (3) | 0.538 (2) | 0.045 (6)* | |
H1 | 0.059 (3) | 0.602 (3) | 0.6466 (17) | 0.042 (5)* | |
O10 | −0.0336 (2) | 0.56891 (18) | 0.87279 (11) | 0.0572 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.02505 (17) | 0.02388 (17) | 0.02491 (17) | −0.00803 (12) | −0.00593 (12) | −0.00495 (12) |
F1 | 0.0455 (6) | 0.0280 (5) | 0.0283 (5) | −0.0034 (4) | −0.0120 (4) | 0.0055 (4) |
O18 | 0.0284 (5) | 0.0197 (5) | 0.0241 (5) | −0.0053 (4) | −0.0058 (4) | −0.0045 (4) |
N4 | 0.0200 (5) | 0.0177 (5) | 0.0196 (5) | −0.0050 (4) | −0.0035 (4) | −0.0047 (4) |
N1 | 0.0221 (5) | 0.0188 (5) | 0.0217 (6) | −0.0011 (4) | −0.0052 (4) | −0.0050 (4) |
C8A | 0.0195 (6) | 0.0174 (6) | 0.0228 (6) | −0.0051 (5) | −0.0046 (5) | −0.0048 (5) |
C11 | 0.0231 (6) | 0.0203 (6) | 0.0189 (6) | −0.0031 (5) | −0.0039 (5) | −0.0057 (5) |
C5 | 0.0201 (6) | 0.0178 (6) | 0.0265 (7) | −0.0047 (5) | −0.0032 (5) | −0.0068 (5) |
C12 | 0.0236 (6) | 0.0232 (6) | 0.0216 (6) | −0.0041 (5) | −0.0030 (5) | −0.0060 (5) |
C3 | 0.0214 (6) | 0.0215 (6) | 0.0205 (6) | −0.0060 (5) | −0.0045 (5) | −0.0048 (5) |
C7 | 0.0267 (7) | 0.0225 (6) | 0.0220 (6) | −0.0126 (5) | −0.0023 (5) | −0.0048 (5) |
C2 | 0.0218 (6) | 0.0223 (6) | 0.0202 (6) | −0.0044 (5) | −0.0047 (5) | −0.0036 (5) |
C8 | 0.0245 (6) | 0.0187 (6) | 0.0227 (6) | −0.0070 (5) | −0.0064 (5) | −0.0031 (5) |
C14 | 0.0356 (8) | 0.0216 (7) | 0.0194 (6) | −0.0015 (6) | −0.0077 (6) | −0.0026 (5) |
C16 | 0.0249 (7) | 0.0286 (7) | 0.0261 (7) | −0.0068 (6) | −0.0051 (5) | −0.0032 (6) |
C6 | 0.0242 (6) | 0.0218 (6) | 0.0247 (7) | −0.0073 (5) | −0.0006 (5) | −0.0094 (5) |
C13 | 0.0260 (7) | 0.0250 (7) | 0.0235 (7) | 0.0007 (5) | −0.0069 (5) | −0.0075 (5) |
C17 | 0.0375 (8) | 0.0301 (7) | 0.0219 (7) | −0.0135 (6) | −0.0021 (6) | −0.0054 (6) |
C15 | 0.0330 (8) | 0.0305 (8) | 0.0244 (7) | −0.0113 (6) | −0.0036 (6) | 0.0006 (6) |
C9 | 0.0306 (7) | 0.0321 (8) | 0.0227 (7) | 0.0010 (6) | −0.0039 (6) | −0.0073 (6) |
O10 | 0.0698 (10) | 0.0467 (8) | 0.0304 (6) | 0.0263 (7) | −0.0082 (6) | −0.0152 (6) |
F1—C14 | 1.3542 (16) | C7—C8 | 1.3734 (19) |
O18—H18A | 0.86 (2) | C7—C6 | 1.428 (2) |
O18—H18B | 0.87 (2) | C7—C17 | 1.4988 (19) |
N4—C8A | 1.3719 (17) | C2—C9 | 1.4605 (19) |
N4—C5 | 1.3791 (17) | C8—H8 | 0.9500 |
N4—C3 | 1.3955 (17) | C14—C13 | 1.377 (2) |
N1—C8A | 1.3411 (17) | C14—C15 | 1.379 (2) |
N1—C2 | 1.3811 (17) | C16—H16 | 0.9500 |
N1—H1 | 0.92 (2) | C16—C15 | 1.389 (2) |
C8A—C8 | 1.4042 (19) | C6—H6 | 0.9500 |
C11—C12 | 1.3920 (19) | C13—H13 | 0.9500 |
C11—C3 | 1.4709 (18) | C17—H17A | 0.9800 |
C11—C16 | 1.3973 (19) | C17—H17B | 0.9800 |
C5—H5 | 0.9500 | C17—H17C | 0.9800 |
C5—C6 | 1.354 (2) | C15—H15 | 0.9500 |
C12—H12 | 0.9500 | C9—H9 | 0.9500 |
C12—C13 | 1.387 (2) | C9—O10 | 1.2011 (19) |
C3—C2 | 1.3654 (19) | ||
H18A—O18—H18B | 103 (2) | C8A—C8—H8 | 120.9 |
C8A—N4—C5 | 121.11 (12) | C7—C8—C8A | 118.26 (12) |
C8A—N4—C3 | 108.76 (11) | C7—C8—H8 | 120.9 |
C5—N4—C3 | 130.04 (11) | F1—C14—C13 | 118.85 (13) |
C8A—N1—C2 | 108.37 (11) | F1—C14—C15 | 118.03 (13) |
C8A—N1—H1 | 123.1 (13) | C13—C14—C15 | 123.12 (13) |
C2—N1—H1 | 128.5 (13) | C11—C16—H16 | 120.1 |
N4—C8A—C8 | 121.05 (12) | C15—C16—C11 | 119.86 (13) |
N1—C8A—N4 | 108.00 (11) | C15—C16—H16 | 120.1 |
N1—C8A—C8 | 130.92 (12) | C5—C6—C7 | 121.48 (12) |
C12—C11—C3 | 121.05 (12) | C5—C6—H6 | 119.3 |
C12—C11—C16 | 120.14 (13) | C7—C6—H6 | 119.3 |
C16—C11—C3 | 118.81 (12) | C12—C13—H13 | 120.9 |
N4—C5—H5 | 120.7 | C14—C13—C12 | 118.22 (13) |
C6—C5—N4 | 118.69 (12) | C14—C13—H13 | 120.9 |
C6—C5—H5 | 120.7 | C7—C17—H17A | 109.5 |
C11—C12—H12 | 119.9 | C7—C17—H17B | 109.5 |
C13—C12—C11 | 120.26 (13) | C7—C17—H17C | 109.5 |
C13—C12—H12 | 119.9 | H17A—C17—H17B | 109.5 |
N4—C3—C11 | 123.90 (11) | H17A—C17—H17C | 109.5 |
C2—C3—N4 | 105.71 (11) | H17B—C17—H17C | 109.5 |
C2—C3—C11 | 130.28 (12) | C14—C15—C16 | 118.39 (14) |
C8—C7—C6 | 119.34 (13) | C14—C15—H15 | 120.8 |
C8—C7—C17 | 121.11 (13) | C16—C15—H15 | 120.8 |
C6—C7—C17 | 119.51 (13) | C2—C9—H9 | 118.8 |
N1—C2—C9 | 122.80 (12) | O10—C9—C2 | 122.45 (14) |
C3—C2—N1 | 109.06 (12) | O10—C9—H9 | 118.8 |
C3—C2—C9 | 127.88 (13) | ||
F1—C14—C13—C12 | −179.27 (12) | C12—C11—C3—N4 | 62.54 (18) |
F1—C14—C15—C16 | 179.42 (13) | C12—C11—C3—C2 | −121.88 (16) |
N4—C8A—C8—C7 | −0.07 (19) | C12—C11—C16—C15 | 1.0 (2) |
N4—C5—C6—C7 | −1.2 (2) | C3—N4—C8A—N1 | 3.08 (14) |
N4—C3—C2—N1 | 1.89 (15) | C3—N4—C8A—C8 | −175.22 (12) |
N4—C3—C2—C9 | −172.39 (14) | C3—N4—C5—C6 | 175.22 (12) |
N1—C8A—C8—C7 | −177.93 (13) | C3—C11—C12—C13 | 179.08 (12) |
N1—C2—C9—O10 | −2.3 (3) | C3—C11—C16—C15 | −178.93 (13) |
C8A—N4—C5—C6 | −1.22 (18) | C3—C2—C9—O10 | 171.26 (17) |
C8A—N4—C3—C11 | 173.45 (12) | C2—N1—C8A—N4 | −1.87 (15) |
C8A—N4—C3—C2 | −3.04 (14) | C2—N1—C8A—C8 | 176.21 (13) |
C8A—N1—C2—C3 | −0.05 (15) | C8—C7—C6—C5 | 3.0 (2) |
C8A—N1—C2—C9 | 174.58 (13) | C16—C11—C12—C13 | −0.8 (2) |
C11—C12—C13—C14 | −0.2 (2) | C16—C11—C3—N4 | −117.56 (15) |
C11—C3—C2—N1 | −174.29 (13) | C16—C11—C3—C2 | 58.0 (2) |
C11—C3—C2—C9 | 11.4 (2) | C6—C7—C8—C8A | −2.29 (19) |
C11—C16—C15—C14 | −0.1 (2) | C13—C14—C15—C16 | −1.0 (2) |
C5—N4—C8A—N1 | −179.80 (11) | C17—C7—C8—C8A | 175.47 (12) |
C5—N4—C8A—C8 | 1.90 (18) | C17—C7—C6—C5 | −174.78 (13) |
C5—N4—C3—C11 | −3.3 (2) | C15—C14—C13—C12 | 1.2 (2) |
C5—N4—C3—C2 | −179.83 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O18i | 0.91 (2) | 1.77 (2) | 2.6754 (16) | 174 (2) |
O18—H18A···Cl1ii | 0.87 (2) | 2.24 (2) | 3.1070 (11) | 175 (2) |
O18—H18B···Cl1iii | 0.87 (2) | 2.24 (2) | 3.1142 (11) | 178.0 (19) |
C8—H8···Cl1iv | 0.95 | 2.69 | 3.6431 (15) | 176 |
C12—H12···Cl1v | 0.95 | 2.71 | 3.5610 (16) | 150 |
C13—H13···O10vi | 0.95 | 2.41 | 3.057 (2) | 125 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y+1, z; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z+1; (v) x+1, y, z; (vi) x+1, y−1, z. |
Contact | Distance | Symmetry operation |
H13···O10 | 2.41 | x+1, y-1, z |
F1···H17C | 2.78 | x, y-1, z+1 |
H9···F1 | 2.79 | -x+1, -y, -z+2 |
H9···O10 | 2.71 | -x, -y+1, -z+2 |
H16···Cl1 | 3.04 | x, y, z |
H17B···C2 | 3.02 | -x+1, -y+1, -z+1 |
H5···C6 | 3.02 | -x+1, -y, -z+1 |
H17A···O18 | 2.78 | -x+1, -y+1, -z+1 |
H8···Cl1 | 2.69 | -x, -y+1, -z+1 |
H15···C9 | 3.08 | -x, -y, -z+2 |
H12···Cl1 | 2.71 | x+1, y, z |
H5···O18 | 2.76 | x, y-1, z |
Cl1···H6 | 2.94 | -x+1, -y, -z+1 |
H18A···Cl1 | 2.24 | x+1, y+1, z |
O18···H1 | 1.77 | x+1, y, z |
Acknowledgements
The author's contributions are as follows: conceptualization by FIG, MA and AB; synthesis by VOO, PVS, YLS and AIS; X-ray analysis by PVS, AIS and STÇ; writing (review and editing of the manuscript) by FIG, MA and AB; supervision by FIG, MA and AB.
References
Airoldi, A., Bettoni, P., Donnola, M., Calestani, G. & Rizzoli, C. (2015). Acta Cryst. E71, 51–54. CSD CrossRef IUCr Journals Google Scholar
Almirante, L., Polo, L., Mugnaini, A., Provinciali, E., Rugarli, P., Biancotti, A., Gamba, A. & Murmann, W. (1965). J. Med. Chem. 8, 305–312. CrossRef PubMed CAS Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019–1031. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Guseinov, F. I. (1994). Russ. J. Org. Chem. 30, 360–365. CAS Google Scholar
Guseinov, F. I., Pistsov, M. F., Malinnikov, V. M., Lavrova, O. M., Movsumzade, E. M. & Kustov, L. M. (2020). Mendeleev Commun. 30, 674–675. Web of Science CSD CrossRef CAS Google Scholar
Guseinov, F. I., Pistsov, M. F., Movsumzade, E. M., Kustov, L. M., Tafeenko, V. A., Chernyshev, V. V., Gurbanov, A. V., Mahmudov, K. T. & Pombeiro, A. J. L. (2017). Crystals, 7, 327. Web of Science CSD CrossRef Google Scholar
Guseinov, F. I. & Tagiev, S. Sh. (1995). Russ. J. Org. Chem. 31, 86–91. Google Scholar
Guseinov, F. I. & Yudina, N. A. (1998). Chem. Heterocycl. Compd. 34, 115–120. CrossRef CAS Google Scholar
Guseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). Chem. Heterocycl. Compd. 42, 943–947. CrossRef CAS Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Kielesiński, Ł., Tasior, M. & Gryko, D. T. (2015). Org. Chem. Front. 2, 21–28. Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011). J. Phys. Org. Chem. 24, 764–773. Web of Science CrossRef CAS Google Scholar
Lacerda, R. B., Sales, N. M., da Silva, L. L., Tesch, R., Miranda, A. L. P., Barreiro, E. J., Fernandes, P. D. & Fraga, C. A. M. (2014). PLoS One, 9, e91660. Web of Science CrossRef PubMed Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763–4772. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938. Web of Science CrossRef CAS Google Scholar
Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086. Web of Science CrossRef CAS Google Scholar
Nichol, G. S., Sharma, A. & Li, H.-Y. (2011). Acta Cryst. E67, o1224. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pistsov, M. F., Lavrova, O. M., Saifutdinov, A. M., Burangulova, R. N., Kustov, L. M., Guseinov, F. I. & Musin, R. Z. (2017). Russ. J. Gen. Chem. 87, 2887–2890. Web of Science CrossRef CAS Google Scholar
Qiao, S., Yong, G.-P., Xie, Y. & Wang, Z.-Y. (2006). Acta Cryst. E62, o4634–o4635. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ribeiro, I. G. M., da Silva, K. C., Parrini, S. C., de Miranda, A. L. P., Fraga, C. A. M. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 225–235. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Rybakov, V. B. & Babaev, E. V. (2011). Acta Cryst. E67, o2814. Web of Science CSD CrossRef IUCr Journals Google Scholar
Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Türkyılmaz, M., Baran, Y. & Özdemir, N. (2011). Acta Cryst. E67, o1282. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tyagi, V., Khan, S., Bajpai, V., Gauniyal, H. M., Kumar, B. & Chauhan, P. M. S. (2012). J. Org. Chem. 77, 1414–1421. Web of Science CrossRef CAS PubMed Google Scholar
Yin, W.-Y. (2013). Acta Cryst. E69, o211. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.