research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of di­methyl 4′-bromo-3-oxo-5-(thio­phen-2-yl)-3,4,5,6-tetra­hydro-[1,1′-biphen­yl]-2,4-di­carboxyl­ate

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal, and f"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), Murtuza Mukhtarov str. 194, Az 1065, Baku, Azerbaijan
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 21 March 2024; accepted 31 March 2024; online 4 April 2024)

In the title compound, C20H17BrO5S, mol­ecules are connected by inter­molecular C—H⋯S hydrogen bonds with R22(10) ring motifs, forming ribbons along the b-axis direction. C—H⋯π inter­actions consolidate the ribbon structure while van der Waals forces between the ribbons ensure the cohesion of the crystal structure. According to a Hirshfeld surface analysis, H⋯H (40.5%), O⋯H/H⋯O (27.0%), C⋯H/H⋯C (13.9%) and Br⋯H/H⋯Br (11.7%) inter­actions are the most significant contributors to the crystal packing. The thio­phene ring and its adjacent di­carboxyl­ate group and the three adjacent carbon atoms of the central hexene ring to which they are attached were refined as disordered over two sets of sites having occupancies of 0.8378 (15) and 0.1622 (15). The thio­phene group is disordered by a rotation of 180° around one bond.

1. Chemical context

Functionalized carbo- and heterocyclic compounds are important systems in different fields of science (Huseynov et al., 2023[Huseynov, E. Z., Akkurt, M., Brito, I., Bhattarai, A., Rzayev, R. M., Asadov, K. A. & Maharramov, A. M. (2023). Acta Cryst. E79, 890-894.]; Akkurt et al., 2023[Akkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33-39.]). These systems comprise nucleic acids, alkaloids, vitamins, sugars, hormones, anti­biotics, other drugs, dyes, pesticides, and herbicides. There have been crucial developments in organic synthesis with heterocyclic systems designed recently for various research and commercial purposes (Maharramov et al., 2022[Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64-73.]; Erenler et al., 2022[Erenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26-32.], Khalilov et al., 2023a[Khalilov, A. N., Khrustalev, V. N., Aleksandrova, L. V., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023a). Acta Cryst. E79, 436-440.],b[Khalilov, A. N., Khrustalev, V. N., Samigullina, A. I., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023b). Acta Cryst. E79, 736-740.]). These derivatives have found widespread applications in coordination (Gurbanov et al., 2021[Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.]; Mahmoudi et al., 2021[Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.]), medicinal (Askerova, 2022[Askerova, U. F. (2022). UNEC J. Eng. Appl. Sci, 2, 58-64.]) and materials chemistry (Velásquez et al., 2019[Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018-6025.]; Afkhami et al., 2019[Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. pp. 262-270.]). These ring systems are used for a large range of applications, as well as drugs, ligands, catalysts, and materials (Maharramov et al., 2021[Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5-11.], Sobhi & Faisal, 2023[Sobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21-32.]). Functionalized systems combining cyclo­hexa­none, phenyl and thio­phene motifs exhibit various biological activities, such as molluscicidal, anti­cancer, anti­oxidant, cytotoxic, anti-inflammatory, herbicidal, pesticidal, and anti­bacterial (Atalay et al., 2022[Atalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33-40.]; Donmez & Turkyılmaz, 2022[Donmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci, 2, 43-48.]). As a result of the varied applications of these systems, their efficient and regioselective development has attracted great attention. Thus, in the framework of our structural studies (Abdinov et al., 2004[Abdinov, A. S., Babaeva, R. F., Rzaev, R. M. & Gasanov, G. A. (2004). Inorg. Mater. 40, 567-569.], 2012[Abdinov, A. S., Babaeva, R. F. & Rzaev, R. M. (2012). Inorg. Mater. 48, 781-785.], 2014[Abdinov, A. S., Babayeva, R. F., Amirova, S. I., Ragimova, N. A. & Rzayev, R. M. (2014). Semiconductors 48, 981-985.]; Naghiyev et al., 2021b[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 516-521.]), herein we report the crystal structure and Hirshfeld surface analysis of the title compound, dimethyl 4′-bromo-3-oxo-5-(thio­phen-2-yl)-3,4,5,6-tetra­hydro-[1,1′-biphen­yl]-2,4-di­carboxyl­ate.

[Scheme 1]

2. Structural commentary

As seen in Fig. 1[link], the major (C1–C6) component of the central hexene ring shows a distorted boat conformation [puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are QT = 0.5077 (16) Å, θ = 129.02 (17)°, φ = 355.7 (2)°], and the minor (C1/C2/C3A–C5A/C6) component of the central hexene ring also shows an envelope conformation [puckering parameters QT = 0.568 (7) Å, θ = 54.8 (5)°, φ = 124.2 (6)°]. The r.m.s planes of these disordered hexene rings make angles of 72.18 (14), 69.6 (9), 49.52 (7), and 62.5 (2), 60.1 (9), 44.23 (17), respectively, with the major (S21/C17–C20) and minor (S21A/C17A–C20A) disordered thio­phene ring components and the benzene ring (C7–C12). The C2—C1—C13—O13, C1—C13—O14—C14, C2—C3—C15—O15, C2—C3A—C15A—O15A, C3—C15—O16—C16 and C3A—C15A—O16A—C16A torsion angles are −64.22 (19), 177.23 (12), −107.7 (4), −64 (3), 175.03 (18) and 177.9 (11)°, respectively. The geometric parameters of the title compound are normal and comparable to those of related compounds listed in the Database survey section.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are connected by inter­molecular C—H⋯S hydrogen bonds with [R_{2}^{2}](10) ring motifs (Table 1[link]; Figs. 2[link] and 3[link]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), forming ribbons along the b-axis direction. C—H⋯π inter­actions consolidate the ribbon structure while van der Waals forces between the ribbons ensure the cohesion of the crystal structure (Table 1[link]; Figs. 4[link] and 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the major (S21/C17–C20) and minor (S21A/C17A–C20A) disordered components of the thio­phene ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯S21i 1.00 2.86 3.6775 (16) 139
C5—H5B⋯S21ii 0.99 2.84 3.5984 (15) 134
C3—H3⋯Cg1i 1.00 2.75 3.611 (2) 144
C3—H3⋯Cg2i 1.00 2.86 3.721 (11) 145
C4A—H4ACg1i 1.00 2.97 3.839 (8) 146
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The packing viewed down the a axis of the title compound with C—H⋯S hydrogen bonds shown as dashed lines.
[Figure 3]
Figure 3
The packing viewed along the b axis of the title compound with C—H⋯S hydrogen bonds shown as dashed lines.
[Figure 4]
Figure 4
A view of the packing down the a axis of the title compound with C—H⋯π inter­actions shown as dashed lines.
[Figure 5]
Figure 5
A view of the packing along the b axis of the title compound with C—H⋯π inter­actions shown as dashed lines.

To qu­antify the inter­molecular inter­actions between the mol­ecules in the crystal structure of the title compound, a Hirshfeld surface analysis was performed and the two-dimensional fingerprint plots generated using CrystalExplorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surfaces were mapped over dnorm in the range −0.2669 (red) to +1.2638 (blue) a.u. (Fig. 6[link]).

[Figure 6]
Figure 6
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm.

The dominant inter­atomic contact is H⋯H as it makes the highest contribution to the crystal packing (40.5%, Fig. 7[link]b). Other major contributors are O⋯H/H⋯O (27.0%, Fig. 7[link]c), Br⋯H/H⋯Br (11.7%, Fig. 7[link]d) and C⋯H/H⋯C (13.9%, Fig. 7[link]e) inter­actions. Other, smaller contributions are made by C⋯C (2.9%), Br⋯O/O⋯Br (1.7%), S⋯H/H⋯S (1.2%), O⋯C/C⋯O (0.8%), O⋯O (0.2%) and S⋯C/C⋯S (0.1%) inter­actions.

[Figure 7]
Figure 7
The two-dimensional fingerprint plots, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C and (e) Br⋯H/H⋯Br inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the central six-membered cyclo­hexene ring yielded eight compounds related to the title compound, viz. CSD refcodes UPOMOE (Naghiyev et al., 2021a[Naghiyev, F. N., Khrustalev, V. N., Akkurt, M., Huseynov, E. Z., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 366-371.]), ZOMDUD (Gein et al., 2019[Gein, V. L., Nosova, N. V., Yankin, A. N., Bazhina, A. Y. & Dmitriev, M. V. (2019). Tetrahedron Lett. 60, 1592-1596.]), PEWJUZ (Fatahpour et al., 2018[Fatahpour, M., Hazeri, N., Adrom, B., Maghsoodlou, M. T. & Lashkari, M. (2018). Res. Chem. Intermed. 44, 2111-2122.]), OZUKAX (Tkachenko et al., 2014[Tkachenko, V. V., Muravyova, E. A. S. V., Shishkina, S. V., Shishkin, O. V., Desenko, S. M. & Chebanov, V. A. (2014). Chem. Heterocycl. Compd, 50, 1166-1176.]), IFUDOD (Gein et al., 2007[Gein, V. L., Levandovskaya, E. B., Nosova, N. V., Vakhrin, M. I., Kriven?ko, A. P. & Aliev, Z. G. (2007). Zh. Org. Khim. 43, 1101-1102.]), IWEVOV (Mohan et al., 2003[Mohan, K. C., Ravikumar, K. & Shetty, M. M. (2003). J. Chem. Crystallogr. 33, 97-103.]), IWEVUB (Mohan et al., 2003[Mohan, K. C., Ravikumar, K. & Shetty, M. M. (2003). J. Chem. Crystallogr. 33, 97-103.]) and HALROB (Ravikumar & Mehdi, 1993[Ravikumar, K. & Mehdi, S. (1993). Acta Cryst. C49, 2027-2030.]).

UPOMOE and ZOMDUD crystallize in the monoclinic space group P21/c, with Z = 4, PEWJUZ in I2/c with Z = 4, IFUDOD, HALROB and IWEVUB in P21/n with Z = 4, and IWEVOV and OZUKAX in the ortho­rhom­bic space group Pbca with Z = 8. In UPOMOE, the central cyclo­hexane ring adopts a chair conformation. In the crystal, mol­ecules are linked by N—H⋯O, C—H⋯O, and C—H⋯N hydrogen bonds, forming mol­ecular layers parallel to the bc plane, which inter­act by the van der Waals forces between them. In ZOMDUD, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. C—H⋯π inter­actions are also observed. In PEWJUZ, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming sheets parallel to the bc plane. C—H⋯π inter­actions are also observed. In OZUKAX, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming sheets parallel to the ac plane. C—H⋯π inter­actions are also observed. Inter­molecular O—H⋯O hydrogen bonds consolidate the mol­ecular conformation. There are no classical hydrogen bonds in the crystal of IFUDOD where inter­molecular C—H⋯O contacts and weak C—H⋯π inter­actions lead to the formation of a three-dimensional network. In the crystal of IWEVOV, the mol­ecules pack such that both carbonyl O atoms participate in hydrogen-bond formation with symmetry-related amide nitro­gen atoms present in the carbamoyl substituents, forming N—H⋯O hydrogen bonds in a helical arrangement. In the crystal, the phenyl rings are positioned so as to favour edge-to-edge aromatic stacking. When the crystal packing is viewed normal to the ac plane, it reveals a 'wire-mesh' type hydrogen-bond network. In the crystal of IWEVUB, unlike in IWEVOV where both carbonyl O atoms participate in hydrogen bonding, only one of the carbonyl oxygen atoms participates in inter­molecular N—H⋯O hydrogen bonding while the other carbonyl oxygen participates in a weak C—H⋯O inter­action. In addition, one of the amide nitro­gen atoms participates in N—H⋯O hydrogen bonding with the hydroxyl oxygen atom, linking the mol­ecules in a helical arrangement, which is similar to that in the structure of IWEVOV. As observed in the structure of IWEVOV, the packing of the mol­ecules viewed normal to the ab plane resembles a 'wire-mesh' arrangement of the mol­ecules. In the crystal of HALROB, the amide carbonyl groups are oriented in different directions with respect to the cyclo­hexa­none ring. These orientations of the carboxamide groups facilitate the formation of an intra­molecular O—H⋯O hydrogen bond. The mol­ecules are packed such that chains are formed along the b-axis direction. These chains are held together by N—H⋯O hydrogen bonds.

5. Synthesis and crystallization

A solution of 1-(4-bromo­phen­yl)-3-(thio­phen-2-yl)prop-2-en-1-one (5.2 mmol) and dimethyl-1,3-acetonedi­carboxyl­ate (5.2 mmol) in methanol (30 mL) was stirred for 10 min. Then N-methyl­piperazine (3 drops) was added to the reaction mixture, which was heated for 20 minutes at 318–323 K and stirred for 48 h at room temperature. Then 20 mL of methanol were removed from the reaction mixture, which was left overnight.

The precipitated crystals were separated by filtration and recrystallized from an ethanol/water (1:1) solution (m.p. = 508–509 K, yield 79%).

1H NMR (300 MHz, DMSO-d6, ppm., JHH, Hz): 3.04 (d, 2H, CH2, 3JH–H = 7.9); 3.52 (k, 1H, CH, 3JH–H = 7.9); 3.57 (s, 6H, 2OCH3); 4.15 (d, 1H, CH, 3JH–H = 8.7); 6.98 (t, 1H, CHthien.,3JH–H = 5.1); 7.05 (d, 1H, CHthien.,3JH–H = 5.1); 7.40 (m, 3H, 2CHarom. + CHthien.); 7.67 (d, 2H, 2CHarom.,3JH–H = 8.1). 13C NMR (75 MHz, DMSO-d6, ppm): 38.16 (CH), 38.25 (CH2), 52.43 (OCH3), 52.64 (OCH3), 60.15 (CH), 124.08 (Carom.), 125.21 (CHthien.), 125.51 (CHthien.), 127.44 (CHthien.), 129.30 (2CHarom.), 131.62 (Cthien.), 132.22 (2CHarom.), 137.40 (Carom.), 144.19 (Cquat.), 159.21 (Cquat.), 166.37 (CO), 169.47 (CO), 190.91 (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(C). The thio­phene ring (S21/C17–C20) and its adjacent di­carboxyl­ate group (C15–C16/O15/O16) and the three adjacent carbon atoms (C3, C4 and C5) of the central hexane ring to which they are attached were refined as disordered over two sets of atomic sites having occupancies of 0.8378 (15) and 0.1622 (15). The methyl­ene carbon atom (C5) of the hexane ring was also refined with the same occupation ratio [0.8378 (15): 0.1622 (15)], having two disordered parts at the same position and the same displacement parameters using the EXYZ and EADP commands. The thio­phene group is disordered by a rotation of 180° around one bond. SADI, DFIX and EADP commands were used in the refinement.

Table 2
Experimental details

Crystal data
Chemical formula C20H17BrO5S
Mr 449.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.4670 (2), 8.4852 (2), 20.4823 (4)
β (°) 105.135 (2)
V3) 1923.80 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.27
Crystal size (mm) 0.17 × 0.15 × 0.13
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.705, 0.749
No. of measured, independent and observed [I > 2σ(I)] reflections 36460, 6958, 5872
Rint 0.031
(sin θ/λ)max−1) 0.756
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 1.02
No. of reflections 6958
No. of parameters 281
No. of restraints 41
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.67, −0.97
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Dimethyl 4'-bromo-3-oxo-5-(thiophen-2-yl)-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2,4-dicarboxylate top
Crystal data top
C20H17BrO5SF(000) = 912
Mr = 449.30Dx = 1.551 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.4670 (2) ÅCell parameters from 16653 reflections
b = 8.4852 (2) Åθ = 2.4–34.9°
c = 20.4823 (4) ŵ = 2.27 mm1
β = 105.135 (2)°T = 100 K
V = 1923.80 (7) Å3Prism, colorless
Z = 40.17 × 0.15 × 0.13 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
6958 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source5872 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.0000 pixels mm-1θmax = 32.5°, θmin = 2.4°
ω scansh = 1717
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
k = 1211
Tmin = 0.705, Tmax = 0.749l = 3030
36460 measured reflections
Refinement top
Refinement on F241 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0407P)2 + 1.251P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
6958 reflectionsΔρmax = 0.67 e Å3
281 parametersΔρmin = 0.97 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.06474 (12)1.18537 (16)0.08218 (7)0.0143 (2)
C20.04850 (13)1.26575 (16)0.08357 (7)0.0167 (2)
C60.12509 (12)1.09258 (16)0.13373 (7)0.0142 (2)
C70.23349 (12)0.99981 (16)0.13173 (7)0.0155 (2)
C80.23883 (12)0.91825 (17)0.07335 (7)0.0175 (2)
H80.1763560.9322370.0329510.021*
C90.33408 (13)0.81698 (18)0.07342 (8)0.0196 (3)
H90.3365380.7608040.0336860.024*
C100.42545 (13)0.79933 (19)0.13246 (8)0.0208 (3)
C110.42406 (14)0.8806 (2)0.19092 (8)0.0263 (3)
H110.4884180.8691720.2306500.032*
C120.32712 (13)0.9789 (2)0.19054 (7)0.0230 (3)
H120.3242731.0327090.2307580.028*
C130.10805 (12)1.21450 (17)0.02019 (7)0.0164 (2)
C140.26561 (15)1.3190 (2)0.02030 (9)0.0273 (3)
H14A0.2860931.2177250.0374670.041*
H14B0.3388661.3829470.0051280.041*
H14C0.2071121.3746940.0563720.041*
O20.10404 (10)1.34867 (12)0.03704 (5)0.0198 (2)
O130.05503 (11)1.17481 (14)0.03623 (6)0.0227 (2)
O140.21353 (9)1.29185 (14)0.03594 (5)0.0205 (2)
Br10.55053 (2)0.65226 (2)0.13401 (2)0.02917 (6)
C30.08897 (13)1.24975 (18)0.14839 (7)0.0117 (3)0.8378 (15)
H30.0446291.3314370.1806400.014*0.8378 (15)
C40.05428 (13)1.08776 (18)0.18192 (7)0.0109 (3)0.8378 (15)
H40.0922061.0040740.1487830.013*0.8378 (15)
C50.08168 (12)1.07204 (16)0.19659 (7)0.0155 (2)0.8378 (15)
H5A0.1204711.1523040.2303830.019*0.8378 (15)
H5B0.1062840.9667970.2162590.019*0.8378 (15)
C150.22220 (17)1.2862 (3)0.13463 (12)0.0159 (4)0.8378 (15)
C160.41712 (19)1.1824 (4)0.08947 (15)0.0355 (5)0.8378 (15)
H16A0.4367081.1892790.1331770.053*0.8378 (15)
H16B0.4577031.0905680.0645050.053*0.8378 (15)
H16C0.4445311.2782310.0632670.053*0.8378 (15)
O150.2646 (4)1.4029 (4)0.1525 (2)0.0261 (4)0.8378 (15)
O160.28797 (13)1.16616 (18)0.10046 (8)0.0213 (3)0.8378 (15)
C170.0984 (3)1.0674 (4)0.24492 (16)0.0176 (5)0.8378 (15)
C180.1998 (2)0.9863 (3)0.24920 (14)0.0223 (5)0.8378 (15)
H180.2523940.9330270.2122550.027*0.8378 (15)
C190.2169 (4)0.9916 (5)0.31673 (15)0.0236 (6)0.8378 (15)
H190.2809660.9400710.3296700.028*0.8378 (15)
C200.1304 (4)1.0793 (6)0.3595 (2)0.0204 (6)0.8378 (15)
H200.1277361.0968450.4056260.024*0.8378 (15)
S210.02657 (5)1.15473 (6)0.32094 (3)0.02109 (12)0.8378 (15)
C3A0.1240 (6)1.1730 (9)0.1263 (4)0.0117 (3)0.1622 (15)
H3A0.1411391.0637440.1080210.014*0.1622 (15)
C4A0.0380 (6)1.1662 (10)0.1961 (4)0.0109 (3)0.1622 (15)
H4A0.0155211.2763650.2118440.013*0.1622 (15)
C5A0.08168 (12)1.07204 (16)0.19659 (7)0.0155 (2)0.1622 (15)
H5A10.1465111.1066040.2361220.019*0.1622 (15)
H5A20.0672790.9585180.2024760.019*0.1622 (15)
C15A0.2408 (10)1.2545 (15)0.1258 (8)0.0159 (4)0.1622 (15)
C16A0.4489 (10)1.221 (2)0.0924 (9)0.0355 (5)0.1622 (15)
H16D0.4580951.2315980.1384160.053*0.1622 (15)
H16E0.5098471.1482550.0665830.053*0.1622 (15)
H16F0.4595801.3248730.0702950.053*0.1622 (15)
O15A0.254 (2)1.381 (2)0.1486 (15)0.0261 (4)0.1622 (15)
O16A0.3313 (7)1.1628 (11)0.0950 (5)0.0213 (3)0.1622 (15)
C17A0.1017 (16)1.090 (3)0.2441 (8)0.0176 (5)0.1622 (15)
C18A0.0588 (12)1.1351 (17)0.3090 (6)0.0223 (5)0.1622 (15)
H18A0.0123061.1976680.3208260.027*0.1622 (15)
C19A0.115 (3)1.094 (4)0.3598 (14)0.0236 (6)0.1622 (15)
H19A0.0913171.1171120.4067840.028*0.1622 (15)
C20A0.210 (3)1.014 (3)0.3255 (7)0.0204 (6)0.1622 (15)
H20A0.2666750.9746870.3477890.024*0.1622 (15)
S21A0.2302 (3)0.9801 (5)0.2404 (2)0.02109 (12)0.1622 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0177 (5)0.0133 (6)0.0129 (5)0.0007 (4)0.0058 (4)0.0008 (4)
C20.0214 (6)0.0149 (6)0.0150 (6)0.0040 (5)0.0069 (5)0.0014 (5)
C60.0155 (5)0.0145 (6)0.0128 (5)0.0002 (4)0.0039 (4)0.0013 (4)
C70.0157 (5)0.0176 (6)0.0138 (6)0.0018 (4)0.0049 (4)0.0007 (5)
C80.0191 (6)0.0183 (6)0.0145 (6)0.0039 (5)0.0033 (5)0.0001 (5)
C90.0229 (6)0.0211 (7)0.0161 (6)0.0064 (5)0.0073 (5)0.0013 (5)
C100.0193 (6)0.0270 (7)0.0182 (6)0.0091 (5)0.0088 (5)0.0053 (5)
C110.0198 (6)0.0409 (9)0.0169 (7)0.0106 (6)0.0024 (5)0.0010 (6)
C120.0194 (6)0.0344 (8)0.0142 (6)0.0071 (6)0.0024 (5)0.0043 (6)
C130.0190 (6)0.0159 (6)0.0158 (6)0.0040 (5)0.0072 (5)0.0026 (5)
C140.0253 (7)0.0346 (9)0.0273 (8)0.0022 (6)0.0161 (6)0.0083 (6)
O20.0244 (5)0.0200 (5)0.0152 (5)0.0070 (4)0.0057 (4)0.0038 (4)
O130.0278 (5)0.0271 (6)0.0142 (5)0.0001 (4)0.0072 (4)0.0006 (4)
O140.0188 (4)0.0256 (5)0.0192 (5)0.0000 (4)0.0087 (4)0.0035 (4)
Br10.02706 (8)0.04121 (11)0.02210 (8)0.02021 (7)0.01151 (6)0.00851 (6)
C30.0137 (6)0.0113 (6)0.0104 (6)0.0023 (5)0.0039 (5)0.0003 (5)
C40.0145 (6)0.0082 (7)0.0100 (6)0.0012 (5)0.0033 (5)0.0005 (5)
C50.0175 (5)0.0169 (6)0.0127 (5)0.0040 (4)0.0051 (4)0.0015 (4)
C150.0163 (8)0.0193 (11)0.0123 (9)0.0022 (6)0.0041 (7)0.0025 (7)
C160.0152 (10)0.0528 (17)0.0369 (11)0.0001 (9)0.0042 (9)0.0064 (11)
O150.0242 (11)0.0276 (13)0.0281 (9)0.0128 (8)0.0095 (7)0.0011 (9)
O160.0096 (5)0.0294 (6)0.0230 (6)0.0016 (6)0.0010 (6)0.0006 (5)
C170.0192 (6)0.0201 (14)0.0140 (6)0.0052 (8)0.0054 (5)0.0051 (7)
C180.0257 (12)0.0247 (10)0.0176 (10)0.0025 (10)0.0079 (9)0.0030 (8)
C190.0234 (9)0.0268 (18)0.0219 (12)0.0025 (11)0.0080 (11)0.0045 (9)
C200.0279 (18)0.0194 (15)0.0170 (8)0.0046 (11)0.0116 (10)0.0022 (8)
S210.0263 (3)0.0198 (2)0.0179 (2)0.00020 (18)0.00703 (18)0.00161 (17)
C3A0.0137 (6)0.0113 (6)0.0104 (6)0.0023 (5)0.0039 (5)0.0003 (5)
C4A0.0145 (6)0.0082 (7)0.0100 (6)0.0012 (5)0.0033 (5)0.0005 (5)
C5A0.0175 (5)0.0169 (6)0.0127 (5)0.0040 (4)0.0051 (4)0.0015 (4)
C15A0.0163 (8)0.0193 (11)0.0123 (9)0.0022 (6)0.0041 (7)0.0025 (7)
C16A0.0152 (10)0.0528 (17)0.0369 (11)0.0001 (9)0.0042 (9)0.0064 (11)
O15A0.0242 (11)0.0276 (13)0.0281 (9)0.0128 (8)0.0095 (7)0.0011 (9)
O16A0.0096 (5)0.0294 (6)0.0230 (6)0.0016 (6)0.0010 (6)0.0006 (5)
C17A0.0192 (6)0.0201 (14)0.0140 (6)0.0052 (8)0.0054 (5)0.0051 (7)
C18A0.0257 (12)0.0247 (10)0.0176 (10)0.0025 (10)0.0079 (9)0.0030 (8)
C19A0.0234 (9)0.0268 (18)0.0219 (12)0.0025 (11)0.0080 (11)0.0045 (9)
C20A0.0279 (18)0.0194 (15)0.0170 (8)0.0046 (11)0.0116 (10)0.0022 (8)
S21A0.0263 (3)0.0198 (2)0.0179 (2)0.00020 (18)0.00703 (18)0.00161 (17)
Geometric parameters (Å, º) top
C1—C61.3536 (18)C15—O161.349 (2)
C1—C21.4736 (19)C16—O161.445 (2)
C1—C131.4997 (19)C16—H16A0.9800
C2—O21.2214 (17)C16—H16B0.9800
C2—C31.523 (2)C16—H16C0.9800
C2—C3A1.590 (7)C17—C181.374 (4)
C6—C71.4808 (19)C17—S211.727 (3)
C6—C5A1.5067 (19)C18—C191.448 (4)
C6—C51.5067 (19)C18—H180.9500
C7—C81.3967 (19)C19—C201.360 (3)
C7—C121.4000 (19)C19—H190.9500
C8—C91.3894 (19)C20—S211.714 (3)
C8—H80.9500C20—H200.9500
C9—C101.386 (2)C3A—C15A1.506 (11)
C9—H90.9500C3A—C4A1.511 (9)
C10—C111.385 (2)C3A—H3A1.0000
C10—Br11.8952 (14)C4A—C17A1.515 (11)
C11—C121.388 (2)C4A—C5A1.586 (7)
C11—H110.9500C4A—H4A1.0000
C12—H120.9500C5A—H5A10.9900
C13—O131.2048 (18)C5A—H5A20.9900
C13—O141.3395 (18)C15A—O15A1.192 (12)
C14—O141.4477 (19)C15A—O16A1.318 (10)
C14—H14A0.9800C16A—O16A1.425 (11)
C14—H14B0.9800C16A—H16D0.9800
C14—H14C0.9800C16A—H16E0.9800
C3—C151.511 (2)C16A—H16F0.9800
C3—C41.542 (2)C17A—C18A1.346 (13)
C3—H31.0000C17A—S21A1.728 (13)
C4—C171.514 (3)C18A—C19A1.407 (14)
C4—C51.5146 (19)C18A—H18A0.9500
C4—H41.0000C19A—C20A1.313 (17)
C5—H5A0.9900C19A—H19A0.9500
C5—H5B0.9900C20A—S21A1.721 (12)
C15—O151.201 (2)C20A—H20A0.9500
C6—C1—C2121.86 (12)O16—C16—H16A109.5
C6—C1—C13122.78 (12)O16—C16—H16B109.5
C2—C1—C13115.36 (11)H16A—C16—H16B109.5
O2—C2—C1122.29 (13)O16—C16—H16C109.5
O2—C2—C3121.07 (13)H16A—C16—H16C109.5
C1—C2—C3116.51 (12)H16B—C16—H16C109.5
O2—C2—C3A117.8 (3)C15—O16—C16114.84 (18)
C1—C2—C3A113.0 (3)C18—C17—C4126.0 (3)
C1—C6—C7123.33 (12)C18—C17—S21111.7 (2)
C1—C6—C5A121.20 (12)C4—C17—S21122.21 (19)
C7—C6—C5A115.42 (11)C17—C18—C19111.9 (3)
C1—C6—C5121.20 (12)C17—C18—H18124.0
C7—C6—C5115.42 (11)C19—C18—H18124.0
C8—C7—C12118.58 (13)C20—C19—C18111.9 (4)
C8—C7—C6120.79 (12)C20—C19—H19124.0
C12—C7—C6120.29 (12)C18—C19—H19124.0
C9—C8—C7121.04 (13)C19—C20—S21112.7 (4)
C9—C8—H8119.5C19—C20—H20123.7
C7—C8—H8119.5S21—C20—H20123.7
C10—C9—C8118.87 (14)C20—S21—C1791.71 (18)
C10—C9—H9120.6C15A—C3A—C4A112.6 (8)
C8—C9—H9120.6C15A—C3A—C2112.3 (8)
C11—C10—C9121.58 (13)C4A—C3A—C2103.0 (5)
C11—C10—Br1119.51 (11)C15A—C3A—H3A109.6
C9—C10—Br1118.83 (12)C4A—C3A—H3A109.6
C10—C11—C12118.95 (14)C2—C3A—H3A109.6
C10—C11—H11120.5C3A—C4A—C17A108.9 (9)
C12—C11—H11120.5C3A—C4A—C5A112.0 (5)
C11—C12—C7120.95 (14)C17A—C4A—C5A110.1 (10)
C11—C12—H12119.5C3A—C4A—H4A108.6
C7—C12—H12119.5C17A—C4A—H4A108.6
O13—C13—O14124.46 (13)C5A—C4A—H4A108.6
O13—C13—C1124.77 (13)C6—C5A—C4A114.5 (3)
O14—C13—C1110.77 (12)C6—C5A—H5A1108.6
O14—C14—H14A109.5C4A—C5A—H5A1108.6
O14—C14—H14B109.5C6—C5A—H5A2108.6
H14A—C14—H14B109.5C4A—C5A—H5A2108.6
O14—C14—H14C109.5H5A1—C5A—H5A2107.6
H14A—C14—H14C109.5O15A—C15A—O16A123.8 (16)
H14B—C14—H14C109.5O15A—C15A—C3A127.6 (15)
C13—O14—C14114.86 (12)O16A—C15A—C3A108.7 (9)
C15—C3—C2110.03 (14)O16A—C16A—H16D109.5
C15—C3—C4113.35 (14)O16A—C16A—H16E109.5
C2—C3—C4111.47 (12)H16D—C16A—H16E109.5
C15—C3—H3107.2O16A—C16A—H16F109.5
C2—C3—H3107.2H16D—C16A—H16F109.5
C4—C3—H3107.2H16E—C16A—H16F109.5
C17—C4—C5112.12 (17)C15A—O16A—C16A115.5 (11)
C17—C4—C3112.12 (17)C18A—C17A—C4A113.8 (11)
C5—C4—C3107.42 (12)C18A—C17A—S21A106.6 (9)
C17—C4—H4108.3C4A—C17A—S21A138.8 (12)
C5—C4—H4108.3C17A—C18A—C19A122.6 (18)
C3—C4—H4108.3C17A—C18A—H18A118.7
C6—C5—C4111.90 (11)C19A—C18A—H18A118.7
C6—C5—H5A109.2C20A—C19A—C18A102 (3)
C4—C5—H5A109.2C20A—C19A—H19A129.0
C6—C5—H5B109.2C18A—C19A—H19A129.0
C4—C5—H5B109.2C19A—C20A—S21A120 (2)
H5A—C5—H5B107.9C19A—C20A—H20A119.9
O15—C15—O16124.4 (3)S21A—C20A—H20A119.9
O15—C15—C3125.5 (3)C20A—S21A—C17A88.6 (12)
O16—C15—C3110.05 (16)
C6—C1—C2—O2179.40 (14)C2—C3—C15—O15107.7 (4)
C13—C1—C2—O20.9 (2)C4—C3—C15—O15126.7 (4)
C6—C1—C2—C34.7 (2)C2—C3—C15—O1673.8 (2)
C13—C1—C2—C3174.94 (12)C4—C3—C15—O1651.8 (2)
C6—C1—C2—C3A29.3 (3)O15—C15—O16—C163.4 (5)
C13—C1—C2—C3A151.1 (3)C3—C15—O16—C16175.03 (18)
C2—C1—C6—C7174.86 (13)C5—C4—C17—C18139.1 (3)
C13—C1—C6—C75.5 (2)C3—C4—C17—C18100.0 (3)
C2—C1—C6—C5A2.4 (2)C5—C4—C17—S2143.8 (3)
C13—C1—C6—C5A177.20 (12)C3—C4—C17—S2177.1 (3)
C2—C1—C6—C52.4 (2)C4—C17—C18—C19179.2 (4)
C13—C1—C6—C5177.20 (12)S21—C17—C18—C191.8 (3)
C1—C6—C7—C842.0 (2)C17—C18—C19—C201.7 (4)
C5A—C6—C7—C8135.42 (14)C18—C19—C20—S210.7 (4)
C5—C6—C7—C8135.42 (14)C19—C20—S21—C170.3 (3)
C1—C6—C7—C12144.72 (15)C18—C17—S21—C201.2 (2)
C5A—C6—C7—C1237.84 (19)C4—C17—S21—C20178.7 (4)
C5—C6—C7—C1237.84 (19)O2—C2—C3A—C15A26.9 (8)
C12—C7—C8—C90.7 (2)C1—C2—C3A—C15A178.5 (6)
C6—C7—C8—C9172.68 (14)O2—C2—C3A—C4A148.3 (4)
C7—C8—C9—C100.9 (2)C1—C2—C3A—C4A60.1 (5)
C8—C9—C10—C110.3 (2)C15A—C3A—C4A—C17A54.9 (13)
C8—C9—C10—Br1176.45 (12)C2—C3A—C4A—C17A176.1 (10)
C9—C10—C11—C121.6 (3)C15A—C3A—C4A—C5A176.9 (7)
Br1—C10—C11—C12175.12 (14)C2—C3A—C4A—C5A61.9 (6)
C10—C11—C12—C71.8 (3)C1—C6—C5A—C4A0.2 (4)
C8—C7—C12—C110.7 (2)C7—C6—C5A—C4A177.3 (3)
C6—C7—C12—C11174.06 (15)C3A—C4A—C5A—C635.3 (7)
C6—C1—C13—O13116.12 (17)C17A—C4A—C5A—C6156.6 (8)
C2—C1—C13—O1364.22 (19)C4A—C3A—C15A—O15A52 (3)
C6—C1—C13—O1464.33 (17)C2—C3A—C15A—O15A64 (3)
C2—C1—C13—O14115.33 (13)C4A—C3A—C15A—O16A128.5 (11)
O13—C13—O14—C143.2 (2)C2—C3A—C15A—O16A115.7 (11)
C1—C13—O14—C14177.23 (12)O15A—C15A—O16A—C16A2 (3)
O2—C2—C3—C1523.8 (2)C3A—C15A—O16A—C16A177.9 (11)
C1—C2—C3—C15160.24 (13)C3A—C4A—C17A—C18A153.1 (13)
O2—C2—C3—C4150.48 (14)C5A—C4A—C17A—C18A83.8 (16)
C1—C2—C3—C433.59 (18)C3A—C4A—C17A—S21A15 (3)
C15—C3—C4—C1752.9 (2)C5A—C4A—C17A—S21A109 (2)
C2—C3—C4—C17177.67 (17)C4A—C17A—C18A—C19A172 (2)
C15—C3—C4—C5176.48 (14)S21A—C17A—C18A—C19A0.2 (18)
C2—C3—C4—C558.71 (15)C17A—C18A—C19A—C20A2 (3)
C1—C6—C5—C429.70 (18)C18A—C19A—C20A—S21A3 (3)
C7—C6—C5—C4147.81 (12)C19A—C20A—S21A—C17A2 (2)
C17—C4—C5—C6179.92 (17)C18A—C17A—S21A—C20A1.0 (11)
C3—C4—C5—C656.31 (15)C4A—C17A—S21A—C20A167 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the major (S21/C17–C20) and minor (S21A/C17A–C20A) disordered components of the thiophene ring, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···S21i1.002.863.6775 (16)139
C5—H5A···S210.992.813.1892 (15)103
C5—H5B···S21ii0.992.843.5984 (15)134
C3—H3···Cg1i1.002.753.611 (2)144
C3—H3···Cg2i1.002.863.721 (11)145
C4A—H4A···Cg1i1.002.973.839 (8)146
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, IGM, ANK and FNN; methodology, IGM and MA; investigation, VNK and FNN; writing (original draft), MA, AB and ANK, writing (review and editing of the manuscript), İGM and ANK; visualization, MA, KAA and FNN; funding acquisition, VNK, AB and FNN; resources, AB, VNK and MA; supervision, MA and ANK.

Funding information

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.

References

First citationAbdinov, A. S., Babaeva, R. F. & Rzaev, R. M. (2012). Inorg. Mater. 48, 781–785.  Web of Science CrossRef CAS Google Scholar
First citationAbdinov, A. S., Babaeva, R. F., Rzaev, R. M. & Gasanov, G. A. (2004). Inorg. Mater. 40, 567–569.  Web of Science CrossRef CAS Google Scholar
First citationAbdinov, A. S., Babayeva, R. F., Amirova, S. I., Ragimova, N. A. & Rzayev, R. M. (2014). Semiconductors 48, 981–985.  Web of Science CrossRef CAS Google Scholar
First citationAfkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. pp. 262–270.  Web of Science CSD CrossRef Google Scholar
First citationAkkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33–39.  CrossRef Google Scholar
First citationAskerova, U. F. (2022). UNEC J. Eng. Appl. Sci, 2, 58–64.  Google Scholar
First citationAtalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33–40.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDonmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci, 2, 43–48.  Google Scholar
First citationErenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26–32.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFatahpour, M., Hazeri, N., Adrom, B., Maghsoodlou, M. T. & Lashkari, M. (2018). Res. Chem. Intermed. 44, 2111–2122.  Web of Science CSD CrossRef CAS Google Scholar
First citationGein, V. L., Levandovskaya, E. B., Nosova, N. V., Vakhrin, M. I., Kriven?ko, A. P. & Aliev, Z. G. (2007). Zh. Org. Khim. 43, 1101–1102.  Google Scholar
First citationGein, V. L., Nosova, N. V., Yankin, A. N., Bazhina, A. Y. & Dmitriev, M. V. (2019). Tetrahedron Lett. 60, 1592–1596.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.  Web of Science CSD CrossRef Google Scholar
First citationHuseynov, E. Z., Akkurt, M., Brito, I., Bhattarai, A., Rzayev, R. M., Asadov, K. A. & Maharramov, A. M. (2023). Acta Cryst. E79, 890–894.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Khrustalev, V. N., Aleksandrova, L. V., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023a). Acta Cryst. E79, 436–440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Khrustalev, V. N., Samigullina, A. I., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023b). Acta Cryst. E79, 736–740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11.  Google Scholar
First citationMaharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73.  Google Scholar
First citationMahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.  Web of Science CSD CrossRef Google Scholar
First citationMohan, K. C., Ravikumar, K. & Shetty, M. M. (2003). J. Chem. Crystallogr. 33, 97–103.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Akkurt, M., Huseynov, E. Z., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 366–371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 516–521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavikumar, K. & Mehdi, S. (1993). Acta Cryst. C49, 2027–2030.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21–32.  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTkachenko, V. V., Muravyova, E. A. S. V., Shishkina, S. V., Shishkin, O. V., Desenko, S. M. & Chebanov, V. A. (2014). Chem. Heterocycl. Compd, 50, 1166–1176.  Web of Science CSD CrossRef CAS Google Scholar
First citationVelásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds