research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld analysis of trans-bis­­{(2E)-N-phenyl-2-[(2E)-3-phenyl-2-propen-1-yl­­idene]hydrazinecarbo­thio­amidato-κ2N1,S}palladium(II)

crossmark logo

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil, bDepartamento de Química, Universidade Federal de Santa Maria, Av. Roraima s/n, Campus Universitário, 97105-900 Santa Maria-RS, Brazil, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas s/n, Campus Universitário, 49107-230 São Cristóvão-SE, Brazil
*Correspondence e-mail: leandro_bresolin@yahoo.com.br

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 4 September 2023; accepted 2 October 2023; online 5 October 2023)

The reaction of (2E)-N-phenyl-2-[(2E)-3-phenyl-2-propen-1-yl­idene]hydra­zine­carbo­thio­amide (common name: cinnamaldehyde-4-phenyl­thio­semi­carbazone) deprotonated with NaOH in ethanol with an ethano­lic suspension of PdII chloride in a 2:1 molar ratio yielded the title compound, [Pd(C16H14N3S)2]. The anionic ligands act as metal chelators, κ2N1S-donors, forming five-membered rings with a trans-configuration. The PdII ion is fourfold coordinated in a slightly distorted square-planar geometry. For each ligand, one H⋯S and one H⋯N intra­molecular inter­actions are observed, with S(5) and S(6) graph-set motifs. Concerning the H⋯S inter­actions, the coordination sphere resembles a hydrogen-bonded macrocyclic environment-type. In the crystal, the complexes are linked via pairs of H⋯S inter­actions, with graph-set motif R22(8), and building a mono-periodic hydrogen-bonded ribbon along [001]. The Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are: H⋯H (45.3%), H⋯C/C⋯H (28.0%), H⋯S/S⋯H (8.0%) and H⋯N/N⋯H (7.4%).

1. Chemical context

As far as we know, the thio­semicarbazone chemistry can be traced back to the beginning of the 1900s, when a thio­semicarbazide derivative, H2N—N(H)C(=S)NR1R2, was used as chemical reagent for the characterization of aldehydes and ketones, R3R4C=O. It was pointed out that the main product of the characterization reaction was a thio­semicarbazone derivative, R3R4C=N—N(H)C(=S)NR1R2 (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602-2606.]). In the second half of the 1950s, the use of 4-phenyl­thio­semicarbazide as reagent for the characterization of cinnamaldehyde was reported and the cinnamaldehyde 4-phenyl­thio­semicarbazone mol­ecule, the ligand of the title compound, was the major product of the reaction (Tišler, 1956[Tišler, M. (1956). Z. Anal. Chem. 149, 164-172.]).

From early times, as a product of qualitative analysis reactions in the organic chemistry, thio­semicarbazone chemistry emerged as a large class of compounds present in a wide range of scientific disciplines. For example, the cinnamaldehyde 4-phenyl­thio­semicarbazone derivative shows anti-corrosion activity for copper in nitric acid media (Mostafa, 2000[Mostafa, H. A. (2000). Electrochim. Acta, 18, 45-53.]).

One of the most important applications of thio­semicarbazone derivatives is in coordination chemistry. The N—N(H)—C(=S) fragment can be easily deprotonated and the negative charge is then delocalized over the N—N—C—S entity, which enables chemical bonding with many different metal centers, with different Lewis acidity, and a diversity of coordination modes, e.g., chelating and bridging. Complexes with anionic thio­semicarbazone derivatives are more common as a result of the charge density and the geometry adopted by the ligands (Lobana et al., 2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]).

Many complexes with thio­semicarbazone ligands show relevant biological activity. For example, PdII heteroleptic complexes with a cinnamaldehyde-thio­semicarbazone deriv­ative turned out to be very active on in vitro Human Topo­isomerase IIα inhibition, a biological target of prime importance for cancer research (Rocha et al., 2019[Rocha, F. V., Farias, R. L., Lima, M. A., Batista, V. S., Nascimento-Júnior, N. M., Garrido, S. S., Leopoldino, A. M., Goto, R. N., Oliveira, A. B., Beck, J., Landvogt, C., Mauro, A. E. & Netto, A. V. G. (2019). J. Inorg. Biochem. 199, 110725, 1-9.]). Other PdII homoleptic and heteroleptic complexes with cinnamaldehyde-thio­semicarbazone as ligands were reported to be active against five human cancer cell lines in vitro: colon (Caco-2), cervix (HeLa), hepatocellular (HepG2), breast (MCF-7) and prostate (PC-3) (Nyawadea et al., 2021[Nyawadea, E. A., Sibuyi, N. R. S., Meyer, M., Lalancette, R. & Onani, M. O. (2021). Inorg. Chim. Acta, 515, 120036, 1-10.]). Finally, NiII homoleptic cinnamaldehyde-4-ethyl­thio­semicarbazone and cinnamaldehyde-4-methyl­thio­semicarbazone derivative complexes showed, also in in vitro assays, inhibition of cell growth for two selected human tumour cell lines: breast (MCF-7) and lung (A549) (Farias et al., 2021[Farias, R. L., Polez, A. M. R., Silva, A. D. E. S., Zanetti, R. D., Moreira, M. B., Batista, V. S., Reis, B. L., Nascimento-Júnior, N. M., Rocha, F. V., Lima, M. A., Oliveira, A. B., Ellena, J., Scarim, C. B., Zambom, C. R., Brito, L. D., Garrido, S. S., Melo, A. P. L., Bresolin, L., Tirloni, B., Pereira, J. C. M. & Netto, A. V. G. (2021). Mater. Sci. Eng. C, 121, 111815, 1-12.]).

Another inter­esting approach for cinnamaldehyde-thio­semicarbazone chemistry is the synthesis of nanostructured materials through thermal and solvothermal decomposition techniques, where thio­semicarbazone complexes are employed as single-mol­ecule precursors. It was reported that the thermal and solvothermal decomposition of ZnL2 and ZnCl2(LH)2 homo- and heteroleptic complexes results in the formation of ZnS nanocrystallites (for this section only, L = the anionic form of cinnamaldehyde-thio­semicarbazone and LH = the neutral form of it) (Palve & Garje, 2011[Palve, A. M. & Garje, S. S. (2011). J. Cryst. Growth, 326, 157-162.]). Similarly, CdII heteroleptic complexes CdCl2(LH)2 and CdI2(LH)2 were used as starting materials to obtain CdS nanoparticles (Pawar et al., 2016[Pawar, A. S., Masikane, S. C., Mlowe, S., Garje, S. S. & Revaprasadu, N. (2016). Eur. J. Inorg. Chem. pp. 366-372.]) and CoS or Co9S8 nanocrystallites were synthesized from CoL2 and CoCl2(LH)2 homo- and heteroleptic complexes (Pawar & Garje, 2015[Pawar, A. S. & Garje, S. S. (2015). Bull. Mater. Sci. 38, 1843-1850.]).

Motivated by the bioinorganic chemistry and materials science of the cinnamaldehyde-thio­semicarbazone complexes, we report herein the synthesis, crystal structure and Hirshfeld analysis of a new PdII homoleptic complex where the cinnamaldehyde-4-phenyl­thio­semicarbazone mol­ecules act as anionic ligands.

[Scheme 1]

2. Structural commentary

The asymmetric unit comprises one mol­ecule of the title compound, with all atoms being located in general positions (Fig. 1[link]). The complex consists of one PdII metal center and two deprotonated cinnamaldehyde-4-phenyl­thio­semicarbazone ligands, which act as metal chelators, forming five-membered metallarings. The ligands are coordinated through N and S atoms in a trans-configuration, κ2N1S-donors, and the N1—Pd1—N4 and the S1—Pd1—S2 angles are 178.31 (6) and 177.57 (2)°, respectively. The metal ion is fourfold coordinated in a slightly distorted square-planar geometry. The maximum deviation from the mean plane through the Pd1/N1/N4/S1/S2 fragment is 0.0227 (5) Å for Pd1 and the r.m.s. for the selected atoms is 0.0151 Å. Concerning the geometry of the N—N—C—S entities, the N1—N2—C10—S1 torsion angle is 0.6 (3)°, while N4—N5—C26—S2 is −0.4 (3)°. Both of the ligands are non-planar, with the angle between the mean planes through the C4–C9 and the C11–C16 aromatic rings being 15.7 (1)°, while that between the C20–C25 and the C27–C32 rings is 45.5 (8)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labeling and displacement ellipsoids drawn at the 40% probability level.

Four intra­molecular hydrogen-bonding inter­actions are observed (Fig. 2[link], Table 1[link]): C1—H1⋯S2 and C17—H14⋯S1, with graph-set motif S(5), and C16—H13⋯N2 and C32—H26⋯N5, with graph-set motif S(6). Considering the S(5) rings, a hydrogen-bonded macrocyclic coordination environment-type can be suggested for the PdII metal center, while the S(6) rings contribute to the stabilization of the mol­ecular structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯S2 0.93 2.60 3.230 (2) 126
C16—H13⋯N2 0.93 2.32 2.887 (3) 119
C17—H14⋯S1 0.93 2.72 3.355 (2) 126
C32—H26⋯N5 0.93 2.39 2.911 (3) 115
N3—H27⋯S2i 0.86 2.63 3.4805 (18) 171
N6—H28⋯S1ii 0.86 2.84 3.6554 (19) 159
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
C—H⋯S and C—H⋯N hydrogen intra­molecular inter­actions of the title compound (dashed lines), forming rings of S(5) and S(6) graph-set motifs. A hydrogen-bonded macrocyclic coordination environment-type can be suggested for the PdII metal center.

Finally, the anionic form of the ligands was assigned because of the absence of hydrazinic H atoms and the change in the bond lengths of the N—N—C—S entities. For the neutral or free, i.e., non-coordinating thio­semicarbazones, the N—N and C—S bonds have lengths of double-bond character, while the N—C bond shows lengths of single-bond type, which can be written as a N=N(H)—C=S fragment. When the acidic H atom of the hydrazinic fragment is removed, the negative charge is delocalized over the N—N—C—S chain and the bond lengths change to inter­mediate values. Thus, the N—N and the C—S bond lengths assume single-bond character, being longer, and the N—C bond lengths assume double-bond character, being shorter. Information about the bond lengths of the N—N—C—S entities for the cinnamaldehyde-4-phenyl­thio­semicarbazone mol­ecule, C16H15N3S, and the Ni(C16H14N3S)2 (Song et al., 2014[Song, J., Zhu, F., Wang, H. & Zhao, P. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 129, 227-234.]) and Pd(C16H14N3S)2 complexes, this work, are summarized in Table 2[link]. These data are in agreement with reported bond lengths values for thio­semicarbazone derivatives (Oliveira et al., 2014[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, 101-103.]).

Table 2
Bond lengths (Å) for the N—N—C—S entities in cinnamaldehyde-4-phenyl­thio­semicarbazone structures: as a neutral mol­ecule and as an anionic ligand

  N—N N—C C—S
C16H15N3Sa,c 1.369 (2) 1.354 (2) 1.6704 (19)
Ni(C16H14N3S)2b,c 1.405 (5) 1.301 (6) 1.730 (5)
Pd(C16H14N3S)2b,d 1.390 (2) 1.293 (2) 1.7520 (19)
  1.393 (2) 1.291 (2) 1.7328 (19)
Notes: (a) Neutral, non-coordinated form of the cinnamaldehyde 4-phenyl­thio­semicarbazone; (b) anionic, coordinated form of the cinnamaldehyde 4-phenyl­thio­semicarbazone; (c) Song et al. (2014[Song, J., Zhu, F., Wang, H. & Zhao, P. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 129, 227-234.]); (d) this work.

3. Supra­molecular features

In the crystal, the mol­ecules are connected via pairs of N—H⋯S inter­actions with graph-set motif [R_{2}^{2}](8), forming a mono-periodic hydrogen-bonded ribbon along [001] (Fig. 3[link], Table 1[link]).

[Figure 3]
Figure 3
Crystal structure section of the title compound viewed along the b-axis. The N—H⋯S inter­actions are drawn as dashed lines, forming rings of [R_{2}^{2}](8) graph-set motif and linking the mol­ecules along the c-axis. [Symmetry codes: (i) x, −y + [{1\over 2}], z + [{1\over 2}]; (ii) x, −y + [{1\over 2}], z − [{1\over 2}].]

The Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]) of the crystal structure was performed with Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Australia.]). The graphical representations of the Hirshfeld surface for the title compound are represented using a ball-and-stick model with transparency, in two side-views and separate figures for clarity (Fig. 4[link]). The locations of the strongest inter­molecular contacts, i.e, the regions around the S1, H27, S2 and H28 atoms, are indicated in magenta. These atoms are those involved in the N—H⋯S inter­molecular inter­actions represented in the previous figure (Fig. 3[link]): N3—H27⋯S2i and N6—H28⋯S1ii [symmetry codes: (i) x, −y + [{1\over 2}], z + [{1\over 2}]; (ii) x, −y + [{1\over 2}], z − [{1\over 2}]]. The Hirshfeld surface analysis of the crystal structure also indicates that the most relevant inter­molecular inter­actions for crystal packing are the following: (a) H⋯H (45.3%), (b) H⋯C/C⋯H (28.0%), (c) H⋯S/S⋯H (8.0%) and (d) H⋯N/N⋯H (7.4%). The contributions to the crystal packing are shown as two-dimensional Hirshfeld surface fingerprint plots with cyan dots (Fig. 5[link]). The di (x-axis) and the de (y-axis) values are the closest inter­nal and external distances from given points on the Hirshfeld surface (in Å).

[Figure 4]
Figure 4
Two side-views in separate figures of the Hirshfeld surface graphical representation (dnorm) for the title compound. The surface is drawn with transparency and simplified for clarity and the regions with strongest inter­molecular inter­actions are shown in magenta. [dnorm range: −0.289 to 1.415]
[Figure 5]
Figure 5
The Hirshfeld surface two-dimensional fingerprint plot for the title compound showing the (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯S/S⋯H and (d) H⋯N/N⋯·H contacts in detail (cyan dots). The contributions of the inter­actions to the crystal cohesion amount to 45.3, 28.0, 8.0 and 7.4%, respectively. The di (x-axis) and the de (y-axis) values are the closest inter­nal and external distances from given points on the Hirshfeld surface (in Å).

4. Database survey

To the best of our knowledge and using database tools such as SciFinderTM (Chemical Abstracts Service, 2023[Chemical Abstracts Service (2023). Columbus, Ohio, USA (accessed via SciFinder on September 1, 2023).]), there is only one report of the crystal structure of a compound bearing cinnamaldehyde-4-phenyl­thio­semicarbazone as non-coordinated mol­ecule (C16H15N3S) and as a ligand, viz. in the homoleptic [Ni(C16H14N3S)2] complex (Song et al., 2014[Song, J., Zhu, F., Wang, H. & Zhao, P. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 129, 227-234.]). The asymmetric unit of the reference coordination compound consists of one NiII ion, which lies on an inversion center, and two deprotonated cinnamaldehyde-4-phenyl­thio­semi­carba­zone ligands, in one of which the atoms are general positions while the second is generated by symmetry (Fig. 6[link]) [symmetry code: (c) −x + 1, −y + 2, −z + 1]. The negative charge of the ligand was assigned by the absence of a hydrazinic H atom and the bond distances in the N—N—C—S chain (please see the remarks in the Structural commentary section of this work and also Table 2[link]). The coordination environment of the NiII complex is quite similar to that for the PdII metal center of the title compound: the anionic ligands act as metal chelators, κ2N1S-donors, with N and S atoms in trans-positions (180°), the metal center is fourfold coordinated in a square-planar geometry and the N—N—C—S entity torsion angle is 1.5 (6)°.

[Figure 6]
Figure 6
Part of the crystal structure of the reference compound, the centrosymmetric [Ni(C16H14N3S)2] complex (Song et al., 2014[Song, J., Zhu, F., Wang, H. & Zhao, P. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 129, 227-234.]). The H⋯C and H⋯N inter­molecular contacts are drawn as dashed lines and the figure is simplified for clarity. [Symmetry codes: (a) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (b) −x, y + [{1\over 2}], −z + [{1\over 2}]; (c) −x + 1, −y + 2, −z + 1.]

Although the coordination sphere of the PdII title compound and the NiII analogue compound are similar, the supra­molecular arrangement of the complexes is totally different. In the crystal, the mol­ecules of the centrosymmetric NiII coordination compound are linked into a three-dimensional hydrogen-bonded network. The H⋯S inter­molecular inter­actions, like those observed in the PdII complex (Fig. 3[link]), are not present in this case and only very weak H⋯C and H⋯N inter­molecular contacts are noted. The values for the hydrogen-bonding of the asymmetric part of the complex amount to: C6—H6⋯C5a = 2.90 (5) Å, C6—H6⋯N1a = 2.73 (5) Å, C9—H9⋯C14b = 2.86 (6) Å and N1—H1A⋯C6a = 2.90 (7) Å [symmetry codes: (a) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (b) −x, y + [{1\over 2}], −z + [{1\over 2}]] (Fig. 6[link]). The H⋯C and H⋯N distances are slightly above the sum of the van der Waals radii for the respective atoms (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]; Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]) and they are the only inter­molecular contacts observed for the supra­molecular structure of the NiII complex.

The Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]) of the crystal structure of the NiII coordination compound was also performed with CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Australia.]). The graphical representation of the Hirshfeld surface is represented using a ball-and-stick model with transparency and the locations of the strongest inter­molecular contacts are draw in magenta, i.e., the regions around the C6, H6, N1, H1A, H9# and C14# atoms (Fig. 7[link]) [symmetry code: (#) −x + 1, −y + 2, −z + 1]. These data are in agreement with the weak H⋯C and H⋯N inter­molecular contacts observed in the previous figure (Fig. 6[link]). The contributions to the crystal packing are shown as two-dimensional Hirshfeld surface fingerprint plots with cyan dots (Fig. 8[link]). The Hirshfeld surface analysis of the crystal structure also suggests that the most important inter­molecular inter­actions for crystal packing are the following: (a) H⋯H (47.4%), (b) H⋯C/C⋯H (27.6%), (c) H⋯N/N⋯H (7.0%) and (d) H⋯S/S⋯H (6.5%). The di (x-axis) and the de (y-axis) values are the closest inter­nal and external distances from given points on the Hirshfeld surface contacts (in Å). While for the PdII title compound and the NiII reference compound the most important inter­molecular contacts are H⋯H and the H⋯C/C⋯H, the order of importance changes for the H⋯S/S⋯H and H⋯N/N⋯H contacts. For the crystal packing of the PdII complex, the H⋯S/S⋯H contacts are more important then H⋯N/N⋯H contacts, while for the NiII complex this order is the opposite.

[Figure 7]
Figure 7
The Hirshfeld surface graphical representation [dnorm range: −0.045 to 1.492] for the centrosymmetric NiII complex (Song et al., 2014[Song, J., Zhu, F., Wang, H. & Zhao, P. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 129, 227-234.]). The surface is drawn with transparency and simplified for clarity. The surface regions with strongest inter­molecular contacts are shown in magenta. [Symmetry code: (#) −x + 1, -y+2, −z + 1.]
[Figure 8]
Figure 8
The Hirshfeld surface two-dimensional fingerprint plot for the NiII coordination compound (Song et al., 2014[Song, J., Zhu, F., Wang, H. & Zhao, P. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 129, 227-234.]) showing the (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯N/N⋯H and (d) H⋯S/S⋯·H contacts in detail (cyan dots). The contributions of the inter­actions to the crystal cohesion amount to 47.4, 27.6, 7.0 and 6.5%, respectively. The di (x-axis) and the de (y-axis) values are the closest inter­nal and external distances from given points on the Hirshfeld surface (in Å).

5. Synthesis and crystallization

The starting materials are commercially available and were used without further purification. The synthesis of the ligand was adapted from a previously reported procedure (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602-2606.]; Tišler, 1956[Tišler, M. (1956). Z. Anal. Chem. 149, 164-172.]). Cinnamaldehyde-4-phenyl­thio­semicarbazone was dissolved in ethanol (4 mmol, 50 mL) and deprotonated with one pellet of NaOH with stirring maintained for 2 h until the solution turned yellow. Simultaneously, an ethano­lic suspension of palladium(II) chloride (2 mmol, 50 mL) was prepared under continuous stirring. A yellow-colored mixture of the ethano­lic solution and the ethano­lic suspension was maintained with stirring at room temperature for 8 h, until the PdCl2 was consumed. Orange single crystals suitable for X-ray diffraction were obtained by the slow evaporation of the solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were located in a difference-Fourier map, but were positioned with idealized geometry and refined isotropically using a riding model (HFIX command), with Uiso(H) = 1.2 Ueq(C, N), and with C—H = 0.93 Å and N—H = 0.86 Å.

Table 3
Experimental details

Crystal data
Chemical formula [Pd(C16H14N3S)2]
Mr 667.12
Crystal system, space group Monoclinic, P21/c
Temperature (K) 299
a, b, c (Å) 15.084 (5), 11.418 (4), 17.097 (6)
β (°) 91.097 (9)
V3) 2944.0 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.81
Crystal size (mm) 0.25 × 0.18 × 0.11
 
Data collection
Diffractometer Bruker D8 Venture Photon 100 area detector diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.699, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 87933, 7344, 6204
Rint 0.042
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.063, 1.05
No. of reflections 7344
No. of parameters 370
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.50
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Australia.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006), CrystalExplorer (Wolff et al., 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

trans-Bis{(2E)-N-phenyl-2-[(2E)-3-phenyl-2-propen-1-ylidene]hydrazinecarbothioamidato-κ2N1,S}palladium(II) top
Crystal data top
[Pd(C16H14N3S)2]F(000) = 1360
Mr = 667.12Dx = 1.505 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.084 (5) ÅCell parameters from 9138 reflections
b = 11.418 (4) Åθ = 2.2–28.3°
c = 17.097 (6) ŵ = 0.81 mm1
β = 91.097 (9)°T = 299 K
V = 2944.0 (16) Å3Block, orange
Z = 40.25 × 0.18 × 0.11 mm
Data collection top
Bruker D8 Venture Photon 100 area detector
diffractometer
6204 reflections with I > 2σ(I)
Radiation source: microfocus X ray tubeRint = 0.042
φ and ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2020
Tmin = 0.699, Tmax = 0.746k = 1515
87933 measured reflectionsl = 2222
7344 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0241P)2 + 1.5227P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
7344 reflectionsΔρmax = 0.34 e Å3
370 parametersΔρmin = 0.50 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.93114 (12)0.25646 (18)0.41478 (10)0.0408 (4)
H10.9113570.2227550.3680990.049*
C21.02188 (12)0.29262 (18)0.41878 (11)0.0429 (4)
H21.0423220.3344030.4621900.052*
C31.07777 (12)0.26780 (19)0.36174 (11)0.0434 (4)
H31.0547150.2286560.3181960.052*
C41.17186 (12)0.29659 (18)0.36156 (11)0.0436 (4)
C51.20873 (15)0.3801 (2)0.41107 (14)0.0566 (5)
H41.1726340.4229240.4440570.068*
C61.29897 (17)0.4000 (3)0.41148 (17)0.0738 (8)
H51.3231350.4572060.4441830.089*
C71.35360 (16)0.3362 (3)0.36419 (19)0.0765 (8)
H61.4145320.3486170.3661630.092*
C81.31865 (17)0.2555 (3)0.31492 (18)0.0745 (8)
H71.3554930.2129550.2824400.089*
C91.22814 (15)0.2358 (2)0.31256 (14)0.0613 (6)
H81.2045910.1811270.2776380.074*
C100.85343 (12)0.31504 (17)0.59615 (10)0.0377 (4)
C110.95766 (12)0.42049 (17)0.68829 (10)0.0397 (4)
C120.95571 (14)0.48633 (19)0.75646 (11)0.0466 (5)
H90.9040120.4893770.7851750.056*
C131.02970 (15)0.5473 (2)0.78205 (13)0.0559 (5)
H101.0273080.5913070.8277310.067*
C141.10674 (15)0.5437 (2)0.74084 (14)0.0584 (6)
H111.1565120.5851260.7579690.070*
C151.10894 (14)0.4777 (2)0.67371 (14)0.0597 (6)
H121.1610630.4744070.6456100.072*
C161.03566 (13)0.4160 (2)0.64695 (12)0.0516 (5)
H131.0386710.3716770.6014300.062*
C170.55839 (12)0.16720 (18)0.50233 (11)0.0416 (4)
H140.5789170.1855240.5524910.050*
C180.46597 (12)0.14045 (18)0.49358 (11)0.0429 (4)
H150.4445660.1151830.4450710.052*
C190.40947 (13)0.15030 (19)0.55209 (12)0.0472 (5)
H160.4333160.1727550.6003610.057*
C200.31419 (13)0.12958 (18)0.54837 (12)0.0454 (4)
C210.27211 (14)0.0746 (2)0.48604 (13)0.0513 (5)
H170.3051740.0477970.4443120.062*
C220.18134 (15)0.0590 (2)0.48519 (16)0.0644 (6)
H180.1539340.0215360.4429350.077*
C230.13142 (16)0.0979 (3)0.54540 (18)0.0713 (8)
H190.0702930.0871730.5442120.086*
C240.17159 (17)0.1526 (3)0.60741 (18)0.0739 (8)
H200.1376280.1801990.6483390.089*
C250.26240 (16)0.1673 (2)0.60978 (15)0.0653 (6)
H210.2892720.2029280.6530320.078*
C260.63696 (12)0.14116 (18)0.31857 (11)0.0406 (4)
C270.52836 (12)0.06730 (19)0.21755 (12)0.0456 (5)
C280.50883 (17)0.0809 (2)0.13948 (14)0.0657 (7)
H220.5475690.1218320.1078270.079*
C290.4319 (2)0.0341 (3)0.10764 (19)0.0878 (10)
H230.4186570.0448460.0547720.105*
C300.37560 (18)0.0272 (3)0.1525 (2)0.0837 (9)
H240.3238550.0584960.1306980.100*
C310.39511 (18)0.0431 (3)0.23033 (19)0.0803 (8)
H250.3565850.0859450.2610470.096*
C320.47140 (16)0.0038 (2)0.26388 (15)0.0633 (6)
H260.4842280.0070870.3168030.076*
N10.87363 (10)0.26614 (14)0.47008 (8)0.0375 (3)
N20.90767 (10)0.31587 (16)0.53850 (9)0.0428 (4)
N30.87873 (10)0.36111 (16)0.66658 (9)0.0442 (4)
H270.8410820.3528420.7033130.053*
N40.61600 (10)0.16837 (14)0.44748 (9)0.0383 (3)
N50.58090 (10)0.13619 (16)0.37463 (9)0.0437 (4)
N60.61038 (11)0.11296 (18)0.24427 (9)0.0521 (5)
H280.6490000.1246270.2087500.063*
Pd10.74528 (2)0.21629 (2)0.46039 (2)0.03379 (5)
S10.74605 (3)0.25655 (5)0.59231 (3)0.04797 (12)
S20.74676 (3)0.18416 (6)0.32859 (3)0.04861 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0320 (9)0.0589 (11)0.0314 (9)0.0018 (8)0.0020 (7)0.0014 (8)
C20.0327 (9)0.0625 (12)0.0337 (9)0.0045 (8)0.0002 (7)0.0005 (8)
C30.0337 (9)0.0606 (12)0.0358 (9)0.0037 (9)0.0015 (7)0.0006 (9)
C40.0326 (9)0.0575 (12)0.0407 (10)0.0026 (8)0.0018 (7)0.0101 (9)
C50.0445 (12)0.0656 (14)0.0596 (13)0.0060 (10)0.0040 (10)0.0032 (11)
C60.0551 (15)0.0816 (18)0.0838 (18)0.0223 (14)0.0209 (14)0.0151 (15)
C70.0348 (12)0.094 (2)0.100 (2)0.0080 (13)0.0040 (13)0.0419 (18)
C80.0416 (13)0.097 (2)0.0858 (19)0.0078 (13)0.0206 (13)0.0207 (17)
C90.0445 (12)0.0805 (17)0.0594 (14)0.0030 (11)0.0151 (10)0.0011 (12)
C100.0314 (9)0.0475 (10)0.0343 (9)0.0002 (7)0.0017 (7)0.0005 (7)
C110.0351 (9)0.0486 (10)0.0354 (9)0.0000 (8)0.0029 (7)0.0001 (8)
C120.0446 (11)0.0557 (12)0.0396 (10)0.0024 (9)0.0016 (8)0.0032 (9)
C130.0578 (13)0.0596 (13)0.0499 (12)0.0054 (11)0.0067 (10)0.0103 (10)
C140.0443 (12)0.0655 (14)0.0650 (14)0.0103 (10)0.0128 (10)0.0005 (11)
C150.0341 (10)0.0826 (17)0.0624 (14)0.0034 (11)0.0010 (10)0.0032 (12)
C160.0361 (10)0.0735 (14)0.0453 (11)0.0009 (10)0.0016 (8)0.0096 (10)
C170.0360 (9)0.0542 (11)0.0347 (9)0.0016 (8)0.0036 (7)0.0037 (8)
C180.0356 (9)0.0542 (11)0.0392 (10)0.0007 (8)0.0053 (8)0.0008 (8)
C190.0413 (10)0.0586 (12)0.0420 (10)0.0018 (9)0.0078 (8)0.0009 (9)
C200.0390 (10)0.0505 (11)0.0471 (11)0.0018 (8)0.0116 (8)0.0071 (9)
C210.0415 (11)0.0609 (13)0.0516 (12)0.0024 (10)0.0072 (9)0.0081 (10)
C220.0468 (13)0.0740 (16)0.0722 (16)0.0050 (12)0.0071 (11)0.0167 (13)
C230.0379 (12)0.0804 (18)0.096 (2)0.0040 (12)0.0149 (13)0.0283 (16)
C240.0539 (14)0.0804 (18)0.089 (2)0.0055 (13)0.0362 (14)0.0086 (16)
C250.0539 (14)0.0782 (16)0.0645 (15)0.0027 (12)0.0246 (11)0.0050 (13)
C260.0315 (9)0.0554 (11)0.0351 (9)0.0013 (8)0.0021 (7)0.0016 (8)
C270.0323 (9)0.0553 (12)0.0488 (11)0.0009 (8)0.0040 (8)0.0101 (9)
C280.0631 (15)0.0751 (16)0.0582 (14)0.0127 (13)0.0205 (12)0.0074 (12)
C290.084 (2)0.095 (2)0.083 (2)0.0132 (18)0.0477 (17)0.0046 (17)
C300.0520 (15)0.089 (2)0.109 (2)0.0128 (14)0.0269 (16)0.0201 (18)
C310.0566 (15)0.087 (2)0.098 (2)0.0283 (14)0.0074 (15)0.0243 (17)
C320.0520 (13)0.0787 (16)0.0592 (14)0.0154 (12)0.0031 (11)0.0121 (12)
N10.0299 (7)0.0523 (9)0.0303 (7)0.0014 (6)0.0009 (6)0.0023 (6)
N20.0324 (8)0.0645 (10)0.0316 (8)0.0058 (7)0.0017 (6)0.0059 (7)
N30.0348 (8)0.0659 (11)0.0319 (8)0.0070 (8)0.0045 (6)0.0067 (7)
N40.0304 (7)0.0496 (9)0.0349 (8)0.0023 (7)0.0030 (6)0.0023 (7)
N50.0322 (8)0.0646 (11)0.0342 (8)0.0057 (7)0.0027 (6)0.0055 (7)
N60.0341 (8)0.0878 (14)0.0346 (8)0.0110 (9)0.0028 (7)0.0081 (8)
Pd10.02574 (7)0.04563 (8)0.03007 (7)0.00040 (5)0.00212 (5)0.00124 (5)
S10.0344 (2)0.0749 (3)0.0349 (2)0.0119 (2)0.00699 (18)0.0100 (2)
S20.0275 (2)0.0866 (4)0.0319 (2)0.0068 (2)0.00370 (17)0.0071 (2)
Geometric parameters (Å, º) top
C1—N11.300 (2)C18—H150.9300
C1—C21.430 (3)C19—C201.457 (3)
C1—H10.9300C19—H160.9300
C2—C31.332 (3)C20—C211.381 (3)
C2—H20.9300C20—C251.389 (3)
C3—C41.457 (3)C21—C221.380 (3)
C3—H30.9300C21—H170.9300
C4—C51.385 (3)C22—C231.361 (4)
C4—C91.389 (3)C22—H180.9300
C5—C61.380 (3)C23—C241.363 (4)
C5—H40.9300C23—H190.9300
C6—C71.374 (4)C24—C251.380 (3)
C6—H50.9300C24—H200.9300
C7—C81.349 (4)C25—H210.9300
C7—H60.9300C26—N51.291 (2)
C8—C91.383 (3)C26—N61.363 (2)
C8—H70.9300C26—S21.7328 (19)
C9—H80.9300C27—C281.370 (3)
C10—N21.293 (2)C27—C321.384 (3)
C10—N31.362 (2)C27—N61.410 (2)
C10—S11.7520 (19)C28—C291.380 (3)
C11—C161.385 (3)C28—H220.9300
C11—C121.388 (3)C29—C301.351 (4)
C11—N31.413 (2)C29—H230.9300
C12—C131.380 (3)C30—C311.369 (4)
C12—H90.9300C30—H240.9300
C13—C141.371 (3)C31—C321.384 (3)
C13—H100.9300C31—H250.9300
C14—C151.374 (3)C32—H260.9300
C14—H110.9300N1—N21.390 (2)
C15—C161.381 (3)N1—Pd12.0217 (16)
C15—H120.9300N3—H270.8600
C16—H130.9300N4—N51.393 (2)
C17—N41.291 (2)N4—Pd12.0333 (16)
C17—C181.432 (3)N6—H280.8600
C17—H140.9300Pd1—S22.2836 (9)
C18—C191.331 (3)Pd1—S12.3016 (9)
N1—C1—C2126.30 (17)C25—C20—C19119.0 (2)
N1—C1—H1116.8C22—C21—C20120.5 (2)
C2—C1—H1116.8C22—C21—H17119.7
C3—C2—C1121.49 (18)C20—C21—H17119.7
C3—C2—H2119.3C23—C22—C21120.9 (3)
C1—C2—H2119.3C23—C22—H18119.6
C2—C3—C4125.73 (19)C21—C22—H18119.6
C2—C3—H3117.1C22—C23—C24119.6 (2)
C4—C3—H3117.1C22—C23—H19120.2
C5—C4—C9118.0 (2)C24—C23—H19120.2
C5—C4—C3122.27 (19)C23—C24—C25120.3 (2)
C9—C4—C3119.7 (2)C23—C24—H20119.8
C6—C5—C4120.0 (2)C25—C24—H20119.8
C6—C5—H4120.0C24—C25—C20120.8 (3)
C4—C5—H4120.0C24—C25—H21119.6
C7—C6—C5120.8 (3)C20—C25—H21119.6
C7—C6—H5119.6N5—C26—N6119.74 (17)
C5—C6—H5119.6N5—C26—S2125.25 (14)
C8—C7—C6119.9 (2)N6—C26—S2115.00 (13)
C8—C7—H6120.1C28—C27—C32119.5 (2)
C6—C7—H6120.1C28—C27—N6116.4 (2)
C7—C8—C9120.2 (3)C32—C27—N6123.9 (2)
C7—C8—H7119.9C27—C28—C29120.3 (3)
C9—C8—H7119.9C27—C28—H22119.9
C8—C9—C4121.0 (3)C29—C28—H22119.9
C8—C9—H8119.5C30—C29—C28120.6 (3)
C4—C9—H8119.5C30—C29—H23119.7
N2—C10—N3120.03 (17)C28—C29—H23119.7
N2—C10—S1124.91 (14)C29—C30—C31119.7 (2)
N3—C10—S1115.06 (13)C29—C30—H24120.2
C16—C11—C12118.73 (18)C31—C30—H24120.2
C16—C11—N3124.58 (18)C30—C31—C32120.9 (3)
C12—C11—N3116.68 (17)C30—C31—H25119.6
C13—C12—C11120.6 (2)C32—C31—H25119.6
C13—C12—H9119.7C31—C32—C27119.0 (2)
C11—C12—H9119.7C31—C32—H26120.5
C14—C13—C12120.7 (2)C27—C32—H26120.5
C14—C13—H10119.7C1—N1—N2113.95 (15)
C12—C13—H10119.7C1—N1—Pd1124.60 (13)
C13—C14—C15118.7 (2)N2—N1—Pd1121.45 (11)
C13—C14—H11120.7C10—N2—N1114.18 (15)
C15—C14—H11120.7C10—N3—C11129.63 (16)
C14—C15—C16121.6 (2)C10—N3—H27115.2
C14—C15—H12119.2C11—N3—H27115.2
C16—C15—H12119.2C17—N4—N5113.40 (15)
C15—C16—C11119.6 (2)C17—N4—Pd1125.56 (13)
C15—C16—H13120.2N5—N4—Pd1121.01 (11)
C11—C16—H13120.2C26—N5—N4114.13 (15)
N4—C17—C18126.43 (17)C26—N6—C27129.03 (17)
N4—C17—H14116.8C26—N6—H28115.5
C18—C17—H14116.8C27—N6—H28115.5
C19—C18—C17122.63 (19)N1—Pd1—N4178.31 (6)
C19—C18—H15118.7N1—Pd1—S295.66 (4)
C17—C18—H15118.7N4—Pd1—S282.94 (4)
C18—C19—C20126.8 (2)N1—Pd1—S182.92 (4)
C18—C19—H16116.6N4—Pd1—S198.45 (4)
C20—C19—H16116.6S2—Pd1—S1177.57 (2)
C21—C20—C25117.9 (2)C10—S1—Pd195.74 (6)
C21—C20—C19123.10 (18)C26—S2—Pd196.65 (6)
N1—C1—C2—C3172.9 (2)C32—C27—C28—C291.5 (4)
C1—C2—C3—C4177.50 (19)N6—C27—C28—C29177.0 (3)
C2—C3—C4—C517.8 (3)C27—C28—C29—C301.1 (5)
C2—C3—C4—C9159.6 (2)C28—C29—C30—C310.0 (5)
C9—C4—C5—C60.8 (3)C29—C30—C31—C320.6 (5)
C3—C4—C5—C6176.7 (2)C30—C31—C32—C270.1 (4)
C4—C5—C6—C71.2 (4)C28—C27—C32—C310.9 (4)
C5—C6—C7—C82.0 (4)N6—C27—C32—C31176.0 (2)
C6—C7—C8—C90.8 (4)C2—C1—N1—N20.7 (3)
C7—C8—C9—C41.3 (4)C2—C1—N1—Pd1178.74 (16)
C5—C4—C9—C82.0 (4)N3—C10—N2—N1179.95 (17)
C3—C4—C9—C8175.5 (2)S1—C10—N2—N10.6 (3)
C16—C11—C12—C130.8 (3)C1—N1—N2—C10173.45 (18)
N3—C11—C12—C13179.92 (19)Pd1—N1—N2—C107.1 (2)
C11—C12—C13—C140.3 (3)N2—C10—N3—C114.6 (3)
C12—C13—C14—C150.3 (4)S1—C10—N3—C11175.92 (16)
C13—C14—C15—C160.4 (4)C16—C11—N3—C1018.5 (3)
C14—C15—C16—C110.2 (4)C12—C11—N3—C10162.2 (2)
C12—C11—C16—C150.7 (3)C18—C17—N4—N52.1 (3)
N3—C11—C16—C15180.0 (2)C18—C17—N4—Pd1176.05 (16)
N4—C17—C18—C19174.5 (2)N6—C26—N5—N4179.31 (18)
C17—C18—C19—C20177.5 (2)S2—C26—N5—N40.4 (3)
C18—C19—C20—C2113.0 (4)C17—N4—N5—C26177.55 (18)
C18—C19—C20—C25166.5 (2)Pd1—N4—N5—C260.7 (2)
C25—C20—C21—C220.5 (3)N5—C26—N6—C276.0 (4)
C19—C20—C21—C22178.9 (2)S2—C26—N6—C27175.02 (18)
C20—C21—C22—C230.3 (4)C28—C27—N6—C26160.2 (2)
C21—C22—C23—C240.2 (4)C32—C27—N6—C2624.6 (4)
C22—C23—C24—C250.8 (4)N2—C10—S1—Pd16.03 (18)
C23—C24—C25—C201.7 (4)N3—C10—S1—Pd1174.54 (14)
C21—C20—C25—C241.5 (4)N5—C26—S2—Pd11.1 (2)
C19—C20—C25—C24178.0 (2)N6—C26—S2—Pd1179.99 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···S20.932.603.230 (2)126
C16—H13···N20.932.322.887 (3)119
C17—H14···S10.932.723.355 (2)126
C32—H26···N50.932.392.911 (3)115
N3—H27···S2i0.862.633.4805 (18)171
N6—H28···S1ii0.862.843.6554 (19)159
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Bond lengths (Å) for the N—N—C—S entities in cinnamaldehyde-4-phenylthiosemicarbazone structures: as a neutral molecule and as an anionic ligand top
N—NN—CC—S
C16H15N3Sa,c1.369 (2)1.354 (2)1.6704 (19)
Ni(C16H14N3S)2b,c1.405 (5)1.301 (6)1.730 (5)
Pd(C16H14N3S)2b,d1.390 (2)1.293 (2)1.7520 (19)
1.393 (2)1.291 (2)1.7328 (19)
Notes: (a) Neutral, non-coordinated form of the cinnamaldehyde 4-phenylthiosemicarbazone; (b) anionic, coordinated form of the cinnamaldehyde 4-phenylthiosemicarbazone; (c) Song et al. (2014); (d) this work.
 

Acknowledgements

APLM thanks CAPES for the award of a PhD scholarship. The authors thank the Department of Chemistry of the Federal University of Santa Maria/Brazil for the access to the X-ray diffraction facility.

Funding information

Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES), Finance code 001.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChemical Abstracts Service (2023). Columbus, Ohio, USA (accessed via SciFinder on September 1, 2023).  Google Scholar
First citationFarias, R. L., Polez, A. M. R., Silva, A. D. E. S., Zanetti, R. D., Moreira, M. B., Batista, V. S., Reis, B. L., Nascimento-Júnior, N. M., Rocha, F. V., Lima, M. A., Oliveira, A. B., Ellena, J., Scarim, C. B., Zambom, C. R., Brito, L. D., Garrido, S. S., Melo, A. P. L., Bresolin, L., Tirloni, B., Pereira, J. C. M. & Netto, A. V. G. (2021). Mater. Sci. Eng. C, 121, 111815, 1–12.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationMostafa, H. A. (2000). Electrochim. Acta, 18, 45–53.  CrossRef CAS Google Scholar
First citationNyawadea, E. A., Sibuyi, N. R. S., Meyer, M., Lalancette, R. & Onani, M. O. (2021). Inorg. Chim. Acta, 515, 120036, 1–10.  Google Scholar
First citationOliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, 101–103.  CSD CrossRef IUCr Journals Google Scholar
First citationPalve, A. M. & Garje, S. S. (2011). J. Cryst. Growth, 326, 157–162.  Web of Science CrossRef CAS Google Scholar
First citationPawar, A. S. & Garje, S. S. (2015). Bull. Mater. Sci. 38, 1843–1850.  Web of Science CrossRef CAS Google Scholar
First citationPawar, A. S., Masikane, S. C., Mlowe, S., Garje, S. S. & Revaprasadu, N. (2016). Eur. J. Inorg. Chem. pp. 366–372.  Web of Science CrossRef Google Scholar
First citationRocha, F. V., Farias, R. L., Lima, M. A., Batista, V. S., Nascimento-Júnior, N. M., Garrido, S. S., Leopoldino, A. M., Goto, R. N., Oliveira, A. B., Beck, J., Landvogt, C., Mauro, A. E. & Netto, A. V. G. (2019). J. Inorg. Biochem. 199, 110725, 1–9.  Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, J., Zhu, F., Wang, H. & Zhao, P. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 129, 227–234.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTišler, M. (1956). Z. Anal. Chem. 149, 164–172.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds