research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4,4′-(disulfanedi­yl)dipyridinium chloride triiodide

crossmark logo

aCentro Servizi di Ateneo per la Ricerca (CeSAR), Università degli Studi di Cagliari, S.S. 554 bivio Sestu, Monserrato, 09042 Cagliari, Italy, bDipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 bivio Sestu, Monserrato, 09042 Cagliari, Italy, and cUK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
*Correspondence e-mail: enrico.podda@unica.it, marca@unica.it

Edited by F. F. Ferreira, Universidade Federal do ABC, Brazil (Received 20 March 2024; accepted 7 May 2024; online 21 May 2024)

4,4′-(Disulfanedi­yl)dipyridinium chloride triiodide, C10H10N2S22+·Cl·I3, (1) was synthesized by reaction of 4,4′-di­pyridyl­disulfide with ICl in a 1:1 molar ratio in di­chloro­methane solution. The structural characterization of 1 by SC-XRD analysis was supported by elemental analysis, FT–IR, and FT–Raman spectroscopic measurements.

1. Chemical context

The reactions of pnictogen/chalcogen donors with dihalogens X2 or inter­halogens XY (X, Y = Cl, Br, I) afford a variety of products depending on the nature of the donor, the dihalogen/inter­halogen, and the reaction conditions (Aragoni et al., 2008[Aragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V., Mancini, A. & Verani, G. (2008). Eur. J. Inorg. Chem. pp. 3921-3928.]; Rimmer et al., 1998[Rimmer, E. L., Bailey, R. D., Pennington, W. T. & Hanks, T. W. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 2557-2562.]; Aragoni et al., 2022[Aragoni, M. C., Podda, E., Arca, M., Pintus, A., Lippolis, V., Caltagirone, C., Bartz, R. H., Lenardão, E. J., Perin, G., Schumacher, R. F., Coles, S. J. & Orton, J. B. (2022). New J. Chem. 46, 21921-21929.]; Knight et al., 2012[Knight, F. R., Athukorala Arachchige, K. S., Randall, R. A. M., Bühl, M., Slawin, A. M. Z. & Woollins, J. D. (2012). Dalton Trans. 41, 3154-3165.]). For chalcogen donors, charge–transfer (CT) ‘spoke’ adducts, hypercoordinate ‘T-shaped’ adducts, halonium adducts, and different types of cationic oxidation products of the donors have been identified and structurally characterized (Knight et al., 2012[Knight, F. R., Athukorala Arachchige, K. S., Randall, R. A. M., Bühl, M., Slawin, A. M. Z. & Woollins, J. D. (2012). Dalton Trans. 41, 3154-3165.]; Saab et al., 2022[Saab, M., Nelson, D. J., Leech, M., Lam, K., Nolan, S. P., Nahra, F. & Van Hecke, K. (2022). Dalton Trans. 51, 3721-3733.]). Worthy of note, diiodine CT-adducts have been extensively investigated, also with a view to their application as leaching agents for toxic (Isaia et al., 2011[Isaia, F., Aragoni, M. C., Arca, M., Caltagirone, C., Castellano, C., Demartin, F., Garau, A., Lippolis, V. & Pintus, A. (2011). Dalton Trans. 40, 4505-4513.]) and precious metals (Zupanc et al., 2022[Zupanc, A., Heliövaara, E., Moslova, K., Eronen, A., Kemell, M., Podlipnik, Č., Jereb, M. & Repo, T. (2022). Angew. Chem. 134, e202117587.]) in waste from electrical and electronic equipment (WEEE). Among the pnictogen donors, many studies have focused on (poly)pyridyl derivatives. Analogous to S/Se-donors, the reactions of pyridyl donors with X2/XY have resulted in the formation of CT-adducts featuring a linear N⋯X—Y group (Kukkonen et al., 2019[Kukkonen, E., Malinen, H., Haukka, M. & Konu, J. (2019). Cryst. Growth Des. 19, 2434-2445.]; Tuikka & Haukka, 2015[Tuikka, M. & Haukka, M. (2015). Acta Cryst. E71, o463.]) and halonium derivatives with an N⋯X+⋯N moiety (X = I; Y = Cl, Br, I) (Kukkonen et al., 2019[Kukkonen, E., Malinen, H., Haukka, M. & Konu, J. (2019). Cryst. Growth Des. 19, 2434-2445.]; Batsanov et al., 2005[Batsanov, A. S., Lightfoot, A. P., Twiddle, S. J. R. & Whiting, A. (2005). Eur. J. Org. Chem. pp. 1876-1883.], 2006[Batsanov, A. S., Lightfoot, A. P., Twiddle, S. J. R. & Whiting, A. (2006). Acta Cryst. E62, o901-o902.]). In addition, N-protonated pyridinium cations were obtained, whose charge can be counterbalanced by discrete halides or extended fascinating networks (Aragoni et al., 2004[Aragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V. & Mancini, A. (2004). CrystEngComm, 6, 540-542.]; Aragoni et al., 2023[Aragoni, M. C., Podda, E., Chaudhary, S., Bhasin, A. K. K., Bhasin, K. K., Coles, S. J., Orton, J. B., Isaia, F., Lippolis, V., Pintus, A., Slawin, A. M. Z., Woollins, J. D. & Arca, M. (2023). Chem. Asian J. 18, e202300836.]). Oxidation of the aromatic heterocycle to give a cationic radical species followed by solvolysis or reaction with incipient moisture has been proposed as a possible explanation for the formation of pyridinium cations (Rimmer et al., 1998[Rimmer, E. L., Bailey, R. D., Pennington, W. T. & Hanks, T. W. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 2557-2562.]; Aragoni et al., 2023[Aragoni, M. C., Podda, E., Chaudhary, S., Bhasin, A. K. K., Bhasin, K. K., Coles, S. J., Orton, J. B., Isaia, F., Lippolis, V., Pintus, A., Slawin, A. M. Z., Woollins, J. D. & Arca, M. (2023). Chem. Asian J. 18, e202300836.]).

The nature of the products isolated in the solid state is reflected in their peculiar FT–Raman response (Aragoni et al., 2004[Aragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V. & Mancini, A. (2004). CrystEngComm, 6, 540-542.], 2008[Aragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V., Mancini, A. & Verani, G. (2008). Eur. J. Inorg. Chem. pp. 3921-3928.]; Pandeeswaran et al., 2009[Pandeeswaran, M. & Elango, K. P. (2009). Spectrochim. Acta A Mol. Biomol. Spectrosc. 72, 789-795.]). In particular, an elongation of the perturbed X–Y moiety with respect to the free halogen/inter­halogen is found in CT-adducts, which determines a low energy shift of the relevant Raman-active stretching vibration (Aragoni et al., 2008[Aragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V., Mancini, A. & Verani, G. (2008). Eur. J. Inorg. Chem. pp. 3921-3928.]). When polyhalide networks are formed, the stretching vibrations of the inter­acting synthons can be detected in the low-energy region of the FT–Raman spectrum (Aragoni et al., 2008[Aragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V., Mancini, A. & Verani, G. (2008). Eur. J. Inorg. Chem. pp. 3921-3928.], 2023[Aragoni, M. C., Podda, E., Chaudhary, S., Bhasin, A. K. K., Bhasin, K. K., Coles, S. J., Orton, J. B., Isaia, F., Lippolis, V., Pintus, A., Slawin, A. M. Z., Woollins, J. D. & Arca, M. (2023). Chem. Asian J. 18, e202300836.]).

Di­sulfides are an important class of organic compounds with a variety of biological and pharmacological applications (Sevier & Kaiser, 2002[Sevier, C. S. & Kaiser, C. A. (2002). Nat. Rev. Mol. Cell Biol. 3, 836-847.]; Lee et al., 2013[Lee, M. H., Yang, Z., Lim, C. W., Lee, Y. H., Dongbang, S., Kang, C. & Kim, J. S. (2013). Chem. Rev. 113, 5071-5109.]), in particular due to their anti­oxidant and prooxidant properties (Zhu et al., 2023[Zhu, Q., Costentin, C., Stubbe, J. & Nocera, D. G. (2023). Chem. Sci. 14, 6876-6881.]). It is well known that the dibromine and dichlorine oxidation of di­aryl­disulfides leads to the cleavage of the sulfur–sulfur bond (Zincke reaction; Zincke,1911[Zincke, T. (1911). Ber. Dtsch. Chem. Ges. 44, 769-771.]; Baker et al., 1946[Baker, R. H., Dodson, R. M. & Riegel, B. (1946). J. Am. Chem. Soc. 68, 2636-2639.]), whereas the reaction of di­sulfides with the mildest oxidant, diiodine, does not involve the cleavage of the S—S bond (Aragoni et al., 2023[Aragoni, M. C., Podda, E., Chaudhary, S., Bhasin, A. K. K., Bhasin, K. K., Coles, S. J., Orton, J. B., Isaia, F., Lippolis, V., Pintus, A., Slawin, A. M. Z., Woollins, J. D. & Arca, M. (2023). Chem. Asian J. 18, e202300836.]). The reaction of 2,2′-di­pyridyl­disulfide (L) with I2 in CH2Cl2 afforded the compound [(HL+)(I)·5/2I2], featuring an unusual polyiodide network counterbalancing the N-monoprotonated HL+ cation. Recently, an assembly isostructural to [(HL+)(I)·5/2I2] was obtained by reacting 2,2′-di­pyridyl­diselenide with I2 in either CH2Cl2 or CH3CN (Aragoni et al., 2023[Aragoni, M. C., Podda, E., Chaudhary, S., Bhasin, A. K. K., Bhasin, K. K., Coles, S. J., Orton, J. B., Isaia, F., Lippolis, V., Pintus, A., Slawin, A. M. Z., Woollins, J. D. & Arca, M. (2023). Chem. Asian J. 18, e202300836.]).

Although 4,4′-di­pyridyl­disulfide (L′) has been widely reported as a donor towards a variety of metal ions (Sarkar et al., 2016[Sarkar, D., Chandra Rao, P., Aiyappa, H. B., Kurungot, S., Mandal, S., Ramanujam, K. & Mandal, S. (2016). RSC Adv. 6, 37515-37521.]; Zheng et al., 2022[Zheng, F., Guo, L., Chen, R., Chen, L., Zhang, Z., Yang, Q., Yang, Y., Su, B., Ren, Q. & Bao, Z. (2022). Angew. Chem. Int. Ed. 61, e202116686.], 2023[Zheng, F., Chen, R., Liu, Y., Yang, Q., Zhang, Z., Yang, Y., Ren, Q. & Bao, Z. (2023). Adv. Sci. 10, 2207127.]; Singha et al., 2018[Singha, S., Saha, A., Goswami, S., Dey, S. K., Payra, S., Banerjee, S., Kumar, S. & Saha, R. (2018). Cryst. Growth Des. 18, 189-199.]), its reactivity towards halogens or inter­halogens has been only marginally explored (Wzgarda-Raj et al., 2021[Wzgarda-Raj, K., Nawrot, M., Rybarczyk-Pirek, A. J. & Palusiak, M. (2021). Acta Cryst. C77, 458-466.]; Coe et al., 1997[Coe, B. J., Hayat, S., Beddoes, R. L., Helliwell, M., Jeffery, J. C., Batten, S. R. & White, P. S. (1997). J. Chem. Soc. Dalton Trans. pp. 591-600.]). An example is provided by 4,4′-(disulfanedi­yl)dipyridinium penta­iodide triiodide (CSD code OXAFIF; Wzgarda-Raj et al., 2021[Wzgarda-Raj, K., Nawrot, M., Rybarczyk-Pirek, A. J. & Palusiak, M. (2021). Acta Cryst. C77, 458-466.]) where the cation H2L′2+ is counterbalanced by a polyiodide built up of inter­acting I3 and I5 ions.

Following our investigation on the reactivity of polypyridyl substrates towards ICl (Aragoni et al., 2008[Aragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V., Mancini, A. & Verani, G. (2008). Eur. J. Inorg. Chem. pp. 3921-3928.]), we report here on the structural and spectroscopic characterization of the novel salt 4,4′-disulfanediyldipyridinium chloride triiodide (1).

[Scheme 1]

2. Structural commentary

By reacting 4,4′-di­pyridyl­disulfide (L′) and ICl in 1:1 molar ratio, product 1 was isolated and characterized by elemental analysis, melting point determination, FT–IR, and FT–Raman spectroscopy. Single-crystal X-ray diffraction analysis established 1 as (H2L′2+)(Cl)(I3) (Fig. 1[link]).

[Figure 1]
Figure 1
Ellipsoid plot of compound 1 with the numbering scheme adopted. Displacement ellipsoids are drawn at the 50% probability level. Labelled inter­actions are described according to Table 1[link].

Compound 1 crystallizes in the monoclinic space group P21/c with four (H2L′2+)(Cl)(I3) units in the unit cell. The asymmetric unit of compound 1 consists of a donor mol­ecule protonated at both the N1 and N2 pyridine nitro­gen atoms H2L′2+ counterbalanced by a chloride and a triiodide I3 anions. In the H2L′2+ cation, the two pyridine rings are almost perpendicular [C1—S1—S2—C6 torsion angle = 89.4 (1)°], being rotated by 2.7 (3) and 19.8 (3)° with respect to the respective C–S–S plane. The linear triiodide anion [I1—I2—I3 = 177.13 (1)°] is remarkably asymmetric with a very short I1—I2 distance [2.8180 (4) Å], close to the I—I distance of solid-state iodine (2.715 Å; van Bolhuis et al. 1967[Bolhuis, F. van, Koster, P. B. & Migchelsen, T. (1967). Acta Cryst. 23, 90-91.]), and a longer one [I2—I3 = 3.0459 (4) Å], in agreement to the three-body system of the I3 anion, showing a correlation between the two I—I distances. Accordingly, the I1—I2 and I2—I3 bond distances fall in the correlation reported by Devillanova (Aragoni et al., 2012[Aragoni, M. C., Arca, M., Devillanova, F. A., Isaia, F. & Lippolis, V. (2012). Cryst. Growth Des. 12, 2769-2779.]) featured by IA–IB–IC systems, which correlates the relative elongations of the two IA—IB and IC—ID lengths with respect to the the sum of the relevant covalent radii.

3. Supra­molecular features

The protonated pyridine rings of the H2L′2+ cation are involved in hydrogen-bonding (HB) inter­actions with the chloride anions (inter­action a in Fig. 1[link]; a and c in Fig. 2[link] and Table 1[link]), thus forming a wavy 1-D hydrogen-bonded polymeric structure that develops perpendicular to the b-axis. In addition, each chloride inter­acts with a terminal iodine atom of a triiodide [I1⋯Cl1 = 3.4764 (8) Å; inter­action b in Figs. 1[link] and 2[link] and Table 1[link]] at a distance shorter than the sum of the relevant van der Waals radii (3.73 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]), so that the chloride and the triiodide could be considered to form a [I⋯I–I⋯Cl]2– dianionic ensemble, unprecedented among the relevant polyinter­halides (Sonnenberg et al., 2020[Sonnenberg, K., Mann, L., Redeker, F. A., Schmidt, B. & Riedel, S. (2020). Angew. Chem. Int. Ed. 59, 5464-5493.]) deposited at the Cambridge Structural Database (CSD, version 5.45 update 1, March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Nevertheless, the Cl⋯I distance is longer than those previously reported for the parent [I2Cl] anion [for example I⋯Cl = 3.158, 3.047 Å in the structures with CSD codes BEQXEA (Wang et al. 1999[Wang, Y.-Q., Wang, Z.-M., Liao, C.-S. & Yan, C.-H. (1999). Acta Cryst. C55, 1503-1506.]) and BOJYIL (Pan et al. 2019[Pan, F., Chen, Y., Li, S., Jiang, M. & Rissanen, K. (2019). Chem. A Eur. J. 25, 7485-7488.]), respectively] and [Cl2I2]2– dianions [3.070 and 3.242 Å in DOXDOL (Buist & Kennedy, 2014[Buist, A. R. & Kennedy, A. R. (2014). Cryst. Growth Des. 14, 6508-6513.]) and JUPCAA (Pan et al. 2015[Pan, F., Puttreddy, R., Rissanen, K. & Englert, U. (2015). CrystEngComm, 17, 6641-6645.]), respectively]. These Cl⋯I inter­actions, shown in Fig. 2[link], which fall into the realm of halogen bonding (XB) inter­actions, generate the crystal packing along with a set of weak C—H⋯I contacts (entries dg in Table 1[link]).

Table 1
Inter­molecular inter­actions (Å, °) of compound 1

Inter­action   A—B B⋯C A⋯C A—B⋯C
a N1—H1⋯Cl1 0.82 (3) 2.41 (3) 3.101 (2) 142 (2)
b I2—I1⋯Cl1 2.8179 (4) 3.4764 (8) 173.93 (2)
c N2i—H2i⋯Cl1 0.81 (4) 2.21 (4) 3.006 (3) 168
d C10—H10⋯I3ii 0.95 3.07 3.833 (3) 138
e C9—H9⋯I2ii 0.95 3.18 4.108 (4) 166
f C7—H7⋯I2iii 0.95 3.03 3.738 (4) 132
g C7—H7⋯I3iii 0.95 3.14 3.801 (3) 129
Symmetry codes: (i) −1 + x, [{3\over 2}] − y, −[{1\over 2}] + z; (ii) 2 − x, 2 − y, 1 − z; (iii) x, [{3\over 2}] − y, [{1\over 2}] + z.
[Figure 2]
Figure 2
Section of the crystal packing of compound 1 viewed along the c-axis. Labelled contacts are described in Table 1[link].

4. Conclusions

4,4′-Disulfanediyldipyridinium chloride triiodide (H2L′2+)(Cl)(I3)(1) was synthesized and characterized structurally and spectroscopically. The isolation of 1 confirms that L′ is not susceptible to the oxidative cleavage of the S—S di­sulfide bond by diiodine and iodine monochloride under mild conditions, but that it can undergo protonation and template fascinating supra­molecular structures, as previously observed in the case of [(HL+)(I)·5/2I2]∞. Further studies are ongoing in our laboratory to investigate the reactivity of different di­pyridyl­dichalcogenides towards dihalogens and inter­halogens and their versatility as building blocks for extended supra­molecular assemblies based on σ-hole inter­actions.

5. Synthesis and crystallization

5.1. Materials and methods

All the reagents and solvents were used without further purification. Elemental analysis determinations were performed with an EA1108 CHNS-O Fisons instrument. Fourier-Transform Infrared (FT–IR) spectroscopic measurements were recorded on a Bruker IFS55 spectrometer at room temperature using a flow of dried air. Far-infrared (FIR; 500–50 cm−1) spectra were recorded on polythene pellets using a Mylar beam-splitter and polythene windows (resolution 2 cm−1). Middle-infrared (MIR) spectra were recorded on KBr pellets, with a KBr beam-splitter and KBr windows (resolution 2 cm−1). FT-Raman spectroscopy measurements were recorded on a Bruker RFS100 spectrometer (resolution of 2 cm−1), with an In–Ga–As detector operating with a Nd:YAG laser (λ = 1064 nm) with a 180° scattering geometry (excitation power 5 mW). Melting point determinations were carried out on a FALC mod. C apparatus.

5.2. Synthesis of compound 1

To 2 mL of a CH2Cl2 solution of 4,4′-di­pyridyl­disulfide (19 mg, 8.6·10−5 mol), a 0.054 mol L−1 solution of ICl in the same solvent was added dropwise in donor/ICl in a 1:1 molar ratio. A brown crystalline precipitate was isolated from the mother liquor by air-evaporation and washed with light petroleum ether. A small number of crystals were placed on a glass slide and coated with a perfluoro­ether oil. A crystal suitable for X-ray diffraction analysis was selected and mounted on a glass fibre. Elemental analysis calculated for C10H10N2S2I3Cl: 18.81; H, 1.57; N, 4.38; S, 10.04%. Found: C, 18.63; H, 1.78; N, 4.09, S 9.98%. M.p. > 513 K. FT–MIR (KBr pellet, 4000–400 cm−1): 3854s, 3460s, 3437s, 3088s, 2743s, 2363s, 1952s, 1846s, 1773m, 1653s, 1603s, 1589s, 1558m, 1441s, 1371s, 1277s, 1086m, 1034m, 997m, 951m, 783m, 773s, 617s, 498m cm−1. FT–FIR (polythene pellet, 500–50 cm­–1): 484m, 477m, 449w, 418m, 390w, 378m, 352m, 294w, 256m, 227s, 170s, 131m, 94m, 67m cm−1. FT–Raman (500–50 cm−1, 5 mW, relative intensities in parentheses related to the highest peak taken equal to 10.0): 267(0.7), 155 (2.2), 137 (3.0), 113 (10.0) cm−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to heteroatoms could be located from difference-Fourier maps and their positions were freely refined. Other H atoms were placed in geometrically calculated positions and were constrained to ride on their parent atom with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C10H10N2S22+·Cl·I3
Mr 638.47
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 12.9631 (11), 11.3802 (5), 13.1675 (11)
β (°) 117.624 (6)
V3) 1721.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.83
Crystal size (mm) 0.32 × 0.22 × 0.06
 
Data collection
Diffractometer Bruker-Nonius 95mm CCD camera on κ-goniostat
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.632, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16769, 3959, 3621
Rint 0.027
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.046, 1.13
No. of reflections 3959
No. of parameters 170
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.74, −0.80
Computer programs: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) & COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

4,4'-(Disulfanediyl)dipyridinium chloride triiodide top
Crystal data top
C10H10N2S22+·Cl·I3F(000) = 1168
Mr = 638.47Dx = 2.464 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.9631 (11) ÅCell parameters from 17448 reflections
b = 11.3802 (5) Åθ = 2.9–27.5°
c = 13.1675 (11) ŵ = 5.83 mm1
β = 117.624 (6)°T = 120 K
V = 1721.1 (2) Å3Cut-plate, brown
Z = 40.32 × 0.22 × 0.06 mm
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
3621 reflections with I > 2σ(I)
Detector resolution: 9.091 pixels mm-1Rint = 0.027
φ & ω scansθmax = 27.6°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1616
Tmin = 0.632, Tmax = 1.000k = 1414
16769 measured reflectionsl = 1617
3959 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0127P)2 + 2.0409P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046(Δ/σ)max = 0.003
S = 1.13Δρmax = 0.74 e Å3
3959 reflectionsΔρmin = 0.80 e Å3
170 parametersExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00091 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.67827 (2)1.09634 (2)0.41894 (2)0.01952 (7)
I20.91260 (2)1.16703 (2)0.50892 (2)0.01704 (6)
I31.16454 (2)1.24311 (2)0.59403 (2)0.01907 (7)
Cl10.39992 (6)0.98349 (6)0.32707 (6)0.01852 (15)
S20.78491 (6)0.37523 (6)0.66898 (6)0.01882 (16)
S10.68199 (6)0.41735 (6)0.50222 (6)0.01885 (16)
N21.1441 (2)0.4996 (2)0.7561 (2)0.0192 (5)
H21.211 (3)0.515 (3)0.773 (3)0.023*
N10.5417 (2)0.7795 (2)0.4871 (2)0.0199 (5)
H10.516 (3)0.847 (3)0.477 (3)0.024*
C60.9235 (2)0.4272 (2)0.6967 (2)0.0158 (6)
C71.0175 (3)0.3800 (3)0.7912 (2)0.0177 (6)
H71.0056580.3212430.8360330.021*
C81.1276 (3)0.4183 (3)0.8198 (2)0.0184 (6)
H81.1923390.3868960.8851210.022*
C100.9433 (3)0.5117 (3)0.6312 (3)0.0218 (6)
H100.8803320.5451230.5656650.026*
C91.0561 (3)0.5457 (3)0.6637 (3)0.0221 (6)
H91.0713450.6028130.6197350.027*
C10.6298 (2)0.5595 (2)0.5052 (2)0.0152 (6)
C50.5599 (3)0.6079 (3)0.3976 (3)0.0198 (6)
H50.5422530.5645130.3298940.024*
C20.6521 (2)0.6235 (3)0.6030 (2)0.0180 (6)
H2A0.6984610.5911580.6769640.022*
C30.6063 (3)0.7340 (3)0.5911 (3)0.0223 (7)
H30.6206920.7786840.6572580.027*
C40.5170 (3)0.7196 (3)0.3912 (3)0.0209 (6)
H40.4697400.7542100.3185650.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01655 (11)0.02240 (11)0.02038 (11)0.00155 (7)0.00921 (9)0.00205 (8)
I20.01911 (11)0.01738 (10)0.01659 (11)0.00135 (7)0.00995 (8)0.00154 (7)
I30.01743 (11)0.02150 (11)0.01500 (11)0.00096 (7)0.00473 (8)0.00102 (7)
Cl10.0157 (3)0.0192 (3)0.0216 (4)0.0040 (3)0.0095 (3)0.0045 (3)
S20.0134 (4)0.0209 (3)0.0225 (4)0.0021 (3)0.0086 (3)0.0052 (3)
S10.0150 (4)0.0173 (3)0.0196 (4)0.0037 (3)0.0042 (3)0.0033 (3)
N20.0117 (12)0.0193 (12)0.0274 (14)0.0021 (10)0.0098 (11)0.0063 (11)
N10.0167 (13)0.0164 (12)0.0264 (14)0.0037 (10)0.0099 (11)0.0005 (11)
C60.0150 (14)0.0162 (13)0.0173 (14)0.0015 (11)0.0083 (12)0.0029 (11)
C70.0193 (15)0.0203 (14)0.0148 (14)0.0041 (12)0.0091 (12)0.0013 (12)
C80.0148 (15)0.0221 (14)0.0165 (14)0.0033 (11)0.0056 (12)0.0029 (12)
C100.0186 (16)0.0207 (15)0.0225 (15)0.0042 (12)0.0064 (13)0.0084 (12)
C90.0205 (16)0.0199 (14)0.0282 (17)0.0015 (12)0.0131 (14)0.0028 (13)
C10.0084 (13)0.0163 (13)0.0187 (14)0.0010 (10)0.0043 (11)0.0023 (11)
C50.0175 (15)0.0221 (15)0.0177 (15)0.0029 (12)0.0064 (12)0.0027 (12)
C20.0153 (15)0.0191 (14)0.0147 (14)0.0007 (11)0.0027 (12)0.0000 (12)
C30.0200 (16)0.0199 (14)0.0229 (16)0.0006 (12)0.0065 (13)0.0079 (13)
C40.0194 (16)0.0228 (15)0.0207 (15)0.0036 (12)0.0094 (13)0.0043 (13)
Geometric parameters (Å, º) top
I1—I22.8180 (4)C7—C81.368 (4)
I2—I33.0459 (4)C8—H80.9500
S2—S12.0285 (11)C10—H100.9500
S2—C61.762 (3)C10—C91.375 (4)
S1—C11.762 (3)C9—H90.9500
N2—H20.81 (3)C1—C51.394 (4)
N2—C81.331 (4)C1—C21.387 (4)
N2—C91.330 (4)C5—H50.9500
N1—H10.82 (3)C5—C41.374 (4)
N1—C31.334 (4)C2—H2A0.9500
N1—C41.337 (4)C2—C31.368 (4)
C6—C71.384 (4)C3—H30.9500
C6—C101.393 (4)C4—H40.9500
C7—H70.9500
I1—I2—I3177.129 (8)C9—C10—H10120.8
C6—S2—S1103.93 (10)N2—C9—C10120.7 (3)
C1—S1—S2105.03 (10)N2—C9—H9119.6
C8—N2—H2116 (2)C10—C9—H9119.6
C9—N2—H2122 (2)C5—C1—S1114.5 (2)
C9—N2—C8122.0 (3)C2—C1—S1125.9 (2)
C3—N1—H1123 (2)C2—C1—C5119.6 (3)
C3—N1—C4122.1 (3)C1—C5—H5120.6
C4—N1—H1115 (2)C4—C5—C1118.8 (3)
C7—C6—S2116.4 (2)C4—C5—H5120.6
C7—C6—C10119.1 (3)C1—C2—H2A120.6
C10—C6—S2124.5 (2)C3—C2—C1118.9 (3)
C6—C7—H7120.2C3—C2—H2A120.6
C8—C7—C6119.6 (3)N1—C3—C2120.5 (3)
C8—C7—H7120.2N1—C3—H3119.8
N2—C8—C7120.0 (3)C2—C3—H3119.8
N2—C8—H8120.0N1—C4—C5120.1 (3)
C7—C8—H8120.0N1—C4—H4120.0
C6—C10—H10120.8C5—C4—H4120.0
C9—C10—C6118.4 (3)
S2—S1—C1—C5177.6 (2)C7—C6—C10—C90.4 (4)
S2—S1—C1—C22.7 (3)C8—N2—C9—C100.9 (4)
S2—C6—C7—C8178.3 (2)C10—C6—C7—C81.1 (4)
S2—C6—C10—C9178.9 (2)C9—N2—C8—C70.2 (4)
S1—S2—C6—C7160.8 (2)C1—C5—C4—N10.5 (4)
S1—S2—C6—C1019.9 (3)C1—C2—C3—N10.2 (4)
S1—C1—C5—C4178.7 (2)C5—C1—C2—C31.2 (4)
S1—C1—C2—C3179.1 (2)C2—C1—C5—C41.5 (4)
C6—C7—C8—N20.8 (4)C3—N1—C4—C50.9 (5)
C6—C10—C9—N20.5 (4)C4—N1—C3—C21.3 (5)
Intermolecular interactions (Å, °) of compound 1 top
InteractionABB···CA···CAB···C
aN1—H1···Cl10.82 (3)2.41 (3)3.101 (2)142 (2)
bI2—I1···Cl12.8179 (4)3.4764 (8)173.93 (2)
cN2i—H2i···Cl10.81 (4)2.21 (4)3.006 (3)168
dC10—H10···I3ii0.953.073.833 (3)138
eC9—H9···I2ii0.953.184.108 (4)166
fC7—H7···I2iii0.953.033.738 (4)132
gC7—H7···I3iii0.953.143.801 (3)129
Symmetry codes: (i) -1 + x, 3/2 - y, -1/2 + z; (ii) 2 - x, 2 - y, 1 - z; (iii) x, 3/2 - y, 1/2 + z.
 

Funding information

Funding for this research was provided by: the Ministero per l'Ambiente e la Sicurezza Energetica (MASE; formerly Ministero della Transizione Ecologica, MITE) - Direzione generale Economia Circolare for funding (RAEE - Edizione 2021); Fondazione di Sardegna (FdS Progetti Biennali di Ateneo, annualità 2022); EPSRC (Engineering and Physical Science Research Council) for continued support of the UK's National Crystallography Service (NCS), based at the University of Southampton.

References

First citationAragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V. & Mancini, A. (2004). CrystEngComm, 6, 540–542.  CAS Google Scholar
First citationAragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V., Mancini, A. & Verani, G. (2008). Eur. J. Inorg. Chem. pp. 3921–3928.  CSD CrossRef Google Scholar
First citationAragoni, M. C., Arca, M., Devillanova, F. A., Isaia, F. & Lippolis, V. (2012). Cryst. Growth Des. 12, 2769–2779.  CrossRef CAS Google Scholar
First citationAragoni, M. C., Podda, E., Arca, M., Pintus, A., Lippolis, V., Caltagirone, C., Bartz, R. H., Lenardão, E. J., Perin, G., Schumacher, R. F., Coles, S. J. & Orton, J. B. (2022). New J. Chem. 46, 21921–21929.  CSD CrossRef CAS Google Scholar
First citationAragoni, M. C., Podda, E., Chaudhary, S., Bhasin, A. K. K., Bhasin, K. K., Coles, S. J., Orton, J. B., Isaia, F., Lippolis, V., Pintus, A., Slawin, A. M. Z., Woollins, J. D. & Arca, M. (2023). Chem. Asian J. 18, e202300836.  CSD CrossRef PubMed Google Scholar
First citationBaker, R. H., Dodson, R. M. & Riegel, B. (1946). J. Am. Chem. Soc. 68, 2636–2639.  CrossRef CAS Google Scholar
First citationBatsanov, A. S., Lightfoot, A. P., Twiddle, S. J. R. & Whiting, A. (2005). Eur. J. Org. Chem. pp. 1876–1883.  CSD CrossRef Google Scholar
First citationBatsanov, A. S., Lightfoot, A. P., Twiddle, S. J. R. & Whiting, A. (2006). Acta Cryst. E62, o901–o902.  CSD CrossRef IUCr Journals Google Scholar
First citationBolhuis, F. van, Koster, P. B. & Migchelsen, T. (1967). Acta Cryst. 23, 90–91.  CrossRef ICSD IUCr Journals Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBuist, A. R. & Kennedy, A. R. (2014). Cryst. Growth Des. 14, 6508–6513.  Web of Science CSD CrossRef CAS Google Scholar
First citationCoe, B. J., Hayat, S., Beddoes, R. L., Helliwell, M., Jeffery, J. C., Batten, S. R. & White, P. S. (1997). J. Chem. Soc. Dalton Trans. pp. 591–600.  CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationIsaia, F., Aragoni, M. C., Arca, M., Caltagirone, C., Castellano, C., Demartin, F., Garau, A., Lippolis, V. & Pintus, A. (2011). Dalton Trans. 40, 4505–4513.  CSD CrossRef CAS PubMed Google Scholar
First citationKnight, F. R., Athukorala Arachchige, K. S., Randall, R. A. M., Bühl, M., Slawin, A. M. Z. & Woollins, J. D. (2012). Dalton Trans. 41, 3154–3165.  CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKukkonen, E., Malinen, H., Haukka, M. & Konu, J. (2019). Cryst. Growth Des. 19, 2434–2445.  CSD CrossRef CAS Google Scholar
First citationLee, M. H., Yang, Z., Lim, C. W., Lee, Y. H., Dongbang, S., Kang, C. & Kim, J. S. (2013). Chem. Rev. 113, 5071–5109.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPan, F., Chen, Y., Li, S., Jiang, M. & Rissanen, K. (2019). Chem. A Eur. J. 25, 7485–7488.  CSD CrossRef CAS Google Scholar
First citationPan, F., Puttreddy, R., Rissanen, K. & Englert, U. (2015). CrystEngComm, 17, 6641–6645.  Web of Science CSD CrossRef CAS Google Scholar
First citationPandeeswaran, M. & Elango, K. P. (2009). Spectrochim. Acta A Mol. Biomol. Spectrosc. 72, 789–795.  CrossRef PubMed CAS Google Scholar
First citationRimmer, E. L., Bailey, R. D., Pennington, W. T. & Hanks, T. W. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 2557–2562.  CSD CrossRef Google Scholar
First citationSaab, M., Nelson, D. J., Leech, M., Lam, K., Nolan, S. P., Nahra, F. & Van Hecke, K. (2022). Dalton Trans. 51, 3721–3733.  CSD CrossRef CAS PubMed Google Scholar
First citationSarkar, D., Chandra Rao, P., Aiyappa, H. B., Kurungot, S., Mandal, S., Ramanujam, K. & Mandal, S. (2016). RSC Adv. 6, 37515–37521.  CSD CrossRef CAS Google Scholar
First citationSevier, C. S. & Kaiser, C. A. (2002). Nat. Rev. Mol. Cell Biol. 3, 836–847.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingha, S., Saha, A., Goswami, S., Dey, S. K., Payra, S., Banerjee, S., Kumar, S. & Saha, R. (2018). Cryst. Growth Des. 18, 189–199.  CSD CrossRef CAS Google Scholar
First citationSonnenberg, K., Mann, L., Redeker, F. A., Schmidt, B. & Riedel, S. (2020). Angew. Chem. Int. Ed. 59, 5464–5493.  Web of Science CSD CrossRef CAS Google Scholar
First citationTuikka, M. & Haukka, M. (2015). Acta Cryst. E71, o463.  CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y.-Q., Wang, Z.-M., Liao, C.-S. & Yan, C.-H. (1999). Acta Cryst. C55, 1503–1506.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWzgarda-Raj, K., Nawrot, M., Rybarczyk-Pirek, A. J. & Palusiak, M. (2021). Acta Cryst. C77, 458–466.  CSD CrossRef IUCr Journals Google Scholar
First citationZheng, F., Chen, R., Liu, Y., Yang, Q., Zhang, Z., Yang, Y., Ren, Q. & Bao, Z. (2023). Adv. Sci. 10, 2207127.  CSD CrossRef Google Scholar
First citationZheng, F., Guo, L., Chen, R., Chen, L., Zhang, Z., Yang, Q., Yang, Y., Su, B., Ren, Q. & Bao, Z. (2022). Angew. Chem. Int. Ed. 61, e202116686.  CSD CrossRef Google Scholar
First citationZhu, Q., Costentin, C., Stubbe, J. & Nocera, D. G. (2023). Chem. Sci. 14, 6876–6881.  CrossRef CAS PubMed Google Scholar
First citationZincke, T. (1911). Ber. Dtsch. Chem. Ges. 44, 769–771.  CrossRef CAS Google Scholar
First citationZupanc, A., Heliövaara, E., Moslova, K., Eronen, A., Kemell, M., Podlipnik, Č., Jereb, M. & Repo, T. (2022). Angew. Chem. 134, e202117587.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds