research communications
Synthesis,
and Hirshfeld surface analysis of diacetatobis[4-(2-aminoethyl)morpholine]cadmium tetrahydrateaPG and Research Department of Physics, Government Arts College for Men, (Autonomous), Chennai 600 035, Tamil Nadu, India
*Correspondence e-mail: drsskphy@gmail.com
The title coordination compound, [Cd(C2H3O2)2(C6H14N2O)2]·4H2O, was synthesized by mixing 2 moles of 4-(2-aminoethyl)morpholine and 1 mole of cadmium acetate in double-distilled water. The Cd atom is octahedrally coordinated by two N,N′-bidentate ligands [4-(2-aminoethyl)morpholine] and two trans-located acetate molecules. The Cd atom is located on a center of inversion, whereas the 4-(2-aminoethyl)morpholine and four water molecules are adjacent to the acetate molecules. The chair conformation of the morpholine molecules is confirmed. In the crystal, adjacent metal complexes and uncoordinated water molecules are linked via N—H⋯O and O—H⋯O hydrogen-bonding interactions, generating R22(6), R66(16), R66(20) and S11(6) motifs and forming a three-dimensional network. A Hirshfeld surface analysis indicated the contributions of various contacts: H⋯H (71.8%), O⋯H/H⋯O (27.1%), and C⋯H/H⋯C (1.0%).
CCDC reference: 2299387
1. Chemical context
Morpholine is generally recognized as a convenient ligand for the synthesis of a wide range of organometallic compounds (Beller et al., 1999a,b) including discrete complexes (Stilinovic et al., 2012) and metal–organic polymers (Sil Moon et al., 2000). Although a morpholine molecule is potentially an ambidentate N- and O- donor ligand, binding of morpholine to a metal centre is most commonly accomplished through the nitrogen atom (Cvrtila et al., 2012; Cindric et al., 2013), except in cases where the nitrogen atom is protonated (Li et al., 2010; Willett et al., 2005). Therefore, the oxygen atom can act as a halogen-bond acceptor (Lapadula et al., 2010) or participate in hydrogen bonding (Weinberger et al., 1998), among others, resulting in many different supramolecular architectures. In the O⋯halogen bond, the O atom acts as an acceptor and the halogen (except F) acts as a donor.
The hydrogen atom of the secondary amino group can be easily substituted by an electrophilic species, allowing for the derivatization of morpholine to corresponding et al., 2009), (Cheadle et al., 2017; Tazi et al., 2017) or (Hellmann et al., 2019). A potentially interesting way of derivatizing the morpholine molecule is carboxylation of the nitrogen atom, resulting in morpholine-N-carboxylic acid, or the respective morpholine-N-carboxylate (Morph COO−) anion (Brown & Gray, 1981). This should act as an anionic ligand in coordinating metal ions through the carboxylate group (Rao et al., 2004). In a continuation of our recent work on compounds belonging to the morpholine family, we report here another compound in which morpholine is a ligand for a coordination complex. In the present study, a metal-coordinated compound of diacetatobis[4-(2-aminoethyl)morpholine]cadmium tetrahydrate was synthesized and its structure was analysed by single crystal XRD.
(Johnson2. Structural commentary
The title compound (Fig. 1) crystallizes in the triclinic P. The comprises one-half of the Cd cation, which is located on an inversion centre, one [4-(2-aminoethyl)morpholine] ligand, one coordinated acetate anion and two water molecules outside the metal coordination sphere. The structure consists of [CdL2(OOCCH3)2]·4H2O units [where L= 4-(2-aminoethyl)morpholine]. The around the metal atom may be best described as a distorted octahedron. The four nitrogen atoms of the diamine ligands define the equatorial plane, and two oxygen atoms from the acetate anions coordinate in the trans-axial positions. The coordination of the morpholine ligands creates two five-membered chelate rings (Fig. 2). Upon coordination and formation of the five-membered chelate rings, these ligands are able to adapt themselves to the requirements of different metals (M) by varying the M—N distances and N—M—N angles. Many articles and reviews have reported that an important factor for metal-ion selection is the chelate ring size, in which five-membered chelate rings promote selectivity for large metal ions with an ionic radius (r+) close to 1.0 Å. Theoretical calculations show that for five-membered N–C–C–N–M chelate rings, the ideal values for the N—M distance and N—M—N angle are 2.5 Å and 69°, respectively (Hancock 1992; Hancock et al., 2007; Dean et al., 2008). An inverse relationship exists between the M—N bond length and the N—M—N bond angle in the five-membered chelate rings, meaning that the variation of the N—M—N angle is directly related to the M—N bond length (Bazargan et al., 2019). In the present study, the Cd—N (amine) distances are 2.5239 (13) Å (Cd—N1 and Cd—N1i) and 2.2788 (15) Å (Cd—N2 and Cd—N2i), are in good agreement with the values reported in the literature (Chiumia et al., 1999; Chattopadhyay et al., 2005). The substantial difference in their values is a consequence of the steric constraints imposed by the bulky morpholine group. As a result of symmetry, the N2—Cd1—N2i, N1—Cd1—N1i and O2—Cd1—O2i angles are 180° [symmetry code: (i) −x + 1, −y, −z + 1] and the cis-angles of the octahedron involving O2 and O2i are close to the ideal value of 90°. The morpholine rings adopt a chair conformation. The acetate group is disordered over two positions of equal occupancy and in both of the crystallographically independent water molecules, one of the protons is equally disordered over two positions. Finally, water atom O5 from the water molecules is disordered over two positions in a 75 (3):25 (3) ratio.
3. Supramolecular features
Hydrogen bonding is the most dominant mechanism for molecular recognition. Graph-set analysis potentially provides the tools for a systematic analysis of the patterns of hydrogen-bonded networks. Hydrogen-bond pattern functionality might then be employed to predict the three-dimensional structure of a compound or to design substances with a desired and predetermined structure (Bernstein et al., 1995; Motherwell et al., 2000). The crystal packing of the title compound is shown in Fig. 3, illustrating the infinite chain structure formed through a hydrogen-bonding network along the a-axis direction indicated by cyan dashed lines. In the crystal, the molecules are linked by numerous N—H⋯O and O—H⋯O interactions (Table 1), enclosing R22(6), R66(16) and R66(20) ring motifs. Fig. 4 shows the R66(16) ring motif formed by O4—H3⋯O2, O4—H4⋯O5 and O5—H5⋯O1 hydrogen bonds while the N2—H2⋯O1, O5—H5⋯O1, O4—H4⋯O5 and O4—H3⋯O2 interactions form an R66(20) ring motif (Fig. 5). Fig. 6 illustrates the R22(6) ring formed between the complex and the O4-containing water molecule via O4—H3⋯O2 and N2—H1⋯O4i hydroge bonds. Finally, the molecular structure is stabilized by an intramolecular N2—H2⋯O1 hydrogen bond, which forms an S11(6) motif (Fig. 6). These interactions link the molecules into a three-dimensional network. For the sake of clarity, the figures show only one position of the disordered moieties. While the disorder of the acetate group or O5 does not change significantly the hydrogen-bond pattern, the disorder of the water protons H4 and H6 creates two different orientations of the hydrogen bonds connecting the water molecules into infinite chains running in opposite directions, as depicted in Fig. 7.
A Hirshfeld surface analysis was performed for the complex alone (excluding the water molecules) and the two-dimensional (2D) fingerprint plots were created with Crystal Explorer 21.5 (Spackman et al., 2021; McKinnon et al., 2007). The Hirshfeld surface mapped over dnorm, in the range −0.5934 to 1.4137 a.u is shown in Fig. 8 where red spots on the Hirshfeld surface indicate hydrogen bonds. The two-dimensional fingerprint plots illustrate the distribution of the different interactions (Fig. 9). H⋯H interactions (Fig. 9b) are the most significant, contributing 71.8% to the total crystal packing. This major contribution may be due to van der Waals interactions (Hathwar et al., 2015). The next most frequent interaction is O⋯H/H⋯O (27.1%) (Fig. 9c). Fig. 9d shows the C⋯H/H⋯C interactions, which contribute 1.0% to the Hirshfeld surface.
4. Database survey
A search in the Cambridge Structural Database (CSD, version 5.40; Groom et al., 2016) for 4-(2-aminoethyl)morpholine yielded eleven hits for coordination compounds of 4-(2-aminoethyl)morpholine with metals, including catena-[bis(μ2-dicyanamide-N,N′)-[4-(2-aminoethyl)morpholine]]nickel(II) (FIJROG; Konar et al., 2005), bis[2-(morpholin-4-yl)ethanamine)(5,10,15,20-tetrakis(4-methoxyphenyl)porphyrinato]iron(II) (NABXEW; Ben Haj Hassen et al., 2016; NABXEW01; Khelifa et al., 2016), trans-bis[4-(2-aminoethyl)morpholine]bis(nitrito)nickel(II) (NAVNAA; Chattopadhyay et al., 2005; RANVEJ and NAVNAA01; Brayshaw et al.,2012), trans-bis(isothiocyanato-N)bis[4-(2-aminoethyl)morpholine-N,N′]nickel(II) (NENSUU; Laskar et al., 2001), 4-[(2-aminoethyl)morpholine-N,N′]aqua(oxalato-O,O′)copper(II) monohydrate (XAZRUM; Koćwin-Giełzak & Marciniak et al., 2006), (μ2-oxalato)bis[4-(2-aminoethyl)morpholine]dicopper(II) (YIKQAK; Mukherjee et al., 2001), dichloro-bis(2-morpholine-4-yl)ethanaminecadmium(II) (ULAJEX; Suleiman Gwaram et al., 2011) and trans-diaquabis[4-(2-aminoethyl)morpholine-κ2-N,N′]nickel(II) dichloride (VEPHIL; Chidambaranathan et al., 2023). It is found that all of these structures are stabilized by hydrogen bonds. The morpholine ring adopts a chair conformation, and the amine functions as an N,N′-bidentate ligand to form a five-membered chelate ring with the metal centre, as observed with the other metal complexes of 4-(2-aminoethyl)morpholine.
5. Synthesis and crystallization
As shown in the reaction scheme (Fig. 10), the title compound was synthesized by mixing two moles of 4-(2-aminoethyl)morpholine (2.40 g) and one mole of cadmium acetate (2.67 g) in 150 ml of double-distilled water at 303 K. The solution was allowed to evaporate at room temperature and needle-like crystals of the title compound were obtained. The FT–IR spectrum of the compound was recorded on a Bruker FT–IR spectrometer. FT–IR (KBr, cm−1): 3301 (w, OH), 2887 (w, CH2), 1549 (s, NH), 1411 (s, C—C), 1342 (s, C—N), 1192 (w, C—N), 960 (w, C—O), 653 (s, OH2) and 594 (s, M—N).
6. Refinement
Crystal data, data collection and structure . All C—H atoms were positioned geometrically (C—H = 0.96–0.97 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C), while the N—H and O—H protons were located in residual electron-density maps and refined with distance restraints (DFIX and SADI) and with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O). The acetate group was refined as disordered over two positions (ratio 50:50%) with distance, geometry and Uij restraints (SADI, FLAT, SIMU and RIGU). H4 and H6 are disordered over two positions in a 50:50 ratio due to symmetry-related hydrogen bonds. O5 is disordered over two positions in a 75 (3):25 (3) ratio. As both positions have the same distance to H5, H6 and H6′, only one set of the hydrogen atoms was refined for both O5 and O5B.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2299387
https://doi.org/10.1107/S2056989023008782/jq2030sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023008782/jq2030Isup4.hkl
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2019/2 (Sheldrick, 2015b).[Cd(C2H3O2)2(C6H14N2O)2]·4H2O | Z = 1 |
Mr = 562.93 | F(000) = 294 |
Triclinic, P1 | Dx = 1.485 Mg m−3 |
a = 8.8639 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.1035 (5) Å | Cell parameters from 8460 reflections |
c = 9.2106 (5) Å | θ = 2.5–27.7° |
α = 66.004 (2)° | µ = 0.92 mm−1 |
β = 73.603 (2)° | T = 296 K |
γ = 70.161 (2)° | BLOCK, yellow |
V = 629.63 (6) Å3 | 0.42 × 0.25 × 0.20 mm |
Bruker APEXII diffractometer | 3034 independent reflections |
Radiation source: fine-focus sealed tube | 3024 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.065 |
Detector resolution: 8.333 pixels mm-1 | θmax = 28.0°, θmin = 2.5° |
ω and φ scan | h = −11→11 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −12→12 |
Tmin = 0.603, Tmax = 0.746 | l = −12→12 |
19482 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.022 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.056 | w = 1/[σ2(Fo2) + (0.0252P)2 + 0.0883P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3034 reflections | Δρmax = 0.35 e Å−3 |
209 parameters | Δρmin = −0.41 e Å−3 |
156 restraints | Extinction correction: SHELXL2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.070 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Acetate moiety is disordered over two positions with an occupancy ratio of 1:1. SADI restraint was used to fix similar distances to be equal for the disordered atoms. The anisotropic displacement parameters of atoms in the disordered groups were restrained to be equal with an effective standard deviation of 0.02A2 using SIMU restraint. Hydrogen, H6, on O5 water molecules is having two possible locations labelled as H6 and H6'. The refined occupancy ratio of H6 and H6' was found to be 47:53 |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cd1 | 0.500000 | 0.000000 | 0.500000 | 0.02834 (8) | |
C1 | 0.1597 (2) | 0.3173 (2) | 0.3992 (2) | 0.0414 (4) | |
H1A | 0.234102 | 0.335992 | 0.297375 | 0.050* | |
H1B | 0.092779 | 0.424930 | 0.404315 | 0.050* | |
C2 | 0.0527 (3) | 0.2171 (3) | 0.4051 (3) | 0.0526 (5) | |
H2A | −0.011008 | 0.279160 | 0.318855 | 0.063* | |
H2B | 0.120004 | 0.114484 | 0.388209 | 0.063* | |
C3 | 0.0405 (3) | 0.0877 (3) | 0.6807 (3) | 0.0525 (5) | |
H3A | 0.110930 | −0.013930 | 0.663716 | 0.063* | |
H3B | −0.031524 | 0.057256 | 0.783056 | 0.063* | |
C4 | 0.1428 (2) | 0.1877 (2) | 0.6869 (2) | 0.0410 (4) | |
H4A | 0.072480 | 0.287436 | 0.707912 | 0.049* | |
H4B | 0.204906 | 0.122555 | 0.774156 | 0.049* | |
C5 | 0.3357 (2) | 0.3536 (2) | 0.5304 (2) | 0.0378 (4) | |
H5A | 0.254126 | 0.441193 | 0.564346 | 0.045* | |
H5B | 0.386251 | 0.404292 | 0.420633 | 0.045* | |
C6 | 0.4629 (2) | 0.2741 (2) | 0.6376 (2) | 0.0371 (4) | |
H6A | 0.504495 | 0.359169 | 0.639032 | 0.044* | |
H6B | 0.414465 | 0.218855 | 0.746809 | 0.044* | |
N1 | 0.25477 (17) | 0.23413 (17) | 0.53308 (17) | 0.0309 (3) | |
N2 | 0.59686 (19) | 0.1529 (2) | 0.5791 (2) | 0.0373 (3) | |
H1 | 0.657 (3) | 0.101 (3) | 0.649 (3) | 0.045* | |
H2 | 0.654 (3) | 0.202 (3) | 0.495 (2) | 0.045* | |
C7 | 0.6344 (19) | 0.2664 (19) | 0.1517 (17) | 0.046 (2) | 0.5 |
C8 | 0.667 (2) | 0.321 (2) | −0.0301 (15) | 0.072 (3) | 0.5 |
H8A | 0.565533 | 0.368190 | −0.069697 | 0.108* | 0.5 |
H8B | 0.727822 | 0.226857 | −0.062787 | 0.108* | 0.5 |
H8C | 0.728342 | 0.402997 | −0.073442 | 0.108* | 0.5 |
O1 | 0.6956 (18) | 0.3179 (17) | 0.2228 (18) | 0.0498 (19) | 0.5 |
O2 | 0.539 (2) | 0.171 (2) | 0.223 (2) | 0.045 (3) | 0.5 |
C7B | 0.6416 (18) | 0.2682 (19) | 0.1635 (16) | 0.046 (2) | 0.5 |
C8B | 0.707 (2) | 0.297 (2) | −0.0148 (15) | 0.079 (4) | 0.5 |
H8B1 | 0.647320 | 0.403671 | −0.077770 | 0.119* | 0.5 |
H8B2 | 0.694369 | 0.211533 | −0.042399 | 0.119* | 0.5 |
H8B3 | 0.819967 | 0.295000 | −0.036825 | 0.119* | 0.5 |
O1B | 0.6664 (19) | 0.3510 (17) | 0.228 (2) | 0.055 (3) | 0.5 |
O2B | 0.566 (2) | 0.154 (2) | 0.233 (2) | 0.0407 (19) | 0.5 |
O3 | −0.05347 (18) | 0.1793 (2) | 0.5549 (2) | 0.0623 (4) | |
O4 | 0.3639 (3) | 0.1019 (2) | 0.0781 (2) | 0.0653 (5) | |
H3 | 0.424 (4) | 0.133 (4) | 0.109 (4) | 0.098* | |
H4 | 0.302 (6) | 0.190 (4) | 0.034 (8) | 0.098* | 0.5 |
H4' | 0.431 (5) | 0.030 (7) | 0.044 (8) | 0.098* | 0.5 |
O5 | 0.8474 (6) | 0.5833 (6) | 0.0761 (12) | 0.0584 (13) | 0.75 (3) |
H5 | 0.796 (3) | 0.510 (3) | 0.115 (3) | 0.088* | |
H6 | 0.939 (2) | 0.529 (6) | 0.049 (6) | 0.088* | 0.5 |
H6' | 0.778 (5) | 0.665 (3) | 0.032 (6) | 0.088* | 0.5 |
O5B | 0.842 (2) | 0.572 (2) | 0.034 (2) | 0.0584 (13) | 0.25 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.02855 (11) | 0.02433 (10) | 0.03058 (10) | −0.00663 (6) | −0.00444 (6) | −0.00839 (6) |
C1 | 0.0356 (9) | 0.0330 (9) | 0.0487 (10) | 0.0015 (7) | −0.0159 (8) | −0.0100 (8) |
C2 | 0.0369 (11) | 0.0521 (12) | 0.0715 (14) | −0.0020 (9) | −0.0257 (10) | −0.0205 (11) |
C3 | 0.0335 (10) | 0.0498 (12) | 0.0665 (14) | −0.0143 (9) | 0.0022 (9) | −0.0167 (10) |
C4 | 0.0337 (9) | 0.0371 (9) | 0.0456 (10) | −0.0056 (7) | 0.0011 (7) | −0.0159 (8) |
C5 | 0.0391 (10) | 0.0241 (8) | 0.0487 (10) | −0.0070 (7) | −0.0070 (8) | −0.0123 (7) |
C6 | 0.0383 (9) | 0.0358 (9) | 0.0452 (9) | −0.0120 (7) | −0.0064 (7) | −0.0203 (8) |
N1 | 0.0266 (7) | 0.0260 (6) | 0.0375 (7) | −0.0052 (5) | −0.0057 (5) | −0.0094 (5) |
N2 | 0.0286 (8) | 0.0410 (8) | 0.0470 (9) | −0.0105 (6) | −0.0073 (6) | −0.0179 (7) |
C7 | 0.049 (5) | 0.034 (4) | 0.038 (4) | −0.006 (3) | −0.006 (3) | −0.002 (3) |
C8 | 0.084 (7) | 0.069 (5) | 0.033 (3) | −0.022 (5) | 0.004 (3) | 0.005 (3) |
O1 | 0.050 (4) | 0.043 (5) | 0.045 (3) | −0.017 (4) | −0.001 (3) | −0.005 (3) |
O2 | 0.044 (5) | 0.045 (4) | 0.032 (3) | −0.014 (4) | −0.007 (3) | 0.002 (2) |
C7B | 0.042 (4) | 0.042 (4) | 0.028 (3) | −0.005 (3) | 0.009 (3) | −0.002 (3) |
C8B | 0.106 (10) | 0.079 (8) | 0.041 (4) | −0.040 (8) | 0.020 (5) | −0.019 (5) |
O1B | 0.063 (6) | 0.041 (5) | 0.049 (3) | −0.018 (4) | 0.013 (3) | −0.014 (3) |
O2B | 0.041 (4) | 0.040 (3) | 0.030 (3) | −0.006 (3) | −0.010 (3) | −0.002 (2) |
O3 | 0.0278 (7) | 0.0637 (10) | 0.0934 (13) | −0.0077 (7) | −0.0151 (8) | −0.0249 (9) |
O4 | 0.0829 (13) | 0.0561 (10) | 0.0529 (9) | −0.0055 (9) | −0.0237 (9) | −0.0168 (8) |
O5 | 0.0560 (11) | 0.0528 (12) | 0.065 (3) | −0.0172 (9) | −0.0029 (15) | −0.0208 (15) |
O5B | 0.0560 (11) | 0.0528 (12) | 0.065 (3) | −0.0172 (9) | −0.0029 (15) | −0.0208 (15) |
Cd1—N2 | 2.2788 (15) | C6—N2 | 1.467 (2) |
Cd1—N2i | 2.2788 (15) | C6—H6A | 0.9700 |
Cd1—O2Bi | 2.301 (16) | C6—H6B | 0.9700 |
Cd1—O2B | 2.301 (16) | N2—H1 | 0.838 (18) |
Cd1—O2i | 2.386 (16) | N2—H2 | 0.844 (18) |
Cd1—O2 | 2.386 (16) | C7—O1 | 1.252 (9) |
Cd1—N1 | 2.5239 (13) | C7—O2 | 1.276 (9) |
Cd1—N1i | 2.5239 (13) | C7—C8 | 1.511 (10) |
C1—N1 | 1.482 (2) | C8—H8A | 0.9600 |
C1—C2 | 1.501 (3) | C8—H8B | 0.9600 |
C1—H1A | 0.9700 | C8—H8C | 0.9600 |
C1—H1B | 0.9700 | C7B—O1B | 1.236 (10) |
C2—O3 | 1.417 (3) | C7B—O2B | 1.275 (9) |
C2—H2A | 0.9700 | C7B—C8B | 1.522 (9) |
C2—H2B | 0.9700 | C8B—H8B1 | 0.9600 |
C3—O3 | 1.421 (3) | C8B—H8B2 | 0.9600 |
C3—C4 | 1.512 (3) | C8B—H8B3 | 0.9600 |
C3—H3A | 0.9700 | O4—H3 | 0.834 (17) |
C3—H3B | 0.9700 | O4—H4 | 0.820 (19) |
C4—N1 | 1.475 (2) | O4—H4' | 0.827 (19) |
C4—H4A | 0.9700 | O5—H5 | 0.838 (16) |
C4—H4B | 0.9700 | O5—H6 | 0.823 (18) |
C5—N1 | 1.481 (2) | O5—H6' | 0.827 (19) |
C5—C6 | 1.504 (3) | O5B—H5 | 0.825 (17) |
C5—H5A | 0.9700 | O5B—H6 | 0.838 (19) |
C5—H5B | 0.9700 | O5B—H6' | 0.842 (19) |
N2—Cd1—N2i | 180.0 | N1—C5—H5B | 109.0 |
N2—Cd1—O2Bi | 88.9 (4) | C6—C5—H5B | 109.0 |
N2i—Cd1—O2Bi | 91.1 (4) | H5A—C5—H5B | 107.8 |
N2—Cd1—O2B | 91.1 (4) | N2—C6—C5 | 110.33 (14) |
N2i—Cd1—O2B | 88.9 (4) | N2—C6—H6A | 109.6 |
O2Bi—Cd1—O2B | 180.0 | C5—C6—H6A | 109.6 |
N2—Cd1—O2i | 86.6 (4) | N2—C6—H6B | 109.6 |
N2i—Cd1—O2i | 93.4 (4) | C5—C6—H6B | 109.6 |
O2Bi—Cd1—O2i | 5.9 (8) | H6A—C6—H6B | 108.1 |
O2B—Cd1—O2i | 174.1 (8) | C4—N1—C5 | 110.11 (14) |
N2—Cd1—O2 | 93.4 (4) | C4—N1—C1 | 108.91 (14) |
N2i—Cd1—O2 | 86.6 (4) | C5—N1—C1 | 107.85 (14) |
O2i—Cd1—O2 | 180.0 | C4—N1—Cd1 | 113.82 (10) |
N2—Cd1—N1 | 76.46 (5) | C5—N1—Cd1 | 100.13 (10) |
N2i—Cd1—N1 | 103.54 (5) | C1—N1—Cd1 | 115.51 (11) |
O2Bi—Cd1—N1 | 89.6 (5) | C6—N2—Cd1 | 110.81 (11) |
O2B—Cd1—N1 | 90.4 (5) | C6—N2—H1 | 107.4 (16) |
O2i—Cd1—N1 | 94.4 (5) | Cd1—N2—H1 | 117.5 (16) |
O2—Cd1—N1 | 85.6 (5) | C6—N2—H2 | 110.1 (16) |
N2—Cd1—N1i | 103.54 (5) | Cd1—N2—H2 | 104.7 (15) |
N2i—Cd1—N1i | 76.46 (5) | H1—N2—H2 | 106 (2) |
O2i—Cd1—N1i | 85.6 (5) | O1—C7—O2 | 124.2 (10) |
O2—Cd1—N1i | 94.4 (5) | O1—C7—C8 | 120.4 (9) |
N1—Cd1—N1i | 180.0 | O2—C7—C8 | 115.3 (9) |
N1—C1—C2 | 112.45 (16) | C7—C8—H8A | 109.5 |
N1—C1—H1A | 109.1 | C7—C8—H8B | 109.5 |
C2—C1—H1A | 109.1 | H8A—C8—H8B | 109.5 |
N1—C1—H1B | 109.1 | C7—C8—H8C | 109.5 |
C2—C1—H1B | 109.1 | H8A—C8—H8C | 109.5 |
H1A—C1—H1B | 107.8 | H8B—C8—H8C | 109.5 |
O3—C2—C1 | 111.52 (19) | C7—O2—Cd1 | 128.0 (11) |
O3—C2—H2A | 109.3 | O1B—C7B—O2B | 126.0 (10) |
C1—C2—H2A | 109.3 | O1B—C7B—C8B | 119.6 (9) |
O3—C2—H2B | 109.3 | O2B—C7B—C8B | 114.4 (9) |
C1—C2—H2B | 109.3 | C7B—C8B—H8B1 | 109.5 |
H2A—C2—H2B | 108.0 | C7B—C8B—H8B2 | 109.5 |
O3—C3—C4 | 111.37 (18) | H8B1—C8B—H8B2 | 109.5 |
O3—C3—H3A | 109.4 | C7B—C8B—H8B3 | 109.5 |
C4—C3—H3A | 109.4 | H8B1—C8B—H8B3 | 109.5 |
O3—C3—H3B | 109.4 | H8B2—C8B—H8B3 | 109.5 |
C4—C3—H3B | 109.4 | C7B—O2B—Cd1 | 132.3 (10) |
H3A—C3—H3B | 108.0 | C2—O3—C3 | 109.06 (16) |
N1—C4—C3 | 110.44 (16) | H3—O4—H4 | 103 (3) |
N1—C4—H4A | 109.6 | H3—O4—H4' | 102 (3) |
C3—C4—H4A | 109.6 | H4—O4—H4' | 132 (7) |
N1—C4—H4B | 109.6 | H5—O5—H6 | 101 (3) |
C3—C4—H4B | 109.6 | H5—O5—H6' | 101 (3) |
H4A—C4—H4B | 108.1 | H6—O5—H6' | 137 (5) |
N1—C5—C6 | 113.08 (14) | H5—O5B—H6 | 101 (3) |
N1—C5—H5A | 109.0 | H5—O5B—H6' | 100 (3) |
C6—C5—H5A | 109.0 | H6—O5B—H6' | 132 (5) |
N1—C1—C2—O3 | 56.0 (2) | C2—C1—N1—C5 | −171.48 (16) |
O3—C3—C4—N1 | −59.6 (2) | C2—C1—N1—Cd1 | 77.53 (18) |
N1—C5—C6—N2 | 64.5 (2) | C5—C6—N2—Cd1 | −41.77 (17) |
C3—C4—N1—C5 | 171.13 (15) | O1—C7—O2—Cd1 | −18 (2) |
C3—C4—N1—C1 | 53.06 (19) | C8—C7—O2—Cd1 | 163.7 (13) |
C3—C4—N1—Cd1 | −77.39 (17) | O1B—C7B—O2B—Cd1 | −18 (2) |
C6—C5—N1—C4 | 73.18 (18) | C8B—C7B—O2B—Cd1 | 160.8 (14) |
C6—C5—N1—C1 | −168.10 (15) | C1—C2—O3—C3 | −59.3 (2) |
C6—C5—N1—Cd1 | −46.96 (16) | C4—C3—O3—C2 | 61.5 (2) |
C2—C1—N1—C4 | −52.0 (2) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4B···O2Bi | 0.97 | 2.66 | 3.264 (19) | 121 |
C5—H5B···O1B | 0.97 | 2.63 | 3.425 (16) | 139 |
N2—H1···O4i | 0.84 (2) | 2.44 (2) | 3.096 (3) | 136 (2) |
N2—H2···O1 | 0.84 (2) | 2.26 (2) | 3.009 (16) | 147 (2) |
N2—H2···O1B | 0.84 (2) | 2.26 (3) | 2.993 (17) | 145 (2) |
O4—H3···O2 | 0.83 (2) | 1.84 (3) | 2.661 (17) | 167 (4) |
O4—H3···O2B | 0.83 (2) | 2.02 (3) | 2.837 (17) | 165 (3) |
O4—H4···O5ii | 0.82 (5) | 2.06 (5) | 2.879 (7) | 178 (7) |
O4—H4···O5Bii | 0.82 (5) | 2.05 (5) | 2.847 (18) | 165 (5) |
O4—H4′···O4iii | 0.83 (2) | 2.11 (3) | 2.917 (4) | 164 (6) |
O5—H5···O1 | 0.84 (2) | 1.99 (2) | 2.828 (16) | 173 (3) |
O5B—H5···O1B | 0.83 (2) | 1.93 (2) | 2.70 (2) | 155 (3) |
O5—H6···O5iv | 0.82 (2) | 2.09 (3) | 2.895 (13) | 166 (5) |
O5—H6···O5Biv | 0.82 (4) | 1.93 (5) | 2.75 (2) | 173 (5) |
O5—H6′···O4ii | 0.83 (2) | 2.07 (2) | 2.878 (5) | 168 (5) |
O5B—H6′···O4ii | 0.84 (2) | 2.07 (2) | 2.846 (17) | 154 (5) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z; (iii) −x+1, −y, −z; (iv) −x+2, −y+1, −z. |
Acknowledgements
The authors gratefully acknowledge Dr Shobhana Krishnaswamy, SAIF, IITM, Chennai, for undertaking the single-crystal X-ray diffraction data collection and structure solution.
References
Bazargan, M., Mirzaei, M., Franconetti, A. & Frontera, A. (2019). Dalton Trans. 45, 1–39. Google Scholar
Beller, M., Trauthwein, H., Eichberger, M., Breindl, C., Herwig, J., Muller, T. E. & Thiel, O. R. (1999b). Eur. J. Inorg. Chem. 5, 1306–1319. CAS Google Scholar
Beller, M., Trauthwein, H., Eichberger, M., Breindl, C. & Müller, T. E. (1999a). Eur. J. Inorg. Chem. pp. 1121–1132. CrossRef Google Scholar
Ben Haj Hassen, L., Ezzayani, K., Rousselin, Y., Stern, C., Nasri, H. & Schulz, C. E. (2016). J. Mol. Struct. 1110, 138–142. Web of Science CSD CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brayshaw, S. K., Easun, T. L., George, M. W., Griffin, A. M. E., Johnson, A. L., Raithby, P. R., Savarese, T. L., Schiffers, S., Warren, J. E., Warren, M. R. & Teat, S. J. (2012). Dalton Trans. 41, 90–97. Web of Science CSD CrossRef CAS PubMed Google Scholar
Brown, C. J. & Gray, L. R. (1981). Acta Cryst. A37, C202. CrossRef IUCr Journals Google Scholar
Bruker, (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, WI, USA. Google Scholar
Chattopadhyay, T., Ghosh, M., Majee, A., Nethaji, M. & Das, D. (2005). Polyhedron, 24, 1677–1681. Web of Science CSD CrossRef CAS Google Scholar
Cheadle, C., Ratcliff, J., Berezin, M., Pal'shin, V., Nemykin, V. N. & Gerasimchuk, N. N. (2017). Dalton Trans. 46, 13562–13581. CSD CrossRef CAS PubMed Google Scholar
Chidambaranathan, B., Sivaraj, S., Vijayamathubalan, P. & Selvakumar, S. (2023). Acta Cryst. E79, 226–230. CSD CrossRef IUCr Journals Google Scholar
Chiumia, G. C., Craig, D. C., Phillips, D. J., Rae, A. D. & Kaifi, F. M. Z. (1999). Inorg. Chim. Acta, 285, 297–300. Web of Science CSD CrossRef CAS Google Scholar
Cindric, M., Pavlovic, G., Hrenar, T., Uzelac, M. & Curic, M. (2013). Eur. J. Inorg. Chem. 4, 63–571. Google Scholar
Cvrtila, I., Stilinović, V. & Kaitner, B. (2012). Struct. Chem. 23, 587–594. Web of Science CSD CrossRef CAS Google Scholar
Dean, N. E., Hancock, R. D., Cahill, C. L. & Frisch, M. (2008). Inorg. Chem. 47, 2000–2010. Web of Science CSD CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hancock, R. D. (1992). J. Chem. Educ. 69, 615–620. CrossRef CAS Google Scholar
Hancock, R. D., Melton, D. L., Harrington, J. M., McDonald, F. C., Gephart, R. T., Boone, L. L., Jones, S. B., Dean, N. E., Whitehead, J. R. & Cockrell, G. M. (2007). Coord. Chem. Rev. 251, 1678–1689. Web of Science CrossRef CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hellmann, J., Rhotert, I., Westenberg, H., Frohlich, R., Wibbeling, B., Uhl, W. & Wurthwein, E. U. (2019). Eur. J. Org. Chem. 16, 3356–3368. Google Scholar
Johnson, A. L., Hollingsworth, N., Kingsley, A., Kociok-Köhn, G. & Molloy, C. (2009). Organometallics, 28, 2650–2653. CSD CrossRef CAS Google Scholar
Khélifa, A. B., Ezzayani, K. & Belkhiria, M. S. (2016). J. Mol. Struct. 1122, 18–23. Google Scholar
Koćwin-Giełzak, K. & Marciniak, B. (2006). Acta Cryst. E62, m155–m157. Web of Science CSD CrossRef IUCr Journals Google Scholar
Konar, S., Dalai, S., Mukherjee, P. S., Drew, M. G. B., Ribas, J. & Ray Chaudhuri, N. (2005). Inorg. Chim. Acta, 358, 957–963. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lapadula, G., Judaš, N., Friščić, T. & Jones, W. (2010). Chem. Eur. J. 16, 7400–7403. Web of Science CSD CrossRef CAS PubMed Google Scholar
Laskar, I. R., Maji, T. K., Das, D., Lu, T.-H., Wong, W.-T., Okamoto, K. I. & Ray Chaudhuri, N. (2001). Polyhedron, 20, 2073–2082. Web of Science CSD CrossRef CAS Google Scholar
Li, H. H., Chen, Z. R., Cheng, L. C., Wang, Y. J., Feng, M. & Wang, M. (2010). Dalton Trans. 39, 11000–11007. CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857–871. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mukherjee, P. S., Maji, T. K., Koner, S., Rosair, G. & Chaudhuri, N. R. (2001). Ind. J. Chem. A 40, 451–455. Google Scholar
Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 466–496. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sil Moon, H., Kim, C. H. & Lee, S. G. (2000). Bull. Korean Chem. Soc. 21, 339–341. Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stilinović, V., Užarević, K., Cvrtila, I. & Kaitner, B. (2012). CrystEngComm, 14, 7493–7501. Google Scholar
Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m298. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tazi, M., Erb, W., Halauko, Y. S., Ivashkevich, O. A., Matulis, V. E., Roisnel, T., Dorcet, V. & Mongin, F. (2017). Organometallics, 36, 4770–4778. CSD CrossRef CAS Google Scholar
Weinberger, P., Schamschule, R., Mereiter, K., Dlhán, L., Boca, R. & Linert, W. (1998). J. Mol. Struct. 446, 115–126. Web of Science CSD CrossRef CAS Google Scholar
Willett, R. D., Butcher, R., Landee, C. P. & Twamley, B. (2005). Polyhedron, 24, 2222–2231. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.