research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[4-(2-Amino­ethyl)morpholine-κ2N,N′]di­bromidocadmium(II): synthesis, crystal structure and Hirshfeld surface analysis

crossmark logo

aPG and Research Department of Physics, Government Arts College for Men (Autonomous), Nandanam, Chennai 600 035, Tamil Nadu, India, and bDepartment of Physics, Sir Theagaraya College, Old Washermanpet, Chennai 600 021, Tamil Nadu, India
*Correspondence e-mail: drsskphy@gmail.com

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 6 November 2023; accepted 27 January 2024; online 8 February 2024)

The title compound, [CdBr2(C6H14N2O)], was synthesized upon complexation of 4-(2-aminoethyl)morpholine and cadmium(II) bromide tetra­hydrate at 303 K. It crystallizes as a centrosymmetric dimer, with one cadmium atom, two bromine atoms and one N,N′-bidentate 4-(2-aminoethyl)morpholine ligand in the asymmetric unit. The metal atom is six-coordinated and has a distorted octa­hedral geometry. In the crystal, O⋯Cd inter­actions link the dimers into a polymeric double chain and inter­molecular C—H⋯O hydrogen bonds form R22(6) ring motifs. Further C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network. As the N—H⋯Br hydrogen bonds are shorter than the C—H⋯Br inter­actions, they have a larger effect on the packing. A Hirshfeld surface analysis reveals that the largest contributions to the packing are from H⋯H (46.1%) and Br⋯H/H⋯Br (38.9%) inter­actions with smaller contributions from the O⋯H/H⋯O (4.7%), Br⋯Cd/Cd⋯Br (4.4%), O⋯Cd/Cd⋯O (3.5%), Br⋯Br (1.1%), Cd⋯H/H⋯Cd (0.9%), Br⋯O/O⋯Br (0.3%) and O⋯N/N⋯O (0.1%) contacts.

1. Chemical context

Inorganic–metal halides may be associated with functionalized organic mol­ecules (for example carb­oxy­lic acids, amides or amines) to produce neutral or ionic coordination compounds that combine and change the properties of both components. Fine-tuning the stoichiometry, reaction conditions and geometry of the organic ligands allows control of the dimensionality and geometry of the final product, resulting in a wide range of systems (Constable, 2019[Constable, E. C. (2019). Chemistry, 1, 126-163.]). This has become the main focus of coordination chemistry and has allowed for the development of many research fields, such as medicinal chemistry of coordination compounds, homogenous catalysis, and metal-organic frameworks (Malinowski et al. 2020[Malinowski, J., Zych, D., Jacewicz, D., Gawdzik, B. & Drzeżdżon, J. (2020). Int. J. Mol. Sci. 21, 5443.]; Zecchina & Califano 2018[Zecchina, A. & Califano, S. (2018). MRS Bull. 43, 309-309.]; Yaghi et al. 2019[Yaghi, O. M., Kalmutzki, M. J. & Diercks, C. S. (2019). Introduction to Reticular Chemistry. Metal-Organic Frameworks and Covalent Organic Frameworks. Weinheim: Wiley-VCH.]; Jones & Thornback 2007[Jones, C. J. & Thornback, J. R. (2007). Medicinal Applications of Coordination Chemistry. The Royal Society of Chemistry.]). In this context, morpholine is a heterocyclic bidentate ligand frequently used in medicinal chemistry and a privileged structural component of bioactive mol­ecules. The morpholine mol­ecule has become one of the most promising moieties evaluated in structure-activity relationship (SAR) studies, as it induces biological activity, as well as an improved pharmacokinetic and metabolic profile to the biomolecules that contain it. Morpholine and its derivatives have long been known for various activities such as analgesic, anti-inflammatory, anti­oxidant, anti­cancer, anti-neurodegenerative, etc. As a result of its biological and pharmacological importance, the synthesis of morpholine compounds has been extensively studied by many researchers (Rekka & Kourounakis 2010[Rekka, E. A. & Kourounakis, P. N. (2010). Curr. Med. Chem. 17, 3422-3430.]; Wijtmans et al., 2004[Wijtmans, R., Vink, M. K. S., Schoemaker, H. E., van Delft, F. L., Blaauw, R. H. & Rutjes, F. P. J. T. (2004). Synthesis, 05, 641-662.]; Ilaš et al., 2005[Ilaš, J., Anderluh, P. S., Dolenc, M. S. & Kikelj, D. (2005). Tetrahedron, 61, 7325-7348.]; Pal'chikov 2013[Pal'chikov, V. A. (2013). Russ. J. Org. Chem. 49, 787-814.]). Herein, we report the synthesis of the coordination compound [4-(2-aminoethyl)morpholine-κ2-N,N′]di­bromidocadmium(II) and examined it using single crystal X-ray diffraction, FTIR, NMR, and Hirshfeld surface studies as a part of our ongoing inter­est in morpholine derivatives.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the triclinic P[\overline{1}] space group. Fig. 1[link] depicts a perspective view of the mononuclear centrosymmetric complex, [(Cd)(L)(Br)2], where L = 4-(2-aminoethyl)morpholine, with the atom-labeling scheme. The asymmetric unit contains half of the mol­ecule, consisting of one cadmium cation, two bromine anions and one 4-(2-aminoethyl)morpholine ligand that are located on a general positions and the other half of the mol­ecule is generated by inversion symmetry. Although the synthesis was carried out in water, the title compound is neither a hydrate nor is water present in the coordination sphere of the metal. If water enters the coordination sphere of cadmium, the resulting complex is usually ionic, as one Br has to stay outside the coordination sphere leading to lower entropy for the system. In addition, the large Br ion is a better bridging ligand than water and can link the components in a three-dimensional network. Hence, ignoring water during crystallization is more advantageous than retaining it in the coordination sphere.

[Figure 1]
Figure 1
Ellipsoid plot of the title compound with displacement ellipsoids drawn at the 50% probability level.

In the structure, one of the symmetry-independent bromine atoms (Br1) is terminal, while the other (Br2) bridges two cadmium atoms related by inversion (−x + 1, −y, −z + 1). The metal atom further coordinates the 4-(2-aminoethyl)morpholine in a N,N′ bidentate fashion, forming a five-membered chelate ring (Cd1–N1–C5–C6–N2), which is shown in Fig. 2[link]. The last coordination site of the distorted octa­hedron around the cadmium atom is occupied by an oxygen atom from a different morpholine moiety (x, y − 1, z). The size of the chelate ring is a key component in metal ion selection, with five-membered chelate rings preferring metal ions with an ionic radius near 1.0 Å. Baza­rgan et al. (2019[Bazargan, M., Mirzaei, M., Franconetti, A. & Frontera, A. (2019). Dalton Trans. 48, 5476-5490.]) reported that the optimal size for the N—M distance is 2.5 Å and the N—M—N angle is 69° for five-membered N–C–C–N–M chelate rings. In five-membered chelate rings, the M—N bond lengths and the N—M—N bond angle are considered to be inversely linked (Hancock 1992[Hancock, R. D. (1992). J. Chem. Educ. 69, 615-620.]; Hancock et al., 2007[Hancock, R. D., Melton, D. L., Harrington, J. M., McDonald, F. C., Gephart, R. T., Boone, L. L., Jones, S. B., Dean, N. E., Whitehead, J. R. & Cockrell, G. M. (2007). Coord. Chem. Rev. 251, 1678-1689.]; Dean et al., 2008[Dean, N. E., Hancock, R. D., Cahill, C. L. & Frisch, M. (2008). Inorg. Chem. 47, 2000-2010.]). The Cd1—N1 and Cd1—N2 distances are 2.504 (2) and 2.306 (3) Å, respectively, while the N1—Cd—N2 angle is 76.06 (8)°. This chelate ring pattern appears to be present in all reported structures of with a metal coordinated by 4-(2-aminoethyl)morpholine (Ikmal Hisham et al., 2010[Ikmal Hisham, N., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m1471.]; Suleiman Gwaram et al., 2011[Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m298.]). According to the structural data for the title compound, the torsion angles O1—C1—C2—N1 and N1—C3—C4—O1 of the morpholine ring are 55.6 (3) and −61.5 (3)°, respectively. These values are comparable with those reported for similar compounds such as cis-[4-(2-aminoethyl)morpholine-κ2N,N′]di­chlorido­plati­num(II) (O1—C5—C6—N2 = 55° and N1—C3—C4—O1 = −59.9°; Shi et al. 2006[Shi, X.-F., Xie, M.-J. & Ng, S. W. (2006). Acta Cryst. E62, m2719-m2720.]) and bis­(acetato)­bis­[4-(2-aminoethyl)morpholine-κ2N,N′]cadmium(II) tetra­hydrate (O3—C1—C2—N1 = 56° and N1—C4—C3—O3 = −59.6°; Chidambaranathan et al., 2023c[Chidambaranathan, B., Sivaraj, S., Vijayamathubalan, P. & Selvakumar, S. (2023c). Acta Cryst. E79, 1049-1054.]). This validates the chair formation of morpholine rings, also observed in previously reported morpholine compounds (Konar et al., 2005[Konar, S., Dalai, S., Mukherjee, P. S., Drew, M. G. B., Ribas, J. & Ray Chaudhuri, N. (2005). Inorg. Chim. Acta, 358, 957-963.]; Chattopadhyay et al., 2005[Chattopadhyay, T., Ghosh, M., Majee, A., Nethaji, M. & Das, D. (2005). Polyhedron, 24, 1677-1681.]; Brayshaw et al., 2012[Brayshaw, S. K., Easun, T. L., George, M. W., Griffin, A. M. E., Johnson, A. L., Raithby, P. R., Savarese, T. L., Schiffers, S., Warren, J. E., Warren, M. R. & Teat, S. J. (2012). Dalton Trans. 41, 90-97.]; Koćwin-Giełzak & Marciniak, 2006[Koćwin-Giełzak, K. & Marciniak, B. (2006). Acta Cryst. E62, m155-m157.]; Chidambaranathan et al., 2023a[Chidambaranathan, B., Sivaraj, S. & Selvakumar, S. (2023a). Acta Cryst. E79, 8-13.]).

[Figure 2]
Figure 2
The five-membered chelate ring present in the title compound.

3. Supra­molecular features

The morpholine mol­ecule is potentially an ambidentate N- and O-donor ligand, where the binding of morpholine to the metal center is most commonly accomplished through the nitro­gen atom (Cvrtila et al., 2012[Cvrtila, I., Stilinović, V. & Kaitner, B. (2012). Struct. Chem. 23, 587-594.]; Cindric et al., 2013[Cindrić, M., Pavlović, G., Hrenar, T., Uzelac, M. & Ćurić, M. (2013). Eur. J. Inorg. Chem. pp. 563-571.]), except in cases where the nitro­gen atom is protonated (Li et al., 2010[Li, H. H., Chen, Z. R., Cheng, L. C., Wang, Y. J., Feng, M. & Wang, M. (2010). Dalton Trans. 39, 11000-11007.]; Willett et al., 2005[Willett, R. D., Butcher, R., Landee, C. P. & Twamley, B. (2005). Polyhedron, 24, 2222-2231.]). This leaves the oxygen atom free to participate in supra­molecular inter­connections via the formation of additional coordination bonds, acting as an acceptor for a halogen bond (Lapadula et al., 2010[Lapadula, G., Judaš, N., Friščić, T. & Jones, W. (2010). Chem. A Eur. J. 16, 7400-7403.]) or participating in hydrogen bonding (Weinberger et al., 1998[Weinberger, P., Schamschule, R., Mereiter, K., Dlhán, L., Boca, R. & Linert, W. (1998). J. Mol. Struct. 446, 115-126.]), which can result in many different supra­molecular architectures. A packing diagram of the title compound along the b-axis is shown in Fig. 3[link], showing the inter­molecular C—H⋯O, C—H⋯Br and N—H⋯Br inter­actions (Table 1[link]). The Br1 anion links adjacent mol­ecules along the b-axis direction via the H3B and H4B atoms of the morpholine ring. Similarly, the Br2 anion links adjacent mol­ecules along the a-axis direction via the H2C atom. The corresponding inter­action distances for H3B⋯Br1, H4B⋯Br1 (x, y + 1, z) and H2C⋯Br1 (x − 1, y, z) are 2.96, 2.91 and 2.95 (2) Å, respectively. Further C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network. Owing to the higher electronegativity of the N—H⋯Br hydrogen bonds, they are shorter than the C—H⋯Br ones and hence they will have a larger effect on the packing than the C—H⋯Br inter­actions. On the other hand, the O—Cd coordination bond contributes to the formation of the three-dimensional network more than the N—H⋯Br and C—H⋯Br hydrogen bonds. Fig. 4[link] shows the R22(6) ring motif formed between two mol­ecules through C—H⋯O inter­molecular inter­actions (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Motherwell et al., 2000[Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857-871.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O1i 0.97 2.59 3.370 (4) 138
C3—H3B⋯Br1 0.97 2.96 3.720 (3) 137
C4—H4B⋯Br1ii 0.97 2.91 3.678 (3) 137
N2—H2C⋯Br2iii 0.89 (2) 2.95 (2) 3.761 (3) 153 (3)
N2—H2D⋯Br1iv 0.87 (2) 2.86 (2) 3.628 (3) 149 (3)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, y+1, z]; (iii) [x-1, y, z]; (iv) [-x+1, -y, -z].
[Figure 3]
Figure 3
Packing diagram of the title compound along the b-axis.
[Figure 4]
Figure 4
The R22(6) motif formed by the inter­molecular inter­actions.

To examine the inter­molecular inter­actions present in the title compound in more detail, a Hirshfeld surface analysis was performed and the two-dimensional fingerprint plots were generated with CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The three-dimensional dnorm surface is shown in Fig. 5[link]. Here the white regions relate to contacts with distances equal to the sum of the van der Waals radii, red-colored regions indicate contacts with distances shorter than the sum of the van der Waals radii, while blue areas indicate distances longer than the sum of the van der Waals radii (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). This colored mapping of contacts allows the visual identification of regions susceptible to participating in inter­actions with other mol­ecules. Fig. 5[link] shows the most prominent inter­molecular inter­actions as red spots corresponding to the Cd—Br and Cd⋯O contacts.

[Figure 5]
Figure 5
View of the Hirshfeld surface of the title compound mapped over dnorm.

The two-dimensional fingerprint plots are shown in Fig. 6[link]. Each point of the Hirshfeld surface is associated with two types of distances: de is the distance from the point to the nearest-to-the-surface external nucleus and di is the distance from the point to the nearest-to-the-surface inter­nal nucleus. The normalized contact distance, dnorm, is the sum of the van der Waals radii, de + di, of each atom (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]). The largest contributions to the Hirshfeld surface are represented as a point at de + di ∼2.4 Å due to H⋯H (46.1%), a pair of wings with the tip at de + di ∼2.85 Å due to H⋯Br/Br⋯H (38.9%), a pair of spikes at de + di ∼2.45 Å due to H⋯O/O⋯H (4.7%), a tip of a scissor-like image at de + di ∼2.7 Å due to Cd⋯Br/Br⋯Cd (4.4%) and a feather-like image at de + di ∼2.7 Å due to O⋯Cd/Cd⋯O (3.5%) contacts. The other contributions are Br⋯Br (1.1%), Br⋯O/O⋯Br (0.3%) and O⋯N/N⋯O (0.1%). All these inter­actions play a crucial role in the overall stabilization of the crystal packing.

[Figure 6]
Figure 6
The two-dimensional fingerprint plots for the title compound showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯Br/Br⋯H, (d) H⋯O/O⋯H, (e) Cd⋯Br/Br⋯Cd and (f) O⋯Cd/Cd⋯O inter­actions.

4. Database survey

A search in the Cambridge Structural Database (CSD, version 5.40; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the keyword `4-(2-amino­eth­yl)morpholine' yielded 21 hits for coordination compounds with metals, including trans-bis­(iso­thio­cyanato-N)bis­[4-(2-amino­eth­yl)morpholine-κ2-N,N′]nickel(II) (NENSUU; Laskar et al., 2001[Laskar, I. R., Maji, T. K., Das, D., Lu, T.-H., Wong, W.-T., Okamoto, K. I. & Ray Chaudhuri, N. (2001). Polyhedron, 20, 2073-2082.]), (μ2-oxalato)-bis­[4-(2-amino­eth­yl)morpholine-κ2-N,N′]dicopper(II) (YIKQAK; Mukherjee et al., 2001[Mukherjee, P. S., Maji, T. K., Koner, S., Rosair, G. & Chaudhuri, N. R. (2001). Indian J. Chem. 40a, 451-455.]), catena-[bis­(μ2-dicyanamide-N,N′)-[4-(2-amino­eth­yl)morpholine-κ2-N,N′]nickel (II) (FIJROG; Konar et al., 2005[Konar, S., Dalai, S., Mukherjee, P. S., Drew, M. G. B., Ribas, J. & Ray Chaudhuri, N. (2005). Inorg. Chim. Acta, 358, 957-963.]), bis­[4-(2-amino­eth­yl)morpholine-κ2-N,N′]copper(II) bis­(tetra­fluoro­borate) (RAPHEW; Sander et al., 2005[Sander, O., Tuczek, F. & Näther, C. (2005). Acta Cryst. E61, m824-m825.]), [4-(2-amino­eth­yl)morpholine-κ2-N,N′]aqua­(oxalate-O,O′)-copper(II) monohydrate (XAZRUM; Koćwin-Giełzak & Marciniak, 2006[Koćwin-Giełzak, K. & Marciniak, B. (2006). Acta Cryst. E62, m155-m157.]), trans-bis­[4-(2-amino­eth­yl)morpholine-κ2-N,N′]-bis­(nitrito)nickel(II) (NAVNAA; Chattopadhyay et al., 2005[Chattopadhyay, T., Ghosh, M., Majee, A., Nethaji, M. & Das, D. (2005). Polyhedron, 24, 1677-1681.]; RANVEJ and NAVNAA01; Brayshaw et al., 2012[Brayshaw, S. K., Easun, T. L., George, M. W., Griffin, A. M. E., Johnson, A. L., Raithby, P. R., Savarese, T. L., Schiffers, S., Warren, J. E., Warren, M. R. & Teat, S. J. (2012). Dalton Trans. 41, 90-97.]), cis-di­chloro­[4-(2-amino­eth­yl)morpholine-κ2-N,N′]platinum(II) (WENQUC; Shi et al., 2006[Shi, X.-F., Xie, M.-J. & Ng, S. W. (2006). Acta Cryst. E62, m2719-m2720.]), cis-(cyclo­butane-1,1-di­carboxyl­ato)-[4-(2-amino­eth­yl)morpholine-κ2-N,N′]platinum(II) trihydrate (TEVSAP and TEVSAP01; Xie et al., 2007[Xie, M.-J., Chen, X.-Z., Liu, W.-P., Yu, Y. & Ye, Q.-S. (2007). Acta Cryst. E63, m117-m119.]), bis­(5,5-di­ethyl­barbiturato-N)-[4-(2-amino­eth­yl)morpholine-κ2-N,N′]cop­per(II) (TUJRIA; Suat Aksoy et al., 2009[Suat Aksoy, M., Yilmaz, V. T. & Buyukgungor, O. (2009). J. Coord. Chem. 62, 3250-3258.]), catena-[(μ4-azido-N1,N1,N1,N3)-(μ3-azido-N1,N1,N1)-tris­(μ2-azido-N1,N1,N1)(μ2-azido-N1,N3)-[4-(2-amino­eth­yl)morpholine-κ2-N,N′]-tri-copper(II)] (IMETAW; Mukherjee & Mukherjee, 2010[Mukherjee, S. & Mukherjee, P. S. (2010). Inorg. Chem. 49, 10658-10667.]), tetra­carbonyl-[4-(2-amino­eth­yl)morpholine-κ2-N,N′]molybdenum(0) diglyme solvate (CIYBIX; Kromer et al., 2014[Kromer, L., Coelho, A. C., Bento, I., Marques, A. R. & Romão, C. C. (2014). J. Organomet. Chem. 760, 89-100.]), bis­[4-(2-amino­eth­yl)morpholine-κ2-N,N′][5,10,15,20-tetra­kis(4-meth­oxy­phen­yl) porphyrinato]iron(II) (NABXEW; Ben Haj Hassen et al., 2016[Ben Haj Hassen, L., Ezzayani, K., Rousselin, Y., Stern, C., Nasri, H. & Schulz, C. E. (2016). J. Mol. Struct. 1110, 138-142.]; NABXEW01; Khelifa et al., 2016[Khélifa, A. B., Ezzayani, K. & Belkhiria, M. S. (2016). J. Mol. Struct. 1122, 18-23.]), (1,1,1,4,4,4-hexa­fluoro-2,3-bis­(tri­fluoro­meth­yl)butane-2,3-dio­lato)-[4-(2-amino­eth­yl)morpholine-κ2-N,N′]-nitro­sylcobalt (DAPKOY; Popp et al., 2021[Popp, J., Riggenmann, T., Schröder, D., Ampssler, T., Salvador, P. & Klüfers, P. (2021). Inorg. Chem. 60, 15980-15996.]), di­chloro­bis­[4-(2-amino­eth­yl)morpholine-κ2-N,N′]cadmium(II) (ULAJEX; Suleiman Gwaram et al., 2011[Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m298.]), bis­[4-(2-amino­eth­yl)morpholine-κ2-N,N′]di­aqua­nickel(II) dichloride (VEPHIL; Chidambaranathan et al., 2023b[Chidambaranathan, B., Sivaraj, S., Vijayamathubalan, P. & Selvakumar, S. (2023b). Acta Cryst. E79, 226-230.]) and bis­(acetate)-bis­[4-(2-amino­eth­yl)morpholine-κ2-N,N′]cadmium(II) tetra­hydrate (QEWKUC and FITXAL; Chidambaranathan et al., 2023c[Chidambaranathan, B., Sivaraj, S., Vijayamathubalan, P. & Selvakumar, S. (2023c). Acta Cryst. E79, 1049-1054.]). All of these structures are consolidated by hydrogen bonding. As with the other metal complexes of 4-(2-amino­eth­yl)morpholine, the morpholine ring adopts a chair conformation, and the amine performs as an N,N′-bidentate ligand to form a five-membered chelate ring with the metal center.

5. Synthesis and crystallization

The reaction scheme is shown in Fig. 7[link]. Cadmium bromide tetra­hydrate (3.44 g, 0.01 mol) and 4-(2-aminoethyl)morpholine (1.30 g, 0.01 mol) in a stoichiometric ratio of 1:1 were dissolved in double-distilled water at 303 K. The solvent was evaporated slowly at room temperature and plate-like orange single crystals were obtained after one week, m.p.: 497.5 K; yield: 78%; Elemental analysis for C6H14Br2CdN2O (402.41g·mol−1) theor(%): C, 17.91; H, 3.51; N, 6.96.; found(%): C, 16.98; H, 3.48; N, 6.42.

[Figure 7]
Figure 7
Synthesis of the title compound.

The FTIR spectrum of the title compound was recorded on a Bruker FTIR spectrometer. FTIR for title compound (KBr, cm−1): 3304 (m, N—H), 2950 (w, C—H), 1598 (w, C—N), 1454 (s, C—C), 1108 (s, C—N), 612 (s, M—N); FT–IR for free ligand (Edwin et al., 2017[Edwin, B., Amalanathan, M., Chadha, R., Maiti, N., Kapoor, S. & Hubert Joe, I. (2017). J. Mol. Struct. 1148, 459-470.]); (KBr, cm−1): 3365 (s, N—H), 2954 (s, C—H), 1581 (m, C—N), 1456 (s, C—C), 1115 (s, C—N); 1H NMR (500 MHz. D2O, δ, ppm), 3.74 (t, 4H, –CH2—O—CH2), 2.92 (t, 4H, –CH2—N—CH2), 2.58 (broad singlet, 2H, N—CH2), 2.55 (t, 2H, –CH2—NH2).

6. Refinement details

Crystal data, data collections and structure refinement details are summarized in Table 2[link]. All C–H atoms were positioned geometrically, C—H = 0.97 Å and refined as riding with Uiso(H) = 1.2Ueq(C). The acidic nitro­gen-bound protons H2C and H2D were localized from electron-density maps and refined freely with distance restraints (DFIX) and with Uiso(H) = 1.2Ueq(N).

Table 2
Experimental details

Crystal data
Chemical formula [CdBr2(C6H14N2O)]
Mr 402.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 299
a, b, c (Å) 7.1291 (2), 7.1662 (2), 11.0151 (3)
α, β, γ (°) 77.704 (1), 80.079 (1), 72.371 (1)
V3) 520.49 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 9.73
Crystal size (mm) 0.34 × 0.25 × 0.11
 
Data collection
Diffractometer Bruker D8 Venture Diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.140, 0.259
No. of measured, independent and observed [I > 2σ(I)] reflections 13169, 1969, 1902
Rint 0.047
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.059, 1.08
No. of reflections 1969
No. of parameters 116
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.86, −0.69
Computer programs: APEX4, SAINT and XPREP (Bruker, 2016[Bruker. (2016). APEX4, SAINT and XPREP . Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and WinGX publication routines and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

[4-(2-Aminoethyl)morpholine-κ2N,N']dibromidocadmium(II) top
Crystal data top
[CdBr2(C6H14N2O)]Z = 2
Mr = 402.41F(000) = 380
Triclinic, P1Dx = 2.568 Mg m3
a = 7.1291 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.1662 (2) ÅCell parameters from 9891 reflections
c = 11.0151 (3) Åθ = 3.0–25.7°
α = 77.704 (1)°µ = 9.73 mm1
β = 80.079 (1)°T = 299 K
γ = 72.371 (1)°Block, brown
V = 520.49 (3) Å30.34 × 0.25 × 0.11 mm
Data collection top
Bruker D8 Venture Diffractometer1902 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.047
φ and ω scansθmax = 25.7°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 88
Tmin = 0.140, Tmax = 0.259k = 88
13169 measured reflectionsl = 1313
1969 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.2615P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.86 e Å3
1969 reflectionsΔρmin = 0.69 e Å3
116 parametersExtinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0211 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.45454 (3)0.03786 (3)0.31347 (2)0.02454 (11)
C10.2885 (5)0.5709 (4)0.4110 (3)0.0293 (6)
H1A0.1946610.6595450.4627660.035*
H1B0.3463970.4484740.4654090.035*
C20.1801 (4)0.5262 (4)0.3191 (3)0.0260 (6)
H2A0.0834080.4586640.3646670.031*
H2B0.1094450.6499890.2711960.031*
C30.4770 (5)0.4955 (4)0.1747 (3)0.0289 (6)
H3A0.4206580.6215410.1230580.035*
H3B0.5730360.4113300.1213250.035*
C40.5793 (4)0.5301 (4)0.2727 (3)0.0308 (6)
H4A0.6362220.4042310.3243540.037*
H4B0.6861520.5875720.2326890.037*
C50.2097 (5)0.3872 (4)0.1317 (3)0.0315 (6)
H5A0.3049280.3355360.0643000.038*
H5B0.1328300.5195470.0984350.038*
C60.0730 (5)0.2558 (5)0.1773 (3)0.0336 (7)
H6A0.0191610.3029970.2471940.040*
H6B0.0028500.2613860.1108270.040*
N10.3180 (3)0.4002 (3)0.2323 (2)0.0230 (5)
N20.1879 (4)0.0509 (4)0.2164 (3)0.0301 (5)
H2C0.110 (5)0.016 (5)0.266 (3)0.036*
H2D0.245 (5)0.001 (5)0.150 (2)0.036*
Br10.72268 (5)0.01885 (5)0.11392 (3)0.03420 (12)
Br20.76499 (4)0.04293 (4)0.45383 (3)0.02768 (11)
O10.4421 (3)0.6610 (3)0.3494 (2)0.0302 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02513 (15)0.02516 (15)0.02109 (14)0.00408 (9)0.00275 (9)0.00328 (9)
C10.0317 (15)0.0277 (14)0.0294 (15)0.0084 (12)0.0008 (12)0.0089 (12)
C20.0225 (14)0.0252 (14)0.0291 (15)0.0048 (11)0.0007 (11)0.0066 (11)
C30.0334 (15)0.0216 (14)0.0291 (15)0.0100 (12)0.0058 (12)0.0033 (11)
C40.0225 (14)0.0224 (14)0.0459 (19)0.0050 (11)0.0005 (12)0.0074 (12)
C50.0458 (18)0.0260 (14)0.0236 (15)0.0084 (13)0.0157 (13)0.0007 (11)
C60.0313 (16)0.0300 (15)0.0412 (18)0.0040 (13)0.0134 (13)0.0087 (13)
N10.0271 (12)0.0213 (11)0.0210 (12)0.0079 (9)0.0013 (9)0.0039 (9)
N20.0330 (14)0.0256 (13)0.0320 (14)0.0100 (10)0.0012 (11)0.0051 (10)
Br10.03434 (19)0.0396 (2)0.02838 (19)0.01053 (14)0.00469 (13)0.01140 (13)
Br20.02187 (17)0.03721 (19)0.02266 (17)0.00738 (12)0.00125 (11)0.00454 (12)
O10.0294 (11)0.0236 (10)0.0397 (12)0.0069 (8)0.0044 (9)0.0098 (8)
Geometric parameters (Å, º) top
Cd1—N22.306 (3)C3—H3A0.9700
Cd1—N12.504 (2)C3—H3B0.9700
Cd1—Br12.6670 (3)C4—O11.431 (3)
Cd1—Br2i2.7647 (3)C4—H4A0.9700
Cd1—Br22.7651 (3)C4—H4B0.9700
C1—O11.436 (4)C5—N11.488 (4)
C1—C21.511 (4)C5—C61.508 (4)
C1—H1A0.9700C5—H5A0.9700
C1—H1B0.9700C5—H5B0.9700
C2—N11.484 (3)C6—N21.462 (4)
C2—H2A0.9700C6—H6A0.9700
C2—H2B0.9700C6—H6B0.9700
C3—N11.481 (3)N2—H2C0.886 (18)
C3—C41.501 (4)N2—H2D0.868 (18)
N2—Cd1—N176.06 (8)C3—C4—H4A109.6
N2—Cd1—Br195.75 (7)O1—C4—H4B109.6
N1—Cd1—Br193.36 (5)C3—C4—H4B109.6
N2—Cd1—Br2i93.03 (7)H4A—C4—H4B108.1
N1—Cd1—Br2i95.76 (5)N1—C5—C6112.6 (2)
Br1—Cd1—Br2i168.635 (14)N1—C5—H5A109.1
N2—Cd1—Br2169.58 (6)C6—C5—H5A109.1
N1—Cd1—Br2113.54 (5)N1—C5—H5B109.1
Br1—Cd1—Br287.915 (11)C6—C5—H5B109.1
Br2i—Cd1—Br282.231 (10)H5A—C5—H5B107.8
O1—C1—C2112.1 (2)N2—C6—C5110.0 (3)
O1—C1—H1A109.2N2—C6—H6A109.7
C2—C1—H1A109.2C5—C6—H6A109.7
O1—C1—H1B109.2N2—C6—H6B109.7
C2—C1—H1B109.2C5—C6—H6B109.7
H1A—C1—H1B107.9H6A—C6—H6B108.2
N1—C2—C1111.7 (2)C3—N1—C2108.2 (2)
N1—C2—H2A109.3C3—N1—C5108.8 (2)
C1—C2—H2A109.3C2—N1—C5109.6 (2)
N1—C2—H2B109.3C3—N1—Cd1111.83 (17)
C1—C2—H2B109.3C2—N1—Cd1118.18 (17)
H2A—C2—H2B107.9C5—N1—Cd199.75 (16)
N1—C3—C4111.2 (2)C6—N2—Cd1111.49 (18)
N1—C3—H3A109.4C6—N2—H2C109 (2)
C4—C3—H3A109.4Cd1—N2—H2C111 (2)
N1—C3—H3B109.4C6—N2—H2D109 (2)
C4—C3—H3B109.4Cd1—N2—H2D102 (2)
H3A—C3—H3B108.0H2C—N2—H2D114 (3)
O1—C4—C3110.4 (2)Cd1i—Br2—Cd197.768 (10)
O1—C4—H4A109.6C4—O1—C1108.9 (2)
O1—C1—C2—N155.6 (3)C1—C2—N1—Cd175.7 (3)
N1—C3—C4—O161.5 (3)C6—C5—N1—C3168.3 (2)
N1—C5—C6—N264.4 (3)C6—C5—N1—C273.6 (3)
C4—C3—N1—C255.7 (3)C6—C5—N1—Cd151.1 (3)
C4—C3—N1—C5174.7 (2)C5—C6—N2—Cd137.3 (3)
C4—C3—N1—Cd176.1 (2)C3—C4—O1—C161.1 (3)
C1—C2—N1—C352.6 (3)C2—C1—O1—C458.5 (3)
C1—C2—N1—C5171.1 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1ii0.972.593.370 (4)138
C3—H3B···Br10.972.963.720 (3)137
C4—H4B···Br1iii0.972.913.678 (3)137
N2—H2C···Br2iv0.89 (2)2.95 (2)3.761 (3)153 (3)
N2—H2D···Br1v0.87 (2)2.86 (2)3.628 (3)149 (3)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x1, y, z; (v) x+1, y, z.
 

Acknowledgements

The authors would like to thank Dr Shobhana Krishnaswamy, SAIF, IITM, Chennai, for performing the data collection and structural solution and Dr M. Palanichamy, Emeritus Professor, Department of Physical Chemistry, University of Madras, Guindy campus, Chennai for scientific discussions.

References

First citationBazargan, M., Mirzaei, M., Franconetti, A. & Frontera, A. (2019). Dalton Trans. 48, 5476–5490.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBen Haj Hassen, L., Ezzayani, K., Rousselin, Y., Stern, C., Nasri, H. & Schulz, C. E. (2016). J. Mol. Struct. 1110, 138–142.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrayshaw, S. K., Easun, T. L., George, M. W., Griffin, A. M. E., Johnson, A. L., Raithby, P. R., Savarese, T. L., Schiffers, S., Warren, J. E., Warren, M. R. & Teat, S. J. (2012). Dalton Trans. 41, 90–97.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker. (2016). APEX4, SAINT and XPREP . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChattopadhyay, T., Ghosh, M., Majee, A., Nethaji, M. & Das, D. (2005). Polyhedron, 24, 1677–1681.  Web of Science CSD CrossRef CAS Google Scholar
First citationChidambaranathan, B., Sivaraj, S. & Selvakumar, S. (2023a). Acta Cryst. E79, 8–13.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChidambaranathan, B., Sivaraj, S., Vijayamathubalan, P. & Selvakumar, S. (2023b). Acta Cryst. E79, 226–230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChidambaranathan, B., Sivaraj, S., Vijayamathubalan, P. & Selvakumar, S. (2023c). Acta Cryst. E79, 1049–1054.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCindrić, M., Pavlović, G., Hrenar, T., Uzelac, M. & Ćurić, M. (2013). Eur. J. Inorg. Chem. pp. 563–571.  Google Scholar
First citationConstable, E. C. (2019). Chemistry, 1, 126–163.  Web of Science CrossRef Google Scholar
First citationCvrtila, I., Stilinović, V. & Kaitner, B. (2012). Struct. Chem. 23, 587–594.  Web of Science CSD CrossRef CAS Google Scholar
First citationDean, N. E., Hancock, R. D., Cahill, C. L. & Frisch, M. (2008). Inorg. Chem. 47, 2000–2010.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEdwin, B., Amalanathan, M., Chadha, R., Maiti, N., Kapoor, S. & Hubert Joe, I. (2017). J. Mol. Struct. 1148, 459–470.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHancock, R. D. (1992). J. Chem. Educ. 69, 615–620.  CrossRef CAS Web of Science Google Scholar
First citationHancock, R. D., Melton, D. L., Harrington, J. M., McDonald, F. C., Gephart, R. T., Boone, L. L., Jones, S. B., Dean, N. E., Whitehead, J. R. & Cockrell, G. M. (2007). Coord. Chem. Rev. 251, 1678–1689.  Web of Science CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationIkmal Hisham, N., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m1471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIlaš, J., Anderluh, P. S., Dolenc, M. S. & Kikelj, D. (2005). Tetrahedron, 61, 7325–7348.  Google Scholar
First citationJones, C. J. & Thornback, J. R. (2007). Medicinal Applications of Coordination Chemistry. The Royal Society of Chemistry.  Google Scholar
First citationKhélifa, A. B., Ezzayani, K. & Belkhiria, M. S. (2016). J. Mol. Struct. 1122, 18–23.  Google Scholar
First citationKoćwin-Giełzak, K. & Marciniak, B. (2006). Acta Cryst. E62, m155–m157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKonar, S., Dalai, S., Mukherjee, P. S., Drew, M. G. B., Ribas, J. & Ray Chaudhuri, N. (2005). Inorg. Chim. Acta, 358, 957–963.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKromer, L., Coelho, A. C., Bento, I., Marques, A. R. & Romão, C. C. (2014). J. Organomet. Chem. 760, 89–100.  Web of Science CSD CrossRef CAS Google Scholar
First citationLapadula, G., Judaš, N., Friščić, T. & Jones, W. (2010). Chem. A Eur. J. 16, 7400–7403.  Web of Science CSD CrossRef CAS Google Scholar
First citationLaskar, I. R., Maji, T. K., Das, D., Lu, T.-H., Wong, W.-T., Okamoto, K. I. & Ray Chaudhuri, N. (2001). Polyhedron, 20, 2073–2082.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H. H., Chen, Z. R., Cheng, L. C., Wang, Y. J., Feng, M. & Wang, M. (2010). Dalton Trans. 39, 11000–11007.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMalinowski, J., Zych, D., Jacewicz, D., Gawdzik, B. & Drzeżdżon, J. (2020). Int. J. Mol. Sci. 21, 5443.  Web of Science CrossRef PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMotherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857–871.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, P. S., Maji, T. K., Koner, S., Rosair, G. & Chaudhuri, N. R. (2001). Indian J. Chem. 40a, 451–455.  CAS Google Scholar
First citationMukherjee, S. & Mukherjee, P. S. (2010). Inorg. Chem. 49, 10658–10667.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPal'chikov, V. A. (2013). Russ. J. Org. Chem. 49, 787–814.  CAS Google Scholar
First citationPopp, J., Riggenmann, T., Schröder, D., Ampssler, T., Salvador, P. & Klüfers, P. (2021). Inorg. Chem. 60, 15980–15996.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRekka, E. A. & Kourounakis, P. N. (2010). Curr. Med. Chem. 17, 3422–3430.  Web of Science CAS PubMed Google Scholar
First citationSander, O., Tuczek, F. & Näther, C. (2005). Acta Cryst. E61, m824–m825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, X.-F., Xie, M.-J. & Ng, S. W. (2006). Acta Cryst. E62, m2719–m2720.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuat Aksoy, M., Yilmaz, V. T. & Buyukgungor, O. (2009). J. Coord. Chem. 62, 3250–3258.  Web of Science CSD CrossRef Google Scholar
First citationSuleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m298.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWeinberger, P., Schamschule, R., Mereiter, K., Dlhán, L., Boca, R. & Linert, W. (1998). J. Mol. Struct. 446, 115–126.  Web of Science CSD CrossRef CAS Google Scholar
First citationWijtmans, R., Vink, M. K. S., Schoemaker, H. E., van Delft, F. L., Blaauw, R. H. & Rutjes, F. P. J. T. (2004). Synthesis, 05, 641–662.  Google Scholar
First citationWillett, R. D., Butcher, R., Landee, C. P. & Twamley, B. (2005). Polyhedron, 24, 2222–2231.  Web of Science CSD CrossRef CAS Google Scholar
First citationXie, M.-J., Chen, X.-Z., Liu, W.-P., Yu, Y. & Ye, Q.-S. (2007). Acta Cryst. E63, m117–m119.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYaghi, O. M., Kalmutzki, M. J. & Diercks, C. S. (2019). Introduction to Reticular Chemistry. Metal-Organic Frameworks and Covalent Organic Frameworks. Weinheim: Wiley-VCH.  Google Scholar
First citationZecchina, A. & Califano, S. (2018). MRS Bull. 43, 309–309.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds