research communications
and Hirshfeld surface analysis of dimethyl 4′-bromo-3-oxo-5-(thiophen-2-yl)-3,4,5,6-tetrahydro-[1,1′-biphenyl]-2,4-dicarboxylate
aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal, and f"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), Murtuza Mukhtarov str. 194, Az 1065, Baku, Azerbaijan
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
In the title compound, C20H17BrO5S, molecules are connected by intermolecular C—H⋯S hydrogen bonds with R22(10) ring motifs, forming ribbons along the b-axis direction. C—H⋯π interactions consolidate the ribbon structure while between the ribbons ensure the cohesion of the According to a Hirshfeld surface analysis, H⋯H (40.5%), O⋯H/H⋯O (27.0%), C⋯H/H⋯C (13.9%) and Br⋯H/H⋯Br (11.7%) interactions are the most significant contributors to the crystal packing. The thiophene ring and its adjacent dicarboxylate group and the three adjacent carbon atoms of the central hexene ring to which they are attached were refined as disordered over two sets of sites having occupancies of 0.8378 (15) and 0.1622 (15). The thiophene group is disordered by a rotation of 180° around one bond.
Keywords: crystal structure; disorder; C—H⋯S hydrogen bonds; cyclohexene ring; thiophene ring; Hirshfeld surface analysis.
CCDC reference: 2344995
1. Chemical context
Functionalized carbo- and et al., 2023; Akkurt et al., 2023). These systems comprise vitamins, sugars, hormones, antibiotics, other drugs, dyes, pesticides, and herbicides. There have been crucial developments in organic synthesis with heterocyclic systems designed recently for various research and commercial purposes (Maharramov et al., 2022; Erenler et al., 2022, Khalilov et al., 2023a,b). These derivatives have found widespread applications in coordination (Gurbanov et al., 2021; Mahmoudi et al., 2021), medicinal (Askerova, 2022) and materials chemistry (Velásquez et al., 2019; Afkhami et al., 2019). These ring systems are used for a large range of applications, as well as drugs, ligands, catalysts, and materials (Maharramov et al., 2021, Sobhi & Faisal, 2023). Functionalized systems combining cyclohexanone, phenyl and thiophene motifs exhibit various biological activities, such as molluscicidal, anticancer, antioxidant, cytotoxic, anti-inflammatory, herbicidal, pesticidal, and antibacterial (Atalay et al., 2022; Donmez & Turkyılmaz, 2022). As a result of the varied applications of these systems, their efficient and regioselective development has attracted great attention. Thus, in the framework of our structural studies (Abdinov et al., 2004, 2012, 2014; Naghiyev et al., 2021b), herein we report the and Hirshfeld surface analysis of the title compound, dimethyl 4′-bromo-3-oxo-5-(thiophen-2-yl)-3,4,5,6-tetrahydro-[1,1′-biphenyl]-2,4-dicarboxylate.
are important systems in different fields of science (Huseynov2. Structural commentary
As seen in Fig. 1, the major (C1–C6) component of the central hexene ring shows a distorted boat conformation [puckering parameters (Cremer & Pople, 1975) are QT = 0.5077 (16) Å, θ = 129.02 (17)°, φ = 355.7 (2)°], and the minor (C1/C2/C3A–C5A/C6) component of the central hexene ring also shows an [puckering parameters QT = 0.568 (7) Å, θ = 54.8 (5)°, φ = 124.2 (6)°]. The r.m.s planes of these disordered hexene rings make angles of 72.18 (14), 69.6 (9), 49.52 (7), and 62.5 (2), 60.1 (9), 44.23 (17), respectively, with the major (S21/C17–C20) and minor (S21A/C17A–C20A) disordered thiophene ring components and the benzene ring (C7–C12). The C2—C1—C13—O13, C1—C13—O14—C14, C2—C3—C15—O15, C2—C3A—C15A—O15A, C3—C15—O16—C16 and C3A—C15A—O16A—C16A torsion angles are −64.22 (19), 177.23 (12), −107.7 (4), −64 (3), 175.03 (18) and 177.9 (11)°, respectively. The geometric parameters of the title compound are normal and comparable to those of related compounds listed in the Database survey section.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are connected by intermolecular C—H⋯S hydrogen bonds with (10) ring motifs (Table 1; Figs. 2 and 3; Bernstein et al., 1995), forming ribbons along the b-axis direction. C—H⋯π interactions consolidate the ribbon structure while between the ribbons ensure the cohesion of the (Table 1; Figs. 4 and 5).
To quantify the intermolecular interactions between the molecules in the CrystalExplorer 17.5 (Spackman et al., 2021). The Hirshfeld surfaces were mapped over dnorm in the range −0.2669 (red) to +1.2638 (blue) a.u. (Fig. 6).
of the title compound, a Hirshfeld surface analysis was performed and the two-dimensional fingerprint plots generated usingThe dominant interatomic contact is H⋯H as it makes the highest contribution to the crystal packing (40.5%, Fig. 7b). Other major contributors are O⋯H/H⋯O (27.0%, Fig. 7c), Br⋯H/H⋯Br (11.7%, Fig. 7d) and C⋯H/H⋯C (13.9%, Fig. 7e) interactions. Other, smaller contributions are made by C⋯C (2.9%), Br⋯O/O⋯Br (1.7%), S⋯H/H⋯S (1.2%), O⋯C/C⋯O (0.8%), O⋯O (0.2%) and S⋯C/C⋯S (0.1%) interactions.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016) for the central six-membered cyclohexene ring yielded eight compounds related to the title compound, viz. CSD refcodes UPOMOE (Naghiyev et al., 2021a), ZOMDUD (Gein et al., 2019), PEWJUZ (Fatahpour et al., 2018), OZUKAX (Tkachenko et al., 2014), IFUDOD (Gein et al., 2007), IWEVOV (Mohan et al., 2003), IWEVUB (Mohan et al., 2003) and HALROB (Ravikumar & Mehdi, 1993).
UPOMOE and ZOMDUD crystallize in the monoclinic P21/c, with Z = 4, PEWJUZ in I2/c with Z = 4, IFUDOD, HALROB and IWEVUB in P21/n with Z = 4, and IWEVOV and OZUKAX in the orthorhombic Pbca with Z = 8. In UPOMOE, the central cyclohexane ring adopts a chair conformation. In the crystal, molecules are linked by N—H⋯O, C—H⋯O, and C—H⋯N hydrogen bonds, forming molecular layers parallel to the bc plane, which interact by the between them. In ZOMDUD, molecules are linked by intermolecular N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. C—H⋯π interactions are also observed. In PEWJUZ, molecules are linked by intermolecular N—H⋯O and C—H⋯O hydrogen bonds, forming sheets parallel to the bc plane. C—H⋯π interactions are also observed. In OZUKAX, molecules are linked by intermolecular N—H⋯O and C—H⋯O hydrogen bonds, forming sheets parallel to the ac plane. C—H⋯π interactions are also observed. Intermolecular O—H⋯O hydrogen bonds consolidate the molecular conformation. There are no classical hydrogen bonds in the crystal of IFUDOD where intermolecular C—H⋯O contacts and weak C—H⋯π interactions lead to the formation of a three-dimensional network. In the crystal of IWEVOV, the molecules pack such that both carbonyl O atoms participate in hydrogen-bond formation with symmetry-related amide nitrogen atoms present in the carbamoyl substituents, forming N—H⋯O hydrogen bonds in a helical arrangement. In the crystal, the phenyl rings are positioned so as to favour edge-to-edge aromatic stacking. When the crystal packing is viewed normal to the ac plane, it reveals a 'wire-mesh' type hydrogen-bond network. In the crystal of IWEVUB, unlike in IWEVOV where both carbonyl O atoms participate in hydrogen bonding, only one of the carbonyl oxygen atoms participates in intermolecular N—H⋯O hydrogen bonding while the other carbonyl oxygen participates in a weak C—H⋯O interaction. In addition, one of the amide nitrogen atoms participates in N—H⋯O hydrogen bonding with the hydroxyl oxygen atom, linking the molecules in a helical arrangement, which is similar to that in the structure of IWEVOV. As observed in the structure of IWEVOV, the packing of the molecules viewed normal to the ab plane resembles a 'wire-mesh' arrangement of the molecules. In the crystal of HALROB, the amide carbonyl groups are oriented in different directions with respect to the cyclohexanone ring. These orientations of the carboxamide groups facilitate the formation of an intramolecular O—H⋯O hydrogen bond. The molecules are packed such that chains are formed along the b-axis direction. These chains are held together by N—H⋯O hydrogen bonds.
5. Synthesis and crystallization
A solution of 1-(4-bromophenyl)-3-(thiophen-2-yl)prop-2-en-1-one (5.2 mmol) and dimethyl-1,3-acetonedicarboxylate (5.2 mmol) in methanol (30 mL) was stirred for 10 min. Then N-methylpiperazine (3 drops) was added to the reaction mixture, which was heated for 20 minutes at 318–323 K and stirred for 48 h at room temperature. Then 20 mL of methanol were removed from the reaction mixture, which was left overnight.
The precipitated crystals were separated by filtration and recrystallized from an ethanol/water (1:1) solution (m.p. = 508–509 K, yield 79%).
1H NMR (300 MHz, DMSO-d6, ppm., JHH, Hz): 3.04 (d, 2H, CH2, 3JH–H = 7.9); 3.52 (k, 1H, CH, 3JH–H = 7.9); 3.57 (s, 6H, 2OCH3); 4.15 (d, 1H, CH, 3JH–H = 8.7); 6.98 (t, 1H, CHthien.,3JH–H = 5.1); 7.05 (d, 1H, CHthien.,3JH–H = 5.1); 7.40 (m, 3H, 2CHarom. + CHthien.); 7.67 (d, 2H, 2CHarom.,3JH–H = 8.1). 13C NMR (75 MHz, DMSO-d6, ppm): 38.16 (CH), 38.25 (CH2), 52.43 (OCH3), 52.64 (OCH3), 60.15 (CH), 124.08 (Carom.), 125.21 (CHthien.), 125.51 (CHthien.), 127.44 (CHthien.), 129.30 (2CHarom.), 131.62 (Cthien.), 132.22 (2CHarom.), 137.40 (Carom.), 144.19 (Cquat.), 159.21 (Cquat.), 166.37 (CO), 169.47 (CO), 190.91 (C=O).
6. Refinement
Crystal data, data collection and structure . All H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(C). The thiophene ring (S21/C17–C20) and its adjacent dicarboxylate group (C15–C16/O15/O16) and the three adjacent carbon atoms (C3, C4 and C5) of the central hexane ring to which they are attached were refined as disordered over two sets of atomic sites having occupancies of 0.8378 (15) and 0.1622 (15). The methylene carbon atom (C5) of the hexane ring was also refined with the same occupation ratio [0.8378 (15): 0.1622 (15)], having two disordered parts at the same position and the same displacement parameters using the EXYZ and EADP commands. The thiophene group is disordered by a rotation of 180° around one bond. SADI, DFIX and EADP commands were used in the refinement.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2344995
https://doi.org/10.1107/S2056989024002858/nx2007sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024002858/nx2007Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024002858/nx2007Isup3.cml
C20H17BrO5S | F(000) = 912 |
Mr = 449.30 | Dx = 1.551 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.4670 (2) Å | Cell parameters from 16653 reflections |
b = 8.4852 (2) Å | θ = 2.4–34.9° |
c = 20.4823 (4) Å | µ = 2.27 mm−1 |
β = 105.135 (2)° | T = 100 K |
V = 1923.80 (7) Å3 | Prism, colorless |
Z = 4 | 0.17 × 0.15 × 0.13 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 6958 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source | 5872 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.031 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 32.5°, θmin = 2.4° |
ω scans | h = −17→17 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) | k = −12→11 |
Tmin = 0.705, Tmax = 0.749 | l = −30→30 |
36460 measured reflections |
Refinement on F2 | 41 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.0407P)2 + 1.251P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.002 |
6958 reflections | Δρmax = 0.67 e Å−3 |
281 parameters | Δρmin = −0.97 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.06474 (12) | 1.18537 (16) | 0.08218 (7) | 0.0143 (2) | |
C2 | −0.04850 (13) | 1.26575 (16) | 0.08357 (7) | 0.0167 (2) | |
C6 | 0.12509 (12) | 1.09258 (16) | 0.13373 (7) | 0.0142 (2) | |
C7 | 0.23349 (12) | 0.99981 (16) | 0.13173 (7) | 0.0155 (2) | |
C8 | 0.23883 (12) | 0.91825 (17) | 0.07335 (7) | 0.0175 (2) | |
H8 | 0.176356 | 0.932237 | 0.032951 | 0.021* | |
C9 | 0.33408 (13) | 0.81698 (18) | 0.07342 (8) | 0.0196 (3) | |
H9 | 0.336538 | 0.760804 | 0.033686 | 0.024* | |
C10 | 0.42545 (13) | 0.79933 (19) | 0.13246 (8) | 0.0208 (3) | |
C11 | 0.42406 (14) | 0.8806 (2) | 0.19092 (8) | 0.0263 (3) | |
H11 | 0.488418 | 0.869172 | 0.230650 | 0.032* | |
C12 | 0.32712 (13) | 0.9789 (2) | 0.19054 (7) | 0.0230 (3) | |
H12 | 0.324273 | 1.032709 | 0.230758 | 0.028* | |
C13 | 0.10805 (12) | 1.21450 (17) | 0.02019 (7) | 0.0164 (2) | |
C14 | 0.26561 (15) | 1.3190 (2) | −0.02030 (9) | 0.0273 (3) | |
H14A | 0.286093 | 1.217725 | −0.037467 | 0.041* | |
H14B | 0.338866 | 1.382947 | −0.005128 | 0.041* | |
H14C | 0.207112 | 1.374694 | −0.056372 | 0.041* | |
O2 | −0.10404 (10) | 1.34867 (12) | 0.03704 (5) | 0.0198 (2) | |
O13 | 0.05503 (11) | 1.17481 (14) | −0.03623 (6) | 0.0227 (2) | |
O14 | 0.21353 (9) | 1.29185 (14) | 0.03594 (5) | 0.0205 (2) | |
Br1 | 0.55053 (2) | 0.65226 (2) | 0.13401 (2) | 0.02917 (6) | |
C3 | −0.08897 (13) | 1.24975 (18) | 0.14839 (7) | 0.0117 (3) | 0.8378 (15) |
H3 | −0.044629 | 1.331437 | 0.180640 | 0.014* | 0.8378 (15) |
C4 | −0.05428 (13) | 1.08776 (18) | 0.18192 (7) | 0.0109 (3) | 0.8378 (15) |
H4 | −0.092206 | 1.004074 | 0.148783 | 0.013* | 0.8378 (15) |
C5 | 0.08168 (12) | 1.07204 (16) | 0.19659 (7) | 0.0155 (2) | 0.8378 (15) |
H5A | 0.120471 | 1.152304 | 0.230383 | 0.019* | 0.8378 (15) |
H5B | 0.106284 | 0.966797 | 0.216259 | 0.019* | 0.8378 (15) |
C15 | −0.22220 (17) | 1.2862 (3) | 0.13463 (12) | 0.0159 (4) | 0.8378 (15) |
C16 | −0.41712 (19) | 1.1824 (4) | 0.08947 (15) | 0.0355 (5) | 0.8378 (15) |
H16A | −0.436708 | 1.189279 | 0.133177 | 0.053* | 0.8378 (15) |
H16B | −0.457703 | 1.090568 | 0.064505 | 0.053* | 0.8378 (15) |
H16C | −0.444531 | 1.278231 | 0.063267 | 0.053* | 0.8378 (15) |
O15 | −0.2646 (4) | 1.4029 (4) | 0.1525 (2) | 0.0261 (4) | 0.8378 (15) |
O16 | −0.28797 (13) | 1.16616 (18) | 0.10046 (8) | 0.0213 (3) | 0.8378 (15) |
C17 | −0.0984 (3) | 1.0674 (4) | 0.24492 (16) | 0.0176 (5) | 0.8378 (15) |
C18 | −0.1998 (2) | 0.9863 (3) | 0.24920 (14) | 0.0223 (5) | 0.8378 (15) |
H18 | −0.252394 | 0.933027 | 0.212255 | 0.027* | 0.8378 (15) |
C19 | −0.2169 (4) | 0.9916 (5) | 0.31673 (15) | 0.0236 (6) | 0.8378 (15) |
H19 | −0.280966 | 0.940071 | 0.329670 | 0.028* | 0.8378 (15) |
C20 | −0.1304 (4) | 1.0793 (6) | 0.3595 (2) | 0.0204 (6) | 0.8378 (15) |
H20 | −0.127736 | 1.096845 | 0.405626 | 0.024* | 0.8378 (15) |
S21 | −0.02657 (5) | 1.15473 (6) | 0.32094 (3) | 0.02109 (12) | 0.8378 (15) |
C3A | −0.1240 (6) | 1.1730 (9) | 0.1263 (4) | 0.0117 (3) | 0.1622 (15) |
H3A | −0.141139 | 1.063744 | 0.108021 | 0.014* | 0.1622 (15) |
C4A | −0.0380 (6) | 1.1662 (10) | 0.1961 (4) | 0.0109 (3) | 0.1622 (15) |
H4A | −0.015521 | 1.276365 | 0.211844 | 0.013* | 0.1622 (15) |
C5A | 0.08168 (12) | 1.07204 (16) | 0.19659 (7) | 0.0155 (2) | 0.1622 (15) |
H5A1 | 0.146511 | 1.106604 | 0.236122 | 0.019* | 0.1622 (15) |
H5A2 | 0.067279 | 0.958518 | 0.202476 | 0.019* | 0.1622 (15) |
C15A | −0.2408 (10) | 1.2545 (15) | 0.1258 (8) | 0.0159 (4) | 0.1622 (15) |
C16A | −0.4489 (10) | 1.221 (2) | 0.0924 (9) | 0.0355 (5) | 0.1622 (15) |
H16D | −0.458095 | 1.231598 | 0.138416 | 0.053* | 0.1622 (15) |
H16E | −0.509847 | 1.148255 | 0.066583 | 0.053* | 0.1622 (15) |
H16F | −0.459580 | 1.324873 | 0.070295 | 0.053* | 0.1622 (15) |
O15A | −0.254 (2) | 1.381 (2) | 0.1486 (15) | 0.0261 (4) | 0.1622 (15) |
O16A | −0.3313 (7) | 1.1628 (11) | 0.0950 (5) | 0.0213 (3) | 0.1622 (15) |
C17A | −0.1017 (16) | 1.090 (3) | 0.2441 (8) | 0.0176 (5) | 0.1622 (15) |
C18A | −0.0588 (12) | 1.1351 (17) | 0.3090 (6) | 0.0223 (5) | 0.1622 (15) |
H18A | 0.012306 | 1.197668 | 0.320826 | 0.027* | 0.1622 (15) |
C19A | −0.115 (3) | 1.094 (4) | 0.3598 (14) | 0.0236 (6) | 0.1622 (15) |
H19A | −0.091317 | 1.117112 | 0.406784 | 0.028* | 0.1622 (15) |
C20A | −0.210 (3) | 1.014 (3) | 0.3255 (7) | 0.0204 (6) | 0.1622 (15) |
H20A | −0.266675 | 0.974687 | 0.347789 | 0.024* | 0.1622 (15) |
S21A | −0.2302 (3) | 0.9801 (5) | 0.2404 (2) | 0.02109 (12) | 0.1622 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0177 (5) | 0.0133 (6) | 0.0129 (5) | 0.0007 (4) | 0.0058 (4) | −0.0008 (4) |
C2 | 0.0214 (6) | 0.0149 (6) | 0.0150 (6) | 0.0040 (5) | 0.0069 (5) | 0.0014 (5) |
C6 | 0.0155 (5) | 0.0145 (6) | 0.0128 (5) | 0.0002 (4) | 0.0039 (4) | −0.0013 (4) |
C7 | 0.0157 (5) | 0.0176 (6) | 0.0138 (6) | 0.0018 (4) | 0.0049 (4) | 0.0007 (5) |
C8 | 0.0191 (6) | 0.0183 (6) | 0.0145 (6) | 0.0039 (5) | 0.0033 (5) | 0.0001 (5) |
C9 | 0.0229 (6) | 0.0211 (7) | 0.0161 (6) | 0.0064 (5) | 0.0073 (5) | 0.0013 (5) |
C10 | 0.0193 (6) | 0.0270 (7) | 0.0182 (6) | 0.0091 (5) | 0.0088 (5) | 0.0053 (5) |
C11 | 0.0198 (6) | 0.0409 (9) | 0.0169 (7) | 0.0106 (6) | 0.0024 (5) | −0.0010 (6) |
C12 | 0.0194 (6) | 0.0344 (8) | 0.0142 (6) | 0.0071 (6) | 0.0024 (5) | −0.0043 (6) |
C13 | 0.0190 (6) | 0.0159 (6) | 0.0158 (6) | 0.0040 (5) | 0.0072 (5) | 0.0026 (5) |
C14 | 0.0253 (7) | 0.0346 (9) | 0.0273 (8) | 0.0022 (6) | 0.0161 (6) | 0.0083 (6) |
O2 | 0.0244 (5) | 0.0200 (5) | 0.0152 (5) | 0.0070 (4) | 0.0057 (4) | 0.0038 (4) |
O13 | 0.0278 (5) | 0.0271 (6) | 0.0142 (5) | −0.0001 (4) | 0.0072 (4) | 0.0006 (4) |
O14 | 0.0188 (4) | 0.0256 (5) | 0.0192 (5) | 0.0000 (4) | 0.0087 (4) | 0.0035 (4) |
Br1 | 0.02706 (8) | 0.04121 (11) | 0.02210 (8) | 0.02021 (7) | 0.01151 (6) | 0.00851 (6) |
C3 | 0.0137 (6) | 0.0113 (6) | 0.0104 (6) | 0.0023 (5) | 0.0039 (5) | 0.0003 (5) |
C4 | 0.0145 (6) | 0.0082 (7) | 0.0100 (6) | 0.0012 (5) | 0.0033 (5) | −0.0005 (5) |
C5 | 0.0175 (5) | 0.0169 (6) | 0.0127 (5) | 0.0040 (4) | 0.0051 (4) | 0.0015 (4) |
C15 | 0.0163 (8) | 0.0193 (11) | 0.0123 (9) | 0.0022 (6) | 0.0041 (7) | 0.0025 (7) |
C16 | 0.0152 (10) | 0.0528 (17) | 0.0369 (11) | 0.0001 (9) | 0.0042 (9) | 0.0064 (11) |
O15 | 0.0242 (11) | 0.0276 (13) | 0.0281 (9) | 0.0128 (8) | 0.0095 (7) | −0.0011 (9) |
O16 | 0.0096 (5) | 0.0294 (6) | 0.0230 (6) | −0.0016 (6) | 0.0010 (6) | 0.0006 (5) |
C17 | 0.0192 (6) | 0.0201 (14) | 0.0140 (6) | 0.0052 (8) | 0.0054 (5) | 0.0051 (7) |
C18 | 0.0257 (12) | 0.0247 (10) | 0.0176 (10) | 0.0025 (10) | 0.0079 (9) | 0.0030 (8) |
C19 | 0.0234 (9) | 0.0268 (18) | 0.0219 (12) | −0.0025 (11) | 0.0080 (11) | 0.0045 (9) |
C20 | 0.0279 (18) | 0.0194 (15) | 0.0170 (8) | 0.0046 (11) | 0.0116 (10) | 0.0022 (8) |
S21 | 0.0263 (3) | 0.0198 (2) | 0.0179 (2) | 0.00020 (18) | 0.00703 (18) | 0.00161 (17) |
C3A | 0.0137 (6) | 0.0113 (6) | 0.0104 (6) | 0.0023 (5) | 0.0039 (5) | 0.0003 (5) |
C4A | 0.0145 (6) | 0.0082 (7) | 0.0100 (6) | 0.0012 (5) | 0.0033 (5) | −0.0005 (5) |
C5A | 0.0175 (5) | 0.0169 (6) | 0.0127 (5) | 0.0040 (4) | 0.0051 (4) | 0.0015 (4) |
C15A | 0.0163 (8) | 0.0193 (11) | 0.0123 (9) | 0.0022 (6) | 0.0041 (7) | 0.0025 (7) |
C16A | 0.0152 (10) | 0.0528 (17) | 0.0369 (11) | 0.0001 (9) | 0.0042 (9) | 0.0064 (11) |
O15A | 0.0242 (11) | 0.0276 (13) | 0.0281 (9) | 0.0128 (8) | 0.0095 (7) | −0.0011 (9) |
O16A | 0.0096 (5) | 0.0294 (6) | 0.0230 (6) | −0.0016 (6) | 0.0010 (6) | 0.0006 (5) |
C17A | 0.0192 (6) | 0.0201 (14) | 0.0140 (6) | 0.0052 (8) | 0.0054 (5) | 0.0051 (7) |
C18A | 0.0257 (12) | 0.0247 (10) | 0.0176 (10) | 0.0025 (10) | 0.0079 (9) | 0.0030 (8) |
C19A | 0.0234 (9) | 0.0268 (18) | 0.0219 (12) | −0.0025 (11) | 0.0080 (11) | 0.0045 (9) |
C20A | 0.0279 (18) | 0.0194 (15) | 0.0170 (8) | 0.0046 (11) | 0.0116 (10) | 0.0022 (8) |
S21A | 0.0263 (3) | 0.0198 (2) | 0.0179 (2) | 0.00020 (18) | 0.00703 (18) | 0.00161 (17) |
C1—C6 | 1.3536 (18) | C15—O16 | 1.349 (2) |
C1—C2 | 1.4736 (19) | C16—O16 | 1.445 (2) |
C1—C13 | 1.4997 (19) | C16—H16A | 0.9800 |
C2—O2 | 1.2214 (17) | C16—H16B | 0.9800 |
C2—C3 | 1.523 (2) | C16—H16C | 0.9800 |
C2—C3A | 1.590 (7) | C17—C18 | 1.374 (4) |
C6—C7 | 1.4808 (19) | C17—S21 | 1.727 (3) |
C6—C5A | 1.5067 (19) | C18—C19 | 1.448 (4) |
C6—C5 | 1.5067 (19) | C18—H18 | 0.9500 |
C7—C8 | 1.3967 (19) | C19—C20 | 1.360 (3) |
C7—C12 | 1.4000 (19) | C19—H19 | 0.9500 |
C8—C9 | 1.3894 (19) | C20—S21 | 1.714 (3) |
C8—H8 | 0.9500 | C20—H20 | 0.9500 |
C9—C10 | 1.386 (2) | C3A—C15A | 1.506 (11) |
C9—H9 | 0.9500 | C3A—C4A | 1.511 (9) |
C10—C11 | 1.385 (2) | C3A—H3A | 1.0000 |
C10—Br1 | 1.8952 (14) | C4A—C17A | 1.515 (11) |
C11—C12 | 1.388 (2) | C4A—C5A | 1.586 (7) |
C11—H11 | 0.9500 | C4A—H4A | 1.0000 |
C12—H12 | 0.9500 | C5A—H5A1 | 0.9900 |
C13—O13 | 1.2048 (18) | C5A—H5A2 | 0.9900 |
C13—O14 | 1.3395 (18) | C15A—O15A | 1.192 (12) |
C14—O14 | 1.4477 (19) | C15A—O16A | 1.318 (10) |
C14—H14A | 0.9800 | C16A—O16A | 1.425 (11) |
C14—H14B | 0.9800 | C16A—H16D | 0.9800 |
C14—H14C | 0.9800 | C16A—H16E | 0.9800 |
C3—C15 | 1.511 (2) | C16A—H16F | 0.9800 |
C3—C4 | 1.542 (2) | C17A—C18A | 1.346 (13) |
C3—H3 | 1.0000 | C17A—S21A | 1.728 (13) |
C4—C17 | 1.514 (3) | C18A—C19A | 1.407 (14) |
C4—C5 | 1.5146 (19) | C18A—H18A | 0.9500 |
C4—H4 | 1.0000 | C19A—C20A | 1.313 (17) |
C5—H5A | 0.9900 | C19A—H19A | 0.9500 |
C5—H5B | 0.9900 | C20A—S21A | 1.721 (12) |
C15—O15 | 1.201 (2) | C20A—H20A | 0.9500 |
C6—C1—C2 | 121.86 (12) | O16—C16—H16A | 109.5 |
C6—C1—C13 | 122.78 (12) | O16—C16—H16B | 109.5 |
C2—C1—C13 | 115.36 (11) | H16A—C16—H16B | 109.5 |
O2—C2—C1 | 122.29 (13) | O16—C16—H16C | 109.5 |
O2—C2—C3 | 121.07 (13) | H16A—C16—H16C | 109.5 |
C1—C2—C3 | 116.51 (12) | H16B—C16—H16C | 109.5 |
O2—C2—C3A | 117.8 (3) | C15—O16—C16 | 114.84 (18) |
C1—C2—C3A | 113.0 (3) | C18—C17—C4 | 126.0 (3) |
C1—C6—C7 | 123.33 (12) | C18—C17—S21 | 111.7 (2) |
C1—C6—C5A | 121.20 (12) | C4—C17—S21 | 122.21 (19) |
C7—C6—C5A | 115.42 (11) | C17—C18—C19 | 111.9 (3) |
C1—C6—C5 | 121.20 (12) | C17—C18—H18 | 124.0 |
C7—C6—C5 | 115.42 (11) | C19—C18—H18 | 124.0 |
C8—C7—C12 | 118.58 (13) | C20—C19—C18 | 111.9 (4) |
C8—C7—C6 | 120.79 (12) | C20—C19—H19 | 124.0 |
C12—C7—C6 | 120.29 (12) | C18—C19—H19 | 124.0 |
C9—C8—C7 | 121.04 (13) | C19—C20—S21 | 112.7 (4) |
C9—C8—H8 | 119.5 | C19—C20—H20 | 123.7 |
C7—C8—H8 | 119.5 | S21—C20—H20 | 123.7 |
C10—C9—C8 | 118.87 (14) | C20—S21—C17 | 91.71 (18) |
C10—C9—H9 | 120.6 | C15A—C3A—C4A | 112.6 (8) |
C8—C9—H9 | 120.6 | C15A—C3A—C2 | 112.3 (8) |
C11—C10—C9 | 121.58 (13) | C4A—C3A—C2 | 103.0 (5) |
C11—C10—Br1 | 119.51 (11) | C15A—C3A—H3A | 109.6 |
C9—C10—Br1 | 118.83 (12) | C4A—C3A—H3A | 109.6 |
C10—C11—C12 | 118.95 (14) | C2—C3A—H3A | 109.6 |
C10—C11—H11 | 120.5 | C3A—C4A—C17A | 108.9 (9) |
C12—C11—H11 | 120.5 | C3A—C4A—C5A | 112.0 (5) |
C11—C12—C7 | 120.95 (14) | C17A—C4A—C5A | 110.1 (10) |
C11—C12—H12 | 119.5 | C3A—C4A—H4A | 108.6 |
C7—C12—H12 | 119.5 | C17A—C4A—H4A | 108.6 |
O13—C13—O14 | 124.46 (13) | C5A—C4A—H4A | 108.6 |
O13—C13—C1 | 124.77 (13) | C6—C5A—C4A | 114.5 (3) |
O14—C13—C1 | 110.77 (12) | C6—C5A—H5A1 | 108.6 |
O14—C14—H14A | 109.5 | C4A—C5A—H5A1 | 108.6 |
O14—C14—H14B | 109.5 | C6—C5A—H5A2 | 108.6 |
H14A—C14—H14B | 109.5 | C4A—C5A—H5A2 | 108.6 |
O14—C14—H14C | 109.5 | H5A1—C5A—H5A2 | 107.6 |
H14A—C14—H14C | 109.5 | O15A—C15A—O16A | 123.8 (16) |
H14B—C14—H14C | 109.5 | O15A—C15A—C3A | 127.6 (15) |
C13—O14—C14 | 114.86 (12) | O16A—C15A—C3A | 108.7 (9) |
C15—C3—C2 | 110.03 (14) | O16A—C16A—H16D | 109.5 |
C15—C3—C4 | 113.35 (14) | O16A—C16A—H16E | 109.5 |
C2—C3—C4 | 111.47 (12) | H16D—C16A—H16E | 109.5 |
C15—C3—H3 | 107.2 | O16A—C16A—H16F | 109.5 |
C2—C3—H3 | 107.2 | H16D—C16A—H16F | 109.5 |
C4—C3—H3 | 107.2 | H16E—C16A—H16F | 109.5 |
C17—C4—C5 | 112.12 (17) | C15A—O16A—C16A | 115.5 (11) |
C17—C4—C3 | 112.12 (17) | C18A—C17A—C4A | 113.8 (11) |
C5—C4—C3 | 107.42 (12) | C18A—C17A—S21A | 106.6 (9) |
C17—C4—H4 | 108.3 | C4A—C17A—S21A | 138.8 (12) |
C5—C4—H4 | 108.3 | C17A—C18A—C19A | 122.6 (18) |
C3—C4—H4 | 108.3 | C17A—C18A—H18A | 118.7 |
C6—C5—C4 | 111.90 (11) | C19A—C18A—H18A | 118.7 |
C6—C5—H5A | 109.2 | C20A—C19A—C18A | 102 (3) |
C4—C5—H5A | 109.2 | C20A—C19A—H19A | 129.0 |
C6—C5—H5B | 109.2 | C18A—C19A—H19A | 129.0 |
C4—C5—H5B | 109.2 | C19A—C20A—S21A | 120 (2) |
H5A—C5—H5B | 107.9 | C19A—C20A—H20A | 119.9 |
O15—C15—O16 | 124.4 (3) | S21A—C20A—H20A | 119.9 |
O15—C15—C3 | 125.5 (3) | C20A—S21A—C17A | 88.6 (12) |
O16—C15—C3 | 110.05 (16) | ||
C6—C1—C2—O2 | −179.40 (14) | C2—C3—C15—O15 | −107.7 (4) |
C13—C1—C2—O2 | 0.9 (2) | C4—C3—C15—O15 | 126.7 (4) |
C6—C1—C2—C3 | 4.7 (2) | C2—C3—C15—O16 | 73.8 (2) |
C13—C1—C2—C3 | −174.94 (12) | C4—C3—C15—O16 | −51.8 (2) |
C6—C1—C2—C3A | −29.3 (3) | O15—C15—O16—C16 | −3.4 (5) |
C13—C1—C2—C3A | 151.1 (3) | C3—C15—O16—C16 | 175.03 (18) |
C2—C1—C6—C7 | 174.86 (13) | C5—C4—C17—C18 | −139.1 (3) |
C13—C1—C6—C7 | −5.5 (2) | C3—C4—C17—C18 | 100.0 (3) |
C2—C1—C6—C5A | −2.4 (2) | C5—C4—C17—S21 | 43.8 (3) |
C13—C1—C6—C5A | 177.20 (12) | C3—C4—C17—S21 | −77.1 (3) |
C2—C1—C6—C5 | −2.4 (2) | C4—C17—C18—C19 | −179.2 (4) |
C13—C1—C6—C5 | 177.20 (12) | S21—C17—C18—C19 | −1.8 (3) |
C1—C6—C7—C8 | −42.0 (2) | C17—C18—C19—C20 | 1.7 (4) |
C5A—C6—C7—C8 | 135.42 (14) | C18—C19—C20—S21 | −0.7 (4) |
C5—C6—C7—C8 | 135.42 (14) | C19—C20—S21—C17 | −0.3 (3) |
C1—C6—C7—C12 | 144.72 (15) | C18—C17—S21—C20 | 1.2 (2) |
C5A—C6—C7—C12 | −37.84 (19) | C4—C17—S21—C20 | 178.7 (4) |
C5—C6—C7—C12 | −37.84 (19) | O2—C2—C3A—C15A | −26.9 (8) |
C12—C7—C8—C9 | 0.7 (2) | C1—C2—C3A—C15A | −178.5 (6) |
C6—C7—C8—C9 | −172.68 (14) | O2—C2—C3A—C4A | −148.3 (4) |
C7—C8—C9—C10 | −0.9 (2) | C1—C2—C3A—C4A | 60.1 (5) |
C8—C9—C10—C11 | −0.3 (2) | C15A—C3A—C4A—C17A | 54.9 (13) |
C8—C9—C10—Br1 | 176.45 (12) | C2—C3A—C4A—C17A | 176.1 (10) |
C9—C10—C11—C12 | 1.6 (3) | C15A—C3A—C4A—C5A | 176.9 (7) |
Br1—C10—C11—C12 | −175.12 (14) | C2—C3A—C4A—C5A | −61.9 (6) |
C10—C11—C12—C7 | −1.8 (3) | C1—C6—C5A—C4A | 0.2 (4) |
C8—C7—C12—C11 | 0.7 (2) | C7—C6—C5A—C4A | −177.3 (3) |
C6—C7—C12—C11 | 174.06 (15) | C3A—C4A—C5A—C6 | 35.3 (7) |
C6—C1—C13—O13 | 116.12 (17) | C17A—C4A—C5A—C6 | 156.6 (8) |
C2—C1—C13—O13 | −64.22 (19) | C4A—C3A—C15A—O15A | 52 (3) |
C6—C1—C13—O14 | −64.33 (17) | C2—C3A—C15A—O15A | −64 (3) |
C2—C1—C13—O14 | 115.33 (13) | C4A—C3A—C15A—O16A | −128.5 (11) |
O13—C13—O14—C14 | −3.2 (2) | C2—C3A—C15A—O16A | 115.7 (11) |
C1—C13—O14—C14 | 177.23 (12) | O15A—C15A—O16A—C16A | −2 (3) |
O2—C2—C3—C15 | 23.8 (2) | C3A—C15A—O16A—C16A | 177.9 (11) |
C1—C2—C3—C15 | −160.24 (13) | C3A—C4A—C17A—C18A | −153.1 (13) |
O2—C2—C3—C4 | 150.48 (14) | C5A—C4A—C17A—C18A | 83.8 (16) |
C1—C2—C3—C4 | −33.59 (18) | C3A—C4A—C17A—S21A | 15 (3) |
C15—C3—C4—C17 | −52.9 (2) | C5A—C4A—C17A—S21A | −109 (2) |
C2—C3—C4—C17 | −177.67 (17) | C4A—C17A—C18A—C19A | 172 (2) |
C15—C3—C4—C5 | −176.48 (14) | S21A—C17A—C18A—C19A | 0.2 (18) |
C2—C3—C4—C5 | 58.71 (15) | C17A—C18A—C19A—C20A | −2 (3) |
C1—C6—C5—C4 | 29.70 (18) | C18A—C19A—C20A—S21A | 3 (3) |
C7—C6—C5—C4 | −147.81 (12) | C19A—C20A—S21A—C17A | −2 (2) |
C17—C4—C5—C6 | −179.92 (17) | C18A—C17A—S21A—C20A | 1.0 (11) |
C3—C4—C5—C6 | −56.31 (15) | C4A—C17A—S21A—C20A | −167 (3) |
Cg1 and Cg2 are the centroids of the major (S21/C17–C20) and minor (S21A/C17A–C20A) disordered components of the thiophene ring, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···S21i | 1.00 | 2.86 | 3.6775 (16) | 139 |
C5—H5A···S21 | 0.99 | 2.81 | 3.1892 (15) | 103 |
C5—H5B···S21ii | 0.99 | 2.84 | 3.5984 (15) | 134 |
C3—H3···Cg1i | 1.00 | 2.75 | 3.611 (2) | 144 |
C3—H3···Cg2i | 1.00 | 2.86 | 3.721 (11) | 145 |
C4A—H4A···Cg1i | 1.00 | 2.97 | 3.839 (8) | 146 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2. |
Acknowledgements
Authors' contributions are as follows. Conceptualization, IGM, ANK and FNN; methodology, IGM and MA; investigation, VNK and FNN; writing (original draft), MA, AB and ANK, writing (review and editing of the manuscript), İGM and ANK; visualization, MA, KAA and FNN; funding acquisition, VNK, AB and FNN; resources, AB, VNK and MA; supervision, MA and ANK.
Funding information
This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.
References
Abdinov, A. S., Babaeva, R. F. & Rzaev, R. M. (2012). Inorg. Mater. 48, 781–785. Web of Science CrossRef CAS Google Scholar
Abdinov, A. S., Babaeva, R. F., Rzaev, R. M. & Gasanov, G. A. (2004). Inorg. Mater. 40, 567–569. Web of Science CrossRef CAS Google Scholar
Abdinov, A. S., Babayeva, R. F., Amirova, S. I., Ragimova, N. A. & Rzayev, R. M. (2014). Semiconductors 48, 981–985. Web of Science CrossRef CAS Google Scholar
Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. pp. 262–270. Web of Science CSD CrossRef Google Scholar
Akkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33–39. CrossRef Google Scholar
Askerova, U. F. (2022). UNEC J. Eng. Appl. Sci, 2, 58–64. Google Scholar
Atalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33–40. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Donmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci, 2, 43–48. Google Scholar
Erenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26–32. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fatahpour, M., Hazeri, N., Adrom, B., Maghsoodlou, M. T. & Lashkari, M. (2018). Res. Chem. Intermed. 44, 2111–2122. Web of Science CSD CrossRef CAS Google Scholar
Gein, V. L., Levandovskaya, E. B., Nosova, N. V., Vakhrin, M. I., Kriven?ko, A. P. & Aliev, Z. G. (2007). Zh. Org. Khim. 43, 1101–1102. Google Scholar
Gein, V. L., Nosova, N. V., Yankin, A. N., Bazhina, A. Y. & Dmitriev, M. V. (2019). Tetrahedron Lett. 60, 1592–1596. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112. Web of Science CSD CrossRef Google Scholar
Huseynov, E. Z., Akkurt, M., Brito, I., Bhattarai, A., Rzayev, R. M., Asadov, K. A. & Maharramov, A. M. (2023). Acta Cryst. E79, 890–894. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalilov, A. N., Khrustalev, V. N., Aleksandrova, L. V., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023a). Acta Cryst. E79, 436–440. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalilov, A. N., Khrustalev, V. N., Samigullina, A. I., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023b). Acta Cryst. E79, 736–740. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11. Google Scholar
Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73. Google Scholar
Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279. Web of Science CSD CrossRef Google Scholar
Mohan, K. C., Ravikumar, K. & Shetty, M. M. (2003). J. Chem. Crystallogr. 33, 97–103. Web of Science CSD CrossRef CAS Google Scholar
Naghiyev, F. N., Khrustalev, V. N., Akkurt, M., Huseynov, E. Z., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 366–371. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 516–521. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ravikumar, K. & Mehdi, S. (1993). Acta Cryst. C49, 2027–2030. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21–32. Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tkachenko, V. V., Muravyova, E. A. S. V., Shishkina, S. V., Shishkin, O. V., Desenko, S. M. & Chebanov, V. A. (2014). Chem. Heterocycl. Compd, 50, 1166–1176. Web of Science CSD CrossRef CAS Google Scholar
Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.