research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of di­acetato­bis­­[4-(2-amino­eth­yl)morpholine]cadmium tetra­hydrate

crossmark logo

aPG and Research Department of Physics, Government Arts College for Men, (Autonomous), Chennai 600 035, Tamil Nadu, India
*Correspondence e-mail: drsskphy@gmail.com

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 17 July 2023; accepted 5 October 2023; online 19 October 2023)

The title coordination compound, [Cd(C2H3O2)2(C6H14N2O)2]·4H2O, was synthesized by mixing 2 moles of 4-(2-amino­eth­yl)morpholine and 1 mole of cadmium acetate in double-distilled water. The Cd atom is octa­hedrally coord­inated by two N,N′-bidentate ligands [4-(2-amino­eth­yl)morpholine] and two trans-located acetate mol­ecules. The Cd atom is located on a center of inversion, whereas the 4-(2-amino­eth­yl)morpholine and four water mol­ecules are adjacent to the acetate mol­ecules. The chair conformation of the morpholine mol­ecules is confirmed. In the crystal, adjacent metal complexes and uncoord­inated water mol­ecules are linked via N—H⋯O and O—H⋯O hydrogen-bonding inter­actions, generating R22(6), R66(16), R66(20) and S11(6) motifs and forming a three-dimensional network. A Hirshfeld surface analysis indicated the contributions of various contacts: H⋯H (71.8%), O⋯H/H⋯O (27.1%), and C⋯H/H⋯C (1.0%).

1. Chemical context

Morpholine is generally recognized as a convenient ligand for the synthesis of a wide range of organometallic compounds (Beller et al., 1999a[Beller, M., Trauthwein, H., Eichberger, M., Breindl, C. & Müller, T. E. (1999a). Eur. J. Inorg. Chem. pp. 1121-1132.],b[Beller, M., Trauthwein, H., Eichberger, M., Breindl, C., Herwig, J., Muller, T. E. & Thiel, O. R. (1999b). Eur. J. Inorg. Chem. 5, 1306-1319.]) including discrete complexes (Stilinovic et al., 2012[Stilinović, V., Užarević, K., Cvrtila, I. & Kaitner, B. (2012). CrystEngComm, 14, 7493-7501.]) and metal–organic polymers (Sil Moon et al., 2000[Sil Moon, H., Kim, C. H. & Lee, S. G. (2000). Bull. Korean Chem. Soc. 21, 339-341.]). Although a morpholine mol­ecule is potentially an ambidentate N- and O- donor ligand, binding of morpholine to a metal centre is most commonly accomplished through the nitro­gen atom (Cvrtila et al., 2012[Cvrtila, I., Stilinović, V. & Kaitner, B. (2012). Struct. Chem. 23, 587-594.]; Cindric et al., 2013[Cindric, M., Pavlovic, G., Hrenar, T., Uzelac, M. & Curic, M. (2013). Eur. J. Inorg. Chem. 4, 63-571.]), except in cases where the nitro­gen atom is protonated (Li et al., 2010[Li, H. H., Chen, Z. R., Cheng, L. C., Wang, Y. J., Feng, M. & Wang, M. (2010). Dalton Trans. 39, 11000-11007.]; Willett et al., 2005[Willett, R. D., Butcher, R., Landee, C. P. & Twamley, B. (2005). Polyhedron, 24, 2222-2231.]). Therefore, the oxygen atom can act as a halogen-bond acceptor (Lapadula et al., 2010[Lapadula, G., Judaš, N., Friščić, T. & Jones, W. (2010). Chem. Eur. J. 16, 7400-7403.]) or participate in hydrogen bonding (Weinberger et al., 1998[Weinberger, P., Schamschule, R., Mereiter, K., Dlhán, L., Boca, R. & Linert, W. (1998). J. Mol. Struct. 446, 115-126.]), among others, resulting in many different supra­molecular architectures. In the O⋯halogen bond, the O atom acts as an acceptor and the halogen (except F) acts as a donor.

The hydrogen atom of the secondary amino group can be easily substituted by an electrophilic species, allowing for the derivatization of morpholine to corresponding hydrazines (Johnson et al., 2009[Johnson, A. L., Hollingsworth, N., Kingsley, A., Kociok-Köhn, G. & Molloy, C. (2009). Organometallics, 28, 2650-2653.]), carbonyl compounds (Cheadle et al., 2017[Cheadle, C., Ratcliff, J., Berezin, M., Pal'shin, V., Nemykin, V. N. & Gerasimchuk, N. N. (2017). Dalton Trans. 46, 13562-13581.]; Tazi et al., 2017[Tazi, M., Erb, W., Halauko, Y. S., Ivashkevich, O. A., Matulis, V. E., Roisnel, T., Dorcet, V. & Mongin, F. (2017). Organometallics, 36, 4770-4778.]) or Schiff bases (Hellmann et al., 2019[Hellmann, J., Rhotert, I., Westenberg, H., Frohlich, R., Wibbeling, B., Uhl, W. & Wurthwein, E. U. (2019). Eur. J. Org. Chem. 16, 3356-3368.]). A potentially inter­esting way of derivatizing the morpholine mol­ecule is carboxyl­ation of the nitro­gen atom, resulting in morpholine-N-carb­oxy­lic acid, or the respective morpholine-N-carboxyl­ate (Morph COO) anion (Brown & Gray, 1981[Brown, C. J. & Gray, L. R. (1981). Acta Cryst. A37, C202.]). This should act as an anionic ligand in coordinating metal ions through the carboxyl­ate group (Rao et al., 2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 466-496.]). In a contin­uation of our recent work on compounds belonging to the morpholine family, we report here another compound in which morpholine is a ligand for a coordination complex. In the present study, a metal-coordinated compound of di­ace­t­ato­bis­[4-(2-amino­eth­yl)morpholine]­cadmium tetra­hydrate was synthesized and its structure was analysed by single crystal XRD.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes in the triclinic crystal system, space group P[\overline{1}]. The asymmetric unit comprises one-half of the Cd cation, which is located on an inversion centre, one [4-(2-amino­eth­yl)morpholine] ligand, one coordinated acetate anion and two water mol­ecules outside the metal coordination sphere. The structure consists of [CdL2(OOCCH3)2]·4H2O units [where L= 4-(2-aminoeth­yl)morpholine]. The coordination polyhedron around the metal atom may be best described as a distorted octa­hedron. The four nitro­gen atoms of the di­amine ligands define the equatorial plane, and two oxygen atoms from the acetate anions coordinate in the trans-axial positions. The coordination of the morpholine ligands creates two five-membered chelate rings (Fig. 2[link]). Upon coordination and formation of the five-membered chelate rings, these ligands are able to adapt themselves to the requirements of different metals (M) by varying the M—N distances and N—M—N angles. Many articles and reviews have reported that an important factor for metal-ion selection is the chelate ring size, in which five-membered chelate rings promote selectivity for large metal ions with an ionic radius (r+) close to 1.0 Å. Theoretical calculations show that for five-membered N–C–C–N–M chelate rings, the ideal values for the N—M distance and N—M—N angle are 2.5 Å and 69°, respectively (Hancock 1992[Hancock, R. D. (1992). J. Chem. Educ. 69, 615-620.]; Hancock et al., 2007[Hancock, R. D., Melton, D. L., Harrington, J. M., McDonald, F. C., Gephart, R. T., Boone, L. L., Jones, S. B., Dean, N. E., Whitehead, J. R. & Cockrell, G. M. (2007). Coord. Chem. Rev. 251, 1678-1689.]; Dean et al., 2008[Dean, N. E., Hancock, R. D., Cahill, C. L. & Frisch, M. (2008). Inorg. Chem. 47, 2000-2010.]). An inverse relationship exists between the M—N bond length and the N—M—N bond angle in the five-membered chelate rings, meaning that the variation of the N—M—N angle is directly related to the M—N bond length (Baza­rgan et al., 2019[Bazargan, M., Mirzaei, M., Franconetti, A. & Frontera, A. (2019). Dalton Trans. 45, 1-39.]). In the present study, the Cd—N (amine) distances are 2.5239 (13) Å (Cd—N1 and Cd—N1i) and 2.2788 (15) Å (Cd—N2 and Cd—N2i), are in good agreement with the values reported in the literature (Chiumia et al., 1999[Chiumia, G. C., Craig, D. C., Phillips, D. J., Rae, A. D. & Kaifi, F. M. Z. (1999). Inorg. Chim. Acta, 285, 297-300.]; Chattopadhyay et al., 2005[Chattopadhyay, T., Ghosh, M., Majee, A., Nethaji, M. & Das, D. (2005). Polyhedron, 24, 1677-1681.]). The substantial difference in their values is a consequence of the steric constraints imposed by the bulky morpholine group. As a result of symmetry, the N2—Cd1—N2i, N1—Cd1—N1i and O2—Cd1—O2i angles are 180° [symmetry code: (i) −x + 1, −y, −z + 1] and the cis-angles of the octa­hedron involving O2 and O2i are close to the ideal value of 90°. The morpholine rings adopt a chair conformation. The acetate group is disordered over two positions of equal occupancy and in both of the crystallographically independent water mol­ecules, one of the protons is equally disordered over two positions. Finally, water atom O5 from the water mol­ecules is disordered over two positions in a 75 (3):25 (3) ratio.

[Figure 1]
Figure 1
ORTEP diagram of the title compound with the atom-numbering scheme. Ellipsoids are drawn at 30% probability. [Symmetry code: (i) −x + 1, −y, −z + 1.]
[Figure 2]
Figure 2
Five-membered chelate ring with metal as a centre. [Symmetry code: (i) −x + 1, −y, −z + 1.]

3. Supra­molecular features

Hydrogen bonding is the most dominant mechanism for mol­ecular recognition. Graph-set analysis potentially provides the tools for a systematic analysis of the patterns of hydrogen-bonded networks. Hydrogen-bond pattern functionality might then be employed to predict the three-dimensional structure of a compound or to design substances with a desired and predetermined structure (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Motherwell et al., 2000[Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857-871.]). The crystal packing of the title compound is shown in Fig. 3[link], illustrating the infinite chain structure formed through a hydrogen-bonding network along the a-axis direction indicated by cyan dashed lines. In the crystal, the mol­ecules are linked by numerous N—H⋯O and O—H⋯O inter­actions (Table 1[link]), enclosing R22(6), R66(16) and R66(20) ring motifs. Fig. 4[link] shows the R66(16) ring motif formed by O4—H3⋯O2, O4—H4⋯O5 and O5—H5⋯O1 hydrogen bonds while the N2—H2⋯O1, O5—H5⋯O1, O4—H4⋯O5 and O4—H3⋯O2 inter­actions form an R66(20) ring motif (Fig. 5[link]). Fig. 6[link] illustrates the R22(6) ring formed between the complex and the O4-containing water mol­ecule via O4—H3⋯O2 and N2—H1⋯O4i hydroge bonds. Finally, the mol­ecular structure is stabilized by an intra­molecular N2—H2⋯O1 hydrogen bond, which forms an S11(6) motif (Fig. 6[link]). These inter­actions link the mol­ecules into a three-dimensional network. For the sake of clarity, the figures show only one position of the disordered moieties. While the disorder of the acetate group or O5 does not change significantly the hydrogen-bond pattern, the disorder of the water protons H4 and H6 creates two different orientations of the hydrogen bonds connecting the water mol­ecules into infinite chains running in opposite directions, as depicted in Fig. 7[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯O2Bi 0.97 2.66 3.264 (19) 121
C5—H5B⋯O1B 0.97 2.63 3.425 (16) 139
N2—H1⋯O4i 0.84 (2) 2.44 (2) 3.096 (3) 136 (2)
N2—H2⋯O1 0.84 (2) 2.26 (2) 3.009 (16) 147 (2)
N2—H2⋯O1B 0.84 (2) 2.26 (3) 2.993 (17) 145 (2)
O4—H3⋯O2 0.83 (2) 1.84 (3) 2.661 (17) 167 (4)
O4—H3⋯O2B 0.83 (2) 2.02 (3) 2.837 (17) 165 (3)
O4—H4⋯O5ii 0.82 (5) 2.06 (5) 2.879 (7) 178 (7)
O4—H4⋯O5Bii 0.82 (5) 2.05 (5) 2.847 (18) 165 (5)
O4—H4′⋯O4iii 0.83 (2) 2.11 (3) 2.917 (4) 164 (6)
O5—H5⋯O1 0.84 (2) 1.99 (2) 2.828 (16) 173 (3)
O5B—H5⋯O1B 0.83 (2) 1.93 (2) 2.70 (2) 155 (3)
O5—H6⋯O5iv 0.82 (2) 2.09 (3) 2.895 (13) 166 (5)
O5—H6⋯O5Biv 0.82 (4) 1.93 (5) 2.75 (2) 173 (5)
O5—H6′⋯O4ii 0.83 (2) 2.07 (2) 2.878 (5) 168 (5)
O5B—H6′⋯O4ii 0.84 (2) 2.07 (2) 2.846 (17) 154 (5)
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+1, -y+1, -z]; (iii) [-x+1, -y, -z]; (iv) [-x+2, -y+1, -z].
[Figure 3]
Figure 3
Crystal packing diagram of the title compound along the a axis.
[Figure 4]
Figure 4
Inter­molecular inter­actions forming the R66(16) ring motif. [Symmetry code: (i) 1 − x, 1 − y, −z.]
[Figure 5]
Figure 5
Inter­molecular inter­actions forming the R66(20) ring motif. [Symmetry codes: (i) −x + 1, −y, −z + 1, (ii) −x + 1, −y + 1, z + 1, (iii) −x, −y, −z + 1, (iv) x − 1, y, z, (v) 1 − x, 1 − y, −z.]
[Figure 6]
Figure 6
The N—H⋯O intra­molecular inter­action forming an S11(6) motif.
[Figure 7]
Figure 7
Two different orientations of the hydrogen bonds connecting the water mol­ecules into infinite chains running in opposite directions.

A Hirshfeld surface analysis was performed for the complex alone (excluding the water molecules) and the two-dimensional (2D) fingerprint plots were created with Crystal Explorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The Hirshfeld surface mapped over dnorm, in the range −0.5934 to 1.4137 a.u is shown in Fig. 8[link] where red spots on the Hirshfeld surface indicate hydrogen bonds. The two-dimensional fingerprint plots illustrate the distribution of the different inter­actions (Fig. 9[link]). H⋯H inter­actions (Fig. 9[link]b) are the most significant, contributing 71.8% to the total crystal packing. This major contribution may be due to van der Waals inter­actions (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]). The next most frequent inter­action is O⋯H/H⋯O (27.1%) (Fig. 9[link]c). Fig. 9[link]d shows the C⋯H/H⋯C inter­actions, which contribute 1.0% to the Hirshfeld surface.

[Figure 8]
Figure 8
The Hirshfeld surface of the title compound mapped over dnorm, showing the relevant close contacts.
[Figure 9]
Figure 9
Two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C inter­actions.

4. Database survey

A search in the Cambridge Structural Database (CSD, version 5.40; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 4-(2-amino­eth­yl)morpholine yielded eleven hits for coordination compounds of 4-(2-amino­eth­yl)morpholine with metals, including catena-[bis­(μ2-dicyanamide-N,N′)-[4-(2-amino­eth­yl)morpholine]]­nickel(II) (FIJROG; Konar et al., 2005[Konar, S., Dalai, S., Mukherjee, P. S., Drew, M. G. B., Ribas, J. & Ray Chaudhuri, N. (2005). Inorg. Chim. Acta, 358, 957-963.]), bis­[2-(morpholin-4-yl)ethan­amine)(5,10,15,20-tetra­kis­(4-meth­oxy­phen­yl)porphyrinato]iron(II) (NABXEW; Ben Haj Hassen et al., 2016[Ben Haj Hassen, L., Ezzayani, K., Rousselin, Y., Stern, C., Nasri, H. & Schulz, C. E. (2016). J. Mol. Struct. 1110, 138-142.]; NABXEW01; Khelifa et al., 2016[Khélifa, A. B., Ezzayani, K. & Belkhiria, M. S. (2016). J. Mol. Struct. 1122, 18-23.]), trans-bis­[4-(2-amino­eth­yl)morpholine]­bis­(nitrito)nickel(II) (NAVNAA; Chattopadhyay et al., 2005[Chattopadhyay, T., Ghosh, M., Majee, A., Nethaji, M. & Das, D. (2005). Polyhedron, 24, 1677-1681.]; RANVEJ and NAVNAA01; Brayshaw et al.,2012[Brayshaw, S. K., Easun, T. L., George, M. W., Griffin, A. M. E., Johnson, A. L., Raithby, P. R., Savarese, T. L., Schiffers, S., Warren, J. E., Warren, M. R. & Teat, S. J. (2012). Dalton Trans. 41, 90-97.]), trans-bis­(iso­thio­cyanato-N)bis­[4-(2-amino­eth­yl)morpholine-N,N′]nickel(II) (NENSUU; Laskar et al., 2001[Laskar, I. R., Maji, T. K., Das, D., Lu, T.-H., Wong, W.-T., Okamoto, K. I. & Ray Chaudhuri, N. (2001). Polyhedron, 20, 2073-2082.]), 4-[(2-amino­eth­yl)morpholine-N,N′]aqua­(oxalato-O,O′)copper(II) monohydrate (XAZRUM; Koćwin-Giełzak & Marciniak et al., 2006[Koćwin-Giełzak, K. & Marciniak, B. (2006). Acta Cryst. E62, m155-m157.]), (μ2-oxalato)bis­[4-(2-amino­eth­yl)morpholine]­di­cop­per(II) (YIKQAK; Mukherjee et al., 2001[Mukherjee, P. S., Maji, T. K., Koner, S., Rosair, G. & Chaudhuri, N. R. (2001). Ind. J. Chem. A 40, 451-455.]), di­chloro-bis­(2-morpholine-4-yl)ethanamine­cadmium(II) (ULAJEX; Sulei­man Gwaram et al., 2011[Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m298.]) and trans-di­aqua­bis­[4-(2-amino­eth­yl)morpholine-κ2-N,N′]nickel(II) dichloride (VEPHIL; Chidambaranathan et al., 2023[Chidambaranathan, B., Sivaraj, S., Vijayamathubalan, P. & Selvakumar, S. (2023). Acta Cryst. E79, 226-230.]). It is found that all of these structures are stabilized by hydrogen bonds. The morpholine ring adopts a chair conformation, and the amine functions as an N,N′-bidentate ligand to form a five-membered chelate ring with the metal centre, as observed with the other metal complexes of 4-(2-amino­eth­yl)morpholine.

5. Synthesis and crystallization

As shown in the reaction scheme (Fig. 10[link]), the title compound was synthesized by mixing two moles of 4-(2-amino­eth­yl)morpholine (2.40 g) and one mole of cadmium acetate (2.67 g) in 150 ml of double-distilled water at 303 K. The solution was allowed to evaporate at room temperature and needle-like crystals of the title compound were obtained. The FT–IR spectrum of the compound was recorded on a Bruker FT–IR spectrometer. FT–IR (KBr, cm−1): 3301 (w, OH), 2887 (w, CH2), 1549 (s, NH), 1411 (s, C—C), 1342 (s, C—N), 1192 (w, C—N), 960 (w, C—O), 653 (s, OH2) and 594 (s, M—N).

[Figure 10]
Figure 10
Synthesis of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C—H atoms were positioned geometrically (C—H = 0.96–0.97 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C), while the N—H and O—H protons were located in residual electron-density maps and refined with distance restraints (DFIX and SADI) and with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O). The acetate group was refined as disordered over two positions (ratio 50:50%) with distance, geometry and Uij restraints (SADI, FLAT, SIMU and RIGU). H4 and H6 are disordered over two positions in a 50:50 ratio due to symmetry-related hydrogen bonds. O5 is disordered over two positions in a 75 (3):25 (3) ratio. As both positions have the same distance to H5, H6 and H6′, only one set of the hydrogen atoms was refined for both O5 and O5B.

Table 2
Experimental details

Crystal data
Chemical formula [Cd(C2H3O2)2(C6H14N2O)2]·4H2O
Mr 562.93
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.8639 (4), 9.1035 (5), 9.2106 (5)
α, β, γ (°) 66.004 (2), 73.603 (2), 70.161 (2)
V3) 629.63 (6)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.92
Crystal size (mm) 0.42 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.603, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 19482, 3034, 3024
Rint 0.065
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.03
No. of reflections 3034
No. of parameters 209
No. of restraints 156
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.41
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker, (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, WI, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2019/2 (Sheldrick, 2015b).

Diacetatobis[4-(2-aminoethyl)morpholine]cadmium tetrahydrate top
Crystal data top
[Cd(C2H3O2)2(C6H14N2O)2]·4H2OZ = 1
Mr = 562.93F(000) = 294
Triclinic, P1Dx = 1.485 Mg m3
a = 8.8639 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1035 (5) ÅCell parameters from 8460 reflections
c = 9.2106 (5) Åθ = 2.5–27.7°
α = 66.004 (2)°µ = 0.92 mm1
β = 73.603 (2)°T = 296 K
γ = 70.161 (2)°BLOCK, yellow
V = 629.63 (6) Å30.42 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII
diffractometer
3034 independent reflections
Radiation source: fine-focus sealed tube3024 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 8.333 pixels mm-1θmax = 28.0°, θmin = 2.5°
ω and φ scanh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1212
Tmin = 0.603, Tmax = 0.746l = 1212
19482 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0252P)2 + 0.0883P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3034 reflectionsΔρmax = 0.35 e Å3
209 parametersΔρmin = 0.41 e Å3
156 restraintsExtinction correction: SHELXL2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.070 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Acetate moiety is disordered over two positions with an occupancy ratio of 1:1. SADI restraint was used to fix similar distances to be equal for the disordered atoms. The anisotropic displacement parameters of atoms in the disordered groups were restrained to be equal with an effective standard deviation of 0.02A2 using SIMU restraint. Hydrogen, H6, on O5 water molecules is having two possible locations labelled as H6 and H6'. The refined occupancy ratio of H6 and H6' was found to be 47:53

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.5000000.0000000.5000000.02834 (8)
C10.1597 (2)0.3173 (2)0.3992 (2)0.0414 (4)
H1A0.2341020.3359920.2973750.050*
H1B0.0927790.4249300.4043150.050*
C20.0527 (3)0.2171 (3)0.4051 (3)0.0526 (5)
H2A0.0110080.2791600.3188550.063*
H2B0.1200040.1144840.3882090.063*
C30.0405 (3)0.0877 (3)0.6807 (3)0.0525 (5)
H3A0.1109300.0139300.6637160.063*
H3B0.0315240.0572560.7830560.063*
C40.1428 (2)0.1877 (2)0.6869 (2)0.0410 (4)
H4A0.0724800.2874360.7079120.049*
H4B0.2049060.1225550.7741560.049*
C50.3357 (2)0.3536 (2)0.5304 (2)0.0378 (4)
H5A0.2541260.4411930.5643460.045*
H5B0.3862510.4042920.4206330.045*
C60.4629 (2)0.2741 (2)0.6376 (2)0.0371 (4)
H6A0.5044950.3591690.6390320.044*
H6B0.4144650.2188550.7468090.044*
N10.25477 (17)0.23413 (17)0.53308 (17)0.0309 (3)
N20.59686 (19)0.1529 (2)0.5791 (2)0.0373 (3)
H10.657 (3)0.101 (3)0.649 (3)0.045*
H20.654 (3)0.202 (3)0.495 (2)0.045*
C70.6344 (19)0.2664 (19)0.1517 (17)0.046 (2)0.5
C80.667 (2)0.321 (2)0.0301 (15)0.072 (3)0.5
H8A0.5655330.3681900.0696970.108*0.5
H8B0.7278220.2268570.0627870.108*0.5
H8C0.7283420.4029970.0734420.108*0.5
O10.6956 (18)0.3179 (17)0.2228 (18)0.0498 (19)0.5
O20.539 (2)0.171 (2)0.223 (2)0.045 (3)0.5
C7B0.6416 (18)0.2682 (19)0.1635 (16)0.046 (2)0.5
C8B0.707 (2)0.297 (2)0.0148 (15)0.079 (4)0.5
H8B10.6473200.4036710.0777700.119*0.5
H8B20.6943690.2115330.0423990.119*0.5
H8B30.8199670.2950000.0368250.119*0.5
O1B0.6664 (19)0.3510 (17)0.228 (2)0.055 (3)0.5
O2B0.566 (2)0.154 (2)0.233 (2)0.0407 (19)0.5
O30.05347 (18)0.1793 (2)0.5549 (2)0.0623 (4)
O40.3639 (3)0.1019 (2)0.0781 (2)0.0653 (5)
H30.424 (4)0.133 (4)0.109 (4)0.098*
H40.302 (6)0.190 (4)0.034 (8)0.098*0.5
H4'0.431 (5)0.030 (7)0.044 (8)0.098*0.5
O50.8474 (6)0.5833 (6)0.0761 (12)0.0584 (13)0.75 (3)
H50.796 (3)0.510 (3)0.115 (3)0.088*
H60.939 (2)0.529 (6)0.049 (6)0.088*0.5
H6'0.778 (5)0.665 (3)0.032 (6)0.088*0.5
O5B0.842 (2)0.572 (2)0.034 (2)0.0584 (13)0.25 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02855 (11)0.02433 (10)0.03058 (10)0.00663 (6)0.00444 (6)0.00839 (6)
C10.0356 (9)0.0330 (9)0.0487 (10)0.0015 (7)0.0159 (8)0.0100 (8)
C20.0369 (11)0.0521 (12)0.0715 (14)0.0020 (9)0.0257 (10)0.0205 (11)
C30.0335 (10)0.0498 (12)0.0665 (14)0.0143 (9)0.0022 (9)0.0167 (10)
C40.0337 (9)0.0371 (9)0.0456 (10)0.0056 (7)0.0011 (7)0.0159 (8)
C50.0391 (10)0.0241 (8)0.0487 (10)0.0070 (7)0.0070 (8)0.0123 (7)
C60.0383 (9)0.0358 (9)0.0452 (9)0.0120 (7)0.0064 (7)0.0203 (8)
N10.0266 (7)0.0260 (6)0.0375 (7)0.0052 (5)0.0057 (5)0.0094 (5)
N20.0286 (8)0.0410 (8)0.0470 (9)0.0105 (6)0.0073 (6)0.0179 (7)
C70.049 (5)0.034 (4)0.038 (4)0.006 (3)0.006 (3)0.002 (3)
C80.084 (7)0.069 (5)0.033 (3)0.022 (5)0.004 (3)0.005 (3)
O10.050 (4)0.043 (5)0.045 (3)0.017 (4)0.001 (3)0.005 (3)
O20.044 (5)0.045 (4)0.032 (3)0.014 (4)0.007 (3)0.002 (2)
C7B0.042 (4)0.042 (4)0.028 (3)0.005 (3)0.009 (3)0.002 (3)
C8B0.106 (10)0.079 (8)0.041 (4)0.040 (8)0.020 (5)0.019 (5)
O1B0.063 (6)0.041 (5)0.049 (3)0.018 (4)0.013 (3)0.014 (3)
O2B0.041 (4)0.040 (3)0.030 (3)0.006 (3)0.010 (3)0.002 (2)
O30.0278 (7)0.0637 (10)0.0934 (13)0.0077 (7)0.0151 (8)0.0249 (9)
O40.0829 (13)0.0561 (10)0.0529 (9)0.0055 (9)0.0237 (9)0.0168 (8)
O50.0560 (11)0.0528 (12)0.065 (3)0.0172 (9)0.0029 (15)0.0208 (15)
O5B0.0560 (11)0.0528 (12)0.065 (3)0.0172 (9)0.0029 (15)0.0208 (15)
Geometric parameters (Å, º) top
Cd1—N22.2788 (15)C6—N21.467 (2)
Cd1—N2i2.2788 (15)C6—H6A0.9700
Cd1—O2Bi2.301 (16)C6—H6B0.9700
Cd1—O2B2.301 (16)N2—H10.838 (18)
Cd1—O2i2.386 (16)N2—H20.844 (18)
Cd1—O22.386 (16)C7—O11.252 (9)
Cd1—N12.5239 (13)C7—O21.276 (9)
Cd1—N1i2.5239 (13)C7—C81.511 (10)
C1—N11.482 (2)C8—H8A0.9600
C1—C21.501 (3)C8—H8B0.9600
C1—H1A0.9700C8—H8C0.9600
C1—H1B0.9700C7B—O1B1.236 (10)
C2—O31.417 (3)C7B—O2B1.275 (9)
C2—H2A0.9700C7B—C8B1.522 (9)
C2—H2B0.9700C8B—H8B10.9600
C3—O31.421 (3)C8B—H8B20.9600
C3—C41.512 (3)C8B—H8B30.9600
C3—H3A0.9700O4—H30.834 (17)
C3—H3B0.9700O4—H40.820 (19)
C4—N11.475 (2)O4—H4'0.827 (19)
C4—H4A0.9700O5—H50.838 (16)
C4—H4B0.9700O5—H60.823 (18)
C5—N11.481 (2)O5—H6'0.827 (19)
C5—C61.504 (3)O5B—H50.825 (17)
C5—H5A0.9700O5B—H60.838 (19)
C5—H5B0.9700O5B—H6'0.842 (19)
N2—Cd1—N2i180.0N1—C5—H5B109.0
N2—Cd1—O2Bi88.9 (4)C6—C5—H5B109.0
N2i—Cd1—O2Bi91.1 (4)H5A—C5—H5B107.8
N2—Cd1—O2B91.1 (4)N2—C6—C5110.33 (14)
N2i—Cd1—O2B88.9 (4)N2—C6—H6A109.6
O2Bi—Cd1—O2B180.0C5—C6—H6A109.6
N2—Cd1—O2i86.6 (4)N2—C6—H6B109.6
N2i—Cd1—O2i93.4 (4)C5—C6—H6B109.6
O2Bi—Cd1—O2i5.9 (8)H6A—C6—H6B108.1
O2B—Cd1—O2i174.1 (8)C4—N1—C5110.11 (14)
N2—Cd1—O293.4 (4)C4—N1—C1108.91 (14)
N2i—Cd1—O286.6 (4)C5—N1—C1107.85 (14)
O2i—Cd1—O2180.0C4—N1—Cd1113.82 (10)
N2—Cd1—N176.46 (5)C5—N1—Cd1100.13 (10)
N2i—Cd1—N1103.54 (5)C1—N1—Cd1115.51 (11)
O2Bi—Cd1—N189.6 (5)C6—N2—Cd1110.81 (11)
O2B—Cd1—N190.4 (5)C6—N2—H1107.4 (16)
O2i—Cd1—N194.4 (5)Cd1—N2—H1117.5 (16)
O2—Cd1—N185.6 (5)C6—N2—H2110.1 (16)
N2—Cd1—N1i103.54 (5)Cd1—N2—H2104.7 (15)
N2i—Cd1—N1i76.46 (5)H1—N2—H2106 (2)
O2i—Cd1—N1i85.6 (5)O1—C7—O2124.2 (10)
O2—Cd1—N1i94.4 (5)O1—C7—C8120.4 (9)
N1—Cd1—N1i180.0O2—C7—C8115.3 (9)
N1—C1—C2112.45 (16)C7—C8—H8A109.5
N1—C1—H1A109.1C7—C8—H8B109.5
C2—C1—H1A109.1H8A—C8—H8B109.5
N1—C1—H1B109.1C7—C8—H8C109.5
C2—C1—H1B109.1H8A—C8—H8C109.5
H1A—C1—H1B107.8H8B—C8—H8C109.5
O3—C2—C1111.52 (19)C7—O2—Cd1128.0 (11)
O3—C2—H2A109.3O1B—C7B—O2B126.0 (10)
C1—C2—H2A109.3O1B—C7B—C8B119.6 (9)
O3—C2—H2B109.3O2B—C7B—C8B114.4 (9)
C1—C2—H2B109.3C7B—C8B—H8B1109.5
H2A—C2—H2B108.0C7B—C8B—H8B2109.5
O3—C3—C4111.37 (18)H8B1—C8B—H8B2109.5
O3—C3—H3A109.4C7B—C8B—H8B3109.5
C4—C3—H3A109.4H8B1—C8B—H8B3109.5
O3—C3—H3B109.4H8B2—C8B—H8B3109.5
C4—C3—H3B109.4C7B—O2B—Cd1132.3 (10)
H3A—C3—H3B108.0C2—O3—C3109.06 (16)
N1—C4—C3110.44 (16)H3—O4—H4103 (3)
N1—C4—H4A109.6H3—O4—H4'102 (3)
C3—C4—H4A109.6H4—O4—H4'132 (7)
N1—C4—H4B109.6H5—O5—H6101 (3)
C3—C4—H4B109.6H5—O5—H6'101 (3)
H4A—C4—H4B108.1H6—O5—H6'137 (5)
N1—C5—C6113.08 (14)H5—O5B—H6101 (3)
N1—C5—H5A109.0H5—O5B—H6'100 (3)
C6—C5—H5A109.0H6—O5B—H6'132 (5)
N1—C1—C2—O356.0 (2)C2—C1—N1—C5171.48 (16)
O3—C3—C4—N159.6 (2)C2—C1—N1—Cd177.53 (18)
N1—C5—C6—N264.5 (2)C5—C6—N2—Cd141.77 (17)
C3—C4—N1—C5171.13 (15)O1—C7—O2—Cd118 (2)
C3—C4—N1—C153.06 (19)C8—C7—O2—Cd1163.7 (13)
C3—C4—N1—Cd177.39 (17)O1B—C7B—O2B—Cd118 (2)
C6—C5—N1—C473.18 (18)C8B—C7B—O2B—Cd1160.8 (14)
C6—C5—N1—C1168.10 (15)C1—C2—O3—C359.3 (2)
C6—C5—N1—Cd146.96 (16)C4—C3—O3—C261.5 (2)
C2—C1—N1—C452.0 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O2Bi0.972.663.264 (19)121
C5—H5B···O1B0.972.633.425 (16)139
N2—H1···O4i0.84 (2)2.44 (2)3.096 (3)136 (2)
N2—H2···O10.84 (2)2.26 (2)3.009 (16)147 (2)
N2—H2···O1B0.84 (2)2.26 (3)2.993 (17)145 (2)
O4—H3···O20.83 (2)1.84 (3)2.661 (17)167 (4)
O4—H3···O2B0.83 (2)2.02 (3)2.837 (17)165 (3)
O4—H4···O5ii0.82 (5)2.06 (5)2.879 (7)178 (7)
O4—H4···O5Bii0.82 (5)2.05 (5)2.847 (18)165 (5)
O4—H4···O4iii0.83 (2)2.11 (3)2.917 (4)164 (6)
O5—H5···O10.84 (2)1.99 (2)2.828 (16)173 (3)
O5B—H5···O1B0.83 (2)1.93 (2)2.70 (2)155 (3)
O5—H6···O5iv0.82 (2)2.09 (3)2.895 (13)166 (5)
O5—H6···O5Biv0.82 (4)1.93 (5)2.75 (2)173 (5)
O5—H6···O4ii0.83 (2)2.07 (2)2.878 (5)168 (5)
O5B—H6···O4ii0.84 (2)2.07 (2)2.846 (17)154 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+2, y+1, z.
 

Acknowledgements

The authors gratefully acknowledge Dr Shobhana Krishnaswamy, SAIF, IITM, Chennai, for undertaking the single-crystal X-ray diffraction data collection and structure solution.

References

First citationBazargan, M., Mirzaei, M., Franconetti, A. & Frontera, A. (2019). Dalton Trans. 45, 1–39.  Google Scholar
First citationBeller, M., Trauthwein, H., Eichberger, M., Breindl, C., Herwig, J., Muller, T. E. & Thiel, O. R. (1999b). Eur. J. Inorg. Chem. 5, 1306–1319.  CAS Google Scholar
First citationBeller, M., Trauthwein, H., Eichberger, M., Breindl, C. & Müller, T. E. (1999a). Eur. J. Inorg. Chem. pp. 1121–1132.  CrossRef Google Scholar
First citationBen Haj Hassen, L., Ezzayani, K., Rousselin, Y., Stern, C., Nasri, H. & Schulz, C. E. (2016). J. Mol. Struct. 1110, 138–142.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrayshaw, S. K., Easun, T. L., George, M. W., Griffin, A. M. E., Johnson, A. L., Raithby, P. R., Savarese, T. L., Schiffers, S., Warren, J. E., Warren, M. R. & Teat, S. J. (2012). Dalton Trans. 41, 90–97.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrown, C. J. & Gray, L. R. (1981). Acta Cryst. A37, C202.  CrossRef IUCr Journals Google Scholar
First citationBruker, (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, WI, USA.  Google Scholar
First citationChattopadhyay, T., Ghosh, M., Majee, A., Nethaji, M. & Das, D. (2005). Polyhedron, 24, 1677–1681.  Web of Science CSD CrossRef CAS Google Scholar
First citationCheadle, C., Ratcliff, J., Berezin, M., Pal'shin, V., Nemykin, V. N. & Gerasimchuk, N. N. (2017). Dalton Trans. 46, 13562–13581.  CSD CrossRef CAS PubMed Google Scholar
First citationChidambaranathan, B., Sivaraj, S., Vijayamathubalan, P. & Selvakumar, S. (2023). Acta Cryst. E79, 226–230.  CSD CrossRef IUCr Journals Google Scholar
First citationChiumia, G. C., Craig, D. C., Phillips, D. J., Rae, A. D. & Kaifi, F. M. Z. (1999). Inorg. Chim. Acta, 285, 297–300.  Web of Science CSD CrossRef CAS Google Scholar
First citationCindric, M., Pavlovic, G., Hrenar, T., Uzelac, M. & Curic, M. (2013). Eur. J. Inorg. Chem. 4, 63–571.  Google Scholar
First citationCvrtila, I., Stilinović, V. & Kaitner, B. (2012). Struct. Chem. 23, 587–594.  Web of Science CSD CrossRef CAS Google Scholar
First citationDean, N. E., Hancock, R. D., Cahill, C. L. & Frisch, M. (2008). Inorg. Chem. 47, 2000–2010.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHancock, R. D. (1992). J. Chem. Educ. 69, 615–620.  CrossRef CAS Google Scholar
First citationHancock, R. D., Melton, D. L., Harrington, J. M., McDonald, F. C., Gephart, R. T., Boone, L. L., Jones, S. B., Dean, N. E., Whitehead, J. R. & Cockrell, G. M. (2007). Coord. Chem. Rev. 251, 1678–1689.  Web of Science CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHellmann, J., Rhotert, I., Westenberg, H., Frohlich, R., Wibbeling, B., Uhl, W. & Wurthwein, E. U. (2019). Eur. J. Org. Chem. 16, 3356–3368.  Google Scholar
First citationJohnson, A. L., Hollingsworth, N., Kingsley, A., Kociok-Köhn, G. & Molloy, C. (2009). Organometallics, 28, 2650–2653.  CSD CrossRef CAS Google Scholar
First citationKhélifa, A. B., Ezzayani, K. & Belkhiria, M. S. (2016). J. Mol. Struct. 1122, 18–23.  Google Scholar
First citationKoćwin-Giełzak, K. & Marciniak, B. (2006). Acta Cryst. E62, m155–m157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKonar, S., Dalai, S., Mukherjee, P. S., Drew, M. G. B., Ribas, J. & Ray Chaudhuri, N. (2005). Inorg. Chim. Acta, 358, 957–963.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLapadula, G., Judaš, N., Friščić, T. & Jones, W. (2010). Chem. Eur. J. 16, 7400–7403.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLaskar, I. R., Maji, T. K., Das, D., Lu, T.-H., Wong, W.-T., Okamoto, K. I. & Ray Chaudhuri, N. (2001). Polyhedron, 20, 2073–2082.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H. H., Chen, Z. R., Cheng, L. C., Wang, Y. J., Feng, M. & Wang, M. (2010). Dalton Trans. 39, 11000–11007.  CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMotherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857–871.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, P. S., Maji, T. K., Koner, S., Rosair, G. & Chaudhuri, N. R. (2001). Ind. J. Chem. A 40, 451–455.  Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 466–496.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSil Moon, H., Kim, C. H. & Lee, S. G. (2000). Bull. Korean Chem. Soc. 21, 339–341.  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStilinović, V., Užarević, K., Cvrtila, I. & Kaitner, B. (2012). CrystEngComm, 14, 7493–7501.  Google Scholar
First citationSuleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m298.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTazi, M., Erb, W., Halauko, Y. S., Ivashkevich, O. A., Matulis, V. E., Roisnel, T., Dorcet, V. & Mongin, F. (2017). Organometallics, 36, 4770–4778.  CSD CrossRef CAS Google Scholar
First citationWeinberger, P., Schamschule, R., Mereiter, K., Dlhán, L., Boca, R. & Linert, W. (1998). J. Mol. Struct. 446, 115–126.  Web of Science CSD CrossRef CAS Google Scholar
First citationWillett, R. D., Butcher, R., Landee, C. P. & Twamley, B. (2005). Polyhedron, 24, 2222–2231.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds