research communications
Synthesis, trans-bis(2-{1-[(6R,S)-3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl]ethylidene}-N-methylhydrazinecarbothioamidato-κ2N2,S)palladium(II) ethanol monosolvate
and Hirshfeld analysis ofaEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil, bDepartamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Universitário, 97105-900 Santa Maria-RS, Brazil, cDepartamento de Química, Pontífícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, 22451-900 Rio de Janeiro-RJ, Brazil, and dDepartamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas s/n, Campus Universitário, 49107-230 São Cristóvão-SE, Brazil
*Correspondence e-mail: leandro_bresolin@yahoo.com.br
The reaction between the (R,S)-fixolide 4-methylthiosemicarbazone and PdII chloride yielded the title compound, [Pd(C20H30N3S)2]·C2H6O {common name: trans-bis[(R,S)-fixolide 4-methylthiosemicarbazonato-κ2N2S]palladium(II) ethanol monosolvate}. The of the title compound consists of one bis-thiosemicarbazonato PdII complex and one ethanol solvent molecule. The thiosemicarbazononato ligands act as metal chelators with a trans configuration in a distorted square-planar geometry. A C—H⋯S intramolecular interaction, with graph-set motif S(6), is observed and the coordination sphere resembles a hydrogen-bonded macrocyclic environment. Additionally, one C—H⋯Pd anagostic interaction can be suggested. Each ligand is disordered over the aliphatic ring, which adopts a half-chair conformation, and two methyl groups [s.o.f. = 0.624 (2):0.376 (2)]. The disorder includes the chiral carbon atoms and, remarkably, one ligand has the (R)-isomer with the highest s.o.f. value atoms, while the other one shows the opposite, the atoms with the highest s.o.f. value are associated with the (S)-isomer. The N—N—C(=S)—N fragments of the ligands are approximately planar, with the maximum deviations from the mean plane through the selected atoms being 0.0567 (1) and −0.0307 (8) Å (r.m.s.d. = 0.0403 and 0.0269 Å) and the dihedral angle with the respective aromatic rings amount to 46.68 (5) and 50.66 (4)°. In the crystal, the complexes are linked via pairs of N—H⋯S interactions, with graph-set motif R22(8), into centrosymmetric dimers. The dimers are further connected by centrosymmetric pairs of ethanol molecules, building mono-periodic hydrogen-bonded ribbons along [011]. The Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are [atoms with highest/lowest s.o.f.s considered separately]: H⋯H (81.6/82.0%), H⋯C/C⋯H (6.5/6.4%), H⋯N/N⋯H (5.2/5.0%) and H⋯S/S⋯H (5.0/4.9%).
Keywords: palladium(II) thiosemicarbazone-complex; fixolide 4-methylthiosemicarbazone; Hirshfeld surface analysis; anagostic interaction; hydrogen-bonded macrocyclic environment; hydrogen-bonded ribbons; crystal structure.
CCDC reference: 2308228
1. Chemical context
One of the first reports concerning thiosemicarbazone chemistry was published more than a century ago (Freund & Schander, 1902). These molecules, with the [R1R2N—N(H)—C(=S)—NR3R4] were observed as the major product of the reactions between thiosemicarbazide derivatives [H2N—N(H)—C(=S)—NR3R4] and or (R1R2C=O). Indeed, thiosemicarbazides were employed as analytical reagents in the organic chemistry for the detection of the carbonyl group (R1R2C=O). From those early times, thiosemicarbazones emerged as a class of compounds with applications in a wide range of scientific disciplines. A milestone of this chemistry was the report of the biological activity as chemotherapeutic agents against tuberculosis in in vitro essays, published in the mid-1940s (Domagk et al., 1946).
As a result of the huge structural diversity of thiosemicarbazone derivatives, because of the large number of e.g., palladium(II) are observed. The [N—N(H)—C(=S)—N] fragment, and its anionic form, are very efficient ligands, since hard (N) and soft (S) Lewis-base behaviors are present in the same atom chain. In addition, the N—N—S—N entity can adopt different geometries, coordinating metal centers in diverse bonding modes (Lobana et al., 2009).
and employed in synthesis, several applications for metals,The applications of thiosemicarbazone derivatives in palladium chemistry range from analytical chemistry, e.g., the spectrophotometric determination of PdII in different matrices, as for example alloys and complexes (Karthikeyan et al., 2011), to their use as reagents for the synthesis of palladium nanoparticles for Suzuki–Miyaura cross-coupling catalysis (Kovala-Demertzi et al., 2008) and the synergetic effect of thiosemicarbazones with palladium(II) has led to the development of catalysts for organic chemistry (Priyarega et al., 2022). Furthermore, in the field of materials science, a palladium(II) coordination compound, with the 4-{bis[4-(p-methoxyphenyl)thiosemicarbazone]}-2,3-butane derivative, has found application in electrocatalytic hydrogen production (Straistari et al., 2018), which is an important topic for energy research today. Finally, bioinorganic chemistry is one of the most relevant approaches for thiosemicarbazone chemistry (Aly et al., 2023; Singh et al., 2023).
Herein, as part of our interest in thiosemicarbazone chemistry, we report the synthesis,
and Hirshfeld analysis of the first fixolide 4-methylthiosemicarbazonato palladium(II) complex.2. Structural commentary
The II complex and one ethanol solvate molecule. The coordination compound is composed of a palladium(II) center and two (R,S)-fixolide 4-methylthiosemicarbazonato ligands, which act as metal chelators, κ2N2,S-donors, and form five-membered metallarings in a trans-configuration. An intramolecular C24—H24C⋯S1 hydrogen bond is observed, with a graph-set motif of S(6), and the coordination sphere of the metal center resembles a hydrogen-bonded macrocyclic environment (Fig. 1, Table 1). The PdII metal center is fourfold coordinated in a distorted square-planar geometry: the N3—Pd1—N6 and S1—Pd1—S2 angles are 178.02 (5) and 164.63 (2)°, while the maximum deviation from the mean plane through the Pd1/N3/N6/S1/S2 atoms amounts to 0.1722 (4) Å for S1 [the r.m.s.d. for the selected atoms is 0.1409 Å] and the torsion angles between the N3—N2—C2—S1 and N6—N5—C22—S2 chains amount to −5.6 (2) and −1.7 (2)°. Additional structural data concerning the N/N/C/S/N entities are given in Table 2.
of the title compound consists of one bis-thiosemicarbazonato Pd
|
|
In addition, a C24—H24C⋯Pd1 weak anagostic interaction can be suggested (Fig. 2). The angle between the C—H⋯M atoms is 117.78 (2)° and the H⋯Pd distance amounts to 2.8235 (7) Å, which lies in the upper limit for these interactions. For an agostic interaction, which involves a covalent or a three-center and two-electron bond, an H⋯M distance of at least 2.3 Å is required and the C—H⋯M angle should range between 90 and 140°. For an anagostic interaction that is assigned with an electrostatic nature, the H⋯M distance should range from 2.3 to 2.9 Å and the C—H⋯M angle between 110 and 170° (Brookhart et al., 2007). For an article that corroborates with the H24C⋯Pd1 anagostic interaction of the title compound, see also: Derry Holaday et al. (2014).
In the complex, the thiosemicarbazonato ligands are disordered over the aliphatic rings and two of the methyl groups [site-occupancy ratio = 0.624 (2):0.376 (2)], with the A-labeled atoms having the highest s.o.f. value and the B-labeled atoms, the lowest (Fig. 1). For both ligands, the disorder includes the carbon chiral atoms (C10 and C30) and thus, (R)- and (S)-isomers are observed. The C10A—HA and C10B—HB bonds are in opposite directions, and the (R)-isomer is assigned for the A-labeled atoms [s.o.f. = 0.624 (2)]. For the case of the C30A—H30A and C30B—H30B bonds, the (R)-isomer is assigned to the B-labeled atoms [s.o.f. = 0.376 (2)]. This inverted site-occupancy ratio for the (R,S)-isomery in the two ligands is a remarkable feature of the complex structure. Selected structural data parameters are provided in Tables 2 and 3.
Finally, the anionic form of the (R,S)-fixolide 4-methylthiosemicarbazonato ligands is confirmed by the absence of the H acidic hydrazinic atom and by the changes on the bond lengths over the N—N—C—S fragment. In a neutral, non-coordinated, thiosemicarbazone derivative, N—N(H)—C=S entity, the H hydrazinic atom is present, the N—N and N—C distances are characteristic for single bonds, while the C=S distance indicates a double bond. When the thiosemicarbazone is deprotonated with a base, e.g. NaOH, the negative charge is delocalized over the N—N—C—S chain and the values for the chemical bonds distances tend to intermediate lengths. Thus, the N—N bond length tends to be longer, maintaining single-bond character, the N—C bond lengths tend to be shorter, suggesting a double-bond character and the C—S bond lengths tend to be longer, indicating a single-bond character (Table 4).
|
3. Supramolecular features
In the crystal, the coordination compounds are connected through N—H⋯S interactions into centrosymmetric dimers with graph-set R22(8) (Fig. 3, Table 1). These dimers can be considered subunits of a hydrogen-bonded ribbon, since they are further linked by centrosymmetric pairs of ethanol solvate molecules through N—H⋯O—H⋯S bridges (Fig. 4) into mono-periodic hydrogen-bonded ribbons along [011] (Fig. 5). The O1 atoms serve as hydrogen-atom acceptors and donors and the S1 atoms act as bifurcated hydrogen-atom acceptors.
For the title compound, the Hirshfeld surface analysis (Hirshfeld, 1977), the graphical representations and the two-dimensional Hirshfeld surface fingerprint were performed with Crystal Explorer software (Wolff et al., 2012). The Hirshfeld surface analysis of the (R)-isomer structure of the title compound indicates that the most relevant intermolecular interactions for crystal cohesion are the following: H⋯H (81.6%), H⋯C/C⋯H (6.5%), H⋯N/N⋯H (5.2%) and H⋯S/S⋯H (5.0%). Just for comparison, the (S)-isomer values amount to H⋯H (82.0%), H⋯C/C⋯H (6.4%), H⋯N/N⋯H (5.0%) and H⋯S/S⋯H (4.9%) and are quite similar to the results for the (R)-isomer. Since no considerable differences between the isomers was observed, the further evaluations and graphics were performed for the (R)-isomer only, which has the highest s.o.f. value. The graphical representations of the Hirshfeld surface for the trans-bis[(R,S)-fixolide 4-methylthiosemicarbazonato-κ2N2S]palladium(II) and the ethanol solvate molecule are represented with transparency and using the ball-and-stick model (Fig. 6). The locations of the strongest intermolecular contacts, i.e, the regions around the H1, H3, S1 and S2 atoms are indicated in magenta. These atoms are those involved in the H⋯S interactions shown in previous figures (Figs. 3, 4 and 5). The contributions to the crystal packing are shown as two-dimensional Hirshfeld surface fingerprint plots (HSFP) with cyan dots (Fig. 7). The di (x-axis) and the de (y-axis) values are the closest internal and external distances from given points on the Hirshfeld surface contacts (in Å).
4. Database survey
To the best of our knowledge and from using database tools such as SciFinder (Chemical Abstracts Service, 2023) and the Cambridge Structural Database (CSD, accessed via WebCSD on October 21, 2023; Groom et al., 2016), this work is the first attempt at the synthesis, and Hirshfeld analysis of a (R,S)-fixolide-thiosemicarbazonato complex. Thus, three crystal structures with some similarities to the title compound were selected for comparison.
The first selected compound is the (R,S)-fixolide carboxylic acid derivative (Kuhlich et al., 2010). In this structure, only one crystallographically independent molecule is observed in the which is disordered over the aliphatic ring and two methyl groups (Fig. 8). The chiral centers are disordered, C10A and C10B, so two isomers are observed, with A- and B-labeled atoms and related to the (R)- and (S)-isomers, as observed for the title compound (Table 4).
The second selected molecule for comparison is the (R,S)-fixolide 4-methylthiosemicarbazone ligand (Melo et al., 2023a), which is disordered over the fixolide group (Fig. 9) and was employed in the synthesis of the title compound. The structural similarities and differences between non-coordinated and coordinated molecules are shown in Tables 4 and 5. For the (R,S)-fixolide 4-methylthiosemicarbazone, a distorted geometry is also observed, in particular between the aromatic ring and the thiosemicarbazone entity, with a dihedral angle of 51.77 (1)°.
|
Finally, a bis-thiosemicarbazonato PdII complex was chosen for comparison. In the of the trans-bis[cinnamaldehyde 4-phenylthiosemicarbazonato-κ2N2S]palladium(II) compound (Melo et al., 2023b), the molecules are also connected by N—H⋯S intermolecular interactions, forming rings of graph-set motif R22(8), and linked into mono-periodic hydrogen-bonded ribbons along [001]. In addition, C—H⋯S intramolecular interactions are observed, with rings of graph-set motif S(5). Similar to the title compound, a hydrogen-bonded macrocyclic coordination environment can be suggested, with the sulfur atoms acting as bifurcated hydrogen-bond acceptors, e.g., C17—H14⋯S1 and N6#i—H28#1⋯S1 [symmetry code: (#i) x, −y + , z + ] (Fig. 10).
5. Synthesis and crystallization
The starting materials are commercially available and were used without further purification. The synthesis of the complex was adapted from a previously reported procedure (Melo et al., 2023a,b). An ethanolic solution of (R,S)-fixolide 4-methylsemicarbazone (4 mmol, 50 mL) was prepared and the ligand was deprotonated with one pellet of NaOH. The solution was stirred for 4 h, until a yellow color could be observed. Simultaneously, an ethanolic suspension of palladium(II) chloride (2 mmol, 50 mL) was prepared under stirring. A yellow-colored mixture of both ethanolic solution and suspension was maintained with stirring at room temperature for 8 h, until the PdCl2 was consumed. Orange single crystals suitable for X-ray diffraction were obtained by the slow evaporation of the solvent.
6. Refinement
Crystal data, data collection and structure . The crystallographically independent bis-thiosemicarbazonato PdII complex is disordered over the fixolide fragments (Fig. 1). Thus, the C9, C10, C16, C18, C29, C30, C37 and C38 atoms were split into two positions labeled A and B, with a refined site-occupancy ratio of 0.624 (2):0.376 (2). The EADP command was used to constrain the displacement parameters of the disordered atoms to get a stable Although the displacement ellipsoids of the C17, C19, C20, C36, C39 and C40 atoms seen to be prolate-like, no additional disorder was indicated by the data analysis.
details are summarized in Table 6
|
Hydrogen atoms were located in difference-Fourier maps but were positioned with idealized geometry and refined isotropically using a riding model (HFIX command). Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. So, for the methyl H atoms, with [Uiso(H) = 1.5Ueq(C)], the C—H bond lengths were set to 0.98 Å. The other C—H bond lengths were also set according to the H-atom neighborhood, with [Uiso(H) = 1.2Ueq(C)]. For the phenyl H atoms, the C—H bond lengths were set to 0.95 Å, for the H atoms of the disordered –CH2– fragments (C9A, C9B, C29A and C29B), the C—H bond lengths were set to 0.99 Å and for the H atoms attached to the disordered tertiary C atoms (C10A, C10B, C30A and C30B), the C—H bond lengths were set to 1.00 Å. Finally, the N—H bond lengths, with [Uiso(H) = 1.2Ueq(N)], were set to 0.88 Å.
Supporting information
CCDC reference: 2308228
https://doi.org/10.1107/S2056989023009908/zn2034sup1.cif
contains datablocks I, publication_text. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023009908/zn2034Isup2.hkl
[Pd(C20H30N3S)2]·C2H6O | Z = 2 |
Mr = 841.52 | F(000) = 892 |
Triclinic, P1 | Dx = 1.278 Mg m−3 |
a = 12.412 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.430 (4) Å | Cell parameters from 9602 reflections |
c = 15.700 (5) Å | θ = 2.7–28.3° |
α = 69.021 (5)° | µ = 0.56 mm−1 |
β = 86.730 (6)° | T = 100 K |
γ = 75.348 (9)° | Block, orange |
V = 2186.6 (11) Å3 | 0.22 × 0.16 × 0.15 mm |
Bruker D8 Venture Photon 100 diffractometer | 10009 reflections with I > 2σ(I) |
Radiation source: microfocus X ray tube, Bruker D8 Venture | Rint = 0.033 |
φ and ω scans | θmax = 28.3°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −16→16 |
Tmin = 0.712, Tmax = 0.746 | k = −16→16 |
102991 measured reflections | l = −20→20 |
10905 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.069 | w = 1/[σ2(Fo2) + (0.029P)2 + 2.3103P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.004 |
10905 reflections | Δρmax = 1.16 e Å−3 |
524 parameters | Δρmin = −0.85 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 1.08585 (18) | 1.1210 (2) | 0.65159 (15) | 0.0342 (4) | |
H1A | 1.127520 | 1.168275 | 0.604350 | 0.051* | |
H1B | 1.134183 | 1.074266 | 0.706296 | 0.051* | |
H1C | 1.021234 | 1.174275 | 0.666759 | 0.051* | |
C2 | 0.98087 (13) | 0.97343 (14) | 0.66670 (11) | 0.0185 (3) | |
C3 | 0.84118 (13) | 0.92795 (14) | 0.86307 (11) | 0.0166 (3) | |
C4 | 0.88757 (15) | 1.00236 (18) | 0.90111 (13) | 0.0262 (4) | |
H4A | 0.967967 | 0.968782 | 0.913298 | 0.039* | |
H4B | 0.851213 | 1.003077 | 0.958045 | 0.039* | |
H4C | 0.873863 | 1.083872 | 0.856853 | 0.039* | |
C5 | 0.73904 (13) | 0.89044 (14) | 0.90042 (11) | 0.0164 (3) | |
C6 | 0.64685 (13) | 0.93003 (14) | 0.84064 (11) | 0.0176 (3) | |
H6A | 0.653560 | 0.977882 | 0.778936 | 0.021* | |
C7 | 0.54497 (13) | 0.90243 (14) | 0.86751 (12) | 0.0184 (3) | |
C8 | 0.44913 (15) | 0.95257 (17) | 0.79614 (14) | 0.0285 (4) | |
C9A | 0.3614 (2) | 0.8814 (3) | 0.8273 (2) | 0.0232 (5) | 0.6242 (19) |
H9A | 0.294196 | 0.922087 | 0.786351 | 0.028* | 0.6242 (19) |
H9B | 0.390797 | 0.801528 | 0.823371 | 0.028* | 0.6242 (19) |
C10A | 0.3301 (2) | 0.8685 (3) | 0.9250 (2) | 0.0231 (5) | 0.6242 (19) |
H10A | 0.312912 | 0.949179 | 0.929860 | 0.028* | 0.6242 (19) |
C16A | 0.4957 (3) | 0.9324 (3) | 0.7023 (2) | 0.0240 (6) | 0.6242 (19) |
H16A | 0.546387 | 0.983484 | 0.674675 | 0.036* | 0.6242 (19) |
H16B | 0.432969 | 0.952692 | 0.659503 | 0.036* | 0.6242 (19) |
H16C | 0.535779 | 0.848916 | 0.716313 | 0.036* | 0.6242 (19) |
C18A | 0.2246 (14) | 0.8232 (14) | 0.9448 (10) | 0.034 (2) | 0.6242 (19) |
H18A | 0.238058 | 0.746874 | 0.935804 | 0.051* | 0.6242 (19) |
H18B | 0.163640 | 0.881083 | 0.903282 | 0.051* | 0.6242 (19) |
H18C | 0.204337 | 0.812422 | 1.008060 | 0.051* | 0.6242 (19) |
C29A | 0.7483 (3) | 0.3718 (3) | 0.3920 (2) | 0.0306 (6) | 0.6242 (19) |
H29A | 0.671534 | 0.415459 | 0.367646 | 0.037* | 0.6242 (19) |
H29B | 0.790596 | 0.349086 | 0.343042 | 0.037* | 0.6242 (19) |
C30A | 0.7441 (3) | 0.2612 (3) | 0.4714 (2) | 0.0272 (6) | 0.6242 (19) |
H30A | 0.821275 | 0.221792 | 0.498735 | 0.033* | 0.6242 (19) |
C38A | 0.7043 (10) | 0.1745 (13) | 0.4383 (10) | 0.0364 (18) | 0.6242 (19) |
H38A | 0.631401 | 0.214109 | 0.406461 | 0.055* | 0.6242 (19) |
H38B | 0.698052 | 0.104253 | 0.490800 | 0.055* | 0.6242 (19) |
H38C | 0.758145 | 0.150090 | 0.396418 | 0.055* | 0.6242 (19) |
C37A | 0.7757 (5) | 0.5732 (4) | 0.3311 (3) | 0.0407 (11) | 0.6242 (19) |
H37A | 0.804504 | 0.556092 | 0.276628 | 0.061* | 0.6242 (19) |
H37B | 0.811067 | 0.630880 | 0.339773 | 0.061* | 0.6242 (19) |
H37C | 0.694898 | 0.606325 | 0.323277 | 0.061* | 0.6242 (19) |
C9B | 0.3361 (4) | 0.9418 (4) | 0.8571 (4) | 0.0232 (5) | 0.3758 (19) |
H9C | 0.326305 | 0.993856 | 0.893638 | 0.028* | 0.3758 (19) |
H9D | 0.269739 | 0.968867 | 0.815654 | 0.028* | 0.3758 (19) |
C10B | 0.3459 (4) | 0.8182 (5) | 0.9183 (4) | 0.0231 (5) | 0.3758 (19) |
H10B | 0.374312 | 0.765932 | 0.881872 | 0.028* | 0.3758 (19) |
C16B | 0.4618 (5) | 0.9141 (6) | 0.7263 (4) | 0.0240 (6) | 0.3758 (19) |
H16D | 0.527331 | 0.934174 | 0.692787 | 0.036* | 0.3758 (19) |
H16E | 0.395415 | 0.952311 | 0.685464 | 0.036* | 0.3758 (19) |
H16F | 0.472013 | 0.827662 | 0.749337 | 0.036* | 0.3758 (19) |
C18B | 0.230 (2) | 0.800 (2) | 0.9518 (19) | 0.041 (5) | 0.3758 (19) |
H18D | 0.238512 | 0.719202 | 0.996540 | 0.062* | 0.3758 (19) |
H18E | 0.182946 | 0.810887 | 0.899874 | 0.062* | 0.3758 (19) |
H18F | 0.195277 | 0.857957 | 0.980398 | 0.062* | 0.3758 (19) |
C29B | 0.7999 (5) | 0.3255 (5) | 0.4260 (4) | 0.0306 (6) | 0.3758 (19) |
H29C | 0.822719 | 0.313817 | 0.367850 | 0.037* | 0.3758 (19) |
H29D | 0.854429 | 0.266951 | 0.474536 | 0.037* | 0.3758 (19) |
C30B | 0.6846 (5) | 0.3020 (5) | 0.4484 (4) | 0.0272 (6) | 0.3758 (19) |
H30B | 0.626963 | 0.370707 | 0.407784 | 0.033* | 0.3758 (19) |
C38B | 0.6815 (19) | 0.188 (2) | 0.4315 (18) | 0.0364 (18) | 0.3758 (19) |
H38D | 0.686099 | 0.202517 | 0.366004 | 0.055* | 0.3758 (19) |
H38E | 0.611710 | 0.166367 | 0.453400 | 0.055* | 0.3758 (19) |
H38F | 0.744722 | 0.123369 | 0.464385 | 0.055* | 0.3758 (19) |
C37B | 0.7445 (10) | 0.5437 (8) | 0.3352 (6) | 0.0407 (11) | 0.3758 (19) |
H37D | 0.782626 | 0.531758 | 0.281691 | 0.061* | 0.3758 (19) |
H37E | 0.743742 | 0.623012 | 0.334589 | 0.061* | 0.3758 (19) |
H37F | 0.667820 | 0.536733 | 0.333748 | 0.061* | 0.3758 (19) |
C11 | 0.43150 (15) | 0.78566 (17) | 0.99371 (13) | 0.0247 (4) | |
C12 | 0.53601 (14) | 0.83033 (14) | 0.95798 (12) | 0.0193 (3) | |
C13 | 0.62871 (14) | 0.79313 (15) | 1.01780 (12) | 0.0209 (3) | |
H13A | 0.622121 | 0.745404 | 1.079562 | 0.025* | |
C14 | 0.72960 (14) | 0.82199 (15) | 0.99204 (11) | 0.0190 (3) | |
C15 | 0.82669 (15) | 0.77370 (18) | 1.06003 (12) | 0.0268 (4) | |
H15A | 0.894541 | 0.744754 | 1.031379 | 0.040* | |
H15B | 0.812136 | 0.708020 | 1.112896 | 0.040* | |
H15C | 0.836488 | 0.836955 | 1.079996 | 0.040* | |
C17 | 0.40989 (19) | 1.08683 (19) | 0.77040 (17) | 0.0402 (5) | |
H17A | 0.383149 | 1.105594 | 0.824637 | 0.060* | |
H17B | 0.349237 | 1.118500 | 0.723970 | 0.060* | |
H17C | 0.472015 | 1.122903 | 0.746018 | 0.060* | |
C19 | 0.4588 (2) | 0.6525 (2) | 1.01169 (19) | 0.0452 (6) | |
H19A | 0.479150 | 0.638591 | 0.954586 | 0.068* | |
H19B | 0.393480 | 0.622029 | 1.035635 | 0.068* | |
H19C | 0.521284 | 0.611280 | 1.056403 | 0.068* | |
C20 | 0.39893 (18) | 0.8059 (2) | 1.08336 (16) | 0.0368 (5) | |
H20A | 0.458826 | 0.759193 | 1.129724 | 0.055* | |
H20B | 0.330178 | 0.780965 | 1.104131 | 0.055* | |
H20C | 0.386937 | 0.890557 | 1.073604 | 0.055* | |
C21 | 0.91116 (15) | 0.33047 (14) | 0.84376 (12) | 0.0217 (3) | |
H21A | 0.846101 | 0.333782 | 0.809464 | 0.033* | |
H21B | 0.931379 | 0.253779 | 0.894234 | 0.033* | |
H21C | 0.973861 | 0.339274 | 0.803166 | 0.033* | |
C22 | 0.85251 (12) | 0.53979 (13) | 0.82282 (11) | 0.0149 (3) | |
C23 | 0.74272 (13) | 0.70098 (14) | 0.61482 (10) | 0.0159 (3) | |
C24 | 0.69026 (15) | 0.82454 (15) | 0.55224 (11) | 0.0214 (3) | |
H24A | 0.609123 | 0.840594 | 0.557104 | 0.032* | |
H24B | 0.709552 | 0.832430 | 0.489245 | 0.032* | |
H24C | 0.717728 | 0.881609 | 0.569328 | 0.032* | |
C25 | 0.71832 (13) | 0.59952 (14) | 0.59672 (10) | 0.0156 (3) | |
C26 | 0.76394 (13) | 0.57287 (14) | 0.52167 (11) | 0.0170 (3) | |
H26A | 0.807084 | 0.622144 | 0.482175 | 0.020* | |
C27 | 0.74890 (13) | 0.47630 (14) | 0.50186 (11) | 0.0171 (3) | |
C28 | 0.80284 (16) | 0.45433 (17) | 0.41750 (12) | 0.0248 (4) | |
C31 | 0.66562 (16) | 0.29300 (15) | 0.54837 (12) | 0.0235 (3) | |
C32 | 0.68504 (14) | 0.40437 (14) | 0.56004 (11) | 0.0180 (3) | |
C33 | 0.63708 (14) | 0.43480 (15) | 0.63406 (11) | 0.0198 (3) | |
H33A | 0.592393 | 0.386892 | 0.672897 | 0.024* | |
C34 | 0.65108 (14) | 0.53056 (15) | 0.65380 (11) | 0.0183 (3) | |
C35 | 0.59337 (16) | 0.55897 (18) | 0.73331 (13) | 0.0273 (4) | |
H35A | 0.648308 | 0.537659 | 0.782790 | 0.041* | |
H35B | 0.537032 | 0.513437 | 0.755035 | 0.041* | |
H35C | 0.557336 | 0.644237 | 0.713677 | 0.041* | |
C36 | 0.9289 (2) | 0.4244 (3) | 0.42744 (19) | 0.0651 (9) | |
H36A | 0.954038 | 0.357862 | 0.484795 | 0.098* | |
H36B | 0.952135 | 0.493968 | 0.427852 | 0.098* | |
H36C | 0.962068 | 0.402101 | 0.376098 | 0.098* | |
C39 | 0.71855 (18) | 0.18481 (16) | 0.63149 (16) | 0.0359 (5) | |
H39A | 0.797822 | 0.180704 | 0.637269 | 0.054* | |
H39B | 0.710531 | 0.112296 | 0.623880 | 0.054* | |
H39C | 0.681228 | 0.192076 | 0.686596 | 0.054* | |
C40 | 0.54081 (19) | 0.30199 (19) | 0.5461 (2) | 0.0495 (7) | |
H40A | 0.508242 | 0.313965 | 0.601325 | 0.074* | |
H40B | 0.528820 | 0.228391 | 0.543184 | 0.074* | |
H40C | 0.505229 | 0.369401 | 0.492188 | 0.074* | |
C41 | 0.76119 (17) | 0.4532 (2) | 1.12175 (14) | 0.0331 (4) | |
H41A | 0.760807 | 0.534078 | 1.080670 | 0.050* | |
H41B | 0.721493 | 0.456491 | 1.176890 | 0.050* | |
H41C | 0.724160 | 0.415658 | 1.090845 | 0.050* | |
C42 | 0.87835 (18) | 0.3823 (3) | 1.14735 (16) | 0.0500 (7) | |
H42A | 0.916403 | 0.421569 | 1.176905 | 0.060* | |
H42B | 0.878660 | 0.302170 | 1.191799 | 0.060* | |
N1 | 1.04828 (13) | 1.04158 (14) | 0.61810 (11) | 0.0262 (3) | |
H1 | 1.069987 | 1.037675 | 0.564706 | 0.031* | |
N2 | 0.96365 (11) | 0.96714 (12) | 0.75090 (10) | 0.0179 (3) | |
N3 | 0.88191 (10) | 0.90727 (11) | 0.79084 (9) | 0.0143 (2) | |
N4 | 0.88465 (12) | 0.42619 (12) | 0.87994 (9) | 0.0187 (3) | |
H2 | 0.889638 | 0.409810 | 0.939159 | 0.022* | |
N5 | 0.84996 (11) | 0.55992 (11) | 0.73529 (9) | 0.0159 (3) | |
N6 | 0.80513 (11) | 0.68097 (11) | 0.68467 (9) | 0.0149 (2) | |
O1 | 0.93682 (11) | 0.37138 (14) | 1.06952 (9) | 0.0306 (3) | |
H3 | 1.004560 | 0.366360 | 1.077320 | 0.046* | |
Pd1 | 0.84134 (2) | 0.79593 (2) | 0.73601 (2) | 0.01358 (4) | |
S1 | 0.92010 (4) | 0.90429 (4) | 0.60956 (3) | 0.02192 (9) | |
S2 | 0.80874 (3) | 0.65163 (3) | 0.87072 (3) | 0.01597 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0345 (10) | 0.0387 (11) | 0.0355 (11) | −0.0246 (9) | 0.0015 (8) | −0.0096 (9) |
C2 | 0.0166 (7) | 0.0160 (7) | 0.0221 (8) | −0.0032 (6) | 0.0000 (6) | −0.0066 (6) |
C3 | 0.0159 (7) | 0.0164 (7) | 0.0206 (7) | −0.0031 (6) | −0.0008 (6) | −0.0105 (6) |
C4 | 0.0242 (8) | 0.0346 (10) | 0.0332 (10) | −0.0128 (7) | 0.0051 (7) | −0.0249 (8) |
C5 | 0.0162 (7) | 0.0162 (7) | 0.0212 (8) | −0.0037 (6) | 0.0019 (6) | −0.0124 (6) |
C6 | 0.0189 (7) | 0.0153 (7) | 0.0210 (8) | −0.0047 (6) | 0.0014 (6) | −0.0093 (6) |
C7 | 0.0169 (7) | 0.0148 (7) | 0.0263 (8) | −0.0029 (6) | 0.0006 (6) | −0.0111 (6) |
C8 | 0.0201 (8) | 0.0258 (9) | 0.0359 (10) | −0.0086 (7) | −0.0064 (7) | −0.0036 (8) |
C9A | 0.0153 (10) | 0.0217 (11) | 0.0371 (14) | −0.0051 (9) | −0.0006 (9) | −0.0151 (10) |
C10A | 0.0179 (11) | 0.0162 (15) | 0.0425 (14) | −0.0049 (12) | 0.0089 (10) | −0.0199 (13) |
C16A | 0.0196 (18) | 0.0342 (15) | 0.0219 (17) | −0.0114 (12) | 0.0028 (11) | −0.0113 (14) |
C18A | 0.026 (3) | 0.038 (4) | 0.048 (4) | −0.014 (2) | 0.011 (2) | −0.024 (3) |
C29A | 0.048 (2) | 0.0266 (16) | 0.0233 (15) | −0.0109 (13) | 0.0006 (11) | −0.0150 (12) |
C30A | 0.0356 (16) | 0.0214 (14) | 0.0278 (14) | −0.0056 (11) | −0.0040 (11) | −0.0126 (11) |
C38A | 0.053 (5) | 0.027 (3) | 0.038 (2) | −0.011 (4) | −0.005 (3) | −0.019 (2) |
C37A | 0.076 (4) | 0.030 (3) | 0.0179 (11) | −0.0152 (16) | 0.0111 (18) | −0.0105 (17) |
C9B | 0.0153 (10) | 0.0217 (11) | 0.0371 (14) | −0.0051 (9) | −0.0006 (9) | −0.0151 (10) |
C10B | 0.0179 (11) | 0.0162 (15) | 0.0425 (14) | −0.0049 (12) | 0.0089 (10) | −0.0199 (13) |
C16B | 0.0196 (18) | 0.0342 (15) | 0.0219 (17) | −0.0114 (12) | 0.0028 (11) | −0.0113 (14) |
C18B | 0.019 (6) | 0.053 (11) | 0.065 (9) | −0.021 (6) | 0.020 (5) | −0.029 (7) |
C29B | 0.048 (2) | 0.0266 (16) | 0.0233 (15) | −0.0109 (13) | 0.0006 (11) | −0.0150 (12) |
C30B | 0.0356 (16) | 0.0214 (14) | 0.0278 (14) | −0.0056 (11) | −0.0040 (11) | −0.0126 (11) |
C38B | 0.053 (5) | 0.027 (3) | 0.038 (2) | −0.011 (4) | −0.005 (3) | −0.019 (2) |
C37B | 0.076 (4) | 0.030 (3) | 0.0179 (11) | −0.0152 (16) | 0.0111 (18) | −0.0105 (17) |
C11 | 0.0225 (8) | 0.0280 (9) | 0.0300 (9) | −0.0106 (7) | 0.0104 (7) | −0.0162 (7) |
C12 | 0.0194 (7) | 0.0170 (7) | 0.0265 (8) | −0.0042 (6) | 0.0074 (6) | −0.0145 (6) |
C13 | 0.0244 (8) | 0.0203 (8) | 0.0200 (8) | −0.0042 (6) | 0.0053 (6) | −0.0112 (6) |
C14 | 0.0204 (8) | 0.0197 (7) | 0.0197 (8) | −0.0017 (6) | 0.0009 (6) | −0.0125 (6) |
C15 | 0.0248 (9) | 0.0336 (10) | 0.0220 (8) | −0.0017 (7) | −0.0026 (7) | −0.0130 (7) |
C17 | 0.0394 (12) | 0.0284 (10) | 0.0467 (13) | 0.0092 (9) | −0.0144 (10) | −0.0158 (9) |
C19 | 0.0477 (13) | 0.0335 (11) | 0.0700 (17) | −0.0248 (10) | 0.0332 (12) | −0.0315 (12) |
C20 | 0.0367 (11) | 0.0460 (12) | 0.0415 (12) | −0.0197 (9) | 0.0227 (9) | −0.0286 (10) |
C21 | 0.0266 (8) | 0.0145 (7) | 0.0253 (8) | −0.0035 (6) | −0.0031 (7) | −0.0091 (6) |
C22 | 0.0151 (7) | 0.0143 (7) | 0.0171 (7) | −0.0046 (5) | −0.0004 (5) | −0.0069 (6) |
C23 | 0.0187 (7) | 0.0157 (7) | 0.0148 (7) | −0.0052 (6) | 0.0018 (6) | −0.0068 (6) |
C24 | 0.0276 (8) | 0.0168 (7) | 0.0190 (8) | −0.0042 (6) | −0.0051 (6) | −0.0055 (6) |
C25 | 0.0181 (7) | 0.0154 (7) | 0.0147 (7) | −0.0042 (6) | −0.0016 (6) | −0.0065 (6) |
C26 | 0.0191 (7) | 0.0181 (7) | 0.0155 (7) | −0.0064 (6) | 0.0000 (6) | −0.0067 (6) |
C27 | 0.0184 (7) | 0.0169 (7) | 0.0170 (7) | −0.0028 (6) | −0.0026 (6) | −0.0078 (6) |
C28 | 0.0317 (9) | 0.0268 (9) | 0.0240 (9) | −0.0108 (7) | 0.0065 (7) | −0.0170 (7) |
C31 | 0.0313 (9) | 0.0165 (8) | 0.0255 (9) | −0.0085 (7) | −0.0032 (7) | −0.0087 (7) |
C32 | 0.0209 (7) | 0.0141 (7) | 0.0185 (7) | −0.0032 (6) | −0.0055 (6) | −0.0052 (6) |
C33 | 0.0225 (8) | 0.0180 (7) | 0.0191 (8) | −0.0085 (6) | −0.0003 (6) | −0.0043 (6) |
C34 | 0.0206 (7) | 0.0201 (8) | 0.0156 (7) | −0.0060 (6) | 0.0003 (6) | −0.0074 (6) |
C35 | 0.0319 (9) | 0.0343 (10) | 0.0244 (9) | −0.0161 (8) | 0.0108 (7) | −0.0168 (8) |
C36 | 0.0327 (12) | 0.124 (3) | 0.0467 (15) | −0.0114 (15) | 0.0162 (11) | −0.0482 (18) |
C39 | 0.0350 (11) | 0.0142 (8) | 0.0528 (13) | 0.0004 (7) | −0.0170 (9) | −0.0068 (8) |
C40 | 0.0369 (12) | 0.0223 (10) | 0.090 (2) | −0.0030 (8) | −0.0347 (12) | −0.0182 (11) |
C41 | 0.0319 (10) | 0.0397 (11) | 0.0323 (10) | −0.0041 (8) | −0.0010 (8) | −0.0209 (9) |
C42 | 0.0278 (11) | 0.095 (2) | 0.0285 (11) | −0.0050 (12) | −0.0022 (8) | −0.0296 (12) |
N1 | 0.0283 (8) | 0.0306 (8) | 0.0247 (8) | −0.0165 (7) | 0.0083 (6) | −0.0104 (6) |
N2 | 0.0165 (6) | 0.0182 (6) | 0.0206 (7) | −0.0070 (5) | 0.0007 (5) | −0.0070 (5) |
N3 | 0.0135 (6) | 0.0132 (6) | 0.0180 (6) | −0.0037 (5) | −0.0012 (5) | −0.0070 (5) |
N4 | 0.0270 (7) | 0.0138 (6) | 0.0158 (6) | −0.0043 (5) | −0.0024 (5) | −0.0057 (5) |
N5 | 0.0197 (6) | 0.0118 (6) | 0.0161 (6) | −0.0025 (5) | −0.0014 (5) | −0.0057 (5) |
N6 | 0.0191 (6) | 0.0125 (6) | 0.0139 (6) | −0.0039 (5) | 0.0012 (5) | −0.0057 (5) |
O1 | 0.0235 (6) | 0.0494 (9) | 0.0212 (6) | −0.0089 (6) | −0.0023 (5) | −0.0151 (6) |
Pd1 | 0.01665 (6) | 0.01189 (6) | 0.01366 (6) | −0.00362 (4) | −0.00014 (4) | −0.00610 (4) |
S1 | 0.0335 (2) | 0.02045 (19) | 0.01642 (18) | −0.01367 (17) | 0.00511 (16) | −0.00789 (15) |
S2 | 0.02174 (18) | 0.01444 (17) | 0.01425 (17) | −0.00566 (14) | 0.00208 (14) | −0.00749 (14) |
C1—N1 | 1.450 (2) | C37B—H37F | 0.9800 |
C1—H1A | 0.9800 | C11—C19 | 1.525 (3) |
C1—H1B | 0.9800 | C11—C20 | 1.532 (3) |
C1—H1C | 0.9800 | C11—C12 | 1.537 (2) |
C2—N2 | 1.304 (2) | C12—C13 | 1.401 (2) |
C2—N1 | 1.350 (2) | C13—C14 | 1.388 (2) |
C2—S1 | 1.7520 (17) | C13—H13A | 0.9500 |
C3—N3 | 1.298 (2) | C14—C15 | 1.508 (2) |
C3—C5 | 1.479 (2) | C15—H15A | 0.9800 |
C3—C4 | 1.499 (2) | C15—H15B | 0.9800 |
C4—H4A | 0.9800 | C15—H15C | 0.9800 |
C4—H4B | 0.9800 | C17—H17A | 0.9800 |
C4—H4C | 0.9800 | C17—H17B | 0.9800 |
C5—C6 | 1.393 (2) | C17—H17C | 0.9800 |
C5—C14 | 1.401 (2) | C19—H19A | 0.9800 |
C6—C7 | 1.396 (2) | C19—H19B | 0.9800 |
C6—H6A | 0.9500 | C19—H19C | 0.9800 |
C7—C12 | 1.398 (2) | C20—H20A | 0.9800 |
C7—C8 | 1.528 (2) | C20—H20B | 0.9800 |
C8—C17 | 1.521 (3) | C20—H20C | 0.9800 |
C8—C9A | 1.524 (3) | C21—N4 | 1.453 (2) |
C8—C16A | 1.632 (4) | C21—H21A | 0.9800 |
C8—C16B | 1.331 (6) | C21—H21B | 0.9800 |
C8—C9B | 1.659 (5) | C21—H21C | 0.9800 |
C9A—C10A | 1.523 (4) | C22—N5 | 1.306 (2) |
C9A—H9A | 0.9900 | C22—N4 | 1.344 (2) |
C9A—H9B | 0.9900 | C22—S2 | 1.7644 (16) |
C10A—C18A | 1.527 (17) | C23—N6 | 1.292 (2) |
C10A—C11 | 1.584 (4) | C23—C25 | 1.491 (2) |
C10A—H10A | 1.0000 | C23—C24 | 1.495 (2) |
C16A—H16A | 0.9800 | C24—H24A | 0.9800 |
C16A—H16B | 0.9800 | C24—H24B | 0.9800 |
C16A—H16C | 0.9800 | C24—H24C | 0.9800 |
C18A—H18A | 0.9800 | C25—C26 | 1.388 (2) |
C18A—H18B | 0.9800 | C25—C34 | 1.400 (2) |
C18A—H18C | 0.9800 | C26—C27 | 1.400 (2) |
C29A—C30A | 1.500 (5) | C26—H26A | 0.9500 |
C29A—C28 | 1.532 (4) | C27—C32 | 1.397 (2) |
C29A—H29A | 0.9900 | C27—C28 | 1.531 (2) |
C29A—H29B | 0.9900 | C28—C36 | 1.518 (3) |
C30A—C38A | 1.542 (17) | C31—C40 | 1.526 (3) |
C30A—C31 | 1.605 (4) | C31—C39 | 1.529 (3) |
C30A—H30A | 1.0000 | C31—C32 | 1.537 (2) |
C38A—H38A | 0.9800 | C32—C33 | 1.404 (2) |
C38A—H38B | 0.9800 | C33—C34 | 1.385 (2) |
C38A—H38C | 0.9800 | C33—H33A | 0.9500 |
C37A—C28 | 1.582 (5) | C34—C35 | 1.510 (2) |
C37A—H37A | 0.9800 | C35—H35A | 0.9800 |
C37A—H37B | 0.9800 | C35—H35B | 0.9800 |
C37A—H37C | 0.9800 | C35—H35C | 0.9800 |
C9B—C10B | 1.470 (7) | C36—H36A | 0.9800 |
C9B—H9C | 0.9900 | C36—H36B | 0.9800 |
C9B—H9D | 0.9900 | C36—H36C | 0.9800 |
C10B—C11 | 1.510 (6) | C39—H39A | 0.9800 |
C10B—C18B | 1.55 (3) | C39—H39B | 0.9800 |
C10B—H10B | 1.0000 | C39—H39C | 0.9800 |
C16B—H16D | 0.9800 | C40—H40A | 0.9800 |
C16B—H16E | 0.9800 | C40—H40B | 0.9800 |
C16B—H16F | 0.9800 | C40—H40C | 0.9800 |
C18B—H18D | 0.9800 | C41—C42 | 1.489 (3) |
C18B—H18E | 0.9800 | C41—H41A | 0.9800 |
C18B—H18F | 0.9800 | C41—H41B | 0.9800 |
C29B—C30B | 1.529 (8) | C41—H41C | 0.9800 |
C29B—C28 | 1.568 (6) | C42—O1 | 1.416 (3) |
C29B—H29C | 0.9900 | C42—H42A | 0.9900 |
C29B—H29D | 0.9900 | C42—H42B | 0.9900 |
C30B—C31 | 1.541 (5) | N1—H1 | 0.8800 |
C30B—C38B | 1.54 (3) | N2—N3 | 1.3970 (18) |
C30B—H30B | 1.0000 | N3—Pd1 | 2.0408 (13) |
C38B—H38D | 0.9800 | N4—H2 | 0.8800 |
C38B—H38E | 0.9800 | N5—N6 | 1.4056 (18) |
C38B—H38F | 0.9800 | N6—Pd1 | 2.0209 (14) |
C37B—C28 | 1.449 (11) | O1—H3 | 0.8400 |
C37B—H37D | 0.9800 | Pd1—S1 | 2.2893 (6) |
C37B—H37E | 0.9800 | Pd1—S2 | 2.3253 (6) |
N1—C1—H1A | 109.5 | C14—C13—C12 | 123.78 (16) |
N1—C1—H1B | 109.5 | C14—C13—H13A | 118.1 |
H1A—C1—H1B | 109.5 | C12—C13—H13A | 118.1 |
N1—C1—H1C | 109.5 | C13—C14—C5 | 117.59 (15) |
H1A—C1—H1C | 109.5 | C13—C14—C15 | 120.23 (16) |
H1B—C1—H1C | 109.5 | C5—C14—C15 | 122.06 (16) |
N2—C2—N1 | 117.80 (15) | C14—C15—H15A | 109.5 |
N2—C2—S1 | 125.39 (13) | C14—C15—H15B | 109.5 |
N1—C2—S1 | 116.77 (13) | H15A—C15—H15B | 109.5 |
N3—C3—C5 | 118.93 (14) | C14—C15—H15C | 109.5 |
N3—C3—C4 | 120.70 (15) | H15A—C15—H15C | 109.5 |
C5—C3—C4 | 119.89 (14) | H15B—C15—H15C | 109.5 |
C3—C4—H4A | 109.5 | C8—C17—H17A | 109.5 |
C3—C4—H4B | 109.5 | C8—C17—H17B | 109.5 |
H4A—C4—H4B | 109.5 | H17A—C17—H17B | 109.5 |
C3—C4—H4C | 109.5 | C8—C17—H17C | 109.5 |
H4A—C4—H4C | 109.5 | H17A—C17—H17C | 109.5 |
H4B—C4—H4C | 109.5 | H17B—C17—H17C | 109.5 |
C6—C5—C14 | 119.20 (15) | C11—C19—H19A | 109.5 |
C6—C5—C3 | 117.09 (15) | C11—C19—H19B | 109.5 |
C14—C5—C3 | 123.68 (15) | H19A—C19—H19B | 109.5 |
C5—C6—C7 | 122.82 (16) | C11—C19—H19C | 109.5 |
C5—C6—H6A | 118.6 | H19A—C19—H19C | 109.5 |
C7—C6—H6A | 118.6 | H19B—C19—H19C | 109.5 |
C6—C7—C12 | 118.41 (15) | C11—C20—H20A | 109.5 |
C6—C7—C8 | 118.11 (16) | C11—C20—H20B | 109.5 |
C12—C7—C8 | 123.48 (15) | H20A—C20—H20B | 109.5 |
C17—C8—C9A | 117.28 (19) | C11—C20—H20C | 109.5 |
C17—C8—C7 | 109.92 (16) | H20A—C20—H20C | 109.5 |
C9A—C8—C7 | 109.84 (18) | H20B—C20—H20C | 109.5 |
C17—C8—C16A | 105.1 (2) | N4—C21—H21A | 109.5 |
C9A—C8—C16A | 105.3 (2) | N4—C21—H21B | 109.5 |
C7—C8—C16A | 108.91 (18) | H21A—C21—H21B | 109.5 |
C17—C8—C16B | 115.3 (3) | N4—C21—H21C | 109.5 |
C7—C8—C16B | 117.0 (3) | H21A—C21—H21C | 109.5 |
C17—C8—C9B | 87.9 (2) | H21B—C21—H21C | 109.5 |
C7—C8—C9B | 104.2 (2) | N5—C22—N4 | 117.82 (14) |
C16B—C8—C9B | 118.6 (3) | N5—C22—S2 | 124.01 (12) |
C10A—C9A—C8 | 110.8 (2) | N4—C22—S2 | 118.06 (12) |
C10A—C9A—H9A | 109.5 | N6—C23—C25 | 119.97 (14) |
C8—C9A—H9A | 109.5 | N6—C23—C24 | 121.73 (14) |
C10A—C9A—H9B | 109.5 | C25—C23—C24 | 118.27 (14) |
C8—C9A—H9B | 109.5 | C23—C24—H24A | 109.5 |
H9A—C9A—H9B | 108.1 | C23—C24—H24B | 109.5 |
C9A—C10A—C18A | 108.4 (6) | H24A—C24—H24B | 109.5 |
C9A—C10A—C11 | 110.4 (2) | C23—C24—H24C | 109.5 |
C18A—C10A—C11 | 113.4 (6) | H24A—C24—H24C | 109.5 |
C9A—C10A—H10A | 108.2 | H24B—C24—H24C | 109.5 |
C18A—C10A—H10A | 108.2 | C26—C25—C34 | 119.49 (14) |
C11—C10A—H10A | 108.2 | C26—C25—C23 | 118.98 (14) |
C8—C16A—H16A | 109.5 | C34—C25—C23 | 121.53 (14) |
C8—C16A—H16B | 109.5 | C25—C26—C27 | 122.63 (15) |
H16A—C16A—H16B | 109.5 | C25—C26—H26A | 118.7 |
C8—C16A—H16C | 109.5 | C27—C26—H26A | 118.7 |
H16A—C16A—H16C | 109.5 | C32—C27—C26 | 118.43 (15) |
H16B—C16A—H16C | 109.5 | C32—C27—C28 | 122.95 (15) |
C10A—C18A—H18A | 109.5 | C26—C27—C28 | 118.62 (15) |
C10A—C18A—H18B | 109.5 | C37B—C28—C36 | 120.8 (4) |
H18A—C18A—H18B | 109.5 | C36—C28—C29A | 119.0 (2) |
C10A—C18A—H18C | 109.5 | C37B—C28—C27 | 110.2 (4) |
H18A—C18A—H18C | 109.5 | C36—C28—C27 | 110.68 (16) |
H18B—C18A—H18C | 109.5 | C29A—C28—C27 | 109.75 (18) |
C30A—C29A—C28 | 112.7 (2) | C37B—C28—C29B | 112.0 (4) |
C30A—C29A—H29A | 109.1 | C36—C28—C29B | 94.0 (3) |
C28—C29A—H29A | 109.1 | C27—C28—C29B | 107.5 (2) |
C30A—C29A—H29B | 109.1 | C36—C28—C37A | 102.8 (3) |
C28—C29A—H29B | 109.1 | C29A—C28—C37A | 103.5 (2) |
H29A—C29A—H29B | 107.8 | C27—C28—C37A | 110.5 (2) |
C29A—C30A—C38A | 109.8 (6) | C40—C31—C39 | 107.89 (17) |
C29A—C30A—C31 | 110.9 (2) | C40—C31—C32 | 109.63 (15) |
C38A—C30A—C31 | 111.4 (6) | C39—C31—C32 | 108.17 (14) |
C29A—C30A—H30A | 108.2 | C40—C31—C30B | 96.3 (3) |
C38A—C30A—H30A | 108.2 | C39—C31—C30B | 124.6 (3) |
C31—C30A—H30A | 108.2 | C32—C31—C30B | 109.1 (2) |
C30A—C38A—H38A | 109.5 | C40—C31—C30A | 121.1 (2) |
C30A—C38A—H38B | 109.5 | C39—C31—C30A | 98.86 (18) |
H38A—C38A—H38B | 109.5 | C32—C31—C30A | 110.07 (17) |
C30A—C38A—H38C | 109.5 | C27—C32—C33 | 118.04 (15) |
H38A—C38A—H38C | 109.5 | C27—C32—C31 | 123.80 (15) |
H38B—C38A—H38C | 109.5 | C33—C32—C31 | 118.15 (15) |
C28—C37A—H37A | 109.5 | C34—C33—C32 | 123.84 (15) |
C28—C37A—H37B | 109.5 | C34—C33—H33A | 118.1 |
H37A—C37A—H37B | 109.5 | C32—C33—H33A | 118.1 |
C28—C37A—H37C | 109.5 | C33—C34—C25 | 117.50 (15) |
H37A—C37A—H37C | 109.5 | C33—C34—C35 | 120.24 (15) |
H37B—C37A—H37C | 109.5 | C25—C34—C35 | 122.25 (15) |
C10B—C9B—C8 | 110.5 (3) | C34—C35—H35A | 109.5 |
C10B—C9B—H9C | 109.6 | C34—C35—H35B | 109.5 |
C8—C9B—H9C | 109.6 | H35A—C35—H35B | 109.5 |
C10B—C9B—H9D | 109.6 | C34—C35—H35C | 109.5 |
C8—C9B—H9D | 109.6 | H35A—C35—H35C | 109.5 |
H9C—C9B—H9D | 108.1 | H35B—C35—H35C | 109.5 |
C9B—C10B—C11 | 109.4 (4) | C28—C36—H36A | 109.5 |
C9B—C10B—C18B | 110.4 (10) | C28—C36—H36B | 109.5 |
C11—C10B—C18B | 114.4 (11) | H36A—C36—H36B | 109.5 |
C9B—C10B—H10B | 107.5 | C28—C36—H36C | 109.5 |
C11—C10B—H10B | 107.5 | H36A—C36—H36C | 109.5 |
C18B—C10B—H10B | 107.5 | H36B—C36—H36C | 109.5 |
C8—C16B—H16D | 109.5 | C31—C39—H39A | 109.5 |
C8—C16B—H16E | 109.5 | C31—C39—H39B | 109.5 |
H16D—C16B—H16E | 109.5 | H39A—C39—H39B | 109.5 |
C8—C16B—H16F | 109.5 | C31—C39—H39C | 109.5 |
H16D—C16B—H16F | 109.5 | H39A—C39—H39C | 109.5 |
H16E—C16B—H16F | 109.5 | H39B—C39—H39C | 109.5 |
C10B—C18B—H18D | 109.5 | C31—C40—H40A | 109.5 |
C10B—C18B—H18E | 109.5 | C31—C40—H40B | 109.5 |
H18D—C18B—H18E | 109.5 | H40A—C40—H40B | 109.5 |
C10B—C18B—H18F | 109.5 | C31—C40—H40C | 109.5 |
H18D—C18B—H18F | 109.5 | H40A—C40—H40C | 109.5 |
H18E—C18B—H18F | 109.5 | H40B—C40—H40C | 109.5 |
C30B—C29B—C28 | 112.6 (4) | C42—C41—H41A | 109.5 |
C30B—C29B—H29C | 109.1 | C42—C41—H41B | 109.5 |
C28—C29B—H29C | 109.1 | H41A—C41—H41B | 109.5 |
C30B—C29B—H29D | 109.1 | C42—C41—H41C | 109.5 |
C28—C29B—H29D | 109.1 | H41A—C41—H41C | 109.5 |
H29C—C29B—H29D | 107.8 | H41B—C41—H41C | 109.5 |
C29B—C30B—C31 | 106.5 (4) | O1—C42—C41 | 110.93 (18) |
C29B—C30B—C38B | 108.8 (10) | O1—C42—H42A | 109.5 |
C31—C30B—C38B | 113.5 (10) | C41—C42—H42A | 109.5 |
C29B—C30B—H30B | 109.3 | O1—C42—H42B | 109.5 |
C31—C30B—H30B | 109.3 | C41—C42—H42B | 109.5 |
C38B—C30B—H30B | 109.3 | H42A—C42—H42B | 108.0 |
C30B—C38B—H38D | 109.5 | C2—N1—C1 | 121.71 (16) |
C30B—C38B—H38E | 109.5 | C2—N1—H1 | 119.1 |
H38D—C38B—H38E | 109.5 | C1—N1—H1 | 119.1 |
C30B—C38B—H38F | 109.5 | C2—N2—N3 | 112.94 (13) |
H38D—C38B—H38F | 109.5 | C3—N3—N2 | 113.87 (13) |
H38E—C38B—H38F | 109.5 | C3—N3—Pd1 | 126.67 (11) |
C28—C37B—H37D | 109.5 | N2—N3—Pd1 | 119.44 (10) |
C28—C37B—H37E | 109.5 | C22—N4—C21 | 119.90 (14) |
H37D—C37B—H37E | 109.5 | C22—N4—H2 | 120.1 |
C28—C37B—H37F | 109.5 | C21—N4—H2 | 120.1 |
H37D—C37B—H37F | 109.5 | C22—N5—N6 | 111.48 (12) |
H37E—C37B—H37F | 109.5 | C23—N6—N5 | 114.58 (13) |
C10B—C11—C19 | 94.5 (2) | C23—N6—Pd1 | 130.09 (11) |
C10B—C11—C20 | 121.4 (2) | N5—N6—Pd1 | 115.23 (10) |
C19—C11—C20 | 108.82 (18) | C42—O1—H3 | 109.5 |
C10B—C11—C12 | 112.2 (2) | N6—Pd1—N3 | 178.02 (5) |
C19—C11—C12 | 108.26 (15) | N6—Pd1—S1 | 97.92 (4) |
C20—C11—C12 | 109.91 (15) | N3—Pd1—S1 | 82.82 (4) |
C19—C11—C10A | 117.58 (19) | N6—Pd1—S2 | 80.32 (4) |
C20—C11—C10A | 104.05 (18) | N3—Pd1—S2 | 98.47 (5) |
C12—C11—C10A | 108.05 (17) | S1—Pd1—S2 | 164.631 (17) |
C7—C12—C13 | 118.13 (15) | C2—S1—Pd1 | 95.29 (6) |
C7—C12—C11 | 123.21 (16) | C22—S2—Pd1 | 91.28 (6) |
C13—C12—C11 | 118.60 (16) | ||
N3—C3—C5—C6 | −54.0 (2) | C30A—C29A—C28—C36 | 78.1 (3) |
C4—C3—C5—C6 | 118.21 (17) | C30A—C29A—C28—C27 | −50.8 (3) |
N3—C3—C5—C14 | 128.43 (17) | C30A—C29A—C28—C37A | −168.8 (3) |
C4—C3—C5—C14 | −59.4 (2) | C32—C27—C28—C37B | 107.5 (4) |
C14—C5—C6—C7 | −1.4 (2) | C26—C27—C28—C37B | −72.3 (4) |
C3—C5—C6—C7 | −179.08 (14) | C32—C27—C28—C36 | −116.2 (2) |
C5—C6—C7—C12 | −1.1 (2) | C26—C27—C28—C36 | 63.9 (2) |
C5—C6—C7—C8 | 179.08 (15) | C32—C27—C28—C29A | 17.2 (3) |
C6—C7—C8—C17 | −68.7 (2) | C26—C27—C28—C29A | −162.69 (19) |
C12—C7—C8—C17 | 111.49 (19) | C32—C27—C28—C29B | −14.8 (3) |
C6—C7—C8—C9A | 160.86 (17) | C26—C27—C28—C29B | 165.3 (3) |
C12—C7—C8—C9A | −19.0 (3) | C32—C27—C28—C37A | 130.6 (3) |
C6—C7—C8—C16A | 46.0 (2) | C26—C27—C28—C37A | −49.2 (3) |
C12—C7—C8—C16A | −133.9 (2) | C30B—C29B—C28—C37B | −71.8 (6) |
C6—C7—C8—C16B | 65.3 (4) | C30B—C29B—C28—C36 | 162.6 (4) |
C12—C7—C8—C16B | −114.5 (3) | C30B—C29B—C28—C27 | 49.5 (5) |
C6—C7—C8—C9B | −161.6 (2) | C29B—C30B—C31—C40 | 166.5 (4) |
C12—C7—C8—C9B | 18.6 (3) | C38B—C30B—C31—C40 | −73.8 (10) |
C17—C8—C9A—C10A | −76.7 (3) | C29B—C30B—C31—C39 | −76.6 (4) |
C7—C8—C9A—C10A | 49.7 (3) | C38B—C30B—C31—C39 | 43.1 (10) |
C16A—C8—C9A—C10A | 166.8 (2) | C29B—C30B—C31—C32 | 53.2 (4) |
C8—C9A—C10A—C18A | 166.9 (7) | C38B—C30B—C31—C32 | 172.9 (10) |
C8—C9A—C10A—C11 | −68.3 (3) | C29A—C30A—C31—C40 | 88.6 (3) |
C28—C29A—C30A—C38A | −171.8 (5) | C38A—C30A—C31—C40 | −34.0 (6) |
C28—C29A—C30A—C31 | 64.7 (3) | C29A—C30A—C31—C39 | −154.2 (2) |
C17—C8—C9B—C10B | −166.3 (4) | C38A—C30A—C31—C39 | 83.2 (5) |
C7—C8—C9B—C10B | −56.3 (4) | C29A—C30A—C31—C32 | −41.1 (3) |
C16B—C8—C9B—C10B | 75.9 (5) | C38A—C30A—C31—C32 | −163.7 (5) |
C8—C9B—C10B—C11 | 71.0 (4) | C26—C27—C32—C33 | 1.6 (2) |
C8—C9B—C10B—C18B | −162.2 (12) | C28—C27—C32—C33 | −178.33 (15) |
C28—C29B—C30B—C31 | −71.5 (5) | C26—C27—C32—C31 | −177.59 (15) |
C28—C29B—C30B—C38B | 165.8 (10) | C28—C27—C32—C31 | 2.5 (2) |
C9B—C10B—C11—C19 | −155.0 (3) | C40—C31—C32—C27 | −126.5 (2) |
C18B—C10B—C11—C19 | 80.6 (12) | C39—C31—C32—C27 | 116.09 (19) |
C9B—C10B—C11—C20 | 89.7 (4) | C30B—C31—C32—C27 | −22.2 (3) |
C18B—C10B—C11—C20 | −34.7 (12) | C30A—C31—C32—C27 | 9.1 (2) |
C9B—C10B—C11—C12 | −43.2 (4) | C40—C31—C32—C33 | 54.3 (2) |
C18B—C10B—C11—C12 | −167.6 (11) | C39—C31—C32—C33 | −63.1 (2) |
C9A—C10A—C11—C19 | −73.1 (3) | C30B—C31—C32—C33 | 158.6 (3) |
C18A—C10A—C11—C19 | 48.7 (7) | C30A—C31—C32—C33 | −170.06 (18) |
C9A—C10A—C11—C20 | 166.5 (2) | C27—C32—C33—C34 | −1.3 (2) |
C18A—C10A—C11—C20 | −71.6 (7) | C31—C32—C33—C34 | 177.92 (15) |
C9A—C10A—C11—C12 | 49.7 (2) | C32—C33—C34—C25 | −0.8 (2) |
C18A—C10A—C11—C12 | 171.6 (7) | C32—C33—C34—C35 | 178.11 (16) |
C6—C7—C12—C13 | 2.3 (2) | C26—C25—C34—C33 | 2.6 (2) |
C8—C7—C12—C13 | −177.87 (16) | C23—C25—C34—C33 | −177.14 (15) |
C6—C7—C12—C11 | −174.95 (15) | C26—C25—C34—C35 | −176.33 (16) |
C8—C7—C12—C11 | 4.9 (2) | C23—C25—C34—C35 | 4.0 (2) |
C10B—C11—C12—C7 | 5.8 (3) | N2—C2—N1—C1 | −10.2 (3) |
C19—C11—C12—C7 | 108.7 (2) | S1—C2—N1—C1 | 167.84 (15) |
C20—C11—C12—C7 | −132.54 (18) | N1—C2—N2—N3 | 172.20 (14) |
C10A—C11—C12—C7 | −19.6 (2) | S1—C2—N2—N3 | −5.6 (2) |
C10B—C11—C12—C13 | −171.5 (2) | C5—C3—N3—N2 | 167.56 (13) |
C19—C11—C12—C13 | −68.5 (2) | C4—C3—N3—N2 | −4.5 (2) |
C20—C11—C12—C13 | 50.2 (2) | C5—C3—N3—Pd1 | −14.3 (2) |
C10A—C11—C12—C13 | 163.15 (17) | C4—C3—N3—Pd1 | 173.55 (12) |
C7—C12—C13—C14 | −1.2 (2) | C2—N2—N3—C3 | −161.72 (14) |
C11—C12—C13—C14 | 176.18 (15) | C2—N2—N3—Pd1 | 20.03 (17) |
C12—C13—C14—C5 | −1.2 (2) | N5—C22—N4—C21 | −2.3 (2) |
C12—C13—C14—C15 | −177.37 (15) | S2—C22—N4—C21 | 174.14 (12) |
C6—C5—C14—C13 | 2.5 (2) | N4—C22—N5—N6 | 174.48 (13) |
C3—C5—C14—C13 | 180.00 (14) | S2—C22—N5—N6 | −1.68 (19) |
C6—C5—C14—C15 | 178.52 (15) | C25—C23—N6—N5 | 3.4 (2) |
C3—C5—C14—C15 | −3.9 (2) | C24—C23—N6—N5 | −178.64 (14) |
N6—C23—C25—C26 | −110.66 (18) | C25—C23—N6—Pd1 | −172.87 (11) |
C24—C23—C25—C26 | 71.3 (2) | C24—C23—N6—Pd1 | 5.1 (2) |
N6—C23—C25—C34 | 69.1 (2) | C22—N5—N6—C23 | −142.16 (14) |
C24—C23—C25—C34 | −108.96 (18) | C22—N5—N6—Pd1 | 34.70 (16) |
C34—C25—C26—C27 | −2.3 (2) | N2—C2—S1—Pd1 | −8.19 (15) |
C23—C25—C26—C27 | 177.37 (14) | N1—C2—S1—Pd1 | 173.96 (13) |
C25—C26—C27—C32 | 0.2 (2) | N5—C22—S2—Pd1 | −24.45 (14) |
C25—C26—C27—C28 | −179.90 (15) | N4—C22—S2—Pd1 | 159.40 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C24—H24C···S1 | 0.98 | 2.73 | 3.5061 (19) | 136 |
N1—H1···S1i | 0.88 | 2.57 | 3.411 (2) | 160 |
N4—H2···O1 | 0.88 | 2.01 | 2.879 (2) | 167 |
O1—H3···S2ii | 0.84 | 2.43 | 3.2596 (16) | 169 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+2, −y+1, −z+2. |
The dihedral angle between the N/N/C/S/N entities amounts to 61.34 (4)°. |
N/N/C/S/N entity | max. deviation | Atom | r.m.s.d. | Angle |
N3/N2/C2/N1/S1 | 0.0567 (1) | N2 | 0.0403 | 46.68 (5) |
N6/N5/C22/N4/S2 | -0.0307 (8) | N6 | 0.0269 | 50.66 (4) |
Aliphatic ring | max. deviation (+) | max. deviation (-) | r.m.s.d. |
C7/C8/C9A/C10A/C11/C12 | 0.347 (2) (C10A) | -0.343 (2) (C9A) | 0.2152 |
C7/C8/C9B/C10B/C11/C12 | 0.402 (3) (C9B) | -0.331 (3) [C10B] | 0.2309 |
C27/C28/C29A/C30A/C31/C32 | 0.308 (2) (C30A) | -0.348 (2) [C29A] | 0.2052 |
C27/C28/C29B/C30B/C31/C32 | 0.352 (4) (C29B) | -0.379 (4) (C30B) | 0.2280 |
For a graphical representation of the title compound, see: Fig. 1. |
Compound | Isomer | Chiral atom (s.o.f.) | Atom chain | Torsion angle |
C17H24O2a | R | C10A [0.683 (4)] | C9—C10A—C11A—C12 | -67.0 (3) |
C17H24O2a | S | C10B [0.317 (4)] | C9—C10B—C11B—C12 | 71.8 (6) |
C20H31N3Sb | R | C10A [0.646 (14)] | C8—C9A—C10A—C11 | -66.4 (7) |
C20H31N3Sb | S | C10B [0.354 (14)] | C8—C9B—C10B—C11 | 67.7 (16) |
Pd(C20H30N3S)2·C2H6Oc | R | C10A [0.624 (2)] | C8—C9A—C10A—C11 | -68.3 (3) |
Pd(C20H30N3S)2·C2H6Oc | S | C10B [0.376 (2)] | C8—C9B—C10B—C11 | 71.0 (4) |
Pd(C20H30N3S)2·C2H6Oc | R | C30B [0.3752 (2)] | C28—C29B—C30B—C31 | -71.5 (5) |
Pd(C20H30N3S)2·C2H6Oc | S | C30A [0.624 (2)] | C28—C29A—C30A—C31 | 64.7 (3) |
(a) The (R,S)-fixolide carboxylic acid derivative structure (Kuhlich et al., 2010); (b) the (R,S)-fixolide 4-methylthiosemicarbazone structure (Melo et al., 2023a); (c) the trans-bis[(R,S)-fixolide 4-methylthiosemicarbazonato-κ2N1S]palladium(II) complex structure of this work. |
N—N | N—C | C—S | |
C20H31N3Sa | 1.386 (3) | 1.376 (4) | 1.666 (3) |
Pd(C16H14N3S)2b | 1.390 (2) | 1.293 (2) | 1.7520 (19) |
1.393 (2) | 1.291 (2) | 1.7328 (19) | |
Pd(C20H30N3S)2·C2H6Oc | 1.3970 (18) | 1.304 (2) | 1.7520 (17) |
1.4056 (18) | 1.306 (2) | 1.7644 (16) |
(a) The neutral and non-coordinated form of the (R,S)-fixolide 4-methylthiosemicarbazone structure (Melo et al., 2023a); (b) the anionic and coordinated form of the cinnamaldehyde 4-phenylthiosemicarbazone in a PdII-complex (Melo et al., 2023b); (c) the anionic and coordinated form of the (R,S)-fixolide 4-methylthiosemicarbazone in the PdII complex of this work. |
Acknowledgements
APLM thanks CAPES for the award of a PhD scholarship. The authors thank the Department of Chemistry of the Federal University of Santa Maria/Brazil for the access to the X-ray diffraction facility.
Funding information
Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001 .
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Aly, A. A., Abdallah, E. M., Ahmed, S. A., Rabee, M. M. & Bräse, S. (2023). Molecules, 28, 1808, 1–39. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brookhart, M., Green, M. L. H. & Parkin, G. (2007). Proc. Natl Acad. Sci. USA, 104, 6908–6914. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chemical Abstracts Service (2023). Columbus, Ohio, USA (accessed via SciFinder on October 21, 2023). Google Scholar
Derry Holaday, M. G., Tarafdar, G., Kumar, A., Reddy, M. L. P. & Srinivasan, A. (2014). Dalton Trans. 43, 7699–7703. Web of Science CSD CrossRef CAS PubMed Google Scholar
Domagk, G., Behnisch, R., Mietzsch, F. & Schmidt, H. (1946). Naturwissenschaften, 33, 315. CrossRef Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602–2606. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Karthikeyan, J., Parameshwara, P. & Shetty, A. N. (2011). Environ. Monit. Assess. 173, 569–577. Web of Science CrossRef CAS PubMed Google Scholar
Kovala-Demertzi, D., Kourkoumelis, N., Derlat, K., Michalak, J., Andreadaki, F. J. & Kostas, I. D. (2008). Inorg. Chim. Acta, 361, 1562–1565. CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kuhlich, P., Göstl, R., Metzinger, R., Piechotta, C. & Nehls, I. (2010). Acta Cryst. E66, o2687. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055. Web of Science CrossRef CAS Google Scholar
Melo, A. P. L. de, Flores, A. F. C., Bresolin, L., Tirloni, B. & Oliveira, A. B. (2023a). IUCrData, 8. x231020. Google Scholar
Melo, A. P. L. de, Martins, B. B., Bresolin, L., Tirloni, B. & Oliveira, A. B. de (2023b). Acta Cryst. E79, 993–998. Web of Science CSD CrossRef IUCr Journals Google Scholar
Priyarega, S., Haribabu, J. & Karvembu, R. (2022). Inorg. Chim. Acta, 532, 120742. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, V., Palakkeezhillam, V. N. V., Manakkadan, V., Rasin, P., Valsan, A. K., Kumar, V. S. & Sreekanth, A. (2023). Polyhedron, 245, 116658, 1–43. Google Scholar
Straistari, T., Hardré, R., Massin, J., Attolini, M., Faure, B., Giorgi, M., Réglier, M. & Orio, M. (2018). Eur. J. Inorg. Chem. pp. 2259–2266. Web of Science CSD CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Perth, Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.