research communications
[4-(2-Aminoethyl)morpholine-κ2N,N′]dibromidocadmium(II): synthesis, and Hirshfeld surface analysis
aPG and Research Department of Physics, Government Arts College for Men (Autonomous), Nandanam, Chennai 600 035, Tamil Nadu, India, and bDepartment of Physics, Sir Theagaraya College, Old Washermanpet, Chennai 600 021, Tamil Nadu, India
*Correspondence e-mail: drsskphy@gmail.com
The title compound, [CdBr2(C6H14N2O)], was synthesized upon complexation of 4-(2-aminoethyl)morpholine and cadmium(II) bromide tetrahydrate at 303 K. It crystallizes as a centrosymmetric dimer, with one cadmium atom, two bromine atoms and one N,N′-bidentate 4-(2-aminoethyl)morpholine ligand in the The metal atom is six-coordinated and has a distorted octahedral geometry. In the crystal, O⋯Cd interactions link the dimers into a polymeric double chain and intermolecular C—H⋯O hydrogen bonds form R22(6) ring motifs. Further C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network. As the N—H⋯Br hydrogen bonds are shorter than the C—H⋯Br interactions, they have a larger effect on the packing. A Hirshfeld surface analysis reveals that the largest contributions to the packing are from H⋯H (46.1%) and Br⋯H/H⋯Br (38.9%) interactions with smaller contributions from the O⋯H/H⋯O (4.7%), Br⋯Cd/Cd⋯Br (4.4%), O⋯Cd/Cd⋯O (3.5%), Br⋯Br (1.1%), Cd⋯H/H⋯Cd (0.9%), Br⋯O/O⋯Br (0.3%) and O⋯N/N⋯O (0.1%) contacts.
Keywords: crystal structure; morpholine ligand; Hirshfeld surface analysis; FTIR; NMR.
CCDC reference: 2298040
1. Chemical context
Inorganic–metal halides may be associated with functionalized organic molecules (for example carboxylic acids, ). This has become the main focus of coordination chemistry and has allowed for the development of many research fields, such as medicinal chemistry of coordination compounds, homogenous catalysis, and metal-organic frameworks (Malinowski et al. 2020; Zecchina & Califano 2018; Yaghi et al. 2019; Jones & Thornback 2007). In this context, morpholine is a heterocyclic bidentate ligand frequently used in medicinal chemistry and a privileged structural component of bioactive molecules. The morpholine molecule has become one of the most promising moieties evaluated in structure-activity relationship (SAR) studies, as it induces biological activity, as well as an improved pharmacokinetic and metabolic profile to the biomolecules that contain it. Morpholine and its derivatives have long been known for various activities such as analgesic, anti-inflammatory, antioxidant, anticancer, anti-neurodegenerative, etc. As a result of its biological and pharmacological importance, the synthesis of morpholine compounds has been extensively studied by many researchers (Rekka & Kourounakis 2010; Wijtmans et al., 2004; Ilaš et al., 2005; Pal'chikov 2013). Herein, we report the synthesis of the coordination compound [4-(2-aminoethyl)morpholine-κ2-N,N′]dibromidocadmium(II) and examined it using single crystal X-ray diffraction, FTIR, NMR, and Hirshfeld surface studies as a part of our ongoing interest in morpholine derivatives.
or amines) to produce neutral or ionic coordination compounds that combine and change the properties of both components. Fine-tuning the stoichiometry, reaction conditions and geometry of the organic ligands allows control of the dimensionality and geometry of the final product, resulting in a wide range of systems (Constable, 20192. Structural commentary
The title compound crystallizes in the triclinic P Fig. 1 depicts a perspective view of the mononuclear centrosymmetric complex, [(Cd)(L)(Br)2], where L = 4-(2-aminoethyl)morpholine, with the atom-labeling scheme. The contains half of the molecule, consisting of one cadmium cation, two bromine anions and one 4-(2-aminoethyl)morpholine ligand that are located on a general positions and the other half of the molecule is generated by inversion symmetry. Although the synthesis was carried out in water, the title compound is neither a hydrate nor is water present in the coordination sphere of the metal. If water enters the coordination sphere of cadmium, the resulting complex is usually ionic, as one Br− has to stay outside the coordination sphere leading to lower for the system. In addition, the large Br− ion is a better bridging ligand than water and can link the components in a three-dimensional network. Hence, ignoring water during crystallization is more advantageous than retaining it in the coordination sphere.
In the structure, one of the symmetry-independent bromine atoms (Br1) is terminal, while the other (Br2) bridges two cadmium atoms related by inversion (−x + 1, −y, −z + 1). The metal atom further coordinates the 4-(2-aminoethyl)morpholine in a N,N′ bidentate fashion, forming a five-membered chelate ring (Cd1–N1–C5–C6–N2), which is shown in Fig. 2. The last coordination site of the distorted octahedron around the cadmium atom is occupied by an oxygen atom from a different morpholine moiety (x, y − 1, z). The size of the chelate ring is a key component in metal ion selection, with five-membered chelate rings preferring metal ions with an ionic radius near 1.0 Å. Bazargan et al. (2019) reported that the optimal size for the N—M distance is 2.5 Å and the N—M—N angle is 69° for five-membered N–C–C–N–M chelate rings. In five-membered chelate rings, the M—N bond lengths and the N—M—N bond angle are considered to be inversely linked (Hancock 1992; Hancock et al., 2007; Dean et al., 2008). The Cd1—N1 and Cd1—N2 distances are 2.504 (2) and 2.306 (3) Å, respectively, while the N1—Cd—N2 angle is 76.06 (8)°. This chelate ring pattern appears to be present in all reported structures of with a metal coordinated by 4-(2-aminoethyl)morpholine (Ikmal Hisham et al., 2010; Suleiman Gwaram et al., 2011). According to the structural data for the title compound, the torsion angles O1—C1—C2—N1 and N1—C3—C4—O1 of the morpholine ring are 55.6 (3) and −61.5 (3)°, respectively. These values are comparable with those reported for similar compounds such as cis-[4-(2-aminoethyl)morpholine-κ2N,N′]dichloridoplatinum(II) (O1—C5—C6—N2 = 55° and N1—C3—C4—O1 = −59.9°; Shi et al. 2006) and bis(acetato)bis[4-(2-aminoethyl)morpholine-κ2N,N′]cadmium(II) tetrahydrate (O3—C1—C2—N1 = 56° and N1—C4—C3—O3 = −59.6°; Chidambaranathan et al., 2023c). This validates the chair formation of morpholine rings, also observed in previously reported morpholine compounds (Konar et al., 2005; Chattopadhyay et al., 2005; Brayshaw et al., 2012; Koćwin-Giełzak & Marciniak, 2006; Chidambaranathan et al., 2023a).
3. Supramolecular features
The morpholine molecule is potentially an ambidentate N- and O-donor ligand, where the binding of morpholine to the metal center is most commonly accomplished through the nitrogen atom (Cvrtila et al., 2012; Cindric et al., 2013), except in cases where the nitrogen atom is protonated (Li et al., 2010; Willett et al., 2005). This leaves the oxygen atom free to participate in supramolecular interconnections via the formation of additional coordination bonds, acting as an acceptor for a halogen bond (Lapadula et al., 2010) or participating in hydrogen bonding (Weinberger et al., 1998), which can result in many different supramolecular architectures. A packing diagram of the title compound along the b-axis is shown in Fig. 3, showing the intermolecular C—H⋯O, C—H⋯Br and N—H⋯Br interactions (Table 1). The Br1 anion links adjacent molecules along the b-axis direction via the H3B and H4B atoms of the morpholine ring. Similarly, the Br2 anion links adjacent molecules along the a-axis direction via the H2C atom. The corresponding interaction distances for H3B⋯Br1, H4B⋯Br1 (x, y + 1, z) and H2C⋯Br1 (x − 1, y, z) are 2.96, 2.91 and 2.95 (2) Å, respectively. Further C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network. Owing to the higher of the N—H⋯Br hydrogen bonds, they are shorter than the C—H⋯Br ones and hence they will have a larger effect on the packing than the C—H⋯Br interactions. On the other hand, the O—Cd coordination bond contributes to the formation of the three-dimensional network more than the N—H⋯Br and C—H⋯Br hydrogen bonds. Fig. 4 shows the R22(6) ring motif formed between two molecules through C—H⋯O intermolecular interactions (Bernstein et al., 1995; Motherwell et al., 2000).
To examine the intermolecular interactions present in the title compound in more detail, a Hirshfeld surface analysis was performed and the two-dimensional fingerprint plots were generated with CrystalExplorer 21.5 (Spackman et al., 2021). The three-dimensional dnorm surface is shown in Fig. 5. Here the white regions relate to contacts with distances equal to the sum of the van der Waals radii, red-colored regions indicate contacts with distances shorter than the sum of the van der Waals radii, while blue areas indicate distances longer than the sum of the van der Waals radii (Venkatesan et al., 2016). This colored mapping of contacts allows the visual identification of regions susceptible to participating in interactions with other molecules. Fig. 5 shows the most prominent intermolecular interactions as red spots corresponding to the Cd—Br and Cd⋯O contacts.
The two-dimensional fingerprint plots are shown in Fig. 6. Each point of the Hirshfeld surface is associated with two types of distances: de is the distance from the point to the nearest-to-the-surface external nucleus and di is the distance from the point to the nearest-to-the-surface internal nucleus. The normalized contact distance, dnorm, is the sum of the van der Waals radii, de + di, of each atom (McKinnon et al., 2007; Hathwar et al., 2015). The largest contributions to the Hirshfeld surface are represented as a point at de + di ∼2.4 Å due to H⋯H (46.1%), a pair of wings with the tip at de + di ∼2.85 Å due to H⋯Br/Br⋯H (38.9%), a pair of spikes at de + di ∼2.45 Å due to H⋯O/O⋯H (4.7%), a tip of a scissor-like image at de + di ∼2.7 Å due to Cd⋯Br/Br⋯Cd (4.4%) and a feather-like image at de + di ∼2.7 Å due to O⋯Cd/Cd⋯O (3.5%) contacts. The other contributions are Br⋯Br (1.1%), Br⋯O/O⋯Br (0.3%) and O⋯N/N⋯O (0.1%). All these interactions play a crucial role in the overall stabilization of the crystal packing.
4. Database survey
A search in the Cambridge Structural Database (CSD, version 5.40; Groom et al., 2016) for the keyword `4-(2-aminoethyl)morpholine' yielded 21 hits for coordination compounds with metals, including trans-bis(isothiocyanato-N)bis[4-(2-aminoethyl)morpholine-κ2-N,N′]nickel(II) (NENSUU; Laskar et al., 2001), (μ2-oxalato)-bis[4-(2-aminoethyl)morpholine-κ2-N,N′]dicopper(II) (YIKQAK; Mukherjee et al., 2001), catena-[bis(μ2-dicyanamide-N,N′)-[4-(2-aminoethyl)morpholine-κ2-N,N′]nickel (II) (FIJROG; Konar et al., 2005), bis[4-(2-aminoethyl)morpholine-κ2-N,N′]copper(II) bis(tetrafluoroborate) (RAPHEW; Sander et al., 2005), [4-(2-aminoethyl)morpholine-κ2-N,N′]aqua(oxalate-O,O′)-copper(II) monohydrate (XAZRUM; Koćwin-Giełzak & Marciniak, 2006), trans-bis[4-(2-aminoethyl)morpholine-κ2-N,N′]-bis(nitrito)nickel(II) (NAVNAA; Chattopadhyay et al., 2005; RANVEJ and NAVNAA01; Brayshaw et al., 2012), cis-dichloro[4-(2-aminoethyl)morpholine-κ2-N,N′]platinum(II) (WENQUC; Shi et al., 2006), cis-(cyclobutane-1,1-dicarboxylato)-[4-(2-aminoethyl)morpholine-κ2-N,N′]platinum(II) trihydrate (TEVSAP and TEVSAP01; Xie et al., 2007), bis(5,5-diethylbarbiturato-N)-[4-(2-aminoethyl)morpholine-κ2-N,N′]copper(II) (TUJRIA; Suat Aksoy et al., 2009), catena-[(μ4-azido-N1,N1,N1,N3)-(μ3-azido-N1,N1,N1)-tris(μ2-azido-N1,N1,N1)(μ2-azido-N1,N3)-[4-(2-aminoethyl)morpholine-κ2-N,N′]-tri-copper(II)] (IMETAW; Mukherjee & Mukherjee, 2010), tetracarbonyl-[4-(2-aminoethyl)morpholine-κ2-N,N′]molybdenum(0) diglyme solvate (CIYBIX; Kromer et al., 2014), bis[4-(2-aminoethyl)morpholine-κ2-N,N′][5,10,15,20-tetrakis(4-methoxyphenyl) porphyrinato]iron(II) (NABXEW; Ben Haj Hassen et al., 2016; NABXEW01; Khelifa et al., 2016), (1,1,1,4,4,4-hexafluoro-2,3-bis(trifluoromethyl)butane-2,3-diolato)-[4-(2-aminoethyl)morpholine-κ2-N,N′]-nitrosylcobalt (DAPKOY; Popp et al., 2021), dichlorobis[4-(2-aminoethyl)morpholine-κ2-N,N′]cadmium(II) (ULAJEX; Suleiman Gwaram et al., 2011), bis[4-(2-aminoethyl)morpholine-κ2-N,N′]diaquanickel(II) dichloride (VEPHIL; Chidambaranathan et al., 2023b) and bis(acetate)-bis[4-(2-aminoethyl)morpholine-κ2-N,N′]cadmium(II) tetrahydrate (QEWKUC and FITXAL; Chidambaranathan et al., 2023c). All of these structures are consolidated by hydrogen bonding. As with the other metal complexes of 4-(2-aminoethyl)morpholine, the morpholine ring adopts a chair conformation, and the amine performs as an N,N′-bidentate ligand to form a five-membered chelate ring with the metal center.
5. Synthesis and crystallization
The reaction scheme is shown in Fig. 7. Cadmium bromide tetrahydrate (3.44 g, 0.01 mol) and 4-(2-aminoethyl)morpholine (1.30 g, 0.01 mol) in a stoichiometric ratio of 1:1 were dissolved in double-distilled water at 303 K. The solvent was evaporated slowly at room temperature and plate-like orange single crystals were obtained after one week, m.p.: 497.5 K; yield: 78%; Elemental analysis for C6H14Br2CdN2O (402.41g·mol−1) theor(%): C, 17.91; H, 3.51; N, 6.96.; found(%): C, 16.98; H, 3.48; N, 6.42.
The FTIR spectrum of the title compound was recorded on a Bruker FTIR spectrometer. FTIR for title compound (KBr, cm−1): 3304 (m, N—H), 2950 (w, C—H), 1598 (w, C—N), 1454 (s, C—C), 1108 (s, C—N), 612 (s, M—N); FT–IR for free ligand (Edwin et al., 2017); (KBr, cm−1): 3365 (s, N—H), 2954 (s, C—H), 1581 (m, C—N), 1456 (s, C—C), 1115 (s, C—N); 1H NMR (500 MHz. D2O, δ, ppm), 3.74 (t, 4H, –CH2—O—CH2), 2.92 (t, 4H, –CH2—N—CH2), 2.58 (broad singlet, 2H, N—CH2), 2.55 (t, 2H, –CH2—NH2).
6. details
Crystal data, data collections and structure . All C–H atoms were positioned geometrically, C—H = 0.97 Å and refined as riding with Uiso(H) = 1.2Ueq(C). The acidic nitrogen-bound protons H2C and H2D were localized from electron-density maps and refined freely with distance restraints (DFIX) and with Uiso(H) = 1.2Ueq(N).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2298040
https://doi.org/10.1107/S2056989024000963/jq2033sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024000963/jq2033Isup4.hkl
[CdBr2(C6H14N2O)] | Z = 2 |
Mr = 402.41 | F(000) = 380 |
Triclinic, P1 | Dx = 2.568 Mg m−3 |
a = 7.1291 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.1662 (2) Å | Cell parameters from 9891 reflections |
c = 11.0151 (3) Å | θ = 3.0–25.7° |
α = 77.704 (1)° | µ = 9.73 mm−1 |
β = 80.079 (1)° | T = 299 K |
γ = 72.371 (1)° | Block, brown |
V = 520.49 (3) Å3 | 0.34 × 0.25 × 0.11 mm |
Bruker D8 Venture Diffractometer | 1902 reflections with I > 2σ(I) |
Radiation source: fine focus sealed tube | Rint = 0.047 |
φ and ω scans | θmax = 25.7°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −8→8 |
Tmin = 0.140, Tmax = 0.259 | k = −8→8 |
13169 measured reflections | l = −13→13 |
1969 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.0374P)2 + 0.2615P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.059 | (Δ/σ)max = 0.001 |
S = 1.08 | Δρmax = 0.86 e Å−3 |
1969 reflections | Δρmin = −0.69 e Å−3 |
116 parameters | Extinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
2 restraints | Extinction coefficient: 0.0211 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.45454 (3) | 0.03786 (3) | 0.31347 (2) | 0.02454 (11) | |
C1 | 0.2885 (5) | 0.5709 (4) | 0.4110 (3) | 0.0293 (6) | |
H1A | 0.194661 | 0.659545 | 0.462766 | 0.035* | |
H1B | 0.346397 | 0.448474 | 0.465409 | 0.035* | |
C2 | 0.1801 (4) | 0.5262 (4) | 0.3191 (3) | 0.0260 (6) | |
H2A | 0.083408 | 0.458664 | 0.364667 | 0.031* | |
H2B | 0.109445 | 0.649989 | 0.271196 | 0.031* | |
C3 | 0.4770 (5) | 0.4955 (4) | 0.1747 (3) | 0.0289 (6) | |
H3A | 0.420658 | 0.621541 | 0.123058 | 0.035* | |
H3B | 0.573036 | 0.411330 | 0.121325 | 0.035* | |
C4 | 0.5793 (4) | 0.5301 (4) | 0.2727 (3) | 0.0308 (6) | |
H4A | 0.636222 | 0.404231 | 0.324354 | 0.037* | |
H4B | 0.686152 | 0.587572 | 0.232689 | 0.037* | |
C5 | 0.2097 (5) | 0.3872 (4) | 0.1317 (3) | 0.0315 (6) | |
H5A | 0.304928 | 0.335536 | 0.064300 | 0.038* | |
H5B | 0.132830 | 0.519547 | 0.098435 | 0.038* | |
C6 | 0.0730 (5) | 0.2558 (5) | 0.1773 (3) | 0.0336 (7) | |
H6A | −0.019161 | 0.302997 | 0.247194 | 0.040* | |
H6B | −0.002850 | 0.261386 | 0.110827 | 0.040* | |
N1 | 0.3180 (3) | 0.4002 (3) | 0.2323 (2) | 0.0230 (5) | |
N2 | 0.1879 (4) | 0.0509 (4) | 0.2164 (3) | 0.0301 (5) | |
H2C | 0.110 (5) | −0.016 (5) | 0.266 (3) | 0.036* | |
H2D | 0.245 (5) | −0.001 (5) | 0.150 (2) | 0.036* | |
Br1 | 0.72268 (5) | −0.01885 (5) | 0.11392 (3) | 0.03420 (12) | |
Br2 | 0.76499 (4) | −0.04293 (4) | 0.45383 (3) | 0.02768 (11) | |
O1 | 0.4421 (3) | 0.6610 (3) | 0.3494 (2) | 0.0302 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.02513 (15) | 0.02516 (15) | 0.02109 (14) | −0.00408 (9) | −0.00275 (9) | −0.00328 (9) |
C1 | 0.0317 (15) | 0.0277 (14) | 0.0294 (15) | −0.0084 (12) | −0.0008 (12) | −0.0089 (12) |
C2 | 0.0225 (14) | 0.0252 (14) | 0.0291 (15) | −0.0048 (11) | −0.0007 (11) | −0.0066 (11) |
C3 | 0.0334 (15) | 0.0216 (14) | 0.0291 (15) | −0.0100 (12) | 0.0058 (12) | −0.0033 (11) |
C4 | 0.0225 (14) | 0.0224 (14) | 0.0459 (19) | −0.0050 (11) | 0.0005 (12) | −0.0074 (12) |
C5 | 0.0458 (18) | 0.0260 (14) | 0.0236 (15) | −0.0084 (13) | −0.0157 (13) | 0.0007 (11) |
C6 | 0.0313 (16) | 0.0300 (15) | 0.0412 (18) | −0.0040 (13) | −0.0134 (13) | −0.0087 (13) |
N1 | 0.0271 (12) | 0.0213 (11) | 0.0210 (12) | −0.0079 (9) | −0.0013 (9) | −0.0039 (9) |
N2 | 0.0330 (14) | 0.0256 (13) | 0.0320 (14) | −0.0100 (10) | −0.0012 (11) | −0.0051 (10) |
Br1 | 0.03434 (19) | 0.0396 (2) | 0.02838 (19) | −0.01053 (14) | 0.00469 (13) | −0.01140 (13) |
Br2 | 0.02187 (17) | 0.03721 (19) | 0.02266 (17) | −0.00738 (12) | −0.00125 (11) | −0.00454 (12) |
O1 | 0.0294 (11) | 0.0236 (10) | 0.0397 (12) | −0.0069 (8) | −0.0044 (9) | −0.0098 (8) |
Cd1—N2 | 2.306 (3) | C3—H3A | 0.9700 |
Cd1—N1 | 2.504 (2) | C3—H3B | 0.9700 |
Cd1—Br1 | 2.6670 (3) | C4—O1 | 1.431 (3) |
Cd1—Br2i | 2.7647 (3) | C4—H4A | 0.9700 |
Cd1—Br2 | 2.7651 (3) | C4—H4B | 0.9700 |
C1—O1 | 1.436 (4) | C5—N1 | 1.488 (4) |
C1—C2 | 1.511 (4) | C5—C6 | 1.508 (4) |
C1—H1A | 0.9700 | C5—H5A | 0.9700 |
C1—H1B | 0.9700 | C5—H5B | 0.9700 |
C2—N1 | 1.484 (3) | C6—N2 | 1.462 (4) |
C2—H2A | 0.9700 | C6—H6A | 0.9700 |
C2—H2B | 0.9700 | C6—H6B | 0.9700 |
C3—N1 | 1.481 (3) | N2—H2C | 0.886 (18) |
C3—C4 | 1.501 (4) | N2—H2D | 0.868 (18) |
N2—Cd1—N1 | 76.06 (8) | C3—C4—H4A | 109.6 |
N2—Cd1—Br1 | 95.75 (7) | O1—C4—H4B | 109.6 |
N1—Cd1—Br1 | 93.36 (5) | C3—C4—H4B | 109.6 |
N2—Cd1—Br2i | 93.03 (7) | H4A—C4—H4B | 108.1 |
N1—Cd1—Br2i | 95.76 (5) | N1—C5—C6 | 112.6 (2) |
Br1—Cd1—Br2i | 168.635 (14) | N1—C5—H5A | 109.1 |
N2—Cd1—Br2 | 169.58 (6) | C6—C5—H5A | 109.1 |
N1—Cd1—Br2 | 113.54 (5) | N1—C5—H5B | 109.1 |
Br1—Cd1—Br2 | 87.915 (11) | C6—C5—H5B | 109.1 |
Br2i—Cd1—Br2 | 82.231 (10) | H5A—C5—H5B | 107.8 |
O1—C1—C2 | 112.1 (2) | N2—C6—C5 | 110.0 (3) |
O1—C1—H1A | 109.2 | N2—C6—H6A | 109.7 |
C2—C1—H1A | 109.2 | C5—C6—H6A | 109.7 |
O1—C1—H1B | 109.2 | N2—C6—H6B | 109.7 |
C2—C1—H1B | 109.2 | C5—C6—H6B | 109.7 |
H1A—C1—H1B | 107.9 | H6A—C6—H6B | 108.2 |
N1—C2—C1 | 111.7 (2) | C3—N1—C2 | 108.2 (2) |
N1—C2—H2A | 109.3 | C3—N1—C5 | 108.8 (2) |
C1—C2—H2A | 109.3 | C2—N1—C5 | 109.6 (2) |
N1—C2—H2B | 109.3 | C3—N1—Cd1 | 111.83 (17) |
C1—C2—H2B | 109.3 | C2—N1—Cd1 | 118.18 (17) |
H2A—C2—H2B | 107.9 | C5—N1—Cd1 | 99.75 (16) |
N1—C3—C4 | 111.2 (2) | C6—N2—Cd1 | 111.49 (18) |
N1—C3—H3A | 109.4 | C6—N2—H2C | 109 (2) |
C4—C3—H3A | 109.4 | Cd1—N2—H2C | 111 (2) |
N1—C3—H3B | 109.4 | C6—N2—H2D | 109 (2) |
C4—C3—H3B | 109.4 | Cd1—N2—H2D | 102 (2) |
H3A—C3—H3B | 108.0 | H2C—N2—H2D | 114 (3) |
O1—C4—C3 | 110.4 (2) | Cd1i—Br2—Cd1 | 97.768 (10) |
O1—C4—H4A | 109.6 | C4—O1—C1 | 108.9 (2) |
O1—C1—C2—N1 | 55.6 (3) | C1—C2—N1—Cd1 | 75.7 (3) |
N1—C3—C4—O1 | −61.5 (3) | C6—C5—N1—C3 | 168.3 (2) |
N1—C5—C6—N2 | −64.4 (3) | C6—C5—N1—C2 | −73.6 (3) |
C4—C3—N1—C2 | 55.7 (3) | C6—C5—N1—Cd1 | 51.1 (3) |
C4—C3—N1—C5 | 174.7 (2) | C5—C6—N2—Cd1 | 37.3 (3) |
C4—C3—N1—Cd1 | −76.1 (2) | C3—C4—O1—C1 | 61.1 (3) |
C1—C2—N1—C3 | −52.6 (3) | C2—C1—O1—C4 | −58.5 (3) |
C1—C2—N1—C5 | −171.1 (2) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···O1ii | 0.97 | 2.59 | 3.370 (4) | 138 |
C3—H3B···Br1 | 0.97 | 2.96 | 3.720 (3) | 137 |
C4—H4B···Br1iii | 0.97 | 2.91 | 3.678 (3) | 137 |
N2—H2C···Br2iv | 0.89 (2) | 2.95 (2) | 3.761 (3) | 153 (3) |
N2—H2D···Br1v | 0.87 (2) | 2.86 (2) | 3.628 (3) | 149 (3) |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) x−1, y, z; (v) −x+1, −y, −z. |
Acknowledgements
The authors would like to thank Dr Shobhana Krishnaswamy, SAIF, IITM, Chennai, for performing the data collection and structural solution and Dr M. Palanichamy, Emeritus Professor, Department of Physical Chemistry, University of Madras, Guindy campus, Chennai for scientific discussions.
References
Bazargan, M., Mirzaei, M., Franconetti, A. & Frontera, A. (2019). Dalton Trans. 48, 5476–5490. Web of Science CrossRef CAS PubMed Google Scholar
Ben Haj Hassen, L., Ezzayani, K., Rousselin, Y., Stern, C., Nasri, H. & Schulz, C. E. (2016). J. Mol. Struct. 1110, 138–142. Web of Science CSD CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brayshaw, S. K., Easun, T. L., George, M. W., Griffin, A. M. E., Johnson, A. L., Raithby, P. R., Savarese, T. L., Schiffers, S., Warren, J. E., Warren, M. R. & Teat, S. J. (2012). Dalton Trans. 41, 90–97. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker. (2016). APEX4, SAINT and XPREP . Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chattopadhyay, T., Ghosh, M., Majee, A., Nethaji, M. & Das, D. (2005). Polyhedron, 24, 1677–1681. Web of Science CSD CrossRef CAS Google Scholar
Chidambaranathan, B., Sivaraj, S. & Selvakumar, S. (2023a). Acta Cryst. E79, 8–13. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chidambaranathan, B., Sivaraj, S., Vijayamathubalan, P. & Selvakumar, S. (2023b). Acta Cryst. E79, 226–230. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chidambaranathan, B., Sivaraj, S., Vijayamathubalan, P. & Selvakumar, S. (2023c). Acta Cryst. E79, 1049–1054. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cindrić, M., Pavlović, G., Hrenar, T., Uzelac, M. & Ćurić, M. (2013). Eur. J. Inorg. Chem. pp. 563–571. Google Scholar
Constable, E. C. (2019). Chemistry, 1, 126–163. Web of Science CrossRef Google Scholar
Cvrtila, I., Stilinović, V. & Kaitner, B. (2012). Struct. Chem. 23, 587–594. Web of Science CSD CrossRef CAS Google Scholar
Dean, N. E., Hancock, R. D., Cahill, C. L. & Frisch, M. (2008). Inorg. Chem. 47, 2000–2010. Web of Science CSD CrossRef PubMed CAS Google Scholar
Edwin, B., Amalanathan, M., Chadha, R., Maiti, N., Kapoor, S. & Hubert Joe, I. (2017). J. Mol. Struct. 1148, 459–470. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hancock, R. D. (1992). J. Chem. Educ. 69, 615–620. CrossRef CAS Web of Science Google Scholar
Hancock, R. D., Melton, D. L., Harrington, J. M., McDonald, F. C., Gephart, R. T., Boone, L. L., Jones, S. B., Dean, N. E., Whitehead, J. R. & Cockrell, G. M. (2007). Coord. Chem. Rev. 251, 1678–1689. Web of Science CrossRef CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Ikmal Hisham, N., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m1471. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ilaš, J., Anderluh, P. S., Dolenc, M. S. & Kikelj, D. (2005). Tetrahedron, 61, 7325–7348. Google Scholar
Jones, C. J. & Thornback, J. R. (2007). Medicinal Applications of Coordination Chemistry. The Royal Society of Chemistry. Google Scholar
Khélifa, A. B., Ezzayani, K. & Belkhiria, M. S. (2016). J. Mol. Struct. 1122, 18–23. Google Scholar
Koćwin-Giełzak, K. & Marciniak, B. (2006). Acta Cryst. E62, m155–m157. Web of Science CSD CrossRef IUCr Journals Google Scholar
Konar, S., Dalai, S., Mukherjee, P. S., Drew, M. G. B., Ribas, J. & Ray Chaudhuri, N. (2005). Inorg. Chim. Acta, 358, 957–963. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kromer, L., Coelho, A. C., Bento, I., Marques, A. R. & Romão, C. C. (2014). J. Organomet. Chem. 760, 89–100. Web of Science CSD CrossRef CAS Google Scholar
Lapadula, G., Judaš, N., Friščić, T. & Jones, W. (2010). Chem. A Eur. J. 16, 7400–7403. Web of Science CSD CrossRef CAS Google Scholar
Laskar, I. R., Maji, T. K., Das, D., Lu, T.-H., Wong, W.-T., Okamoto, K. I. & Ray Chaudhuri, N. (2001). Polyhedron, 20, 2073–2082. Web of Science CSD CrossRef CAS Google Scholar
Li, H. H., Chen, Z. R., Cheng, L. C., Wang, Y. J., Feng, M. & Wang, M. (2010). Dalton Trans. 39, 11000–11007. Web of Science CSD CrossRef CAS PubMed Google Scholar
Malinowski, J., Zych, D., Jacewicz, D., Gawdzik, B. & Drzeżdżon, J. (2020). Int. J. Mol. Sci. 21, 5443. Web of Science CrossRef PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857–871. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mukherjee, P. S., Maji, T. K., Koner, S., Rosair, G. & Chaudhuri, N. R. (2001). Indian J. Chem. 40a, 451–455. CAS Google Scholar
Mukherjee, S. & Mukherjee, P. S. (2010). Inorg. Chem. 49, 10658–10667. Web of Science CSD CrossRef CAS PubMed Google Scholar
Pal'chikov, V. A. (2013). Russ. J. Org. Chem. 49, 787–814. CAS Google Scholar
Popp, J., Riggenmann, T., Schröder, D., Ampssler, T., Salvador, P. & Klüfers, P. (2021). Inorg. Chem. 60, 15980–15996. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rekka, E. A. & Kourounakis, P. N. (2010). Curr. Med. Chem. 17, 3422–3430. Web of Science CAS PubMed Google Scholar
Sander, O., Tuczek, F. & Näther, C. (2005). Acta Cryst. E61, m824–m825. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, X.-F., Xie, M.-J. & Ng, S. W. (2006). Acta Cryst. E62, m2719–m2720. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suat Aksoy, M., Yilmaz, V. T. & Buyukgungor, O. (2009). J. Coord. Chem. 62, 3250–3258. Web of Science CSD CrossRef Google Scholar
Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m298. Web of Science CSD CrossRef IUCr Journals Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Weinberger, P., Schamschule, R., Mereiter, K., Dlhán, L., Boca, R. & Linert, W. (1998). J. Mol. Struct. 446, 115–126. Web of Science CSD CrossRef CAS Google Scholar
Wijtmans, R., Vink, M. K. S., Schoemaker, H. E., van Delft, F. L., Blaauw, R. H. & Rutjes, F. P. J. T. (2004). Synthesis, 05, 641–662. Google Scholar
Willett, R. D., Butcher, R., Landee, C. P. & Twamley, B. (2005). Polyhedron, 24, 2222–2231. Web of Science CSD CrossRef CAS Google Scholar
Xie, M.-J., Chen, X.-Z., Liu, W.-P., Yu, Y. & Ye, Q.-S. (2007). Acta Cryst. E63, m117–m119. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yaghi, O. M., Kalmutzki, M. J. & Diercks, C. S. (2019). Introduction to Reticular Chemistry. Metal-Organic Frameworks and Covalent Organic Frameworks. Weinheim: Wiley-VCH. Google Scholar
Zecchina, A. & Califano, S. (2018). MRS Bull. 43, 309–309. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.