research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystallographic characterization of 6-hy­droxy-1,2-di­hydropyridin-2-one

crossmark logo

aDepartment of Chemistry, The State University of New York at Cortland, Cortland, New York 13045, USA, bDepartment of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA, and cDepartment of Chemistry, The College of Wooster, Wooster, Ohio 44691, USA
*Correspondence e-mail: andrew.roering@cortland.edu, katherine.hicks@cortland.edu

Edited by J. Reibenspies, Texas A & M University, USA (Received 25 August 2023; accepted 7 November 2023; online 14 November 2023)

The title compound, C5H5NO2, is a hy­droxy­lated pyridine ring that has been studied for its involvement in microbial degradation of nicotinic acid. Here we describe its synthesis as a formic acid salt, rather than the standard hydro­chloride salt that is commercially available, and its spectroscopic and crystallographic characterization.

1. Chemical context

6-Hydroxy-1,2-dihydropyridin-2-one, more commonly known as 2,6-dihydroxypyridine (2,6-DHP), is a derivative of nicotinic acid, a common compound found within personal care products (Behrman & Stanier, 1957[Behrman, E. J. & Stanier, R. Y. (1957). J. Biol. Chem. 228, 923-945.]; Hicks et al., 2016[Hicks, K. A., Yuen, M. E., Zhen, W. F., Gerwig, T. J., Story, R. W., Kopp, M. & Snider, M. J. (2016). Biochemistry, 55, 3432-3446.]; Nakamoto et al., 2019[Nakamoto, K. D., Perkins, S. W., Campbell, R. G., Bauerle, M. R., Gerwig, T. J., Gerislioglu, S., Wesdemiotis, C., Anderson, M. A., Hicks, K. A. & Snider, M. J. (2019). Biochemistry, 58, 1751-1763.]). Recent work has focused on the bacterial hydrolysis of nicotinic acid for use in bioremediation efforts (Bokor et al., 2022[Bokor, E., Ámon, J., Varga, M., Szekeres, A., Hegedűs, Z., Jakusch, T., Szakonyi, Z., Flipphi, M., Vágvölgyi, C., Gácser, A., Scazzocchio, C. & Hamari, Z. (2022). Commun. Biol. 5, 723-734.]). Synthesis of 2,6-DHP can be accomplished by reaction between 2,6-di­chloro­pyridine and potassium tert-butoxide to afford 2,6-di-tert-but­oxy­pyridine (1) followed by reaction with formic acid to produce the product 2 as the pyridone tautomer (Scheme 1; Kocienski, 1994[Kocienski, P. J. (1994). Protecting Groups in Organic Synthesis. Stuttgart: Thieme.]). The identification of 2 was confirmed by 1H, 13C and IR spectroscopy. The 1H NMR spectrum suggested a non-symmetric pyridone mol­ecule with an N—H proton at δ = 11.47 ppm. The aromatic region of the spectrum suggested that each of the three protons on the aromatic backbone of 2 were in different chemical environments highlighted by their different chemical shifts of δ = 7.66, 6.91 and 6.60 ppm. These shifts, along with their splitting patterns and coupling constants, are consistent with the structure of 2. IR spectroscopic data of 2 were also consistent with the overall structure of a pyridone tautomer. Crystals of 2 were grown from slow evaporation of a saturated methanol solution. The solid-state structure of 2 was consistent with the solution state as the title mol­ecule crystallized as the keto tautomer.

[Scheme 1]

2. Structural commentary

The structure of 2,6-di­hydroxy­pyridine (Fig. 1[link]) shows the expected 2,6-disubstitution of the pyridine ring. The bond lengths and angles are routine for nitro­gen-containing aromatic compounds (Table 1[link]).

Table 1
Selected geometric parameters (Å, °) for 2

O9—C21 1.2789 (12) N5—C21 1.3688 (12)
O10—C25 1.3193 (12) N5—C25 1.3557 (12)
       
C25—N5—C21 124.86 (9) N5—C21—C22 116.60 (8)
C21—N5—H5 117.3 (8) O10—C25—N5 114.23 (8)
C25—N5—H5 117.8 (8) O10—C25—C24 126.58 (9)
O9—C21—N5 117.12 (9) N5—C25—C24 119.19 (9)
O9—C21—C22 126.28 (9)    
[Figure 1]
Figure 1
A view of 2 showing the atom-numbering scheme for one independent mol­ecule. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

There are six independent mol­ecules in the asymmetric unit of 2; of these, two pairs of mol­ecules are each held together by O—H⋯O hydrogen bonds. In both instances, the H atoms in the hydrogen bonds are disordered over two positions with refined occupancies of 0.51 (3) and 0.49 (3) at the O6 and O7 sites, respectively, and 0.39 (3) and 0.61 (3) at the O2 and O3 sites, respectively. The mol­ecules pack together in the solid state with inter­molecular O—H⋯O and N—H⋯O inter­actions (Table 2[link] and Fig. 2[link]). The crystal packing of the title compound involves no ππ ring inter­actions (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °) for 2

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3 0.84 (2) 1.60 (2) 2.4317 (10) 174 (4)
N1—H1⋯O9i 0.88 (1) 1.98 (1) 2.8606 (11) 175 (1)
O3—H3⋯O2 0.87 (2) 1.57 (2) 2.4317 (10) 176 (3)
O4—H4⋯O5ii 0.981 (14) 1.500 (14) 2.4768 (10) 173.5 (14)
N2—H2⋯O1iii 0.89 (1) 1.89 (1) 2.7554 (11) 166 (1)
O6—H6⋯O7 0.86 (1) 1.58 (1) 2.4381 (10) 177 (3)
N3—H3B⋯O11iv 0.87 (1) 1.95 (1) 2.8155 (11) 170 (1)
O7—H7A⋯O6 0.88 (2) 1.56 (2) 2.4381 (10) 179 (3)
O8—H8A⋯O9v 0.91 (1) 1.58 (1) 2.4803 (10) 175 (1)
N4—H4A⋯O10i 0.87 (1) 2.07 (1) 2.8999 (11) 161 (1)
O10—H10⋯O11iv 0.95 (1) 1.52 (1) 2.4690 (9) 176 (1)
N5—H5⋯O2i 0.88 (1) 1.90 (1) 2.7699 (11) 167 (1)
O12—H12A⋯O1iii 0.90 (1) 1.61 (1) 2.5057 (10) 178 (2)
N6—H6A⋯O5vi 0.88 (1) 1.91 (1) 2.7893 (11) 172 (1)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-1, y, z]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x, -y+1, -z+1]; (vi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A view of the inter­molecular inter­actions in 2.
[Figure 3]
Figure 3
A view of the mol­ecular packing in 2.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis of 2 was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer 21.5 software (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Visualizations used a red–white–blue color scheme where red indicates shorter contacts, while blue indicates longer contacts. There are four red spots on the dnorm surface (Fig. 4[link]a) and these spots indicate the direction and strength of the inter­molecular E—H⋯O (E = N, O). The two-dimensional fingerprint plots are shown in Fig. 4[link]b. The resulting fingerprint plot indicates strong O⋯H inter­actions, as shown by the two prominent spikes on either side of the diagonal. The N⋯H inter­actions are shown in the `wings' of the plot and are not as prominent as the O⋯H inter­actions.

[Figure 4]
Figure 4
(a) Hirshfeld surface representations of 2 with the function dnorm plotted onto the surface indicating the E—H⋯O (E = N, O) inter­actions; (b) two-dimensional fingerprint plot.

5. Database survey

A search for the pyridone tautomers of relatively simple dihy­droxy-substituted pyridines in the Cambridge Structure Database (CSD version 5.44, last update April 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 23 crystal structures. Nearly all these structures have N—H⋯O and O—H⋯O hydrogen-bonding motifs, similar to those observed in the title compound. The structures with dissimilar motifs involve inter­molecular inter­actions with solvent mol­ecules or intra­molecular hydrogen bonding. The closest analogues to 2 were found to be GUBKIZ and NOQGOR (Gerhardt & Bolte, 2015[Gerhardt, V. & Bolte, M. (2015). Acta Cryst. C71, 19-25.]); these structures contain N—H⋯O and O—H⋯O(solvent) hydrogen-bonding motifs.

6. Synthesis and crystallization

1: A 100 mL round-bottom flask equipped with a stir bar was charged with 2,6-di­chloro­pyridine (1.00 g, 6.80 mmol, 1 eq) and 15 mL of mesitylene solvent. To the solution was added potassium tert-butoxide (1.52 g, 13.6 mmol, 2.1 eq). The solution was then refluxed under N2 for 18 h. A color change from colorless to deep red was observed. After 18 h, the solution was allowed to cool to room temperature and the solution was washed with water (3 × 20 mL). The organic layer was collected, dried over sodium sulfate and used without purification in step 2.

2: To the crude solution from step 1 in a 20 mL scintillation vial was added formic acid (1.00 mL, 17.8 mmol, 2.6 eq). The bi-layered solution was stirred in air at high speed for 18 h when a solid precipitate formed. The solid was collected and dried under vacuum to yield 0.180 g (17% over 2 steps).

1H NMR (300 MHz, ppm), 11.47 (bs, 1H NH), 7.68 (t, 1H), 6.91 (d, 1H), 6.60 (d, 1H). 13C NMR (75 MHz, ppm), 163.7, 147.0, 142.2, 114.9, 108.5. IR (cm−1): 1596 m, 1333 m, 825 w, 772 w, 706 s.

Crystals suitable for X-ray analysis were grown from slow evaporation of a saturated methanol solution. The melting point of 2,6-DHP was measured at 460–465 K.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms bonded to carbon were included in calculated positions and refined using a riding model. Hydrogen atoms bound to N and O were located in the difference-Fourier map, and refined semi-freely with the help of distance restraints.

Table 3
Experimental details

Crystal data
Chemical formula C30H30N6O12
Mr 666.60
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.58785 (4), 16.83642 (8), 19.55978 (10)
β (°) 103.7319 (5)
V3) 3067.19 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.97
Crystal size (mm) 0.38 × 0.12 × 0.10
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.453, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 83138, 6554, 6155
Rint 0.035
(sin θ/λ)max−1) 0.635
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.02
No. of reflections 6554
No. of parameters 477
No. of restraints 14
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.35
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

6-Hydroxy-1,2-dihydropyridin-2-one top
Crystal data top
C30H30N6O12F(000) = 1392
Mr = 666.60Dx = 1.444 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 9.58785 (4) ÅCell parameters from 59431 reflections
b = 16.83642 (8) Åθ = 3.5–78.0°
c = 19.55978 (10) ŵ = 0.97 mm1
β = 103.7319 (5)°T = 100 K
V = 3067.19 (3) Å3Block, clear colourless
Z = 40.38 × 0.12 × 0.10 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
6554 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source6155 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.0000 pixels mm-1θmax = 78.1°, θmin = 3.5°
ω scansh = 1112
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2021)
k = 2121
Tmin = 0.453, Tmax = 1.000l = 2424
83138 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0411P)2 + 1.0736P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6554 reflectionsΔρmax = 0.19 e Å3
477 parametersΔρmin = 0.35 e Å3
14 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.99326 (7)0.14764 (4)0.52810 (4)0.02046 (15)
O20.52056 (7)0.20046 (5)0.45281 (4)0.02307 (16)
H2A0.433 (2)0.190 (2)0.449 (2)0.028*0.39 (3)
N10.75397 (8)0.16938 (5)0.49622 (4)0.01657 (16)
H10.7731 (13)0.2085 (7)0.4701 (6)0.020*
C10.86759 (10)0.12574 (6)0.53339 (5)0.01703 (19)
C20.83551 (11)0.06266 (6)0.57353 (5)0.0215 (2)
H2B0.9101240.0310890.6011410.026*
C30.69311 (11)0.04690 (6)0.57242 (6)0.0228 (2)
H3A0.6717490.0041900.5999980.027*
C40.58049 (10)0.09106 (6)0.53259 (5)0.0196 (2)
H4B0.4837730.0785500.5323770.024*
C50.61270 (10)0.15408 (6)0.49300 (5)0.01704 (19)
O30.26881 (7)0.17595 (5)0.44883 (4)0.02250 (16)
H30.3589 (19)0.1824 (14)0.4497 (13)0.027*0.61 (3)
O40.19312 (7)0.12596 (5)0.35615 (4)0.02344 (16)
H40.2704 (15)0.1017 (8)0.3202 (7)0.028*
N20.04226 (8)0.14771 (5)0.39488 (4)0.01710 (16)
H20.0221 (13)0.1564 (8)0.4363 (6)0.021*
C60.18169 (10)0.15386 (6)0.39087 (5)0.01790 (19)
C70.21482 (11)0.13432 (6)0.32713 (6)0.0213 (2)
H70.3106690.1376360.3219140.026*
C80.10467 (11)0.11005 (7)0.27185 (6)0.0239 (2)
H80.1268990.0952900.2287710.029*
C90.03761 (11)0.10639 (6)0.27684 (5)0.0219 (2)
H90.1118930.0909070.2376950.026*
C100.06756 (10)0.12600 (6)0.34062 (5)0.01782 (19)
O51.10984 (8)0.44209 (4)0.77157 (4)0.02427 (17)
O60.69473 (7)0.46139 (4)0.60703 (4)0.02291 (16)
H60.633 (3)0.4403 (16)0.5726 (11)0.027*0.51 (3)
N30.90320 (8)0.44362 (5)0.68705 (4)0.01738 (17)
H3B0.8924 (13)0.4921 (7)0.7009 (7)0.021*
C111.02185 (10)0.40333 (6)0.72324 (5)0.01834 (19)
C121.03646 (12)0.32439 (6)0.70413 (6)0.0254 (2)
H121.1161690.2934980.7279410.030*
C130.93248 (13)0.29207 (7)0.64981 (6)0.0295 (2)
H130.9425210.2383760.6368330.035*
C140.81402 (11)0.33486 (6)0.61347 (6)0.0240 (2)
H140.7449930.3112120.5760360.029*
C150.79897 (10)0.41320 (6)0.63325 (5)0.01727 (19)
O70.51409 (7)0.40623 (4)0.50930 (4)0.02113 (15)
H7A0.579 (3)0.4265 (17)0.5446 (12)0.025*0.49 (3)
O80.06505 (7)0.32983 (5)0.41128 (4)0.02330 (16)
H8A0.0264 (13)0.3226 (8)0.4150 (7)0.028*
N40.28349 (8)0.37226 (5)0.46665 (4)0.01696 (17)
H4A0.3118 (13)0.3515 (8)0.4316 (6)0.020*
C160.38461 (10)0.41017 (6)0.51679 (5)0.01732 (19)
C170.33735 (11)0.44811 (6)0.57103 (5)0.0218 (2)
H170.4029670.4761820.6069260.026*
C180.19353 (12)0.44388 (7)0.57127 (6)0.0260 (2)
H180.1616760.4692690.6081960.031*
C190.09332 (11)0.40380 (7)0.51941 (6)0.0239 (2)
H190.0048150.4010250.5210120.029*
C200.14144 (10)0.36826 (6)0.46563 (5)0.01835 (19)
O90.18597 (7)0.69692 (4)0.58239 (4)0.02126 (15)
O100.66116 (7)0.66705 (4)0.66883 (4)0.01849 (15)
H100.7367 (13)0.6395 (8)0.6998 (7)0.022*
N50.42153 (8)0.67871 (5)0.63253 (4)0.01655 (16)
H50.4396 (13)0.7114 (7)0.6004 (6)0.020*
C210.28056 (10)0.66605 (6)0.63264 (5)0.01715 (19)
C220.25389 (10)0.61994 (6)0.68815 (5)0.0203 (2)
H220.1582200.6101050.6915820.024*
C230.36839 (11)0.58916 (6)0.73752 (6)0.0224 (2)
H230.3497500.5582530.7750090.027*
C240.51056 (11)0.60179 (6)0.73441 (5)0.0203 (2)
H240.5879060.5792910.7684590.024*
C250.53506 (10)0.64807 (6)0.68018 (5)0.01634 (18)
O110.64103 (7)0.09175 (4)0.75468 (4)0.01983 (15)
O120.20548 (7)0.07976 (5)0.60556 (4)0.02324 (16)
H12A0.1306 (14)0.1044 (8)0.5774 (7)0.028*
N60.42400 (8)0.09381 (5)0.67740 (4)0.01662 (16)
H6A0.4165 (13)0.0440 (7)0.6899 (7)0.020*
C260.54837 (10)0.13190 (6)0.70929 (5)0.01743 (19)
C270.56380 (12)0.21052 (6)0.68974 (6)0.0260 (2)
H270.6497100.2389770.7089970.031*
C280.45219 (13)0.24630 (7)0.64195 (6)0.0304 (3)
H280.4624240.3001020.6293250.036*
C290.32527 (12)0.20661 (7)0.61155 (6)0.0249 (2)
H290.2491730.2327170.5794420.030*
C300.31366 (10)0.12804 (6)0.62962 (5)0.01851 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0114 (3)0.0298 (4)0.0185 (3)0.0016 (3)0.0002 (2)0.0008 (3)
O20.0104 (3)0.0268 (4)0.0301 (4)0.0005 (3)0.0013 (3)0.0117 (3)
N10.0118 (4)0.0194 (4)0.0174 (4)0.0001 (3)0.0013 (3)0.0032 (3)
C10.0133 (4)0.0214 (5)0.0148 (4)0.0020 (3)0.0000 (3)0.0032 (3)
C20.0195 (5)0.0217 (5)0.0210 (5)0.0054 (4)0.0002 (4)0.0031 (4)
C30.0237 (5)0.0199 (5)0.0244 (5)0.0007 (4)0.0050 (4)0.0050 (4)
C40.0157 (4)0.0202 (5)0.0229 (5)0.0015 (3)0.0041 (4)0.0014 (4)
C50.0127 (4)0.0191 (4)0.0181 (4)0.0002 (3)0.0013 (3)0.0003 (4)
O30.0113 (3)0.0326 (4)0.0218 (4)0.0029 (3)0.0005 (3)0.0013 (3)
O40.0125 (3)0.0331 (4)0.0237 (4)0.0050 (3)0.0022 (3)0.0064 (3)
N20.0123 (4)0.0207 (4)0.0177 (4)0.0014 (3)0.0024 (3)0.0020 (3)
C60.0127 (4)0.0177 (4)0.0222 (5)0.0001 (3)0.0019 (3)0.0020 (4)
C70.0164 (4)0.0239 (5)0.0247 (5)0.0015 (4)0.0069 (4)0.0037 (4)
C80.0255 (5)0.0271 (5)0.0205 (5)0.0003 (4)0.0082 (4)0.0002 (4)
C90.0205 (5)0.0246 (5)0.0187 (5)0.0031 (4)0.0008 (4)0.0023 (4)
C100.0144 (4)0.0167 (4)0.0209 (5)0.0019 (3)0.0011 (4)0.0001 (4)
O50.0181 (3)0.0227 (4)0.0261 (4)0.0047 (3)0.0066 (3)0.0051 (3)
O60.0158 (3)0.0241 (4)0.0241 (4)0.0013 (3)0.0048 (3)0.0018 (3)
N30.0143 (4)0.0166 (4)0.0193 (4)0.0007 (3)0.0001 (3)0.0023 (3)
C110.0146 (4)0.0211 (5)0.0179 (4)0.0013 (3)0.0010 (3)0.0003 (4)
C120.0238 (5)0.0218 (5)0.0274 (5)0.0069 (4)0.0004 (4)0.0019 (4)
C130.0319 (6)0.0213 (5)0.0319 (6)0.0038 (4)0.0007 (5)0.0073 (4)
C140.0225 (5)0.0238 (5)0.0227 (5)0.0027 (4)0.0002 (4)0.0059 (4)
C150.0133 (4)0.0219 (5)0.0158 (4)0.0022 (3)0.0019 (3)0.0006 (4)
O70.0119 (3)0.0277 (4)0.0218 (4)0.0025 (3)0.0001 (3)0.0025 (3)
O80.0117 (3)0.0300 (4)0.0265 (4)0.0043 (3)0.0012 (3)0.0042 (3)
N40.0128 (4)0.0200 (4)0.0176 (4)0.0006 (3)0.0026 (3)0.0009 (3)
C160.0146 (4)0.0174 (4)0.0181 (4)0.0012 (3)0.0001 (3)0.0039 (3)
C170.0226 (5)0.0223 (5)0.0189 (5)0.0026 (4)0.0020 (4)0.0014 (4)
C180.0267 (5)0.0274 (5)0.0261 (5)0.0009 (4)0.0108 (4)0.0036 (4)
C190.0168 (4)0.0271 (5)0.0299 (5)0.0009 (4)0.0093 (4)0.0003 (4)
C200.0134 (4)0.0181 (4)0.0224 (5)0.0010 (3)0.0020 (4)0.0037 (4)
O90.0110 (3)0.0253 (4)0.0252 (4)0.0008 (3)0.0002 (3)0.0068 (3)
O100.0106 (3)0.0242 (3)0.0193 (3)0.0011 (3)0.0008 (2)0.0022 (3)
N50.0120 (4)0.0197 (4)0.0171 (4)0.0001 (3)0.0017 (3)0.0038 (3)
C210.0126 (4)0.0175 (4)0.0204 (5)0.0004 (3)0.0020 (3)0.0008 (4)
C220.0152 (4)0.0232 (5)0.0237 (5)0.0004 (4)0.0070 (4)0.0016 (4)
C230.0236 (5)0.0242 (5)0.0207 (5)0.0012 (4)0.0077 (4)0.0050 (4)
C240.0182 (5)0.0231 (5)0.0180 (5)0.0041 (4)0.0014 (4)0.0036 (4)
C250.0132 (4)0.0179 (4)0.0168 (4)0.0007 (3)0.0013 (3)0.0022 (3)
O110.0143 (3)0.0197 (3)0.0214 (3)0.0014 (3)0.0040 (3)0.0039 (3)
O120.0131 (3)0.0304 (4)0.0222 (4)0.0006 (3)0.0038 (3)0.0036 (3)
N60.0130 (4)0.0185 (4)0.0166 (4)0.0002 (3)0.0000 (3)0.0022 (3)
C260.0146 (4)0.0203 (5)0.0159 (4)0.0001 (3)0.0008 (3)0.0004 (4)
C270.0254 (5)0.0202 (5)0.0264 (5)0.0045 (4)0.0055 (4)0.0018 (4)
C280.0369 (6)0.0184 (5)0.0291 (6)0.0001 (4)0.0058 (5)0.0038 (4)
C290.0249 (5)0.0234 (5)0.0213 (5)0.0067 (4)0.0045 (4)0.0021 (4)
C300.0138 (4)0.0254 (5)0.0151 (4)0.0031 (4)0.0010 (3)0.0012 (4)
Geometric parameters (Å, º) top
O1—C11.2875 (12)O7—H7A0.879 (18)
O2—H2A0.839 (19)O7—C161.2858 (12)
O2—C51.2956 (12)O8—H8A0.905 (12)
N1—H10.880 (12)O8—C201.3098 (12)
N1—C11.3708 (12)N4—H4A0.868 (12)
N1—C51.3655 (12)N4—C161.3630 (12)
C1—C21.3978 (15)N4—C201.3590 (12)
C2—H2B0.9500C16—C171.4026 (15)
C2—C31.3859 (15)C17—H170.9500
C3—H3A0.9500C17—C181.3819 (15)
C3—C41.3879 (14)C18—H180.9500
C4—H4B0.9500C18—C191.3946 (15)
C4—C51.3908 (14)C19—H190.9500
O3—H30.867 (17)C19—C201.3811 (15)
O3—C61.2928 (12)O9—C211.2789 (12)
O4—H40.981 (14)O10—H100.948 (11)
O4—C101.3096 (12)O10—C251.3193 (12)
N2—H20.888 (12)N5—H50.882 (12)
N2—C61.3616 (12)N5—C211.3688 (12)
N2—C101.3556 (12)N5—C251.3557 (12)
C6—C71.3971 (15)C21—C221.4067 (14)
C7—H70.9500C22—H220.9500
C7—C81.3818 (15)C22—C231.3795 (14)
C8—H80.9500C23—H230.9500
C8—C91.3919 (15)C23—C241.3952 (14)
C9—H90.9500C24—H240.9500
C9—C101.3850 (15)C24—C251.3805 (14)
O5—C111.2856 (12)O11—C261.2884 (12)
O6—H60.861 (14)O12—H12A0.897 (12)
O6—C151.2949 (12)O12—C301.3139 (12)
N3—H3B0.874 (12)N6—H6A0.881 (12)
N3—C111.3686 (12)N6—C261.3671 (12)
N3—C151.3672 (12)N6—C301.3622 (12)
C11—C121.3966 (14)C26—C271.3955 (14)
C12—H120.9500C27—H270.9500
C12—C131.3843 (15)C27—C281.3810 (15)
C13—H130.9500C28—H280.9500
C13—C141.3896 (15)C28—C291.3919 (16)
C14—H140.9500C29—H290.9500
C14—C151.3916 (15)C29—C301.3805 (15)
C5—O2—H2A117 (3)C16—O7—H7A114.1 (19)
C1—N1—H1117.4 (8)C20—O8—H8A111.5 (9)
C5—N1—H1117.1 (8)C16—N4—H4A117.0 (8)
C5—N1—C1125.31 (9)C20—N4—H4A118.0 (8)
O1—C1—N1116.42 (9)C20—N4—C16124.96 (9)
O1—C1—C2126.71 (9)O7—C16—N4115.79 (9)
N1—C1—C2116.88 (9)O7—C16—C17127.13 (9)
C1—C2—H2B120.5N4—C16—C17117.07 (9)
C3—C2—C1118.94 (9)C16—C17—H17120.6
C3—C2—H2B120.5C18—C17—C16118.75 (9)
C2—C3—H3A118.7C18—C17—H17120.6
C2—C3—C4122.58 (9)C17—C18—H18118.7
C4—C3—H3A118.7C17—C18—C19122.56 (10)
C3—C4—H4B120.8C19—C18—H18118.7
C3—C4—C5118.37 (9)C18—C19—H19121.1
C5—C4—H4B120.8C20—C19—C18117.81 (9)
O2—C5—N1116.12 (9)C20—C19—H19121.1
O2—C5—C4126.02 (9)O8—C20—N4113.69 (9)
N1—C5—C4117.85 (9)O8—C20—C19127.49 (9)
C6—O3—H3119.1 (16)N4—C20—C19118.83 (9)
C10—O4—H4114.4 (8)C25—O10—H10111.5 (8)
C6—N2—H2118.0 (8)C25—N5—C21124.86 (9)
C10—N2—H2117.5 (8)C21—N5—H5117.3 (8)
C10—N2—C6124.49 (9)C25—N5—H5117.8 (8)
O3—C6—N2114.22 (9)O9—C21—N5117.12 (9)
O3—C6—C7127.87 (9)O9—C21—C22126.28 (9)
N2—C6—C7117.89 (9)N5—C21—C22116.60 (8)
C6—C7—H7120.8C21—C22—H22120.4
C8—C7—C6118.33 (9)C23—C22—C21119.17 (9)
C8—C7—H7120.8C23—C22—H22120.4
C7—C8—H8118.7C22—C23—H23118.8
C7—C8—C9122.55 (10)C22—C23—C24122.38 (9)
C9—C8—H8118.7C24—C23—H23118.8
C8—C9—H9121.0C23—C24—H24121.1
C10—C9—C8117.96 (9)C25—C24—C23117.76 (9)
C10—C9—H9121.0C25—C24—H24121.1
O4—C10—N2113.87 (9)O10—C25—N5114.23 (8)
O4—C10—C9127.39 (9)O10—C25—C24126.58 (9)
N2—C10—C9118.74 (9)N5—C25—C24119.19 (9)
C15—O6—H6112.0 (19)C30—O12—H12A112.5 (9)
C11—N3—H3B116.6 (8)C26—N6—H6A116.1 (8)
C15—N3—H3B118.0 (8)C30—N6—H6A119.5 (8)
C15—N3—C11125.33 (9)C30—N6—C26124.46 (9)
O5—C11—N3116.65 (9)O11—C26—N6116.90 (9)
O5—C11—C12126.15 (9)O11—C26—C27125.87 (9)
N3—C11—C12117.21 (9)N6—C26—C27117.24 (9)
C11—C12—H12120.7C26—C27—H27120.5
C13—C12—C11118.67 (10)C28—C27—C26118.93 (10)
C13—C12—H12120.7C28—C27—H27120.5
C12—C13—H13118.6C27—C28—H28118.7
C12—C13—C14122.76 (10)C27—C28—C29122.56 (10)
C14—C13—H13118.6C29—C28—H28118.7
C13—C14—H14120.8C28—C29—H29121.1
C13—C14—C15118.38 (9)C30—C29—C28117.79 (9)
C15—C14—H14120.8C30—C29—H29121.1
O6—C15—N3115.11 (9)O12—C30—N6113.73 (9)
O6—C15—C14127.23 (9)O12—C30—C29127.30 (9)
N3—C15—C14117.65 (9)N6—C30—C29118.97 (9)
O1—C1—C2—C3179.28 (10)O7—C16—C17—C18178.06 (10)
N1—C1—C2—C31.34 (14)N4—C16—C17—C181.06 (14)
C1—N1—C5—O2177.46 (9)C16—N4—C20—O8178.71 (9)
C1—N1—C5—C42.61 (15)C16—N4—C20—C191.01 (15)
C1—C2—C3—C40.39 (16)C16—C17—C18—C190.44 (17)
C2—C3—C4—C50.75 (16)C17—C18—C19—C200.91 (17)
C3—C4—C5—O2179.42 (10)C18—C19—C20—O8178.08 (10)
C3—C4—C5—N10.66 (14)C18—C19—C20—N41.60 (15)
C5—N1—C1—O1177.61 (9)C20—N4—C16—O7178.86 (9)
C5—N1—C1—C22.95 (14)C20—N4—C16—C170.35 (14)
O3—C6—C7—C8178.33 (10)O9—C21—C22—C23178.40 (10)
N2—C6—C7—C80.10 (14)N5—C21—C22—C231.37 (14)
C6—N2—C10—O4178.47 (9)C21—N5—C25—O10178.72 (9)
C6—N2—C10—C91.86 (15)C21—N5—C25—C241.47 (15)
C6—C7—C8—C91.70 (16)C21—C22—C23—C240.27 (16)
C7—C8—C9—C101.75 (16)C22—C23—C24—C251.14 (16)
C8—C9—C10—O4179.62 (10)C23—C24—C25—O10179.46 (9)
C8—C9—C10—N20.00 (15)C23—C24—C25—N50.31 (15)
C10—N2—C6—O3179.62 (9)C25—N5—C21—O9177.48 (9)
C10—N2—C6—C71.91 (15)C25—N5—C21—C222.31 (14)
O5—C11—C12—C13178.89 (11)O11—C26—C27—C28177.73 (11)
N3—C11—C12—C130.80 (16)N6—C26—C27—C282.43 (16)
C11—N3—C15—O6179.01 (9)C26—N6—C30—O12179.47 (9)
C11—N3—C15—C140.10 (15)C26—N6—C30—C290.36 (15)
C11—C12—C13—C140.03 (19)C26—C27—C28—C291.01 (19)
C12—C13—C14—C150.74 (18)C27—C28—C29—C301.18 (19)
C13—C14—C15—O6178.07 (11)C28—C29—C30—O12177.96 (11)
C13—C14—C15—N30.70 (15)C28—C29—C30—N61.84 (16)
C15—N3—C11—O5178.86 (9)C30—N6—C26—O11178.32 (9)
C15—N3—C11—C120.86 (15)C30—N6—C26—C271.83 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.84 (2)1.60 (2)2.4317 (10)174 (4)
N1—H1···O9i0.88 (1)1.98 (1)2.8606 (11)175 (1)
O3—H3···O20.87 (2)1.57 (2)2.4317 (10)176 (3)
O4—H4···O5ii0.981 (14)1.500 (14)2.4768 (10)173.5 (14)
N2—H2···O1iii0.89 (1)1.89 (1)2.7554 (11)166 (1)
O6—H6···O70.86 (1)1.58 (1)2.4381 (10)177 (3)
N3—H3B···O11iv0.87 (1)1.95 (1)2.8155 (11)170 (1)
O7—H7A···O60.88 (2)1.56 (2)2.4381 (10)179 (3)
O8—H8A···O9v0.91 (1)1.58 (1)2.4803 (10)175 (1)
N4—H4A···O10i0.87 (1)2.07 (1)2.8999 (11)161 (1)
O10—H10···O11iv0.95 (1)1.52 (1)2.4690 (9)176 (1)
N5—H5···O2i0.88 (1)1.90 (1)2.7699 (11)167 (1)
O12—H12A···O1iii0.90 (1)1.61 (1)2.5057 (10)178 (2)
N6—H6A···O5vi0.88 (1)1.91 (1)2.7893 (11)172 (1)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x3/2, y+1/2, z1/2; (iii) x1, y, z; (iv) x+3/2, y+1/2, z+3/2; (v) x, y+1, z+1; (vi) x+3/2, y1/2, z+3/2.
Selected bond lengths (Å) and angles (°). top
N(5)-C(21)1.3688 (12)O(10)-C(25)-N(5)114.23 (8)
N(5)-C(25)1.3557 (12)O(10)-C(25)-C(24)126.58 (9)
N(5)-C(25)-C(24)119.19 (9)
O(9)-C(21)1.2789 (12)
O(10)-C(25)1.3193 (12)C(25)-N(5)-C(21)124.86 (9)
C(21)-N(5)-H(5)117.3 (8)
C(25)-N(5)-H(5)117.8 (8)
O(9)-C(21)-N(5)117.12 (9)
N(5)-C(21)-C(22)116.60 (8)
O(9)-C(21)-C(22)126.28 (9)
 

Funding information

Funding for this research was provided by: National Science Foundation (MCB 1817535 to MJS and 1817633 to KAH).

References

First citationBehrman, E. J. & Stanier, R. Y. (1957). J. Biol. Chem. 228, 923–945.  CrossRef PubMed CAS Google Scholar
First citationBokor, E., Ámon, J., Varga, M., Szekeres, A., Hegedűs, Z., Jakusch, T., Szakonyi, Z., Flipphi, M., Vágvölgyi, C., Gácser, A., Scazzocchio, C. & Hamari, Z. (2022). Commun. Biol. 5, 723–734.  Web of Science CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGerhardt, V. & Bolte, M. (2015). Acta Cryst. C71, 19–25.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHicks, K. A., Yuen, M. E., Zhen, W. F., Gerwig, T. J., Story, R. W., Kopp, M. & Snider, M. J. (2016). Biochemistry, 55, 3432–3446.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKocienski, P. J. (1994). Protecting Groups in Organic Synthesis. Stuttgart: Thieme.  Google Scholar
First citationNakamoto, K. D., Perkins, S. W., Campbell, R. G., Bauerle, M. R., Gerwig, T. J., Gerislioglu, S., Wesdemiotis, C., Anderson, M. A., Hicks, K. A. & Snider, M. J. (2019). Biochemistry, 58, 1751–1763.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds