research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (μ-hydrogen di­sulfato)-μ-oxido-bis­­[(4,4′-di-tert-butyl-2,2′-bi­pyridine)­oxidovanadium(IV/V)] aceto­nitrile monosolvate

crossmark logo

aDepartment of Applied Chemistry, Graduate School of Engineering, Osaka, Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan, and bDepartment of Applied Chemistry, Graduate School of Engineering, Osaka, Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
*Correspondence e-mail: skodama@omu.ac.jp

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 10 October 2023; accepted 15 October 2023; online 19 October 2023)

The dinuclear oxidovanadium(IV/V) complex, [V2(HS2O8)O3(C18H24N2)2]·CH3CN or [V2O2(μ-O)(μ-H(SO4)2)(4,4′-tBubpy)2]·CH3CN (4,4′-tBubpy = 4,4′-di-tert-butyl-2,2′-bi­pyridine), has crystallographic C2 symmetry and exhibits a distorted octa­hedral geometry around the vanadium center, where the two 4,4′-tBubpy ligands are nearly orthogonal to each other. The two vanadium ions are linked by an oxo anion and a unique protonated sulfate anion [H(SO4)23−]. In the crystal, inter­molecular C—H⋯π and ππ inter­actions between the 4,4′-tBubpy ligands are present, leading to a three-dimensional network.

1. Chemical context

The sulfate anion (SO42–) plays an important role as a ligand for transition-metal compounds, including polyoxometalates (Walsh et al., 2016[Walsh, J. J., Bond, A. M., Forster, R. J. & Keyes, T. E. (2016). Coord. Chem. Rev. 306, 217-234.]), metal sulfates (Natarajan & Mandal, 2008[Natarajan, S. & Mandal, S. (2008). Angew. Chem. Int. Ed. 47, 4798-4828.]), and polynuclear complexes with organic ligands (Papatriantafyllopoulou et al., 2009[Papatriantafyllopoulou, C., Manessi-Zoupa, E., Escuer, A. & Perlepes, S. P. (2009). Inorg. Chim. Acta, 362, 634-650.]). Based on these compounds, a variety of catalysts (Wang et al., 2021[Wang, X., Brunson, K., Xie, H., Colliard, I., Wasson, M. C., Gong, X., Ma, K., Wu, Y., Son, F. A., Idrees, K. B., Zhang, X., Notestein, J. M., Nyman, M. & Farha, O. K. (2021). J. Am. Chem. Soc. 143, 21056-21065.]), magnetic materials (Gómez-García et al., 2016[Gómez-García, C. J., Escrivà, E., Benmansour, S., Borràs-Almenar, J. J., Folgado, J.-V. & Ramírez de Arellano, C. (2016). Inorg. Chem. 55, 2664-2671.]), and metal–organic frameworks (Mi et al., 2022[Mi, F.-Q., Ma, F.-X., Zou, S.-X., Zhan, D.-S. & Zhang, T. (2022). Dalton Trans. 51, 1313-1317.]) have been developed in recent years. A hydrogensulfate anion (HSO4) is also found in transition-metal compounds, and HSO4 more often acts as a counter-anion than as a ligand (Díaz-Torres & Alvarez, 2011[Díaz-Torres, R. & Alvarez, S. (2011). Dalton Trans. 40, 10742-10750.]). Thus, transition-metal complexes having an HSO4 ligand are still limited in number. In sulfated metal oxide catalysts (e.g., V2O5-based catalysts), however, a surface-protonated sulfate group is often proposed as a Brønsted acid site and affects the catalytic activity (Xie et al., 2021[Xie, R., Ma, L., Li, Z., Qu, Z., Yan, N. & Li, J. (2021). ACS Catal. 11, 13119-13139.]). Hence, a transition-metal complex having a protonated sulfate anion as the ligand is expected to be an appropriate model compound to understand the active site of sulfated solid catalysts at the mol­ecular level. Herein, we report the crystal structure of a dinuclear oxidovanadium(IV/V) complex with 4,4′-di-tert-butyl-2,2′-bi­pyridine (4,4′-tBubpy) ligands, the two vanadium ions of which are linked by an oxo anion and a unique protonated sulfate anion [H(SO4)23−].

2. Structural commentary

A single-crystal X-ray structure analysis revealed a novel dinuclear oxidovanadium(IV/V) complex [V2O2(μ-O)(μ-H(SO4)2)(4,4′-tBubpy)2] (V2) with crystallographic C2 symmetry (Fig. 1[link]). Complex V2 exhibits a distorted octa­hedral geometry around the vanadium centre, where the two 4,4′-tBubpy ligands are nearly orthogonal to each other [the dihedral angle between the coordination planes of N1–V1–N2 and N1i–V1i–N2i is 86.48 (8)°]. The two vanadium ions are linked by bridging O2– and H(SO4)23– ions. The lengths of the V=Oterminal [V1—O1; 1.5932 (14) Å], V—Obridging [1.8268 (7)–2.2827 (12) Å], and V—N [2.1077 (14)–2.1399 (14) Å] bonds are within the expected values reported in the literature (Triantafillou et al., 2004[Triantafillou, G. D., Tolis, E. I., Terzis, A., Deligiannakis, Y., Raptopoulou, C. P., Sigalas, M. P. & Kabanos, T. A. (2004). Inorg. Chem. 43, 79-91.]; Inoue et al., 2018[Inoue, Y., Kodama, S., Taya, N., Sato, H., Oh-ishi, K. & Ishii, Y. (2018). Inorg. Chem. 57, 7491-7494.]). For the S—O distances in the H(SO4)23– ion, the distances between S1 and O atoms (O3 and O5) attached to V atom are in the range of 1.4654 (13) to 1.5098 (12) Å, whereas the S=Oterminal [S1—O4; 1.4391 (13) Å] bond is substanti­ally shorter. Although, like the O4 atom, the O6 atom is not attached to the V atom, the S1—O6 distance [1.5066 (13) Å] is comparable in length to the S1—O3 distance. Therefore, the S1—O6 distance can be attributed to the S—OH bond (Leszczyński et al., 2012[Leszczyński, P. J., Budzianowski, A., Dobrzycki, Ł., Cyrański, M. K., Derzsi, M. & Grochala, W. (2012). Dalton Trans. 41, 396-402.]). The hydrogen atom of the H(SO4)23– ligand is located with 0.5 occupancy at two positions (H6 and H6i) (Schindler & Wickleder, 2017[Schindler, L. V. & Wickleder, M. S. (2017). Z. Naturforsch. B, 72, 63-68.]) related by the C2 axis passing through the midpoint of O6⋯O6i and the O2 atom. In addition, the O6⋯O6i distance (2.48 Å) reflects the strong intra­molecular hydrogen-bond inter­action in the H(SO4)23– ligand (Cleland et al., 1998[Cleland, W. W., Frey, P. A. & Gerlt, J. A. (1998). J. Biol. Chem. 273, 25529-25532.]).

[Scheme 1]
[Figure 1]
Figure 1
Crystal structure of [V2O2(μ-O)(μ-H(SO4)2)(4,4′-tBubpy)2] (V2) with numbered atoms. Ellipsoids are shown at the 50% probability level. Side view (top) and front view (bottom). The hydrogen atoms of 4,4′-tBubpy ligands are omitted for clarity. Symmetry code: (i) −x + [{5\over 4}], y, −z + [{5\over 4}]. The hydrogen atom of H(SO4)23– ligand is located at two positions (H6 and H6i) with 0.5 occupancy. Selected inter­atomic distances (Å): V1—O1 1.5932 (14), V1—O2 1.8268 (7), V1—O3 1.9692 (12), V1—O5i 2.2827 (12), V1—N1 2.1077 (14), V1—N2 2.1399 (14), S1—O3 1.5098 (12), S1—O4 1.4391 (13), S1—O5 1.4654 (13), S1—O6 1.5066 (13), O6⋯O6i 2.480 (2).

Bond-valence-sum calculations of complex V2 (Table 1[link]) suggest that the two V atoms (V1 and V1i) are in a mixed-valence state of V4+ and V5+. In addition, the UV-vis spectrum of V2 in CH3CN shows two weak absorption bands at 553 nm (ɛ = 82 M−1 cm−1) and 669 nm (ɛ = 29 M−1 cm−1), which are considered to be the dd bands of V4+ (Ballhausen & Gray, 1962[Ballhausen, C. J. & Gray, H. B. (1962). Inorg. Chem. 1, 111-122.]; Waidmann et al., 2009[Waidmann, C. R., Zhou, X., Tsai, E. A., Kaminsky, W., Hrovat, D. A., Borden, W. T. & Mayer, J. M. (2009). J. Am. Chem. Soc. 131, 4729-4743.]). To the best of our knowledge, the dinuclear structure of V2 bearing the bridging H(SO4)23– ligand is unprecedented, although there are a few examples of vanadium complexes having the protonated sulfate anion (e.g., HSO4) as the ligand (Nilsson et al. 2009[Nilsson, J., Degerman, E., Haukka, M., Lisensky, G. C., Garribba, E., Yoshikawa, Y., Sakurai, H., Enydy, E. A., Kiss, T., Esbak, H., Rehder, D. & Norlander, E. (2009). Dalton Trans. 7902-7911.]; Datta et al. 2015[Datta, C., Das, D., Mondal, P., Chakraborty, B., Sengupta, M. & Bhattacharjee, C. R. (2015). Eur. J. Med. Chem. 97, 214-224.]).

Table 1
BVS calculations for vanadium atoms of [V2O2(μ-O)(μ-H(SO4)2)(4,4′-tBubpy)2] (V2)

BVS calculations were conducted using X-ray data of [V2O2(μ-O)(μ-H(SO4)2)(4,4′-tBubpy)2]. Bond-valence parameters: VIV—O (1.784 Å), VV—O (1.803 Å), and V—N (1.86 Å) (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]).

[V2O2(μ-O)(μ-H(SO4)2)(4,4′-tBubpy)2] V1
V(IV) 4.41
V(V) 4.59

3. Supra­molecular features

In the crystal of V2, inter­molecular C—H⋯π inter­actions (Karle et al., 2007[Karle, I. L., Butcher, R. J., Wolak, M. A., da Silva Filho, D. A., Uchida, M., Brédas, J.-L. & Kafafi, Z. H. (2007). J. Phys. Chem. C, 111, 9543-9547.]) between the H14A atom and the pyridine ring of the 4,4′-tBubpy ligand (Table 2[link]), along with inter­molecular ππ inter­actions (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]) between the pyridine rings of the 4,4′-tBubpy ligands [Cg1⋯Cg1i = 3.7222 (13) Å, inter­planar distance = 3.6034 (16) Å, slippage = 0.933 Å. Cg1 is the centroid of the N1/C1–C5 ring; symmetry code: (i) −x + [{5\over 4}], −y + [{5\over 4}], z], are present (Fig. 2[link]), forming a three-dimensional network (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N2/C6–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14ACg2i 0.98 2.78 3.431 (2) 124
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
Details of the C—H⋯π inter­actions and the ππ inter­actions between the 4,4′-tBubpy ligands of V2. Cg1 and Cg2 are the centroids of the N1/C1–C5 ring and the N2/C6–C10 ring, respectively. The hydrogen atoms of 4,4′-tBubpy ligands except for H14A, H14B, and H14C are omitted for clarity.
[Figure 3]
Figure 3
Crystal packing view of V2·CH3CN along the a axis.

4. Synthesis and crystallization

To a solution of 4,4′-di-tert-butyl-2,2′-bipyridyl (4,4′-tBubpy) (269.0 mg, 1.0 mmol) in EtOH (10 mL) was added a solution of VOSO4·5H2O (126.8 mg, 0.5 mmol) in EtOH (5.5 mL). After stirring for 2.5 h at 313 K, the solution was concentrated under reduced pressure, and the green precipitate was filtered using Et2O and dried to afford a green powder. Then, the powder was suspended in water, and an aqueous solution of sodium lauryl sulfate was added. After the mixture had been stirred overnight at ambient temperature, the supernatant liquid was separated from a dark-green oily precipitate by deca­ntation, and the precipitate was washed with water. The precipitate was dissolved in an EtOH–Et2O mixed solvent. After the color of the solution turned from green to orange, it was evaporated, and the precipitate was filtered using Et2O and dried to afford a yellowish brown solid, which was recrystallized from CH3CN and Et2O to give V2 (30.8 mg, 13% based on V) as dark-brown crystals. Analysis calculated for C36H49N4O11S2V2·3H2O: C, 46.30; H, 5.94; N, 6.00. Found: C, 45.95; H, 5.82; N, 6.05.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geom­etrically (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl).

Table 3
Experimental details

Crystal data
Chemical formula [V2(HS2O8)O3(C18H24N2)2]·C2H3N
Mr 920.84
Crystal system, space group Orthorhombic, Fddd
Temperature (K) 110
a, b, c (Å) 13.0134 (2), 34.9495 (5), 39.4864 (6)
V3) 17958.9 (5)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.57
Crystal size (mm) 0.16 × 0.11 × 0.06
 
Data collection
Diffractometer Rigaku Saturn724+ (2×2 bin mode)
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.815, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 51528, 6582, 5675
Rint 0.049
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.12
No. of reflections 6582
No. of parameters 287
No. of restraints 27
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.34
Computer programs: CrystalClear-SM Expert (Rigaku, 2011[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrystalClear-SM Expert 2.0 r7 (Rigaku, 2011); cell refinement: CrystalClear-SM Expert 2.0 r7 (Rigaku, 2011); data reduction: CrystalClear-SM Expert 2.0 r7 (Rigaku, 2011); program(s) used to solve structure: olex2.solve 1.5 (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

(µ-Hydrogen disulfato)-µ-oxido-bis[(4,4'-di-tert-butyl-2,2'-bipyridine)oxidovanadium(IV/V)] acetonitrile monosolvate top
Crystal data top
[V2(HS2O8)O3(C18H24N2)2]·C2H3NDx = 1.362 Mg m3
Mr = 920.84Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, FdddCell parameters from 30626 reflections
a = 13.0134 (2) Åθ = 1.9–30.6°
b = 34.9495 (5) ŵ = 0.57 mm1
c = 39.4864 (6) ÅT = 110 K
V = 17958.9 (5) Å3Block, clear dark brown
Z = 160.16 × 0.11 × 0.06 mm
F(000) = 7696
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
6582 independent reflections
Radiation source: Rotating Anode5675 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.049
profile data from ω–scansθmax = 30.5°, θmin = 2.1°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1818
Tmin = 0.815, Tmax = 1.000k = 4950
51528 measured reflectionsl = 5554
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0469P)2 + 46.648P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.003
6582 reflectionsΔρmax = 0.50 e Å3
287 parametersΔρmin = 0.33 e Å3
27 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.70713 (2)0.54069 (2)0.59096 (2)0.02335 (8)
S10.75306 (3)0.47690 (2)0.64590 (2)0.02120 (10)
O50.66572 (10)0.49435 (3)0.66352 (3)0.0235 (2)
O30.78535 (10)0.50242 (4)0.61695 (3)0.0255 (3)
O60.71873 (10)0.43950 (3)0.63066 (3)0.0258 (3)
O40.84010 (10)0.46966 (4)0.66746 (3)0.0299 (3)
O10.79258 (12)0.57322 (4)0.58859 (3)0.0369 (3)
O20.6250000.55852 (5)0.6250000.0394 (5)
N20.75091 (11)0.51363 (4)0.54454 (3)0.0216 (3)
N10.60817 (12)0.56465 (4)0.55441 (3)0.0224 (3)
C30.48418 (13)0.59696 (5)0.50377 (4)0.0225 (3)
C60.69971 (13)0.52426 (5)0.51604 (4)0.0202 (3)
C70.72724 (13)0.51037 (5)0.48439 (4)0.0223 (3)
H70.6887350.5175930.4649720.027*
C80.81169 (13)0.48568 (5)0.48092 (4)0.0252 (3)
C110.41640 (14)0.61383 (5)0.47598 (5)0.0260 (3)
C40.55602 (13)0.56814 (4)0.49641 (4)0.0210 (3)
H40.5625350.5589530.4738720.025*
C50.61741 (13)0.55301 (4)0.52172 (4)0.0200 (3)
C20.47668 (14)0.60821 (5)0.53749 (5)0.0265 (3)
H20.4288970.6274750.5438210.032*
C100.83025 (13)0.48947 (5)0.54148 (4)0.0259 (3)
H100.8652300.4815140.5613930.031*
C90.86340 (14)0.47561 (5)0.51049 (5)0.0283 (4)
H90.9215000.4591940.5093970.034*
C10.53844 (15)0.59148 (5)0.56180 (4)0.0266 (3)
H10.5310670.5993650.5846950.032*
C150.84388 (15)0.47210 (6)0.44572 (5)0.0329 (4)
C120.48286 (15)0.62876 (5)0.44658 (5)0.0310 (4)
H12A0.5246270.6077830.4375280.047*
H12B0.5279930.6491800.4548150.047*
H12C0.4382680.6388070.4286640.047*
C130.34999 (16)0.64692 (6)0.48896 (6)0.0375 (5)
H13A0.3943110.6668150.4985830.056*
H13B0.3029880.6374650.5064510.056*
H13C0.3102030.6576490.4701500.056*
C140.34585 (16)0.58193 (6)0.46305 (5)0.0346 (4)
H14A0.2997900.5737630.4813030.052*
H14B0.3875620.5601540.4555980.052*
H14C0.3050670.5914660.4439670.052*
C180.93513 (18)0.44437 (7)0.44714 (6)0.0434 (5)
H18A0.9155260.4214720.4599280.065*
H18B0.9933530.4568790.4583290.065*
H18C0.9548060.4370440.4240810.065*
C170.87660 (19)0.50771 (7)0.42503 (5)0.0437 (5)
H17A0.9291380.5219480.4375720.065*
H17B0.8167240.5241710.4212580.065*
H17C0.9046610.4995450.4031580.065*
C160.75339 (19)0.45218 (7)0.42815 (6)0.0467 (6)
H16A0.6951860.4698930.4266860.070*
H16B0.7332000.4295680.4412370.070*
H16C0.7739660.4443430.4053060.070*
N30.6842 (6)0.5900 (2)0.3294 (2)0.102 (2)0.5
C190.5721 (5)0.64049 (17)0.36076 (15)0.0605 (14)0.5
H19A0.5496900.6603080.3448250.091*0.5
H19B0.6119880.6522770.3790370.091*0.5
H19C0.5117400.6276480.3703300.091*0.5
C200.6367 (5)0.61212 (17)0.34275 (17)0.0616 (15)0.5
H60.659 (3)0.4376 (11)0.6263 (12)0.022 (11)*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.03845 (17)0.01764 (13)0.01395 (13)0.00275 (11)0.00195 (11)0.00237 (10)
S10.0276 (2)0.01950 (18)0.01648 (18)0.00117 (15)0.00710 (15)0.00280 (14)
O50.0351 (6)0.0179 (5)0.0175 (5)0.0015 (5)0.0031 (5)0.0012 (4)
O30.0312 (6)0.0263 (6)0.0188 (6)0.0014 (5)0.0056 (5)0.0055 (5)
O60.0299 (7)0.0197 (5)0.0278 (6)0.0026 (5)0.0082 (5)0.0035 (5)
O40.0337 (7)0.0335 (7)0.0225 (6)0.0012 (5)0.0126 (5)0.0061 (5)
O10.0574 (9)0.0273 (6)0.0260 (7)0.0137 (6)0.0164 (6)0.0075 (5)
O20.0866 (16)0.0163 (8)0.0154 (8)0.0000.0162 (9)0.000
N20.0258 (7)0.0224 (6)0.0165 (6)0.0021 (5)0.0045 (5)0.0027 (5)
N10.0361 (8)0.0169 (6)0.0142 (6)0.0020 (5)0.0000 (5)0.0007 (5)
C30.0267 (8)0.0173 (7)0.0236 (8)0.0009 (6)0.0029 (6)0.0032 (6)
C60.0248 (7)0.0199 (7)0.0160 (7)0.0009 (6)0.0030 (6)0.0017 (6)
C70.0259 (8)0.0238 (7)0.0171 (7)0.0025 (6)0.0047 (6)0.0001 (6)
C80.0259 (8)0.0288 (8)0.0207 (8)0.0024 (7)0.0022 (6)0.0010 (6)
C110.0290 (8)0.0202 (7)0.0289 (8)0.0042 (6)0.0069 (7)0.0053 (6)
C40.0267 (8)0.0196 (7)0.0167 (7)0.0002 (6)0.0016 (6)0.0022 (6)
C50.0280 (8)0.0163 (6)0.0157 (7)0.0014 (6)0.0010 (6)0.0007 (5)
C20.0331 (9)0.0202 (7)0.0260 (8)0.0017 (6)0.0018 (7)0.0064 (6)
C100.0255 (8)0.0306 (8)0.0216 (8)0.0004 (7)0.0069 (6)0.0034 (7)
C90.0252 (8)0.0342 (9)0.0257 (8)0.0061 (7)0.0041 (7)0.0014 (7)
C10.0418 (10)0.0195 (7)0.0185 (7)0.0011 (7)0.0019 (7)0.0046 (6)
C150.0333 (9)0.0419 (10)0.0234 (8)0.0141 (8)0.0034 (7)0.0064 (8)
C120.0378 (10)0.0261 (8)0.0292 (9)0.0026 (7)0.0079 (7)0.0021 (7)
C130.0373 (10)0.0317 (10)0.0436 (11)0.0128 (8)0.0062 (9)0.0083 (8)
C140.0348 (10)0.0284 (9)0.0407 (11)0.0005 (7)0.0120 (8)0.0066 (8)
C180.0416 (11)0.0547 (13)0.0337 (11)0.0206 (10)0.0025 (9)0.0081 (10)
C170.0523 (13)0.0544 (13)0.0243 (9)0.0141 (11)0.0077 (9)0.0033 (9)
C160.0444 (12)0.0551 (14)0.0404 (12)0.0158 (10)0.0109 (10)0.0243 (11)
N30.088 (4)0.100 (4)0.117 (5)0.037 (3)0.042 (4)0.029 (4)
C190.073 (3)0.063 (3)0.045 (3)0.037 (3)0.003 (3)0.007 (2)
C200.053 (3)0.065 (3)0.067 (3)0.022 (3)0.008 (3)0.001 (2)
Geometric parameters (Å, º) top
V1—O5i2.2827 (12)C10—H100.9500
V1—O31.9692 (12)C10—C91.385 (3)
V1—O11.5932 (14)C9—H90.9500
V1—O21.8268 (7)C1—H10.9500
V1—N22.1399 (14)C15—C181.534 (3)
V1—N12.1077 (14)C15—C171.549 (3)
S1—O51.4654 (13)C15—C161.534 (3)
S1—O31.5098 (12)C12—H12A0.9800
S1—O61.5066 (13)C12—H12B0.9800
S1—O41.4391 (13)C12—H12C0.9800
O6—H60.80 (4)C13—H13A0.9800
N2—C61.360 (2)C13—H13B0.9800
N2—C101.339 (2)C13—H13C0.9800
N1—C51.359 (2)C14—H14A0.9800
N1—C11.337 (2)C14—H14B0.9800
C3—C111.526 (2)C14—H14C0.9800
C3—C41.405 (2)C18—H18A0.9800
C3—C21.392 (2)C18—H18B0.9800
C6—C71.388 (2)C18—H18C0.9800
C6—C51.486 (2)C17—H17A0.9800
C7—H70.9500C17—H17B0.9800
C7—C81.404 (2)C17—H17C0.9800
C8—C91.393 (2)C16—H16A0.9800
C8—C151.527 (2)C16—H16B0.9800
C11—C121.539 (3)C16—H16C0.9800
C11—C131.532 (2)N3—C201.120 (9)
C11—C141.532 (2)C19—H19A0.9800
C4—H40.9500C19—H19B0.9800
C4—C51.384 (2)C19—H19C0.9800
C2—H20.9500C19—C201.482 (8)
C2—C11.382 (3)
O3—V1—O5i85.44 (5)N2—C10—H10118.7
O3—V1—N290.49 (5)N2—C10—C9122.69 (15)
O3—V1—N1160.47 (5)C9—C10—H10118.7
O1—V1—O5i172.18 (6)C8—C9—H9119.9
O1—V1—O398.89 (7)C10—C9—C8120.11 (16)
O1—V1—O2102.02 (7)C10—C9—H9119.9
O1—V1—N294.54 (7)N1—C1—C2122.68 (16)
O1—V1—N195.89 (6)N1—C1—H1118.7
O2—V1—O5i83.64 (5)C2—C1—H1118.7
O2—V1—O398.66 (5)C8—C15—C18112.05 (16)
O2—V1—N2159.52 (5)C8—C15—C17107.79 (16)
O2—V1—N190.62 (5)C8—C15—C16110.01 (17)
N2—V1—O5i78.84 (5)C18—C15—C17108.31 (18)
N1—V1—O5i78.52 (5)C18—C15—C16108.92 (18)
N1—V1—N275.63 (5)C16—C15—C17109.72 (18)
O5—S1—O3109.23 (7)C11—C12—H12A109.5
O5—S1—O6108.70 (8)C11—C12—H12B109.5
O6—S1—O3107.02 (7)C11—C12—H12C109.5
O4—S1—O5113.76 (8)H12A—C12—H12B109.5
O4—S1—O3109.43 (8)H12A—C12—H12C109.5
O4—S1—O6108.49 (8)H12B—C12—H12C109.5
S1—O5—V1i143.30 (7)C11—C13—H13A109.5
S1—O3—V1130.69 (8)C11—C13—H13B109.5
S1—O6—H6117 (3)C11—C13—H13C109.5
V1—O2—V1i140.11 (10)H13A—C13—H13B109.5
C6—N2—V1117.24 (11)H13A—C13—H13C109.5
C10—N2—V1124.13 (11)H13B—C13—H13C109.5
C10—N2—C6118.41 (14)C11—C14—H14A109.5
C5—N1—V1118.52 (11)C11—C14—H14B109.5
C1—N1—V1122.95 (11)C11—C14—H14C109.5
C1—N1—C5118.51 (15)H14A—C14—H14B109.5
C4—C3—C11120.86 (15)H14A—C14—H14C109.5
C2—C3—C11122.56 (15)H14B—C14—H14C109.5
C2—C3—C4116.56 (15)C15—C18—H18A109.5
N2—C6—C7121.55 (15)C15—C18—H18B109.5
N2—C6—C5114.41 (14)C15—C18—H18C109.5
C7—C6—C5123.97 (14)H18A—C18—H18B109.5
C6—C7—H7119.8H18A—C18—H18C109.5
C6—C7—C8120.33 (15)H18B—C18—H18C109.5
C8—C7—H7119.8C15—C17—H17A109.5
C7—C8—C15119.64 (15)C15—C17—H17B109.5
C9—C8—C7116.86 (16)C15—C17—H17C109.5
C9—C8—C15123.49 (16)H17A—C17—H17B109.5
C3—C11—C12110.40 (15)H17A—C17—H17C109.5
C3—C11—C13112.15 (15)H17B—C17—H17C109.5
C3—C11—C14107.75 (14)C15—C16—H16A109.5
C13—C11—C12108.28 (16)C15—C16—H16B109.5
C14—C11—C12109.39 (15)C15—C16—H16C109.5
C14—C11—C13108.84 (16)H16A—C16—H16B109.5
C3—C4—H4119.7H16A—C16—H16C109.5
C5—C4—C3120.58 (15)H16B—C16—H16C109.5
C5—C4—H4119.7H19A—C19—H19B109.5
N1—C5—C6114.19 (14)H19A—C19—H19C109.5
N1—C5—C4121.35 (15)H19B—C19—H19C109.5
C4—C5—C6124.43 (14)C20—C19—H19A109.5
C3—C2—H2119.9C20—C19—H19B109.5
C1—C2—C3120.28 (16)C20—C19—H19C109.5
C1—C2—H2119.9N3—C20—C19178.4 (7)
V1—N2—C6—C7175.43 (12)C7—C6—C5—N1175.49 (16)
V1—N2—C6—C51.51 (18)C7—C6—C5—C42.7 (3)
V1—N2—C10—C9172.91 (14)C7—C8—C9—C100.7 (3)
V1—N1—C5—C60.61 (18)C7—C8—C15—C18178.11 (18)
V1—N1—C5—C4178.82 (12)C7—C8—C15—C1762.8 (2)
V1—N1—C1—C2177.27 (13)C7—C8—C15—C1656.8 (2)
O5i—V1—O2—V1i36.88 (3)C11—C3—C4—C5179.87 (15)
O5—S1—O3—V124.59 (12)C11—C3—C2—C1178.68 (16)
O3—V1—O2—V1i47.50 (4)C4—C3—C11—C1254.6 (2)
O3—S1—O5—V1i14.21 (15)C4—C3—C11—C13175.46 (16)
O6—S1—O5—V1i102.23 (13)C4—C3—C11—C1464.8 (2)
O6—S1—O3—V192.92 (11)C4—C3—C2—C10.4 (3)
O4—S1—O5—V1i136.79 (12)C5—N1—C1—C21.0 (3)
O4—S1—O3—V1149.72 (10)C5—C6—C7—C8174.54 (16)
O1—V1—O2—V1i148.59 (5)C2—C3—C11—C12127.22 (18)
N2—V1—O2—V1i68.14 (17)C2—C3—C11—C136.4 (2)
N2—C6—C7—C82.1 (3)C2—C3—C11—C14113.38 (19)
N2—C6—C5—N11.4 (2)C2—C3—C4—C51.9 (2)
N2—C6—C5—C4179.52 (15)C10—N2—C6—C70.7 (2)
N2—C10—C9—C82.1 (3)C10—N2—C6—C5176.23 (15)
N1—V1—O2—V1i115.25 (4)C9—C8—C15—C183.4 (3)
C3—C4—C5—N11.9 (2)C9—C8—C15—C17115.7 (2)
C3—C4—C5—C6176.08 (15)C9—C8—C15—C16124.7 (2)
C3—C2—C1—N11.0 (3)C1—N1—C5—C6177.74 (15)
C6—N2—C10—C91.4 (3)C1—N1—C5—C40.5 (2)
C6—C7—C8—C91.3 (3)C15—C8—C9—C10179.22 (18)
C6—C7—C8—C15177.25 (17)
Symmetry code: (i) x+5/4, y, z+5/4.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N2/C6–C10 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14A···Cg2ii0.982.783.431 (2)124
Symmetry code: (ii) x+1, y+1, z+1.
BVS calculations for vanadium atoms of [V2O2(µ-O)(µ-H(SO4)2)(4,4'-tBubpy)2] (V2) top
BVS calculations were conducted using X-ray data of [V2O2(µ-O)(µ-H(SO4)2)(4,4'-tBubpy)2]. Bond-valence parameters: VIV—O (1.784 Å), VV—O (1.803 Å), and V—N (1.86 Å) (Brese et al., 1991).
[V2O2(µ-O)(µ-H(SO4)2)(4,4'-tBubpy)2]V1
V(IV)4.41
V(V)4.59
 

Acknowledgements

The authors thank Dr Rika Tanaka, Dr Tamaki Nagasawa, Dr Matsumi Doe, Professor Ikuko Miyahara, and Professor Tetsuro Shinada (Osaka Metropolitan University) for the single-crystal X-ray analysis and elemental analysis measurements.

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. JP21H01977).

References

First citationBallhausen, C. J. & Gray, H. B. (1962). Inorg. Chem. 1, 111–122.  Web of Science CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCleland, W. W., Frey, P. A. & Gerlt, J. A. (1998). J. Biol. Chem. 273, 25529–25532.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDatta, C., Das, D., Mondal, P., Chakraborty, B., Sengupta, M. & Bhattacharjee, C. R. (2015). Eur. J. Med. Chem. 97, 214–224.  CrossRef CAS PubMed Google Scholar
First citationDíaz-Torres, R. & Alvarez, S. (2011). Dalton Trans. 40, 10742–10750.  PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGómez-García, C. J., Escrivà, E., Benmansour, S., Borràs-Almenar, J. J., Folgado, J.-V. & Ramírez de Arellano, C. (2016). Inorg. Chem. 55, 2664–2671.  PubMed Google Scholar
First citationInoue, Y., Kodama, S., Taya, N., Sato, H., Oh-ishi, K. & Ishii, Y. (2018). Inorg. Chem. 57, 7491–7494.  CSD CrossRef CAS PubMed Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKarle, I. L., Butcher, R. J., Wolak, M. A., da Silva Filho, D. A., Uchida, M., Brédas, J.-L. & Kafafi, Z. H. (2007). J. Phys. Chem. C, 111, 9543–9547.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeszczyński, P. J., Budzianowski, A., Dobrzycki, Ł., Cyrański, M. K., Derzsi, M. & Grochala, W. (2012). Dalton Trans. 41, 396–402.  PubMed Google Scholar
First citationMi, F.-Q., Ma, F.-X., Zou, S.-X., Zhan, D.-S. & Zhang, T. (2022). Dalton Trans. 51, 1313–1317.  CSD CrossRef CAS PubMed Google Scholar
First citationNatarajan, S. & Mandal, S. (2008). Angew. Chem. Int. Ed. 47, 4798–4828.  Web of Science CrossRef CAS Google Scholar
First citationNilsson, J., Degerman, E., Haukka, M., Lisensky, G. C., Garribba, E., Yoshikawa, Y., Sakurai, H., Enydy, E. A., Kiss, T., Esbak, H., Rehder, D. & Norlander, E. (2009). Dalton Trans. 7902–7911.  Google Scholar
First citationPapatriantafyllopoulou, C., Manessi-Zoupa, E., Escuer, A. & Perlepes, S. P. (2009). Inorg. Chim. Acta, 362, 634–650.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSchindler, L. V. & Wickleder, M. S. (2017). Z. Naturforsch. B, 72, 63–68.  CrossRef ICSD CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTriantafillou, G. D., Tolis, E. I., Terzis, A., Deligiannakis, Y., Raptopoulou, C. P., Sigalas, M. P. & Kabanos, T. A. (2004). Inorg. Chem. 43, 79–91.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWaidmann, C. R., Zhou, X., Tsai, E. A., Kaminsky, W., Hrovat, D. A., Borden, W. T. & Mayer, J. M. (2009). J. Am. Chem. Soc. 131, 4729–4743.  CSD CrossRef PubMed CAS Google Scholar
First citationWalsh, J. J., Bond, A. M., Forster, R. J. & Keyes, T. E. (2016). Coord. Chem. Rev. 306, 217–234.  Web of Science CrossRef CAS Google Scholar
First citationWang, X., Brunson, K., Xie, H., Colliard, I., Wasson, M. C., Gong, X., Ma, K., Wu, Y., Son, F. A., Idrees, K. B., Zhang, X., Notestein, J. M., Nyman, M. & Farha, O. K. (2021). J. Am. Chem. Soc. 143, 21056–21065.  CSD CrossRef CAS PubMed Google Scholar
First citationXie, R., Ma, L., Li, Z., Qu, Z., Yan, N. & Li, J. (2021). ACS Catal. 11, 13119–13139.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds