research communications
μ-hydrogen disulfato)-μ-oxido-bis[(4,4′-di-tert-butyl-2,2′-bipyridine)oxidovanadium(IV/V)] acetonitrile monosolvate
of (aDepartment of Applied Chemistry, Graduate School of Engineering, Osaka, Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan, and bDepartment of Applied Chemistry, Graduate School of Engineering, Osaka, Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
*Correspondence e-mail: skodama@omu.ac.jp
The dinuclear oxidovanadium(IV/V) complex, [V2(HS2O8)O3(C18H24N2)2]·CH3CN or [V2O2(μ-O)(μ-H(SO4)2)(4,4′-tBubpy)2]·CH3CN (4,4′-tBubpy = 4,4′-di-tert-butyl-2,2′-bipyridine), has crystallographic C2 symmetry and exhibits a distorted octahedral geometry around the vanadium center, where the two 4,4′-tBubpy ligands are nearly orthogonal to each other. The two vanadium ions are linked by an oxo anion and a unique protonated sulfate anion [H(SO4)23−]. In the crystal, intermolecular C—H⋯π and π–π interactions between the 4,4′-tBubpy ligands are present, leading to a three-dimensional network.
Keywords: crystal structure; vanadium; bipyridine; sulfate.
CCDC reference: 2301351
1. Chemical context
The sulfate anion (SO42–) plays an important role as a ligand for transition-metal compounds, including polyoxometalates (Walsh et al., 2016), metal sulfates (Natarajan & Mandal, 2008), and polynuclear complexes with organic ligands (Papatriantafyllopoulou et al., 2009). Based on these compounds, a variety of catalysts (Wang et al., 2021), magnetic materials (Gómez-García et al., 2016), and metal–organic frameworks (Mi et al., 2022) have been developed in recent years. A hydrogensulfate anion (HSO4−) is also found in transition-metal compounds, and HSO4− more often acts as a counter-anion than as a ligand (Díaz-Torres & Alvarez, 2011). Thus, transition-metal complexes having an HSO4− ligand are still limited in number. In sulfated metal oxide catalysts (e.g., V2O5-based catalysts), however, a surface-protonated sulfate group is often proposed as a Brønsted acid site and affects the (Xie et al., 2021). Hence, a transition-metal complex having a protonated sulfate anion as the ligand is expected to be an appropriate model compound to understand the active site of sulfated solid catalysts at the molecular level. Herein, we report the of a dinuclear oxidovanadium(IV/V) complex with 4,4′-di-tert-butyl-2,2′-bipyridine (4,4′-tBubpy) ligands, the two vanadium ions of which are linked by an oxo anion and a unique protonated sulfate anion [H(SO4)23−].
2. Structural commentary
A single-crystal X-ray structure analysis revealed a novel dinuclear oxidovanadium(IV/V) complex [V2O2(μ-O)(μ-H(SO4)2)(4,4′-tBubpy)2] (V2) with crystallographic C2 symmetry (Fig. 1). Complex V2 exhibits a distorted octahedral geometry around the vanadium centre, where the two 4,4′-tBubpy ligands are nearly orthogonal to each other [the dihedral angle between the coordination planes of N1–V1–N2 and N1i–V1i–N2i is 86.48 (8)°]. The two vanadium ions are linked by bridging O2– and H(SO4)23– ions. The lengths of the V=Oterminal [V1—O1; 1.5932 (14) Å], V—Obridging [1.8268 (7)–2.2827 (12) Å], and V—N [2.1077 (14)–2.1399 (14) Å] bonds are within the expected values reported in the literature (Triantafillou et al., 2004; Inoue et al., 2018). For the S—O distances in the H(SO4)23– ion, the distances between S1 and O atoms (O3 and O5) attached to V atom are in the range of 1.4654 (13) to 1.5098 (12) Å, whereas the S=Oterminal [S1—O4; 1.4391 (13) Å] bond is substantially shorter. Although, like the O4 atom, the O6 atom is not attached to the V atom, the S1—O6 distance [1.5066 (13) Å] is comparable in length to the S1—O3 distance. Therefore, the S1—O6 distance can be attributed to the S—OH bond (Leszczyński et al., 2012). The hydrogen atom of the H(SO4)23– ligand is located with 0.5 occupancy at two positions (H6 and H6i) (Schindler & Wickleder, 2017) related by the C2 axis passing through the midpoint of O6⋯O6i and the O2 atom. In addition, the O6⋯O6i distance (2.48 Å) reflects the strong intramolecular hydrogen-bond interaction in the H(SO4)23– ligand (Cleland et al., 1998).
Bond-valence-sum calculations of complex V2 (Table 1) suggest that the two V atoms (V1 and V1i) are in a mixed-valence state of V4+ and V5+. In addition, the UV-vis spectrum of V2 in CH3CN shows two weak absorption bands at 553 nm (ɛ = 82 M−1 cm−1) and 669 nm (ɛ = 29 M−1 cm−1), which are considered to be the d–d bands of V4+ (Ballhausen & Gray, 1962; Waidmann et al., 2009). To the best of our knowledge, the dinuclear structure of V2 bearing the bridging H(SO4)23– ligand is unprecedented, although there are a few examples of vanadium complexes having the protonated sulfate anion (e.g., HSO4−) as the ligand (Nilsson et al. 2009; Datta et al. 2015).
|
3. Supramolecular features
In the crystal of V2, intermolecular C—H⋯π interactions (Karle et al., 2007) between the H14A atom and the pyridine ring of the 4,4′-tBubpy ligand (Table 2), along with intermolecular π–π interactions (Janiak, 2000) between the pyridine rings of the 4,4′-tBubpy ligands [Cg1⋯Cg1i = 3.7222 (13) Å, interplanar distance = 3.6034 (16) Å, slippage = 0.933 Å. Cg1 is the centroid of the N1/C1–C5 ring; symmetry code: (i) −x + , −y + , z], are present (Fig. 2), forming a three-dimensional network (Fig. 3).
4. Synthesis and crystallization
To a solution of 4,4′-di-tert-butyl-2,2′-bipyridyl (4,4′-tBubpy) (269.0 mg, 1.0 mmol) in EtOH (10 mL) was added a solution of VOSO4·5H2O (126.8 mg, 0.5 mmol) in EtOH (5.5 mL). After stirring for 2.5 h at 313 K, the solution was concentrated under reduced pressure, and the green precipitate was filtered using Et2O and dried to afford a green powder. Then, the powder was suspended in water, and an aqueous solution of sodium lauryl sulfate was added. After the mixture had been stirred overnight at ambient temperature, the supernatant liquid was separated from a dark-green oily precipitate by decantation, and the precipitate was washed with water. The precipitate was dissolved in an EtOH–Et2O mixed solvent. After the color of the solution turned from green to orange, it was evaporated, and the precipitate was filtered using Et2O and dried to afford a yellowish brown solid, which was recrystallized from CH3CN and Et2O to give V2 (30.8 mg, 13% based on V) as dark-brown crystals. Analysis calculated for C36H49N4O11S2V2·3H2O: C, 46.30; H, 5.94; N, 6.00. Found: C, 45.95; H, 5.82; N, 6.05.
5. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).
details are summarized in Table 3Supporting information
CCDC reference: 2301351
https://doi.org/10.1107/S2056989023009040/nx2001sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023009040/nx2001Isup2.hkl
Data collection: CrystalClear-SM Expert 2.0 r7 (Rigaku, 2011); cell
CrystalClear-SM Expert 2.0 r7 (Rigaku, 2011); data reduction: CrystalClear-SM Expert 2.0 r7 (Rigaku, 2011); program(s) used to solve structure: olex2.solve 1.5 (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).[V2(HS2O8)O3(C18H24N2)2]·C2H3N | Dx = 1.362 Mg m−3 |
Mr = 920.84 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Fddd | Cell parameters from 30626 reflections |
a = 13.0134 (2) Å | θ = 1.9–30.6° |
b = 34.9495 (5) Å | µ = 0.57 mm−1 |
c = 39.4864 (6) Å | T = 110 K |
V = 17958.9 (5) Å3 | Block, clear dark brown |
Z = 16 | 0.16 × 0.11 × 0.06 mm |
F(000) = 7696 |
Rigaku Saturn724+ (2x2 bin mode) diffractometer | 6582 independent reflections |
Radiation source: Rotating Anode | 5675 reflections with I > 2σ(I) |
Detector resolution: 28.5714 pixels mm-1 | Rint = 0.049 |
profile data from ω–scans | θmax = 30.5°, θmin = 2.1° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) | h = −18→18 |
Tmin = 0.815, Tmax = 1.000 | k = −49→50 |
51528 measured reflections | l = −55→54 |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0469P)2 + 46.648P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max = 0.003 |
6582 reflections | Δρmax = 0.50 e Å−3 |
287 parameters | Δρmin = −0.33 e Å−3 |
27 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
V1 | 0.70713 (2) | 0.54069 (2) | 0.59096 (2) | 0.02335 (8) | |
S1 | 0.75306 (3) | 0.47690 (2) | 0.64590 (2) | 0.02120 (10) | |
O5 | 0.66572 (10) | 0.49435 (3) | 0.66352 (3) | 0.0235 (2) | |
O3 | 0.78535 (10) | 0.50242 (4) | 0.61695 (3) | 0.0255 (3) | |
O6 | 0.71873 (10) | 0.43950 (3) | 0.63066 (3) | 0.0258 (3) | |
O4 | 0.84010 (10) | 0.46966 (4) | 0.66746 (3) | 0.0299 (3) | |
O1 | 0.79258 (12) | 0.57322 (4) | 0.58859 (3) | 0.0369 (3) | |
O2 | 0.625000 | 0.55852 (5) | 0.625000 | 0.0394 (5) | |
N2 | 0.75091 (11) | 0.51363 (4) | 0.54454 (3) | 0.0216 (3) | |
N1 | 0.60817 (12) | 0.56465 (4) | 0.55441 (3) | 0.0224 (3) | |
C3 | 0.48418 (13) | 0.59696 (5) | 0.50377 (4) | 0.0225 (3) | |
C6 | 0.69971 (13) | 0.52426 (5) | 0.51604 (4) | 0.0202 (3) | |
C7 | 0.72724 (13) | 0.51037 (5) | 0.48439 (4) | 0.0223 (3) | |
H7 | 0.688735 | 0.517593 | 0.464972 | 0.027* | |
C8 | 0.81169 (13) | 0.48568 (5) | 0.48092 (4) | 0.0252 (3) | |
C11 | 0.41640 (14) | 0.61383 (5) | 0.47598 (5) | 0.0260 (3) | |
C4 | 0.55602 (13) | 0.56814 (4) | 0.49641 (4) | 0.0210 (3) | |
H4 | 0.562535 | 0.558953 | 0.473872 | 0.025* | |
C5 | 0.61741 (13) | 0.55301 (4) | 0.52172 (4) | 0.0200 (3) | |
C2 | 0.47668 (14) | 0.60821 (5) | 0.53749 (5) | 0.0265 (3) | |
H2 | 0.428897 | 0.627475 | 0.543821 | 0.032* | |
C10 | 0.83025 (13) | 0.48947 (5) | 0.54148 (4) | 0.0259 (3) | |
H10 | 0.865230 | 0.481514 | 0.561393 | 0.031* | |
C9 | 0.86340 (14) | 0.47561 (5) | 0.51049 (5) | 0.0283 (4) | |
H9 | 0.921500 | 0.459194 | 0.509397 | 0.034* | |
C1 | 0.53844 (15) | 0.59148 (5) | 0.56180 (4) | 0.0266 (3) | |
H1 | 0.531067 | 0.599365 | 0.584695 | 0.032* | |
C15 | 0.84388 (15) | 0.47210 (6) | 0.44572 (5) | 0.0329 (4) | |
C12 | 0.48286 (15) | 0.62876 (5) | 0.44658 (5) | 0.0310 (4) | |
H12A | 0.524627 | 0.607783 | 0.437528 | 0.047* | |
H12B | 0.527993 | 0.649180 | 0.454815 | 0.047* | |
H12C | 0.438268 | 0.638807 | 0.428664 | 0.047* | |
C13 | 0.34999 (16) | 0.64692 (6) | 0.48896 (6) | 0.0375 (5) | |
H13A | 0.394311 | 0.666815 | 0.498583 | 0.056* | |
H13B | 0.302988 | 0.637465 | 0.506451 | 0.056* | |
H13C | 0.310203 | 0.657649 | 0.470150 | 0.056* | |
C14 | 0.34585 (16) | 0.58193 (6) | 0.46305 (5) | 0.0346 (4) | |
H14A | 0.299790 | 0.573763 | 0.481303 | 0.052* | |
H14B | 0.387562 | 0.560154 | 0.455598 | 0.052* | |
H14C | 0.305067 | 0.591466 | 0.443967 | 0.052* | |
C18 | 0.93513 (18) | 0.44437 (7) | 0.44714 (6) | 0.0434 (5) | |
H18A | 0.915526 | 0.421472 | 0.459928 | 0.065* | |
H18B | 0.993353 | 0.456879 | 0.458329 | 0.065* | |
H18C | 0.954806 | 0.437044 | 0.424081 | 0.065* | |
C17 | 0.87660 (19) | 0.50771 (7) | 0.42503 (5) | 0.0437 (5) | |
H17A | 0.929138 | 0.521948 | 0.437572 | 0.065* | |
H17B | 0.816724 | 0.524171 | 0.421258 | 0.065* | |
H17C | 0.904661 | 0.499545 | 0.403158 | 0.065* | |
C16 | 0.75339 (19) | 0.45218 (7) | 0.42815 (6) | 0.0467 (6) | |
H16A | 0.695186 | 0.469893 | 0.426686 | 0.070* | |
H16B | 0.733200 | 0.429568 | 0.441237 | 0.070* | |
H16C | 0.773966 | 0.444343 | 0.405306 | 0.070* | |
N3 | 0.6842 (6) | 0.5900 (2) | 0.3294 (2) | 0.102 (2) | 0.5 |
C19 | 0.5721 (5) | 0.64049 (17) | 0.36076 (15) | 0.0605 (14) | 0.5 |
H19A | 0.549690 | 0.660308 | 0.344825 | 0.091* | 0.5 |
H19B | 0.611988 | 0.652277 | 0.379037 | 0.091* | 0.5 |
H19C | 0.511740 | 0.627648 | 0.370330 | 0.091* | 0.5 |
C20 | 0.6367 (5) | 0.61212 (17) | 0.34275 (17) | 0.0616 (15) | 0.5 |
H6 | 0.659 (3) | 0.4376 (11) | 0.6263 (12) | 0.022 (11)* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.03845 (17) | 0.01764 (13) | 0.01395 (13) | −0.00275 (11) | −0.00195 (11) | 0.00237 (10) |
S1 | 0.0276 (2) | 0.01950 (18) | 0.01648 (18) | −0.00117 (15) | −0.00710 (15) | 0.00280 (14) |
O5 | 0.0351 (6) | 0.0179 (5) | 0.0175 (5) | 0.0015 (5) | −0.0031 (5) | 0.0012 (4) |
O3 | 0.0312 (6) | 0.0263 (6) | 0.0188 (6) | −0.0014 (5) | −0.0056 (5) | 0.0055 (5) |
O6 | 0.0299 (7) | 0.0197 (5) | 0.0278 (6) | 0.0026 (5) | −0.0082 (5) | −0.0035 (5) |
O4 | 0.0337 (7) | 0.0335 (7) | 0.0225 (6) | −0.0012 (5) | −0.0126 (5) | 0.0061 (5) |
O1 | 0.0574 (9) | 0.0273 (6) | 0.0260 (7) | −0.0137 (6) | −0.0164 (6) | 0.0075 (5) |
O2 | 0.0866 (16) | 0.0163 (8) | 0.0154 (8) | 0.000 | −0.0162 (9) | 0.000 |
N2 | 0.0258 (7) | 0.0224 (6) | 0.0165 (6) | −0.0021 (5) | −0.0045 (5) | 0.0027 (5) |
N1 | 0.0361 (8) | 0.0169 (6) | 0.0142 (6) | −0.0020 (5) | 0.0000 (5) | −0.0007 (5) |
C3 | 0.0267 (8) | 0.0173 (7) | 0.0236 (8) | −0.0009 (6) | −0.0029 (6) | −0.0032 (6) |
C6 | 0.0248 (7) | 0.0199 (7) | 0.0160 (7) | −0.0009 (6) | −0.0030 (6) | 0.0017 (6) |
C7 | 0.0259 (8) | 0.0238 (7) | 0.0171 (7) | 0.0025 (6) | −0.0047 (6) | −0.0001 (6) |
C8 | 0.0259 (8) | 0.0288 (8) | 0.0207 (8) | 0.0024 (7) | −0.0022 (6) | −0.0010 (6) |
C11 | 0.0290 (8) | 0.0202 (7) | 0.0289 (8) | 0.0042 (6) | −0.0069 (7) | −0.0053 (6) |
C4 | 0.0267 (8) | 0.0196 (7) | 0.0167 (7) | 0.0002 (6) | −0.0016 (6) | −0.0022 (6) |
C5 | 0.0280 (8) | 0.0163 (6) | 0.0157 (7) | −0.0014 (6) | −0.0010 (6) | −0.0007 (5) |
C2 | 0.0331 (9) | 0.0202 (7) | 0.0260 (8) | 0.0017 (6) | 0.0018 (7) | −0.0064 (6) |
C10 | 0.0255 (8) | 0.0306 (8) | 0.0216 (8) | 0.0004 (7) | −0.0069 (6) | 0.0034 (7) |
C9 | 0.0252 (8) | 0.0342 (9) | 0.0257 (8) | 0.0061 (7) | −0.0041 (7) | 0.0014 (7) |
C1 | 0.0418 (10) | 0.0195 (7) | 0.0185 (7) | −0.0011 (7) | 0.0019 (7) | −0.0046 (6) |
C15 | 0.0333 (9) | 0.0419 (10) | 0.0234 (8) | 0.0141 (8) | −0.0034 (7) | −0.0064 (8) |
C12 | 0.0378 (10) | 0.0261 (8) | 0.0292 (9) | 0.0026 (7) | −0.0079 (7) | 0.0021 (7) |
C13 | 0.0373 (10) | 0.0317 (10) | 0.0436 (11) | 0.0128 (8) | −0.0062 (9) | −0.0083 (8) |
C14 | 0.0348 (10) | 0.0284 (9) | 0.0407 (11) | −0.0005 (7) | −0.0120 (8) | −0.0066 (8) |
C18 | 0.0416 (11) | 0.0547 (13) | 0.0337 (11) | 0.0206 (10) | −0.0025 (9) | −0.0081 (10) |
C17 | 0.0523 (13) | 0.0544 (13) | 0.0243 (9) | 0.0141 (11) | 0.0077 (9) | 0.0033 (9) |
C16 | 0.0444 (12) | 0.0551 (14) | 0.0404 (12) | 0.0158 (10) | −0.0109 (10) | −0.0243 (11) |
N3 | 0.088 (4) | 0.100 (4) | 0.117 (5) | −0.037 (3) | 0.042 (4) | −0.029 (4) |
C19 | 0.073 (3) | 0.063 (3) | 0.045 (3) | −0.037 (3) | 0.003 (3) | −0.007 (2) |
C20 | 0.053 (3) | 0.065 (3) | 0.067 (3) | −0.022 (3) | 0.008 (3) | 0.001 (2) |
V1—O5i | 2.2827 (12) | C10—H10 | 0.9500 |
V1—O3 | 1.9692 (12) | C10—C9 | 1.385 (3) |
V1—O1 | 1.5932 (14) | C9—H9 | 0.9500 |
V1—O2 | 1.8268 (7) | C1—H1 | 0.9500 |
V1—N2 | 2.1399 (14) | C15—C18 | 1.534 (3) |
V1—N1 | 2.1077 (14) | C15—C17 | 1.549 (3) |
S1—O5 | 1.4654 (13) | C15—C16 | 1.534 (3) |
S1—O3 | 1.5098 (12) | C12—H12A | 0.9800 |
S1—O6 | 1.5066 (13) | C12—H12B | 0.9800 |
S1—O4 | 1.4391 (13) | C12—H12C | 0.9800 |
O6—H6 | 0.80 (4) | C13—H13A | 0.9800 |
N2—C6 | 1.360 (2) | C13—H13B | 0.9800 |
N2—C10 | 1.339 (2) | C13—H13C | 0.9800 |
N1—C5 | 1.359 (2) | C14—H14A | 0.9800 |
N1—C1 | 1.337 (2) | C14—H14B | 0.9800 |
C3—C11 | 1.526 (2) | C14—H14C | 0.9800 |
C3—C4 | 1.405 (2) | C18—H18A | 0.9800 |
C3—C2 | 1.392 (2) | C18—H18B | 0.9800 |
C6—C7 | 1.388 (2) | C18—H18C | 0.9800 |
C6—C5 | 1.486 (2) | C17—H17A | 0.9800 |
C7—H7 | 0.9500 | C17—H17B | 0.9800 |
C7—C8 | 1.404 (2) | C17—H17C | 0.9800 |
C8—C9 | 1.393 (2) | C16—H16A | 0.9800 |
C8—C15 | 1.527 (2) | C16—H16B | 0.9800 |
C11—C12 | 1.539 (3) | C16—H16C | 0.9800 |
C11—C13 | 1.532 (2) | N3—C20 | 1.120 (9) |
C11—C14 | 1.532 (2) | C19—H19A | 0.9800 |
C4—H4 | 0.9500 | C19—H19B | 0.9800 |
C4—C5 | 1.384 (2) | C19—H19C | 0.9800 |
C2—H2 | 0.9500 | C19—C20 | 1.482 (8) |
C2—C1 | 1.382 (3) | ||
O3—V1—O5i | 85.44 (5) | N2—C10—H10 | 118.7 |
O3—V1—N2 | 90.49 (5) | N2—C10—C9 | 122.69 (15) |
O3—V1—N1 | 160.47 (5) | C9—C10—H10 | 118.7 |
O1—V1—O5i | 172.18 (6) | C8—C9—H9 | 119.9 |
O1—V1—O3 | 98.89 (7) | C10—C9—C8 | 120.11 (16) |
O1—V1—O2 | 102.02 (7) | C10—C9—H9 | 119.9 |
O1—V1—N2 | 94.54 (7) | N1—C1—C2 | 122.68 (16) |
O1—V1—N1 | 95.89 (6) | N1—C1—H1 | 118.7 |
O2—V1—O5i | 83.64 (5) | C2—C1—H1 | 118.7 |
O2—V1—O3 | 98.66 (5) | C8—C15—C18 | 112.05 (16) |
O2—V1—N2 | 159.52 (5) | C8—C15—C17 | 107.79 (16) |
O2—V1—N1 | 90.62 (5) | C8—C15—C16 | 110.01 (17) |
N2—V1—O5i | 78.84 (5) | C18—C15—C17 | 108.31 (18) |
N1—V1—O5i | 78.52 (5) | C18—C15—C16 | 108.92 (18) |
N1—V1—N2 | 75.63 (5) | C16—C15—C17 | 109.72 (18) |
O5—S1—O3 | 109.23 (7) | C11—C12—H12A | 109.5 |
O5—S1—O6 | 108.70 (8) | C11—C12—H12B | 109.5 |
O6—S1—O3 | 107.02 (7) | C11—C12—H12C | 109.5 |
O4—S1—O5 | 113.76 (8) | H12A—C12—H12B | 109.5 |
O4—S1—O3 | 109.43 (8) | H12A—C12—H12C | 109.5 |
O4—S1—O6 | 108.49 (8) | H12B—C12—H12C | 109.5 |
S1—O5—V1i | 143.30 (7) | C11—C13—H13A | 109.5 |
S1—O3—V1 | 130.69 (8) | C11—C13—H13B | 109.5 |
S1—O6—H6 | 117 (3) | C11—C13—H13C | 109.5 |
V1—O2—V1i | 140.11 (10) | H13A—C13—H13B | 109.5 |
C6—N2—V1 | 117.24 (11) | H13A—C13—H13C | 109.5 |
C10—N2—V1 | 124.13 (11) | H13B—C13—H13C | 109.5 |
C10—N2—C6 | 118.41 (14) | C11—C14—H14A | 109.5 |
C5—N1—V1 | 118.52 (11) | C11—C14—H14B | 109.5 |
C1—N1—V1 | 122.95 (11) | C11—C14—H14C | 109.5 |
C1—N1—C5 | 118.51 (15) | H14A—C14—H14B | 109.5 |
C4—C3—C11 | 120.86 (15) | H14A—C14—H14C | 109.5 |
C2—C3—C11 | 122.56 (15) | H14B—C14—H14C | 109.5 |
C2—C3—C4 | 116.56 (15) | C15—C18—H18A | 109.5 |
N2—C6—C7 | 121.55 (15) | C15—C18—H18B | 109.5 |
N2—C6—C5 | 114.41 (14) | C15—C18—H18C | 109.5 |
C7—C6—C5 | 123.97 (14) | H18A—C18—H18B | 109.5 |
C6—C7—H7 | 119.8 | H18A—C18—H18C | 109.5 |
C6—C7—C8 | 120.33 (15) | H18B—C18—H18C | 109.5 |
C8—C7—H7 | 119.8 | C15—C17—H17A | 109.5 |
C7—C8—C15 | 119.64 (15) | C15—C17—H17B | 109.5 |
C9—C8—C7 | 116.86 (16) | C15—C17—H17C | 109.5 |
C9—C8—C15 | 123.49 (16) | H17A—C17—H17B | 109.5 |
C3—C11—C12 | 110.40 (15) | H17A—C17—H17C | 109.5 |
C3—C11—C13 | 112.15 (15) | H17B—C17—H17C | 109.5 |
C3—C11—C14 | 107.75 (14) | C15—C16—H16A | 109.5 |
C13—C11—C12 | 108.28 (16) | C15—C16—H16B | 109.5 |
C14—C11—C12 | 109.39 (15) | C15—C16—H16C | 109.5 |
C14—C11—C13 | 108.84 (16) | H16A—C16—H16B | 109.5 |
C3—C4—H4 | 119.7 | H16A—C16—H16C | 109.5 |
C5—C4—C3 | 120.58 (15) | H16B—C16—H16C | 109.5 |
C5—C4—H4 | 119.7 | H19A—C19—H19B | 109.5 |
N1—C5—C6 | 114.19 (14) | H19A—C19—H19C | 109.5 |
N1—C5—C4 | 121.35 (15) | H19B—C19—H19C | 109.5 |
C4—C5—C6 | 124.43 (14) | C20—C19—H19A | 109.5 |
C3—C2—H2 | 119.9 | C20—C19—H19B | 109.5 |
C1—C2—C3 | 120.28 (16) | C20—C19—H19C | 109.5 |
C1—C2—H2 | 119.9 | N3—C20—C19 | 178.4 (7) |
V1—N2—C6—C7 | 175.43 (12) | C7—C6—C5—N1 | −175.49 (16) |
V1—N2—C6—C5 | −1.51 (18) | C7—C6—C5—C4 | 2.7 (3) |
V1—N2—C10—C9 | −172.91 (14) | C7—C8—C9—C10 | 0.7 (3) |
V1—N1—C5—C6 | −0.61 (18) | C7—C8—C15—C18 | −178.11 (18) |
V1—N1—C5—C4 | −178.82 (12) | C7—C8—C15—C17 | 62.8 (2) |
V1—N1—C1—C2 | 177.27 (13) | C7—C8—C15—C16 | −56.8 (2) |
O5i—V1—O2—V1i | 36.88 (3) | C11—C3—C4—C5 | 179.87 (15) |
O5—S1—O3—V1 | −24.59 (12) | C11—C3—C2—C1 | 178.68 (16) |
O3—V1—O2—V1i | −47.50 (4) | C4—C3—C11—C12 | −54.6 (2) |
O3—S1—O5—V1i | 14.21 (15) | C4—C3—C11—C13 | −175.46 (16) |
O6—S1—O5—V1i | −102.23 (13) | C4—C3—C11—C14 | 64.8 (2) |
O6—S1—O3—V1 | 92.92 (11) | C4—C3—C2—C1 | 0.4 (3) |
O4—S1—O5—V1i | 136.79 (12) | C5—N1—C1—C2 | −1.0 (3) |
O4—S1—O3—V1 | −149.72 (10) | C5—C6—C7—C8 | 174.54 (16) |
O1—V1—O2—V1i | −148.59 (5) | C2—C3—C11—C12 | 127.22 (18) |
N2—V1—O2—V1i | 68.14 (17) | C2—C3—C11—C13 | 6.4 (2) |
N2—C6—C7—C8 | −2.1 (3) | C2—C3—C11—C14 | −113.38 (19) |
N2—C6—C5—N1 | 1.4 (2) | C2—C3—C4—C5 | −1.9 (2) |
N2—C6—C5—C4 | 179.52 (15) | C10—N2—C6—C7 | 0.7 (2) |
N2—C10—C9—C8 | −2.1 (3) | C10—N2—C6—C5 | −176.23 (15) |
N1—V1—O2—V1i | 115.25 (4) | C9—C8—C15—C18 | 3.4 (3) |
C3—C4—C5—N1 | 1.9 (2) | C9—C8—C15—C17 | −115.7 (2) |
C3—C4—C5—C6 | −176.08 (15) | C9—C8—C15—C16 | 124.7 (2) |
C3—C2—C1—N1 | 1.0 (3) | C1—N1—C5—C6 | 177.74 (15) |
C6—N2—C10—C9 | 1.4 (3) | C1—N1—C5—C4 | −0.5 (2) |
C6—C7—C8—C9 | 1.3 (3) | C15—C8—C9—C10 | 179.22 (18) |
C6—C7—C8—C15 | −177.25 (17) |
Symmetry code: (i) −x+5/4, y, −z+5/4. |
Cg2 is the centroid of the N2/C6–C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14A···Cg2ii | 0.98 | 2.78 | 3.431 (2) | 124 |
Symmetry code: (ii) −x+1, −y+1, −z+1. |
BVS calculations were conducted using X-ray data of [V2O2(µ-O)(µ-H(SO4)2)(4,4'-tBubpy)2]. Bond-valence parameters: VIV—O (1.784 Å), VV—O (1.803 Å), and V—N (1.86 Å) (Brese et al., 1991). |
[V2O2(µ-O)(µ-H(SO4)2)(4,4'-tBubpy)2] | V1 |
V(IV) | 4.41 |
V(V) | 4.59 |
Acknowledgements
The authors thank Dr Rika Tanaka, Dr Tamaki Nagasawa, Dr Matsumi Doe, Professor Ikuko Miyahara, and Professor Tetsuro Shinada (Osaka Metropolitan University) for the single-crystal X-ray analysis and elemental analysis measurements.
Funding information
Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. JP21H01977).
References
Ballhausen, C. J. & Gray, H. B. (1962). Inorg. Chem. 1, 111–122. Web of Science CrossRef CAS Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cleland, W. W., Frey, P. A. & Gerlt, J. A. (1998). J. Biol. Chem. 273, 25529–25532. Web of Science CrossRef CAS PubMed Google Scholar
Datta, C., Das, D., Mondal, P., Chakraborty, B., Sengupta, M. & Bhattacharjee, C. R. (2015). Eur. J. Med. Chem. 97, 214–224. CrossRef CAS PubMed Google Scholar
Díaz-Torres, R. & Alvarez, S. (2011). Dalton Trans. 40, 10742–10750. PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gómez-García, C. J., Escrivà, E., Benmansour, S., Borràs-Almenar, J. J., Folgado, J.-V. & Ramírez de Arellano, C. (2016). Inorg. Chem. 55, 2664–2671. PubMed Google Scholar
Inoue, Y., Kodama, S., Taya, N., Sato, H., Oh-ishi, K. & Ishii, Y. (2018). Inorg. Chem. 57, 7491–7494. CSD CrossRef CAS PubMed Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Karle, I. L., Butcher, R. J., Wolak, M. A., da Silva Filho, D. A., Uchida, M., Brédas, J.-L. & Kafafi, Z. H. (2007). J. Phys. Chem. C, 111, 9543–9547. Web of Science CSD CrossRef CAS Google Scholar
Leszczyński, P. J., Budzianowski, A., Dobrzycki, Ł., Cyrański, M. K., Derzsi, M. & Grochala, W. (2012). Dalton Trans. 41, 396–402. PubMed Google Scholar
Mi, F.-Q., Ma, F.-X., Zou, S.-X., Zhan, D.-S. & Zhang, T. (2022). Dalton Trans. 51, 1313–1317. CSD CrossRef CAS PubMed Google Scholar
Natarajan, S. & Mandal, S. (2008). Angew. Chem. Int. Ed. 47, 4798–4828. Web of Science CrossRef CAS Google Scholar
Nilsson, J., Degerman, E., Haukka, M., Lisensky, G. C., Garribba, E., Yoshikawa, Y., Sakurai, H., Enydy, E. A., Kiss, T., Esbak, H., Rehder, D. & Norlander, E. (2009). Dalton Trans. 7902–7911. Google Scholar
Papatriantafyllopoulou, C., Manessi-Zoupa, E., Escuer, A. & Perlepes, S. P. (2009). Inorg. Chim. Acta, 362, 634–650. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Schindler, L. V. & Wickleder, M. S. (2017). Z. Naturforsch. B, 72, 63–68. CrossRef ICSD CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Triantafillou, G. D., Tolis, E. I., Terzis, A., Deligiannakis, Y., Raptopoulou, C. P., Sigalas, M. P. & Kabanos, T. A. (2004). Inorg. Chem. 43, 79–91. Web of Science CSD CrossRef PubMed CAS Google Scholar
Waidmann, C. R., Zhou, X., Tsai, E. A., Kaminsky, W., Hrovat, D. A., Borden, W. T. & Mayer, J. M. (2009). J. Am. Chem. Soc. 131, 4729–4743. CSD CrossRef PubMed CAS Google Scholar
Walsh, J. J., Bond, A. M., Forster, R. J. & Keyes, T. E. (2016). Coord. Chem. Rev. 306, 217–234. Web of Science CrossRef CAS Google Scholar
Wang, X., Brunson, K., Xie, H., Colliard, I., Wasson, M. C., Gong, X., Ma, K., Wu, Y., Son, F. A., Idrees, K. B., Zhang, X., Notestein, J. M., Nyman, M. & Farha, O. K. (2021). J. Am. Chem. Soc. 143, 21056–21065. CSD CrossRef CAS PubMed Google Scholar
Xie, R., Ma, L., Li, Z., Qu, Z., Yan, N. & Li, J. (2021). ACS Catal. 11, 13119–13139. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.