research communications
Crystal structures of two formamidinium hexafluoridophosphate salts, one with batch-dependent disorder
aDepartment of Chemistry, Hunter College, The City University of New York, New York, 10065 NY, USA, bDepartment of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA, and cDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: 'pcorfield@fordham.edu'
Syntheses of the acyclic amidinium salts, morpholinoformamidinium hexafluoridophosphate [OC4H8N—CH=NH2]PF6 or C5H11N2O+·PF6−, 1, and pyrrolidinoformamidinium hexafluoridophosphate [C4H8N—CH= NH2]PF6 or C5H11N2+·PF6−, 2, were carried out by heating either morpholine or pyrrolidine with triethyl orthoformate and ammonium hexafluoridophosphate. Crystals of 1 obtained directly from the reaction mixture contain one cation and one anion in the The structure involves cations linked in chains parallel to the b axis by N—H⋯O hydrogen bonds in Pbca, with glide-related chains pointing in opposite directions. Crystals of 1 obtained by recrystallization from ethanol, however, showed a similar and the same basic structure, but unexpectedly, there was positional disorder [occupancy ratio 0.639 (4):0.361 (4)] in one of the cation chains, which lowered the crystal symmetry to the non-centrosymmetric Pca21, with two cations and anions in the In the pyrrolidino compound, 2, cations and anions are ordered and are stacked separately, with zigzag N—H⋯F hydrogen-bonding between stacks, forming ribbons parallel to (101), extended along the b-axis direction. Slight differences in the delocalized C=N distances between the two cations may reflect the of the oxygen atom in the morpholino compound.
1. Chemical context
The stability of N-heterocyclic et al., 2011). Previously, one of us reported a simple and efficient one-pot procedure for the preparation of cyclic amidinium salts by exchange reactions of various orthoesters with primary and secondary α,ω-diamines in the presence of ammonium tetrafluoridoborate or ammonium hexafluoridophosphate (Saba et al., 1991). This approach has been widely used for the preparation of cyclic amidinium salts in which the nitrogen-flanked carbon atom bears a hydrogen atom and the nitrogen atoms bear bulky substituents (for example: Funk et al., 2006; Scarborough et al., 2005). The use of orthoesters was then extended for the preparation of various acyclic amidinium hexafluoridophosphates as potential carbene precursors (Saba et al., 2005). We present here the first single-crystal structure determinations of these types of amidinium salts with N-heterocycles, viz. morpholinoformamidinium hexafluoridophosphate, 1, and pyrrolidinoformamidinium hexafluoridophosphate, 2.
and their applications in organic syntheses and in transition-metal catalysis has led in the past to intense interest in the syntheses of their precursors: cationic N-heterocyclic amidinium salts (Benhamou2. Structural commentary
The 1 was determined from crystals obtained directly from the original preparation described in the Synthesis section, and also from crystals obtained by recrystallization from ethanol, 1(recryst). The structures of the molecular moieties with atom numbering are shown in Figs. 1 and 2.
ofIn 1, the length of the delocalized C=N bond of 1.3016 (15) Å for the terminal C7—N8 bond is close to but slightly less than the value of 1.3142 (13) Å found for the bond adjacent to the ring, N1—C7; the angle at the methine C7 atom is 125.98 (10)°. The formamidinium group N1—C7H—N8H2+ is very close to planar with a root-mean-square (r.m.s.) deviation of the six atoms from the plane of 0.0050 Å. This group is not coplanar with the C2–N1–C6 plane of the morpholine group but is tilted by 13.4 (3)° from that plane. The morpholine moiety has the usual chair configuration, with the four atoms C2, C3, C5, C6 rigidly coplanar with an r.m.s. deviation of 0.0048 Å, and the O and N ends tilted by 52.6 (1) and 54.4 (1)°, respectively, from this plane.
Part of the sample was recrystallized from ethanol, in order to obtain larger crystals. Data from these crystals, 1(recryst), indicated essentially the same but with intensities that did not exactly match those obtained for the original crystal. This intensity difference was shown to be due to disorder in one of the hydrogen-bonded cation chains, discussed in the next section, which lowered the symmetry to Pca21 where two independent cations and anions are present. The shape of the cations are the same as found for the original crystal, albeit with somewhat less precision because of the disorder. To our knowledge, such a batch-dependent disorder is not often reported. Solvent-dependent disorder for some cobalt and zinc complexes is discussed in McCormick et al. (2018), but in that case there is solvate actually present in the crystal structures.
Fig. 3 shows the molecular structures of cations and anions for 2. Here, the lengths of the delocalized C=N bonds in the two independent cations are slightly longer to the terminal nitrogen atom: The average for the terminal C=N bonds, C6—N7 and C16—N17, is 1.323 (5) Å, while that for the C=N bonds adjacent to the rings, N1—C6 and N11—C16, is 1.293 (5) Å. A slight difference in the delocalized C=N bond lengths might be expected due to the differing inductive effects of the terminal H atoms and the ring atoms; the lower electron density expected on N1 in compound 1 due to the electron withdrawing of the ring oxygen might cause the C=N distance adjacent to the ring to be longer in 1 than in 2, and the terminal C=N distance to be shorter. The angles at the methine C6 and C16 atoms in 2 are 122.4 (5) and 123.1 (5)°, slightly smaller than in 1. The five-membered pyrrolidine rings assume an with C4 and C14, respectively, as the flap (puckering parameters Q2 = 0.3982 Å, φ2 = 103.3° for the N1–C5 ring and Q2 = 0.3966, φ2 = 284.0° for the N11–C15 ring; Cremer & Pople, 1975). The envelope atoms N1, C2, C3, C5 and N11, C12, C13, C15 are coplanar, with deviations of 0.013 Å or less for both cations, and the C3, C4, C5 and C13, C14, C15 flaps make angles of 40.1 (4) and 39.6 (5)°, respectively, with these planes.
3. Supramolecular features
Multiple contacts between the cations and the PF6− anions may be due to either electrostatic or hydrogen-bonding interactions. We have applied a 3.25 Å cutoff for C/N ⋯ F distances and a 110o C/N—H ⋯ F angle for possible hydrogen bonds and these interactions are listed in Tables 1–3.
|
|
In 1, the PF6− anions are spaced close to half a apart in all three directions. There are chains of cations along the b-axis direction as seen in Fig. 4, linked together via N8—H8⋯O4 hydrogen bonds. N—H⋯F and C—H⋯F hydrogen bonds to PF6− groups on one side of the cation chain augment these cation chains to ribbons of cations and anions parallel to the b axis. Cation chains at z = 1/4 and z = 3/4 are related by a c glide, and point in opposite directions. 1(recryst) shows the same general supramolecular features, Fig. 5, but in this case alternate cation chains are disordered as to direction, and the symmetry of the structure is lowered from the centric Pbca to the noncentric Pca21, with an interchange of the b and c axes. 36.1 (4)% of the chains point in a direction opposite to that of their neighbors, as would be required by the centric but the majority disorder component points in the opposite direction. The network of cation⋯anion hydrogen bonds is similar to that in 1, except that there do not appear to be any methine C—H⋯F contacts for either of the disordered cation chains. All intermolecular H⋯H contacts in 1 are >2.7 Å.
In 2, cations and anions are each spaced half a apart in all three directions as seen in Fig. 6. All but one of the N—H⋯F hydrogen-bonds listed in Table 3 are within sheets parallel to (101), and are shown for one of these sheets in Fig. 7 where hydrogen-bonded cation⋯anion⋯cation chains along the b axis can be seen. Alternate cations in the b-axis direction link to separate ribbons. The hydrogen-bonding pattern in Fig. 7 is not dissimilar to that for 1 shown in Fig. 4, except that the cation⋯cation hydrogen bonding in Fig. 4 is not possible in 2 due to lack of the O acceptor atom in the pyrrolidino ring. The C16—H16⋯F6 hydrogen bonds link the sheets together. The shortest H⋯H contacts are H2A⋯H13A(x − , − y, z + ) = 2.63 Å and H3A⋯H14A(x − , y + , z + 1) = 2.63 Å.
4. Database survey
Searches in the Cambridge Structural Database (CSD, version 5.43, update of October 2022; Groom et al., 2016) with the fragment C—N—CH=NH2+ led to 17 hits, with just four different chemical species, RC(H/R1)NH2+, with R = Me2N—N=N–, CHO, and two more complex aromatic sulfur containing moieties. Overall, the delocalized C—N distances average to 1.310 (11) Å. Entry FUMGUP (Allenstein et al., 1987) is the aldehyde derivative, where the delocalized C=N distances differ slightly, by 0.02 Å. We did not find any examples of terminal formamidinium groups attached to nitrogen heterocycles, as in the present structures.
In regards to intermolecular contacts, we found in the database 1825 N⋯F contacts less than 3.02 Å, the sum of the van der Waals radii. In the present compounds, only two N⋯F contact distances are less than 3.02 Å, while the others are all greater than this. Also, although there are over 35000 C⋯F contacts in the database less than 3.17 Å, the sum of the van der Waals radii, only the C7—H7⋯F2 contacts at 3.14 Å shown in Fig. 3 meet this criterion. The weak intermolecular forces implied by the longer intermolecular distances in the present crystal structures may be correlated with the disorder in the anions, and the disorder possibilities in the cation chains.
5. Synthesis and crystallization
Compound 1 was prepared by heating an equimolar mixture of morpholine, triethyl orthoformate and ammonium hexafluoridophosphate. Similarly, compound 2 was made by heating an equimolar mixture of pyrrolidine, triethyl orthoformate and ammonium hexafluoridophosphate. Compound 1 precipitated out as the reaction mixture was being heated and was purified by crystallization from ethanol. Compound 2 crystallized as the reaction mixture was cooled, affording sufficiently pure crystals.
Infrared Spectra: FTIR spectra for the two compounds are shown in the supporting information. For compound 2, there are two clear NH2 stretching frequencies at 3474 and 3380 cm−1. The bands at 1716 cm−1 may be due to the resonant N—C=N stretches. For compound 1 and 1(recyst), a similar N—C=N stretching frequency is seen at 1717 cm−1. Here, however, the spectrum in the N—H stretch region is more complex, with multiple bands below the prominent band at 3453 cm−1. Allenstein et al. (1987) include a review of the IR data for their aldehyde complex, with N—H stretches at 3342 and 3240 cm−1, and a band at 1695 cm−1 for the asymmetric N—C=N stretch; further assignments are given in more detail than covered in the present paper.
Nuclear Magnetic Resonance Data: Compound 1:
1H NMR δ (400 MHz, DMSO-d6): 3.50–3.73 (m, 8H), 8.10 (s, 1H), 8.85 (s, br, 2H).
Compound 2: 1H NMR δ (400 MHz, DMSO-d6): 1.80–2.05 (m, 4H), 3.25–3.40 (t, 2H), 3.60–3.69 (t, 2H), 8.10 (s, 1H), 8.70 (s, br, 2H).
6. Refinement
Crystal data, data collection and structure . Methylene H atoms were constrained to expected positions with C—H distances of 0.97 Å and displacement parameters set at 1.5Ueq of the parent C atom for 1 and 2, and 1.2Ueq for 1(recryst). H atoms bonded to N and the methine C atom were refined for 1. For 1(recryst) they were constrained due to the disorder [occupancy ratio of the disordered cation 0.639 (4):0.361 (4)], and they were also constrained for 2, since refinements did not move them from their expected positions. N—H distances in 1(recryst) and 2 were refined, however. Structure 1(recryst) was refined as an although it seems more likely that the crystal had about a mirror plane perpendicular to the c axis. Either has the same effect on the data analysis.
details are summarized in Table 4
|
Initially, several sets of data were collected at room temperature on crystals of both compounds 1 and 2. Room temperature data from all crystals had very few intensities with I > 2σ(I) at higher angles. The positions of the PF6− groups, which dominate the X-ray scattering, lead to whole groups of weak reflections. Even though the room-temperature data were not sufficiently adequate to define the disorder in 1(recryst), there were clear indications that the structure was not the same as in 1: Rint for merged data from 1 and 1(recryst) was 16.4%, compared with Rint values of 3.9% and 4.1% for the individual data sets. For this reason, data collection was repeated at low temperature.
Refinement was complicated by disorder in the hexafluoridophosphate groups. In 1, a minor disorder component was twisted some 45o about the F1A—P1—F2A axis; since the occupancy of this component refined to only 13.0 (8)%, the four F atoms F3B–F6B were refined isotropically. A similar positional disorder exists for one of the PF6− groups in 1(recryst) with an occupancy ratio of 0.876 (19):0.124 (19), where the four F atoms F3B–F6B were refined isotropically. In 2, no disordered model appeared necessary.
Supporting information
https://doi.org/10.1107/S2056989023010848/wm5706sup1.cif
contains datablocks 1, 1recryst, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989023010848/wm57061sup2.hkl
Structure factors: contains datablock 1recryst. DOI: https://doi.org/10.1107/S2056989023010848/wm57061recrystsup3.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989023010848/wm57062sup4.hkl
Infrared Spectra of the Two Compounds. DOI: https://doi.org/10.1107/S2056989023010848/wm5706sup5.tif
C5H11N2O+·PF6− | Dx = 1.788 Mg m−3 |
Mr = 260.13 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, Pbca | Cell parameters from 9781 reflections |
a = 10.4638 (3) Å | θ = 4.2–74.6° |
b = 13.4495 (4) Å | µ = 3.30 mm−1 |
c = 13.7340 (4) Å | T = 130 K |
V = 1932.83 (10) Å3 | Block, colorless |
Z = 8 | 0.29 × 0.09 × 0.06 mm |
F(000) = 1056 |
Bruker D8 with PHOTON III area detector diffractometer | 1923 reflections with I > 2σ(I) |
Radiation source: microfocus | Rint = 0.034 |
φ and ω shutterless scans | θmax = 74.6°, θmin = 6.3° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −13→12 |
Tmin = 0.570, Tmax = 0.754 | k = −16→16 |
36889 measured reflections | l = −17→15 |
1969 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.025 | w = 1/[σ2(Fo2) + (0.0373P)2 + 0.517P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.071 | (Δ/σ)max < 0.001 |
S = 1.12 | Δρmax = 0.29 e Å−3 |
1969 reflections | Δρmin = −0.28 e Å−3 |
165 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00052 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.17230 (9) | 0.55859 (6) | 0.73256 (6) | 0.01938 (19) | |
C2 | 0.20187 (10) | 0.51175 (7) | 0.82640 (7) | 0.0203 (2) | |
H2A | 0.152903 | 0.449208 | 0.833665 | 0.030* | |
H2B | 0.178416 | 0.556828 | 0.880516 | 0.030* | |
C3 | 0.34450 (10) | 0.49023 (8) | 0.82874 (8) | 0.0220 (2) | |
H3A | 0.392565 | 0.553533 | 0.825341 | 0.033* | |
H3B | 0.366643 | 0.456964 | 0.890787 | 0.033* | |
O4 | 0.38048 (9) | 0.42787 (6) | 0.74877 (5) | 0.02532 (19) | |
C5 | 0.34896 (11) | 0.47236 (9) | 0.65681 (8) | 0.0279 (3) | |
H5A | 0.373554 | 0.426656 | 0.603505 | 0.042* | |
H5B | 0.398048 | 0.534754 | 0.648785 | 0.042* | |
C6 | 0.20684 (12) | 0.49485 (8) | 0.64996 (8) | 0.0266 (2) | |
H6A | 0.157068 | 0.432289 | 0.652136 | 0.040* | |
H6B | 0.187731 | 0.529177 | 0.587877 | 0.040* | |
C7 | 0.14903 (9) | 0.65374 (8) | 0.71986 (8) | 0.0198 (2) | |
H7 | 0.1387 (12) | 0.6771 (10) | 0.6554 (10) | 0.023 (3)* | |
N8 | 0.13576 (10) | 0.71972 (7) | 0.78845 (7) | 0.0252 (2) | |
H8A | 0.1442 (14) | 0.7058 (12) | 0.8468 (13) | 0.035 (3)* | |
H8B | 0.1207 (16) | 0.7800 (13) | 0.7735 (12) | 0.035 (3)* | |
P1A | 0.39982 (2) | 0.74360 (2) | 0.49827 (2) | 0.01852 (12) | 0.870 (8) |
F1A | 0.36762 (8) | 0.75062 (5) | 0.61181 (5) | 0.03015 (19) | 0.870 (8) |
F2A | 0.43172 (8) | 0.73592 (6) | 0.38461 (5) | 0.0350 (2) | 0.870 (8) |
F3A | 0.2971 (3) | 0.82864 (17) | 0.47542 (12) | 0.0382 (4) | 0.870 (8) |
F4A | 0.2907 (2) | 0.66066 (17) | 0.48512 (12) | 0.0372 (4) | 0.870 (8) |
F5A | 0.5015 (2) | 0.65703 (19) | 0.52252 (9) | 0.0372 (5) | 0.870 (8) |
F6A | 0.5081 (2) | 0.82470 (19) | 0.51297 (13) | 0.0418 (5) | 0.870 (8) |
P1B | 0.39982 (2) | 0.74360 (2) | 0.49827 (2) | 0.01852 (12) | 0.130 (8) |
F1B | 0.36762 (8) | 0.75062 (5) | 0.61181 (5) | 0.03015 (19) | 0.130 (8) |
F2B | 0.43172 (8) | 0.73592 (6) | 0.38461 (5) | 0.0350 (2) | 0.130 (8) |
F3B | 0.2743 (11) | 0.8078 (9) | 0.4866 (8) | 0.028 (2)* | 0.130 (8) |
F4B | 0.3249 (11) | 0.6487 (8) | 0.4898 (7) | 0.024 (2)* | 0.130 (8) |
F5B | 0.5314 (7) | 0.6899 (8) | 0.5077 (6) | 0.0209 (18)* | 0.130 (8) |
F6B | 0.4809 (8) | 0.8509 (7) | 0.4946 (6) | 0.0246 (19)* | 0.130 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0225 (4) | 0.0178 (4) | 0.0179 (4) | −0.0003 (3) | −0.0010 (3) | −0.0006 (3) |
C2 | 0.0246 (5) | 0.0177 (4) | 0.0187 (4) | −0.0004 (4) | 0.0013 (4) | 0.0030 (4) |
C3 | 0.0247 (5) | 0.0201 (5) | 0.0213 (5) | 0.0014 (4) | −0.0003 (4) | 0.0000 (4) |
O4 | 0.0317 (4) | 0.0189 (4) | 0.0254 (4) | 0.0059 (3) | 0.0032 (3) | 0.0006 (3) |
C5 | 0.0371 (6) | 0.0250 (5) | 0.0215 (5) | 0.0069 (4) | 0.0064 (4) | 0.0000 (4) |
C6 | 0.0367 (6) | 0.0230 (5) | 0.0200 (5) | 0.0016 (4) | −0.0026 (4) | −0.0051 (4) |
C7 | 0.0169 (5) | 0.0214 (5) | 0.0212 (5) | 0.0003 (4) | −0.0001 (4) | 0.0030 (4) |
N8 | 0.0330 (5) | 0.0180 (5) | 0.0246 (5) | 0.0048 (4) | 0.0020 (4) | 0.0018 (4) |
P1A | 0.01731 (18) | 0.02057 (17) | 0.01767 (17) | −0.00065 (9) | 0.00018 (9) | −0.00186 (8) |
F1A | 0.0365 (4) | 0.0350 (4) | 0.0190 (3) | 0.0065 (3) | 0.0023 (3) | −0.0025 (2) |
F2A | 0.0409 (4) | 0.0441 (4) | 0.0202 (3) | −0.0083 (3) | 0.0070 (3) | −0.0029 (3) |
F3A | 0.0463 (9) | 0.0355 (8) | 0.0329 (6) | 0.0184 (7) | −0.0065 (6) | 0.0044 (6) |
F4A | 0.0325 (8) | 0.0400 (7) | 0.0392 (6) | −0.0187 (7) | 0.0066 (6) | −0.0102 (5) |
F5A | 0.0391 (7) | 0.0389 (9) | 0.0336 (5) | 0.0200 (7) | 0.0017 (5) | −0.0011 (5) |
F6A | 0.0385 (7) | 0.0446 (9) | 0.0423 (6) | −0.0229 (7) | 0.0000 (6) | −0.0070 (6) |
P1B | 0.01731 (18) | 0.02057 (17) | 0.01767 (17) | −0.00065 (9) | 0.00018 (9) | −0.00186 (8) |
F1B | 0.0365 (4) | 0.0350 (4) | 0.0190 (3) | 0.0065 (3) | 0.0023 (3) | −0.0025 (2) |
F2B | 0.0409 (4) | 0.0441 (4) | 0.0202 (3) | −0.0083 (3) | 0.0070 (3) | −0.0029 (3) |
N1—C7 | 1.3142 (13) | C7—H7 | 0.946 (14) |
N1—C2 | 1.4675 (12) | N8—H8A | 0.827 (18) |
N1—C6 | 1.4672 (13) | N8—H8B | 0.850 (18) |
C2—C3 | 1.5206 (14) | P1A—F6A | 1.5856 (10) |
C2—H2A | 0.9900 | P1A—F3A | 1.6003 (14) |
C2—H2B | 0.9900 | P1A—F4A | 1.6063 (14) |
C3—O4 | 1.4322 (12) | P1A—F5A | 1.6120 (11) |
C3—H3A | 0.9900 | P1A—F1A | 1.5982 (7) |
C3—H3B | 0.9900 | P1A—F2A | 1.5997 (7) |
O4—C5 | 1.4360 (13) | P1B—F4B | 1.502 (12) |
C5—C6 | 1.5204 (16) | P1B—F3B | 1.581 (13) |
C5—H5A | 0.9900 | P1B—F5B | 1.560 (6) |
C5—H5B | 0.9900 | P1B—F1B | 1.5982 (7) |
C6—H6A | 0.9900 | P1B—F2B | 1.5997 (7) |
C6—H6B | 0.9900 | P1B—F6B | 1.674 (8) |
C7—N8 | 1.3016 (15) | ||
C7—N1—C2 | 125.00 (9) | C7—N8—H8B | 119.6 (11) |
C7—N1—C6 | 120.79 (9) | H8A—N8—H8B | 118.0 (15) |
C2—N1—C6 | 112.10 (8) | F6A—P1A—F3A | 90.75 (9) |
N1—C2—C3 | 107.89 (8) | F6A—P1A—F4A | 179.05 (8) |
N1—C2—H2A | 110.1 | F3A—P1A—F4A | 89.83 (10) |
C3—C2—H2A | 110.1 | F6A—P1A—F5A | 89.94 (9) |
N1—C2—H2B | 110.1 | F3A—P1A—F5A | 179.02 (8) |
C3—C2—H2B | 110.1 | F4A—P1A—F5A | 89.47 (8) |
H2A—C2—H2B | 108.4 | F6A—P1A—F1A | 89.19 (6) |
O4—C3—C2 | 110.69 (8) | F3A—P1A—F1A | 90.44 (7) |
O4—C3—H3A | 109.5 | F4A—P1A—F1A | 90.05 (6) |
C2—C3—H3A | 109.5 | F5A—P1A—F1A | 88.87 (6) |
O4—C3—H3B | 109.5 | F6A—P1A—F2A | 91.12 (6) |
C2—C3—H3B | 109.5 | F3A—P1A—F2A | 89.70 (7) |
H3A—C3—H3B | 108.1 | F4A—P1A—F2A | 89.64 (6) |
C5—O4—C3 | 111.72 (8) | F5A—P1A—F2A | 90.99 (6) |
O4—C5—C6 | 111.22 (9) | F1A—P1A—F2A | 179.66 (4) |
O4—C5—H5A | 109.4 | F4B—P1B—F3B | 91.3 (5) |
C6—C5—H5A | 109.4 | F4B—P1B—F5B | 94.2 (4) |
O4—C5—H5B | 109.4 | F3B—P1B—F5B | 174.3 (4) |
C6—C5—H5B | 109.4 | F4B—P1B—F1B | 90.9 (4) |
H5A—C5—H5B | 108.0 | F3B—P1B—F1B | 83.8 (4) |
C5—C6—N1 | 108.02 (9) | F5B—P1B—F1B | 97.6 (3) |
C5—C6—H6A | 110.1 | F4B—P1B—F2B | 88.8 (4) |
N1—C6—H6A | 110.1 | F3B—P1B—F2B | 96.3 (4) |
C5—C6—H6B | 110.1 | F5B—P1B—F2B | 82.4 (3) |
N1—C6—H6B | 110.1 | F1B—P1B—F2B | 179.66 (4) |
H6A—C6—H6B | 108.4 | F4B—P1B—F6B | 173.7 (5) |
N1—C7—N8 | 125.98 (10) | F3B—P1B—F6B | 87.0 (4) |
N1—C7—H7 | 118.0 (8) | F5B—P1B—F6B | 87.4 (4) |
N8—C7—H7 | 116.0 (8) | F1B—P1B—F6B | 94.9 (3) |
C7—N8—H8A | 122.4 (11) | F2B—P1B—F6B | 85.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···F4Ai | 0.99 | 2.62 | 3.183 (2) | 116 |
C2—H2A···F4Bi | 0.99 | 2.53 | 3.126 (11) | 119 |
C2—H2B···F3Aii | 0.99 | 2.37 | 3.1290 (19) | 133 |
C7—H7···F2Aiii | 0.946 (14) | 2.522 (13) | 3.0711 (12) | 117.1 (9) |
N8—H8A···F3Aii | 0.827 (18) | 2.428 (17) | 3.141 (2) | 144.9 (13) |
N8—H8A···F5Aiv | 0.827 (18) | 2.425 (16) | 3.0699 (16) | 135.4 (13) |
N8—H8A···F3Bii | 0.827 (18) | 2.36 (2) | 3.105 (12) | 150.1 (14) |
N8—H8A···F5Biv | 0.827 (18) | 2.331 (18) | 3.031 (6) | 142.8 (13) |
N8—H8B···O4v | 0.850 (18) | 2.018 (18) | 2.8572 (13) | 168.8 (16) |
Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) x, −y+3/2, z+1/2; (iii) x−1/2, −y+3/2, −z+1; (iv) x−1/2, y, −z+3/2; (v) −x+1/2, y+1/2, z. |
C5H11N2O+·PF6− | Dx = 1.797 Mg m−3 |
Mr = 260.13 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 9865 reflections |
a = 10.4504 (14) Å | θ = 3.4–33.2° |
b = 13.7170 (16) Å | µ = 0.36 mm−1 |
c = 13.4157 (14) Å | T = 100 K |
V = 1923.1 (4) Å3 | Block, colourless |
Z = 8 | 0.24 × 0.23 × 0.14 mm |
F(000) = 1056 |
Bruker D8 Venture dual source diffractometer | 7300 independent reflections |
Radiation source: microsource | 5163 reflections with I > 2σ(I) |
Detector resolution: 7.41 pixels mm-1 | Rint = 0.040 |
φ and ω scans | θmax = 33.1°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −16→16 |
Tmin = 0.856, Tmax = 0.971 | k = −21→20 |
42268 measured reflections | l = −20→20 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.039P)2 + 0.260P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.088 | (Δ/σ)max = 0.016 |
S = 1.02 | Δρmax = 0.28 e Å−3 |
7300 reflections | Δρmin = −0.40 e Å−3 |
364 parameters | Absolute structure: Twinning involves inversion, so Flack parameter cannot be determined |
154 restraints | Absolute structure parameter: 0.5 |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1A | 0.8290 (2) | 0.48239 (16) | 0.57523 (16) | 0.0129 (4) | |
C2A | 0.8000 (2) | 0.57601 (18) | 0.6226 (2) | 0.0140 (5) | |
H2A1 | 0.824879 | 0.630306 | 0.578020 | 0.017* | |
H2A2 | 0.848505 | 0.582406 | 0.685693 | 0.017* | |
C3A | 0.6569 (2) | 0.57971 (19) | 0.6434 (2) | 0.0151 (5) | |
H3A1 | 0.635556 | 0.641635 | 0.677442 | 0.018* | |
H3A2 | 0.609306 | 0.577543 | 0.579648 | 0.018* | |
O4A | 0.6192 (2) | 0.49898 (12) | 0.70486 (17) | 0.0177 (4) | |
C5A | 0.6500 (2) | 0.40691 (18) | 0.6598 (2) | 0.0193 (5) | |
H5A1 | 0.601492 | 0.399677 | 0.596823 | 0.023* | |
H5A2 | 0.624178 | 0.353401 | 0.705039 | 0.023* | |
C6A | 0.7926 (3) | 0.39933 (17) | 0.63826 (19) | 0.0193 (5) | |
H6A1 | 0.841621 | 0.400702 | 0.701372 | 0.023* | |
H6A2 | 0.811463 | 0.337321 | 0.603486 | 0.023* | |
C7A | 0.85190 (19) | 0.47015 (19) | 0.47963 (18) | 0.0129 (4) | |
H7A | 0.858586 | 0.405015 | 0.456128 | 0.016* | |
N8A | 0.8664 (2) | 0.54034 (17) | 0.41380 (18) | 0.0172 (4) | |
H8A1 | 0.8612 (2) | 0.5984 (15) | 0.4316 (5) | 0.021* | |
H8A2 | 0.8807 (4) | 0.5267 (3) | 0.3543 (14) | 0.021* | |
N1B | 0.3318 (4) | 0.0173 (3) | 0.5727 (3) | 0.0140 (6) | 0.639 (4) |
C2B | 0.2939 (4) | 0.1008 (2) | 0.6349 (3) | 0.0194 (7) | 0.639 (4) |
H2B1 | 0.311558 | 0.162540 | 0.599144 | 0.023* | 0.639 (4) |
H2B2 | 0.343451 | 0.100825 | 0.697733 | 0.023* | 0.639 (4) |
C3B | 0.1518 (4) | 0.0928 (3) | 0.6575 (3) | 0.0215 (7) | 0.639 (4) |
H3B1 | 0.126171 | 0.146548 | 0.702529 | 0.026* | 0.639 (4) |
H3B2 | 0.102490 | 0.099394 | 0.594845 | 0.026* | 0.639 (4) |
O4B | 0.1222 (3) | 0.0012 (2) | 0.7034 (2) | 0.0191 (6) | 0.639 (4) |
C5B | 0.1604 (5) | −0.0796 (6) | 0.6432 (6) | 0.0179 (10) | 0.639 (4) |
H5B1 | 0.112518 | −0.078428 | 0.579499 | 0.022* | 0.639 (4) |
H5B2 | 0.139565 | −0.141230 | 0.678005 | 0.022* | 0.639 (4) |
C6B | 0.3031 (4) | −0.0758 (5) | 0.6219 (5) | 0.0143 (9) | 0.639 (4) |
H6B1 | 0.351804 | −0.081037 | 0.684996 | 0.017* | 0.639 (4) |
H6B2 | 0.327946 | −0.130785 | 0.578259 | 0.017* | 0.639 (4) |
C7B | 0.3530 (3) | 0.0287 (2) | 0.4776 (2) | 0.0149 (6) | 0.639 (4) |
H7B | 0.359065 | 0.093865 | 0.454013 | 0.018* | 0.639 (4) |
N8B | 0.3668 (3) | −0.0406 (2) | 0.4117 (3) | 0.0192 (6) | 0.639 (4) |
H8B1 | 0.3622 (3) | −0.099 (3) | 0.4294 (8) | 0.023* | 0.639 (4) |
H8B2 | 0.3804 (7) | −0.0264 (6) | 0.352 (3) | 0.023* | 0.639 (4) |
N1B' | 0.1687 (8) | 0.0176 (6) | 0.6935 (6) | 0.0199 (15) | 0.361 (4) |
C2B' | 0.1990 (10) | −0.0769 (9) | 0.6440 (12) | 0.021 (2) | 0.361 (4) |
H2C3 | 0.154138 | −0.081905 | 0.579227 | 0.025* | 0.361 (4) |
H2C4 | 0.172359 | −0.132281 | 0.686577 | 0.025* | 0.361 (4) |
C3B' | 0.3421 (9) | −0.0779 (10) | 0.6288 (11) | 0.022 (2) | 0.361 (4) |
H3C3 | 0.385858 | −0.070707 | 0.693820 | 0.027* | 0.361 (4) |
H3C4 | 0.368428 | −0.140949 | 0.599215 | 0.027* | 0.361 (4) |
O4B' | 0.3787 (8) | 0.0008 (5) | 0.5636 (6) | 0.0240 (15) | 0.361 (4) |
C5B' | 0.3445 (8) | 0.0923 (6) | 0.6060 (7) | 0.0241 (17) | 0.361 (4) |
H5C3 | 0.367287 | 0.144961 | 0.558796 | 0.029* | 0.361 (4) |
H5C4 | 0.394545 | 0.102477 | 0.667809 | 0.029* | 0.361 (4) |
C6B' | 0.2036 (8) | 0.0993 (5) | 0.6303 (6) | 0.0214 (16) | 0.361 (4) |
H6C3 | 0.185643 | 0.161482 | 0.665102 | 0.026* | 0.361 (4) |
H6C4 | 0.152664 | 0.097779 | 0.568073 | 0.026* | 0.361 (4) |
C7B' | 0.1453 (6) | 0.0285 (6) | 0.7905 (5) | 0.0185 (14) | 0.361 (4) |
H7B' | 0.133998 | 0.093460 | 0.813339 | 0.022* | 0.361 (4) |
N8B' | 0.1362 (7) | −0.0380 (5) | 0.8561 (6) | 0.0237 (14) | 0.361 (4) |
H8C3 | 0.145814 | −0.099558 | 0.839021 | 0.028* | 0.361 (4) |
H8C4 | 0.120303 | −0.022593 | 0.918522 | 0.028* | 0.361 (4) |
P1 | 1.10174 (10) | 0.25140 (7) | 0.38095 (4) | 0.0133 (2) | |
F1 | 1.1345 (2) | 0.13771 (15) | 0.38914 (11) | 0.0236 (5) | |
F2 | 1.0694 (2) | 0.36564 (14) | 0.37324 (14) | 0.0266 (4) | |
F3 | 1.2054 (2) | 0.26335 (12) | 0.29446 (17) | 0.0293 (5) | |
F4 | 1.2093 (2) | 0.27439 (14) | 0.46292 (18) | 0.0319 (5) | |
F5 | 0.9982 (2) | 0.24007 (13) | 0.46808 (17) | 0.0344 (5) | |
F6 | 0.9944 (2) | 0.22733 (15) | 0.29994 (19) | 0.0364 (5) | |
P1A | 0.60169 (10) | 0.24864 (7) | 0.38572 (4) | 0.0148 (2) | 0.876 (19) |
F1A | 0.5698 (2) | 0.13505 (16) | 0.38354 (13) | 0.0355 (6) | 0.876 (19) |
F2A | 0.6341 (2) | 0.36245 (16) | 0.38891 (11) | 0.0230 (5) | 0.876 (19) |
F3A | 0.7033 (5) | 0.2329 (2) | 0.2977 (4) | 0.0302 (8) | 0.876 (19) |
F4A | 0.7122 (4) | 0.2274 (3) | 0.4658 (4) | 0.0308 (7) | 0.876 (19) |
F5A | 0.5008 (5) | 0.2645 (2) | 0.4755 (4) | 0.0295 (8) | 0.876 (19) |
F6A | 0.4912 (5) | 0.2708 (3) | 0.3067 (4) | 0.0333 (8) | 0.876 (19) |
P1B | 0.60169 (10) | 0.24864 (7) | 0.38572 (4) | 0.0148 (2) | 0.124 (19) |
F1B | 0.5698 (2) | 0.13505 (16) | 0.38354 (13) | 0.0355 (6) | 0.124 (19) |
F2B | 0.6341 (2) | 0.36245 (16) | 0.38891 (11) | 0.0230 (5) | 0.124 (19) |
F3B | 0.723 (2) | 0.2384 (16) | 0.3217 (19) | 0.022 (4)* | 0.124 (19) |
F4B | 0.690 (2) | 0.2428 (18) | 0.4841 (18) | 0.022 (4)* | 0.124 (19) |
F5B | 0.4767 (16) | 0.2571 (11) | 0.4483 (16) | 0.013 (3)* | 0.124 (19) |
F6B | 0.517 (2) | 0.2531 (16) | 0.2880 (14) | 0.018 (4)* | 0.124 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1A | 0.0147 (9) | 0.0120 (9) | 0.0119 (9) | 0.0017 (8) | 0.0010 (8) | 0.0001 (8) |
C2A | 0.0165 (12) | 0.0132 (10) | 0.0123 (10) | 0.0002 (9) | −0.0010 (10) | −0.0029 (8) |
C3A | 0.0165 (12) | 0.0139 (11) | 0.0150 (11) | 0.0013 (8) | 0.0013 (9) | 0.0003 (9) |
O4A | 0.0202 (9) | 0.0196 (10) | 0.0134 (8) | −0.0006 (7) | 0.0041 (9) | 0.0005 (6) |
C5A | 0.0232 (14) | 0.0156 (12) | 0.0192 (13) | −0.0044 (9) | 0.0054 (9) | 0.0008 (10) |
C6A | 0.0241 (14) | 0.0143 (11) | 0.0194 (13) | 0.0023 (10) | 0.0014 (10) | 0.0061 (8) |
C7A | 0.0096 (9) | 0.0144 (11) | 0.0148 (10) | 0.0003 (7) | 0.0004 (7) | −0.0015 (9) |
N8A | 0.0219 (10) | 0.0173 (10) | 0.0123 (10) | −0.0012 (8) | 0.0035 (9) | −0.0004 (9) |
N1B | 0.0179 (17) | 0.0127 (13) | 0.0114 (12) | −0.0012 (12) | 0.0011 (13) | −0.0010 (10) |
C2B | 0.029 (2) | 0.0117 (13) | 0.0179 (17) | −0.0032 (14) | 0.0032 (14) | −0.0058 (11) |
C3B | 0.029 (2) | 0.0192 (16) | 0.0169 (16) | 0.0056 (14) | 0.0024 (14) | −0.0024 (12) |
O4B | 0.0243 (17) | 0.0200 (14) | 0.0129 (11) | 0.0027 (12) | 0.0056 (12) | 0.0022 (9) |
C5B | 0.018 (2) | 0.0200 (18) | 0.0155 (18) | 0.000 (2) | 0.009 (2) | 0.0006 (13) |
C6B | 0.018 (2) | 0.0133 (15) | 0.0117 (15) | 0.0008 (19) | −0.0031 (19) | 0.0007 (11) |
C7B | 0.0128 (13) | 0.0166 (13) | 0.0153 (13) | 0.0000 (10) | 0.0009 (10) | −0.0001 (10) |
N8B | 0.0199 (14) | 0.0193 (14) | 0.0185 (14) | 0.0009 (11) | 0.0033 (12) | −0.0012 (11) |
N1B' | 0.024 (4) | 0.017 (3) | 0.019 (3) | −0.003 (3) | 0.003 (3) | 0.001 (2) |
C2B' | 0.028 (5) | 0.011 (3) | 0.024 (4) | −0.003 (4) | 0.009 (5) | −0.001 (3) |
C3B' | 0.021 (5) | 0.024 (4) | 0.023 (5) | −0.002 (4) | 0.001 (4) | 0.002 (3) |
O4B' | 0.028 (4) | 0.021 (3) | 0.024 (3) | −0.005 (3) | 0.008 (3) | −0.004 (2) |
C5B' | 0.030 (4) | 0.023 (4) | 0.020 (4) | −0.002 (3) | 0.006 (3) | 0.002 (3) |
C6B' | 0.029 (4) | 0.014 (3) | 0.021 (4) | 0.002 (3) | 0.012 (3) | 0.002 (3) |
C7B' | 0.017 (3) | 0.020 (3) | 0.019 (3) | −0.003 (2) | 0.001 (2) | −0.005 (3) |
N8B' | 0.033 (4) | 0.023 (3) | 0.014 (3) | −0.001 (3) | 0.005 (3) | −0.001 (3) |
P1 | 0.0120 (5) | 0.0128 (4) | 0.0152 (4) | 0.0003 (3) | 0.00030 (18) | −0.00023 (16) |
F1 | 0.0264 (12) | 0.0121 (10) | 0.0323 (13) | 0.0020 (9) | −0.0029 (6) | 0.0027 (5) |
F2 | 0.0299 (11) | 0.0138 (9) | 0.0360 (8) | 0.0056 (8) | 0.0105 (7) | 0.0027 (6) |
F3 | 0.0357 (12) | 0.0234 (8) | 0.0287 (11) | 0.0025 (7) | 0.0191 (9) | 0.0025 (8) |
F4 | 0.0334 (11) | 0.0295 (9) | 0.0328 (11) | −0.0075 (8) | −0.0162 (9) | −0.0048 (8) |
F5 | 0.0306 (11) | 0.0319 (10) | 0.0408 (14) | 0.0003 (9) | 0.0209 (11) | 0.0066 (9) |
F6 | 0.0336 (11) | 0.0311 (9) | 0.0445 (14) | −0.0029 (8) | −0.0246 (11) | 0.0029 (9) |
P1A | 0.0115 (5) | 0.0135 (4) | 0.0193 (6) | −0.0004 (3) | −0.00038 (17) | 0.00138 (15) |
F1A | 0.0291 (12) | 0.0153 (10) | 0.0620 (16) | −0.0064 (9) | 0.0038 (8) | −0.0005 (7) |
F2A | 0.0240 (12) | 0.0152 (11) | 0.0297 (12) | −0.0021 (9) | 0.0008 (5) | −0.0001 (5) |
F3A | 0.0329 (17) | 0.0286 (12) | 0.0290 (16) | −0.0004 (10) | 0.0151 (14) | −0.0042 (11) |
F4A | 0.0258 (13) | 0.0334 (13) | 0.0333 (16) | 0.0055 (10) | −0.0139 (11) | 0.0052 (12) |
F5A | 0.0275 (14) | 0.0349 (12) | 0.0262 (16) | −0.0025 (10) | 0.0128 (14) | −0.0002 (11) |
F6A | 0.0281 (14) | 0.0353 (13) | 0.0366 (15) | 0.0069 (11) | −0.0193 (12) | −0.0072 (12) |
P1B | 0.0115 (5) | 0.0135 (4) | 0.0193 (6) | −0.0004 (3) | −0.00038 (17) | 0.00138 (15) |
F1B | 0.0291 (12) | 0.0153 (10) | 0.0620 (16) | −0.0064 (9) | 0.0038 (8) | −0.0005 (7) |
F2B | 0.0240 (12) | 0.0152 (11) | 0.0297 (12) | −0.0021 (9) | 0.0008 (5) | −0.0001 (5) |
N1A—C7A | 1.315 (3) | N1B'—C7B' | 1.333 (10) |
N1A—C2A | 1.465 (3) | N1B'—C6B' | 1.452 (10) |
N1A—C6A | 1.469 (3) | N1B'—C2B' | 1.492 (14) |
C2A—C3A | 1.522 (3) | C2B'—C3B' | 1.509 (12) |
C2A—H2A1 | 0.9900 | C2B'—H2C3 | 0.9900 |
C2A—H2A2 | 0.9900 | C2B'—H2C4 | 0.9900 |
C3A—O4A | 1.436 (3) | C3B'—O4B' | 1.442 (13) |
C3A—H3A1 | 0.9900 | C3B'—H3C3 | 0.9900 |
C3A—H3A2 | 0.9900 | C3B'—H3C4 | 0.9900 |
O4A—C5A | 1.437 (3) | O4B'—C5B' | 1.424 (10) |
C5A—C6A | 1.521 (3) | C5B'—C6B' | 1.511 (10) |
C5A—H5A1 | 0.9900 | C5B'—H5C3 | 0.9900 |
C5A—H5A2 | 0.9900 | C5B'—H5C4 | 0.9900 |
C6A—H6A1 | 0.9900 | C6B'—H6C3 | 0.9900 |
C6A—H6A2 | 0.9900 | C6B'—H6C4 | 0.9900 |
C7A—N8A | 1.315 (3) | C7B'—N8B' | 1.271 (10) |
C7A—H7A | 0.9500 | C7B'—H7B' | 0.9500 |
N8A—H8A1 | 0.83 (2) | N8B'—H8C3 | 0.8800 |
N8A—H8A2 | 0.83 (2) | N8B'—H8C4 | 0.8800 |
N1B—C7B | 1.304 (5) | P1—F3 | 1.596 (2) |
N1B—C6B | 1.468 (7) | P1—F6 | 1.596 (2) |
N1B—C2B | 1.472 (5) | P1—F1 | 1.600 (2) |
C2B—C3B | 1.519 (6) | P1—F5 | 1.601 (2) |
C2B—H2B1 | 0.9900 | P1—F4 | 1.604 (2) |
C2B—H2B2 | 0.9900 | P1—F2 | 1.606 (2) |
C3B—O4B | 1.433 (5) | P1A—F6A | 1.597 (3) |
C3B—H3B1 | 0.9900 | P1A—F1A | 1.594 (2) |
C3B—H3B2 | 0.9900 | P1A—F3A | 1.602 (3) |
O4B—C5B | 1.428 (8) | P1A—F2A | 1.598 (2) |
C5B—C6B | 1.519 (7) | P1A—F4A | 1.604 (3) |
C5B—H5B1 | 0.9900 | P1A—F5A | 1.615 (3) |
C5B—H5B2 | 0.9900 | P1B—F4B | 1.61 (2) |
C6B—H6B1 | 0.9900 | P1B—F3B | 1.54 (2) |
C6B—H6B2 | 0.9900 | P1B—F5B | 1.558 (15) |
C7B—N8B | 1.306 (4) | P1B—F6B | 1.583 (18) |
C7B—H7B | 0.9500 | P1B—F1B | 1.594 (2) |
N8B—H8B1 | 0.84 (4) | P1B—F2B | 1.598 (2) |
N8B—H8B2 | 0.84 (4) | ||
C7A—N1A—C2A | 124.9 (2) | N1B'—C2B'—H2C4 | 110.5 |
C7A—N1A—C6A | 120.6 (2) | C3B'—C2B'—H2C4 | 110.5 |
C2A—N1A—C6A | 112.1 (2) | H2C3—C2B'—H2C4 | 108.7 |
N1A—C2A—C3A | 108.1 (2) | O4B'—C3B'—C2B' | 109.8 (9) |
N1A—C2A—H2A1 | 110.1 | O4B'—C3B'—H3C3 | 109.7 |
C3A—C2A—H2A1 | 110.1 | C2B'—C3B'—H3C3 | 109.7 |
N1A—C2A—H2A2 | 110.1 | O4B'—C3B'—H3C4 | 109.7 |
C3A—C2A—H2A2 | 110.1 | C2B'—C3B'—H3C4 | 109.7 |
H2A1—C2A—H2A2 | 108.4 | H3C3—C3B'—H3C4 | 108.2 |
O4A—C3A—C2A | 110.4 (2) | C5B'—O4B'—C3B' | 110.5 (9) |
O4A—C3A—H3A1 | 109.6 | O4B'—C5B'—C6B' | 112.8 (7) |
C2A—C3A—H3A1 | 109.6 | O4B'—C5B'—H5C3 | 109.0 |
O4A—C3A—H3A2 | 109.6 | C6B'—C5B'—H5C3 | 109.0 |
C2A—C3A—H3A2 | 109.6 | O4B'—C5B'—H5C4 | 109.0 |
H3A1—C3A—H3A2 | 108.1 | C6B'—C5B'—H5C4 | 109.0 |
C3A—O4A—C5A | 112.0 (2) | H5C3—C5B'—H5C4 | 107.8 |
O4A—C5A—C6A | 111.1 (2) | N1B'—C6B'—C5B' | 108.7 (7) |
O4A—C5A—H5A1 | 109.4 | N1B'—C6B'—H6C3 | 109.9 |
C6A—C5A—H5A1 | 109.4 | C5B'—C6B'—H6C3 | 109.9 |
O4A—C5A—H5A2 | 109.4 | N1B'—C6B'—H6C4 | 109.9 |
C6A—C5A—H5A2 | 109.4 | C5B'—C6B'—H6C4 | 109.9 |
H5A1—C5A—H5A2 | 108.0 | H6C3—C6B'—H6C4 | 108.3 |
N1A—C6A—C5A | 108.1 (2) | N8B'—C7B'—N1B' | 127.6 (8) |
N1A—C6A—H6A1 | 110.1 | N8B'—C7B'—H7B' | 116.2 |
C5A—C6A—H6A1 | 110.1 | N1B'—C7B'—H7B' | 116.2 |
N1A—C6A—H6A2 | 110.1 | C7B'—N8B'—H8C3 | 120.0 |
C5A—C6A—H6A2 | 110.1 | C7B'—N8B'—H8C4 | 120.0 |
H6A1—C6A—H6A2 | 108.4 | H8C3—N8B'—H8C4 | 120.0 |
N8A—C7A—N1A | 125.6 (2) | F3—P1—F6 | 90.19 (14) |
N8A—C7A—H7A | 117.2 | F3—P1—F1 | 90.29 (10) |
N1A—C7A—H7A | 117.2 | F6—P1—F1 | 89.73 (11) |
C7A—N8A—H8A1 | 120.0 | F3—P1—F5 | 179.60 (14) |
C7A—N8A—H8A2 | 120.0 | F6—P1—F5 | 90.11 (17) |
H8A1—N8A—H8A2 | 120.0 | F1—P1—F5 | 89.99 (11) |
C7B—N1B—C6B | 125.4 (4) | F3—P1—F4 | 90.14 (15) |
C7B—N1B—C2B | 120.4 (3) | F6—P1—F4 | 179.35 (13) |
C6B—N1B—C2B | 111.5 (4) | F1—P1—F4 | 89.70 (11) |
N1B—C2B—C3B | 108.7 (3) | F5—P1—F4 | 89.57 (13) |
N1B—C2B—H2B1 | 110.0 | F3—P1—F2 | 89.75 (10) |
C3B—C2B—H2B1 | 110.0 | F6—P1—F2 | 90.58 (12) |
N1B—C2B—H2B2 | 110.0 | F1—P1—F2 | 179.68 (14) |
C3B—C2B—H2B2 | 110.0 | F5—P1—F2 | 89.97 (10) |
H2B1—C2B—H2B2 | 108.3 | F4—P1—F2 | 89.99 (12) |
O4B—C3B—C2B | 111.1 (3) | F6A—P1A—F1A | 91.31 (16) |
O4B—C3B—H3B1 | 109.4 | F6A—P1A—F3A | 90.92 (18) |
C2B—C3B—H3B1 | 109.4 | F1A—P1A—F3A | 89.64 (15) |
O4B—C3B—H3B2 | 109.4 | F6A—P1A—F2A | 89.14 (15) |
C2B—C3B—H3B2 | 109.4 | F1A—P1A—F2A | 179.49 (12) |
H3B1—C3B—H3B2 | 108.0 | F3A—P1A—F2A | 90.60 (15) |
C5B—O4B—C3B | 112.2 (4) | F6A—P1A—F4A | 179.36 (17) |
O4B—C5B—C6B | 110.7 (5) | F1A—P1A—F4A | 89.15 (16) |
O4B—C5B—H5B1 | 109.5 | F3A—P1A—F4A | 89.5 (2) |
C6B—C5B—H5B1 | 109.5 | F2A—P1A—F4A | 90.40 (16) |
O4B—C5B—H5B2 | 109.5 | F6A—P1A—F5A | 89.85 (18) |
C6B—C5B—H5B2 | 109.5 | F1A—P1A—F5A | 90.47 (15) |
H5B1—C5B—H5B2 | 108.1 | F3A—P1A—F5A | 179.22 (18) |
N1B—C6B—C5B | 108.4 (4) | F2A—P1A—F5A | 89.28 (15) |
N1B—C6B—H6B1 | 110.0 | F4A—P1A—F5A | 89.69 (16) |
C5B—C6B—H6B1 | 110.0 | F4B—P1B—F3B | 88.9 (10) |
N1B—C6B—H6B2 | 110.0 | F4B—P1B—F5B | 92.3 (9) |
C5B—C6B—H6B2 | 110.0 | F3B—P1B—F5B | 178.4 (8) |
H6B1—C6B—H6B2 | 108.4 | F4B—P1B—F6B | 178.9 (9) |
N1B—C7B—N8B | 126.4 (3) | F3B—P1B—F6B | 90.2 (9) |
N1B—C7B—H7B | 116.8 | F5B—P1B—F6B | 88.6 (7) |
N8B—C7B—H7B | 116.8 | F4B—P1B—F1B | 94.9 (9) |
C7B—N8B—H8B1 | 120.0 | F3B—P1B—F1B | 94.2 (8) |
C7B—N8B—H8B2 | 120.0 | F5B—P1B—F1B | 84.7 (6) |
H8B1—N8B—H8B2 | 120.0 | F6B—P1B—F1B | 84.6 (7) |
C7B'—N1B'—C6B' | 122.1 (8) | F4B—P1B—F2B | 84.6 (8) |
C7B'—N1B'—C2B' | 124.8 (10) | F3B—P1B—F2B | 85.9 (8) |
C6B'—N1B'—C2B' | 111.0 (8) | F5B—P1B—F2B | 95.2 (6) |
N1B'—C2B'—C3B' | 106.2 (9) | F6B—P1B—F2B | 95.9 (7) |
N1B'—C2B'—H2C3 | 110.5 | F1B—P1B—F2B | 179.49 (12) |
C3B'—C2B'—H2C3 | 110.5 | ||
C7A—N1A—C2A—C3A | 103.6 (3) | C7B—N1B—C6B—C5B | −102.8 (6) |
C6A—N1A—C2A—C3A | −59.2 (3) | C2B—N1B—C6B—C5B | 58.6 (6) |
N1A—C2A—C3A—O4A | 57.4 (3) | O4B—C5B—C6B—N1B | −57.7 (7) |
C2A—C3A—O4A—C5A | −58.2 (3) | C6B—N1B—C7B—N8B | −8.3 (6) |
C3A—O4A—C5A—C6A | 57.9 (3) | C2B—N1B—C7B—N8B | −168.2 (3) |
C7A—N1A—C6A—C5A | −105.2 (3) | C7B'—N1B'—C2B'—C3B' | −101.5 (12) |
C2A—N1A—C6A—C5A | 58.4 (3) | C6B'—N1B'—C2B'—C3B' | 62.1 (13) |
O4A—C5A—C6A—N1A | −56.3 (3) | N1B'—C2B'—C3B'—O4B' | −62.4 (14) |
C2A—N1A—C7A—N8A | 7.9 (4) | C2B'—C3B'—O4B'—C5B' | 60.8 (13) |
C6A—N1A—C7A—N8A | 169.3 (2) | C3B'—O4B'—C5B'—C6B' | −56.5 (10) |
C7B—N1B—C2B—C3B | 104.8 (4) | C7B'—N1B'—C6B'—C5B' | 106.4 (9) |
C6B—N1B—C2B—C3B | −57.8 (4) | C2B'—N1B'—C6B'—C5B' | −57.7 (10) |
N1B—C2B—C3B—O4B | 55.8 (4) | O4B'—C5B'—C6B'—N1B' | 54.5 (10) |
C2B—C3B—O4B—C5B | −57.4 (5) | C6B'—N1B'—C7B'—N8B' | −166.6 (8) |
C3B—O4B—C5B—C6B | 58.3 (7) | C2B'—N1B'—C7B'—N8B' | −4.9 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2A—H2A1···F4i | 0.99 | 2.36 | 3.115 (3) | 133 |
C2A—H2A2···F3ii | 0.99 | 2.63 | 3.189 (3) | 116 |
C6A—H6A2···F4B | 0.99 | 2.42 | 3.17 (2) | 132 |
C7A—H7A···F2 | 0.95 | 2.53 | 3.043 (3) | 114 |
N8A—H8A1···F4i | 0.83 | 2.40 | 3.096 (3) | 142 |
N8A—H8A1···F5Aiii | 0.83 | 2.45 | 3.135 (4) | 140 |
N8A—H8A1···F5Biii | 0.83 | 2.33 | 3.043 (15) | 144 |
N8A—H8A2···O4Aiv | 0.83 | 2.04 | 2.864 (3) | 169 |
N8B—H8B1···F5v | 0.84 | 2.45 | 3.153 (4) | 141 |
N8B—H8B2···O4Bvi | 0.84 | 2.02 | 2.855 (5) | 169 |
N8B′—H8C3···F6vii | 0.88 | 2.34 | 3.028 (8) | 135 |
N8B′—H8C4···O4B′viii | 0.88 | 1.97 | 2.839 (12) | 168 |
Symmetry codes: (i) x−1/2, −y+1, z; (ii) −x+2, −y+1, z+1/2; (iii) x+1/2, −y+1, z; (iv) −x+3/2, y, z−1/2; (v) x−1/2, −y, z; (vi) −x+1/2, y, z−1/2; (vii) −x+1, −y, z+1/2; (viii) −x+1/2, y, z+1/2. |
C5H11N2+·PF6− | F(000) = 992 |
Mr = 244.13 | Dx = 1.733 Mg m−3 |
Monoclinic, Cc | Cu Kα radiation, λ = 1.54178 Å |
a = 12.3588 (3) Å | Cell parameters from 9886 reflections |
b = 12.7942 (3) Å | θ = 3.7–74.5° |
c = 12.2759 (3) Å | µ = 3.28 mm−1 |
β = 105.400 (1)° | T = 130 K |
V = 1871.38 (8) Å3 | Block, colourless |
Z = 8 | 0.21 × 0.21 × 0.11 mm |
Bruker D8 with PHOTON III area detector diffractometer | 3450 reflections with I > 2σ(I) |
Radiation source: microfocus | Rint = 0.035 |
φ and ω shutterless scans | θmax = 74.6°, θmin = 5.1° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −15→14 |
Tmin = 0.639, Tmax = 0.754 | k = −15→15 |
17935 measured reflections | l = −15→15 |
3467 independent reflections |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.085P)2 + 2.020P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.049 | (Δ/σ)max = 0.004 |
wR(F2) = 0.135 | Δρmax = 0.37 e Å−3 |
S = 1.07 | Δρmin = −0.35 e Å−3 |
3467 reflections | Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
257 parameters | Extinction coefficient: 0.0014 (4) |
2 restraints | Absolute structure: Refined as an inversion twin |
Hydrogen site location: inferred from neighbouring sites | Absolute structure parameter: 0.49 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3206 (4) | 0.7280 (3) | 0.7550 (3) | 0.0306 (9) | |
C2 | 0.3205 (5) | 0.8419 (4) | 0.7666 (5) | 0.0359 (11) | |
H2A | 0.291759 | 0.876189 | 0.692152 | 0.054* | |
H2B | 0.396755 | 0.868571 | 0.802754 | 0.054* | |
C3 | 0.2414 (5) | 0.8601 (4) | 0.8420 (4) | 0.0397 (11) | |
H3A | 0.283785 | 0.863514 | 0.922572 | 0.059* | |
H3B | 0.198412 | 0.925707 | 0.821178 | 0.059* | |
C4 | 0.1646 (4) | 0.7661 (4) | 0.8193 (4) | 0.0358 (9) | |
H4A | 0.105798 | 0.773984 | 0.747162 | 0.054* | |
H4B | 0.128245 | 0.755416 | 0.881246 | 0.054* | |
C5 | 0.2435 (4) | 0.6762 (4) | 0.8132 (4) | 0.0337 (10) | |
H5A | 0.284091 | 0.651192 | 0.889404 | 0.050* | |
H5B | 0.202882 | 0.617023 | 0.768457 | 0.050* | |
C6 | 0.3770 (4) | 0.6777 (4) | 0.6965 (4) | 0.0347 (10) | |
H6 | 0.370295 | 0.603790 | 0.691284 | 0.042* | |
N7 | 0.4439 (4) | 0.7258 (3) | 0.6435 (4) | 0.0409 (10) | |
H7A | 0.4509 (6) | 0.792 (4) | 0.6473 (4) | 0.049* | |
H7B | 0.480 (2) | 0.690 (2) | 0.606 (2) | 0.049* | |
N11 | 0.7698 (3) | 0.2303 (3) | 0.3159 (3) | 0.0252 (7) | |
C12 | 0.7633 (4) | 0.3449 (4) | 0.2985 (4) | 0.0321 (10) | |
H12A | 0.793006 | 0.382648 | 0.370603 | 0.048* | |
H12B | 0.684995 | 0.367475 | 0.264147 | 0.048* | |
C13 | 0.8362 (4) | 0.3633 (4) | 0.2184 (4) | 0.0374 (11) | |
H13A | 0.805789 | 0.420775 | 0.165124 | 0.056* | |
H13B | 0.914031 | 0.380689 | 0.260727 | 0.056* | |
C14 | 0.8322 (4) | 0.2588 (4) | 0.1552 (4) | 0.0349 (9) | |
H14A | 0.761520 | 0.251673 | 0.094543 | 0.052* | |
H14B | 0.896670 | 0.251823 | 0.122180 | 0.052* | |
C15 | 0.8383 (4) | 0.1797 (4) | 0.2476 (4) | 0.0340 (10) | |
H15A | 0.805607 | 0.111878 | 0.216390 | 0.051* | |
H15B | 0.916660 | 0.168610 | 0.292739 | 0.051* | |
C16 | 0.7173 (4) | 0.1803 (4) | 0.3774 (4) | 0.0314 (10) | |
H16 | 0.722967 | 0.106294 | 0.380722 | 0.038* | |
N17 | 0.6562 (4) | 0.2270 (3) | 0.4358 (4) | 0.0385 (9) | |
H17A | 0.6505 (5) | 0.289 (4) | 0.4342 (4) | 0.046* | |
H17B | 0.6253 (18) | 0.194 (2) | 0.473 (2) | 0.046* | |
P1 | 0.52748 (8) | 0.48090 (9) | 0.50675 (8) | 0.0281 (3) | |
F1 | 0.5597 (3) | 0.6020 (2) | 0.5039 (3) | 0.0491 (8) | |
F2 | 0.4952 (3) | 0.3602 (2) | 0.5089 (3) | 0.0473 (8) | |
F3 | 0.5479 (6) | 0.4896 (4) | 0.6384 (4) | 0.0758 (15) | |
F4 | 0.6561 (3) | 0.4490 (3) | 0.5209 (4) | 0.0666 (11) | |
F5 | 0.5090 (5) | 0.4728 (3) | 0.3746 (4) | 0.0730 (14) | |
F6 | 0.4008 (3) | 0.5132 (3) | 0.4886 (5) | 0.0678 (13) | |
P2 | 0.55335 (8) | 0.97931 (9) | 0.55060 (8) | 0.0294 (3) | |
F1A | 0.5774 (4) | 0.9564 (4) | 0.6830 (3) | 0.0566 (9) | |
F2A | 0.5294 (5) | 1.0049 (3) | 0.4195 (3) | 0.0607 (11) | |
F3A | 0.4242 (3) | 0.9567 (3) | 0.5382 (3) | 0.0530 (9) | |
F4A | 0.5735 (4) | 0.8594 (3) | 0.5287 (4) | 0.0611 (11) | |
F5A | 0.6830 (3) | 1.0047 (3) | 0.5650 (4) | 0.0552 (10) | |
F6A | 0.5350 (3) | 1.1002 (2) | 0.5742 (3) | 0.0440 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0326 (19) | 0.032 (2) | 0.0275 (17) | 0.0026 (15) | 0.0078 (14) | −0.0001 (14) |
C2 | 0.044 (3) | 0.025 (2) | 0.041 (2) | −0.0009 (18) | 0.017 (2) | 0.0006 (18) |
C3 | 0.051 (3) | 0.037 (2) | 0.039 (2) | 0.004 (2) | 0.025 (2) | 0.002 (2) |
C4 | 0.032 (2) | 0.043 (2) | 0.0352 (19) | 0.0038 (18) | 0.0133 (16) | 0.0034 (18) |
C5 | 0.040 (3) | 0.033 (2) | 0.029 (2) | −0.001 (2) | 0.0112 (19) | 0.0001 (18) |
C6 | 0.036 (2) | 0.032 (2) | 0.037 (2) | 0.0017 (17) | 0.0116 (19) | 0.0001 (17) |
N7 | 0.046 (2) | 0.038 (2) | 0.048 (2) | 0.0020 (17) | 0.0283 (18) | −0.0008 (17) |
N11 | 0.0262 (17) | 0.0227 (19) | 0.0269 (15) | 0.0001 (13) | 0.0071 (13) | −0.0027 (13) |
C12 | 0.037 (2) | 0.023 (2) | 0.037 (2) | −0.0015 (17) | 0.013 (2) | 0.0007 (17) |
C13 | 0.043 (3) | 0.027 (2) | 0.043 (3) | −0.003 (2) | 0.013 (2) | 0.003 (2) |
C14 | 0.035 (2) | 0.040 (2) | 0.0323 (19) | −0.0024 (17) | 0.0131 (16) | −0.0027 (17) |
C15 | 0.034 (2) | 0.027 (2) | 0.043 (3) | 0.0035 (18) | 0.013 (2) | −0.0013 (19) |
C16 | 0.035 (2) | 0.0262 (19) | 0.032 (2) | 0.0009 (17) | 0.0079 (17) | 0.0040 (16) |
N17 | 0.045 (2) | 0.035 (2) | 0.044 (2) | 0.0030 (16) | 0.0280 (18) | 0.0047 (16) |
P1 | 0.0305 (6) | 0.0272 (5) | 0.0297 (6) | −0.0008 (4) | 0.0135 (4) | −0.0002 (4) |
F1 | 0.066 (2) | 0.0324 (14) | 0.0631 (19) | −0.0144 (15) | 0.0411 (17) | −0.0115 (15) |
F2 | 0.0448 (16) | 0.0285 (14) | 0.075 (2) | 0.0023 (12) | 0.0280 (15) | 0.0067 (13) |
F3 | 0.125 (5) | 0.073 (3) | 0.033 (2) | 0.002 (3) | 0.027 (2) | 0.0007 (15) |
F4 | 0.0359 (18) | 0.054 (2) | 0.112 (3) | −0.0018 (17) | 0.0221 (19) | −0.021 (2) |
F5 | 0.131 (4) | 0.055 (2) | 0.036 (2) | −0.010 (2) | 0.028 (2) | −0.0084 (15) |
F6 | 0.0331 (19) | 0.0443 (19) | 0.124 (4) | 0.0071 (14) | 0.018 (2) | −0.002 (2) |
P2 | 0.0316 (6) | 0.0291 (6) | 0.0310 (6) | 0.0036 (4) | 0.0144 (4) | 0.0005 (4) |
F1A | 0.066 (2) | 0.068 (2) | 0.0366 (17) | −0.0045 (19) | 0.0160 (15) | 0.0150 (16) |
F2A | 0.092 (3) | 0.062 (2) | 0.0289 (18) | −0.004 (2) | 0.0164 (18) | 0.0007 (14) |
F3A | 0.0310 (17) | 0.0565 (19) | 0.072 (2) | −0.0083 (15) | 0.0144 (15) | −0.0127 (17) |
F4A | 0.089 (3) | 0.0304 (15) | 0.087 (3) | 0.0103 (17) | 0.064 (2) | −0.0006 (16) |
F5A | 0.0379 (19) | 0.061 (2) | 0.075 (3) | 0.0070 (16) | 0.0291 (18) | 0.0190 (18) |
F6A | 0.0541 (18) | 0.0309 (13) | 0.0541 (17) | 0.0011 (13) | 0.0269 (13) | −0.0058 (13) |
N1—C6 | 1.296 (7) | C13—C14 | 1.540 (7) |
N1—C5 | 1.490 (7) | C13—H13A | 0.9900 |
N1—C2 | 1.465 (5) | C13—H13B | 0.9900 |
C2—C3 | 1.531 (7) | C14—C15 | 1.506 (7) |
C2—H2A | 0.9900 | C14—H14A | 0.9900 |
C2—H2B | 0.9900 | C14—H14B | 0.9900 |
C3—C4 | 1.512 (7) | C15—H15A | 0.9900 |
C3—H3A | 0.9900 | C15—H15B | 0.9900 |
C3—H3B | 0.9900 | C16—N17 | 1.315 (6) |
C4—C5 | 1.523 (6) | C16—H16 | 0.9500 |
C4—H4A | 0.9900 | N17—H17A | 0.79 (5) |
C4—H4B | 0.9900 | N17—H17B | 0.79 (5) |
C5—H5A | 0.9900 | P1—F5 | 1.580 (4) |
C5—H5B | 0.9900 | P1—F3 | 1.572 (4) |
C6—N7 | 1.331 (7) | P1—F6 | 1.576 (4) |
C6—H6 | 0.9500 | P1—F2 | 1.597 (3) |
N7—H7A | 0.86 (5) | P1—F4 | 1.606 (4) |
N7—H7B | 0.86 (5) | P1—F1 | 1.602 (3) |
N11—C16 | 1.289 (6) | P2—F3A | 1.589 (3) |
N11—C12 | 1.481 (5) | P2—F2A | 1.591 (4) |
N11—C15 | 1.489 (6) | P2—F5A | 1.598 (4) |
C12—C13 | 1.517 (7) | P2—F1A | 1.600 (3) |
C12—H12A | 0.9900 | P2—F4A | 1.588 (3) |
C12—H12B | 0.9900 | P2—F6A | 1.601 (3) |
C6—N1—C5 | 123.5 (4) | C15—C14—C13 | 102.5 (4) |
C6—N1—C2 | 124.2 (5) | C15—C14—H14A | 111.3 |
C5—N1—C2 | 112.2 (4) | C13—C14—H14A | 111.3 |
N1—C2—C3 | 103.1 (4) | C15—C14—H14B | 111.3 |
N1—C2—H2A | 111.1 | C13—C14—H14B | 111.3 |
C3—C2—H2A | 111.1 | H14A—C14—H14B | 109.2 |
N1—C2—H2B | 111.1 | N11—C15—C14 | 102.1 (4) |
C3—C2—H2B | 111.1 | N11—C15—H15A | 111.4 |
H2A—C2—H2B | 109.1 | C14—C15—H15A | 111.4 |
C4—C3—C2 | 103.8 (4) | N11—C15—H15B | 111.4 |
C4—C3—H3A | 111.0 | C14—C15—H15B | 111.4 |
C2—C3—H3A | 111.0 | H15A—C15—H15B | 109.2 |
C4—C3—H3B | 111.0 | N11—C16—N17 | 123.1 (5) |
C2—C3—H3B | 111.0 | N11—C16—H16 | 118.5 |
H3A—C3—H3B | 109.0 | N17—C16—H16 | 118.5 |
C3—C4—C5 | 103.3 (4) | C16—N17—H17A | 120.0 |
C3—C4—H4A | 111.1 | C16—N17—H17B | 120.0 |
C5—C4—H4A | 111.1 | H17A—N17—H17B | 120.0 |
C3—C4—H4B | 111.1 | F5—P1—F3 | 179.1 (4) |
C5—C4—H4B | 111.1 | F5—P1—F6 | 90.3 (3) |
H4A—C4—H4B | 109.1 | F3—P1—F6 | 90.5 (3) |
N1—C5—C4 | 100.8 (4) | F5—P1—F2 | 89.2 (2) |
N1—C5—H5A | 111.6 | F3—P1—F2 | 91.4 (2) |
C4—C5—H5A | 111.6 | F6—P1—F2 | 90.73 (19) |
N1—C5—H5B | 111.6 | F5—P1—F4 | 87.9 (3) |
C4—C5—H5B | 111.6 | F3—P1—F4 | 91.3 (3) |
H5A—C5—H5B | 109.4 | F6—P1—F4 | 178.1 (3) |
N1—C6—N7 | 122.4 (5) | F2—P1—F4 | 89.8 (2) |
N1—C6—H6 | 118.8 | F5—P1—F1 | 90.5 (2) |
N7—C6—H6 | 118.8 | F3—P1—F1 | 88.9 (2) |
C6—N7—H7A | 120.0 | F6—P1—F1 | 89.2 (2) |
C6—N7—H7B | 120.0 | F2—P1—F1 | 179.7 (2) |
H7A—N7—H7B | 120.0 | F4—P1—F1 | 90.2 (2) |
C16—N11—C12 | 124.0 (4) | F3A—P2—F2A | 91.6 (3) |
C16—N11—C15 | 124.4 (4) | F3A—P2—F5A | 178.5 (2) |
C12—N11—C15 | 111.5 (4) | F2A—P2—F5A | 88.9 (3) |
N11—C12—C13 | 103.2 (4) | F3A—P2—F1A | 88.5 (2) |
N11—C12—H12A | 111.1 | F2A—P2—F1A | 178.7 (3) |
C13—C12—H12A | 111.1 | F5A—P2—F1A | 90.8 (2) |
N11—C12—H12B | 111.1 | F3A—P2—F4A | 90.4 (2) |
C13—C12—H12B | 111.1 | F2A—P2—F4A | 91.3 (2) |
H12A—C12—H12B | 109.1 | F5A—P2—F4A | 91.0 (2) |
C14—C13—C12 | 104.3 (4) | F1A—P2—F4A | 90.0 (2) |
C14—C13—H13A | 110.9 | F3A—P2—F6A | 90.4 (2) |
C12—C13—H13A | 110.9 | F2A—P2—F6A | 89.3 (2) |
C14—C13—H13B | 110.9 | F5A—P2—F6A | 88.3 (2) |
C12—C13—H13B | 110.9 | F1A—P2—F6A | 89.4 (2) |
H13A—C13—H13B | 108.9 | F4A—P2—F6A | 179.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N7—H7B···F1 | 0.86 | 2.11 | 2.966 (5) | 177 |
N7—H7A···F3A | 0.86 | 2.47 | 3.207 (6) | 145 |
N7—H7A···F4A | 0.86 | 2.51 | 2.945 (6) | 112 |
C16—H16···F6i | 0.95 | 2.54 | 3.153 (6) | 122 |
N17—H17A···F2 | 0.79 | 2.51 | 2.935 (5) | 115 |
N17—H17A···F4 | 0.79 | 2.30 | 3.026 (6) | 152 |
N17—H17B···F6Aii | 0.79 | 2.23 | 3.019 (5) | 179 |
Symmetry codes: (i) x+1/2, y−1/2, z; (ii) x, y−1, z. |
Acknowledgements
We are grateful to the Office of the Dean and the Department of Chemistry at Fordham University for their generous support of the X-ray facility. We thank Nicholas Verniero for preparing compounds 1 and 2 and Nurul Eisha for obtaining the FTIR spectra.
Funding information
Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. MRI CHE1625732 to Parkin); Air Force Office of Scientific Research (grant No. FA9550-20-1-0158 to Neary).
References
Allenstein, E., Keller, K., Hausen, H.-D. & Weidlein, J. (1987). Z. Anorg. Allg. Chem. 554, 188–196. CrossRef CAS Google Scholar
Benhamou, L., Chardon, E., Lavigne, G., Bellemin-Laponnaz, S. & César, V. (2011). Chem. Rev. 111, 2705–2733. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Funk, T. W., Berlin, J. M. & Grubbs, R. H. (2006). J. Am. Chem. Soc. 128, 1840–1846. CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
McCormick, L. J., Morris, S. A., Teat, S. J., Slawin, A. M. Z. & Morris, R. E. (2018). Crystals, 8, 80100061–8010006/11. Google Scholar
Saba, S., Brescia, A.-M. & Kaloustian, M. K. (1991). Tetrahedron Lett. 32, 5031–5034. CrossRef CAS Google Scholar
Saba, S., Kojtari, A., Rivera, M. M., D'Amico, P., Canuso, D. & Kaloustian, M. K. (2005). Abstracts, 37th Middle Atlantic Regional Meeting of the American Chemical Society, New Brunswick, NJ, USA. Google Scholar
Scarborough, C. C., Grady, M. J. W., Guzei, I. A., Gandhi, B. A., Bunel, E. E. & Stahl, S. S. (2005). Angew. Chem. Int. Ed. 44, 5269–5272. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.