research communications
of 4,4′-(disulfanediyl)dipyridinium chloride triiodide
aCentro Servizi di Ateneo per la Ricerca (CeSAR), Università degli Studi di Cagliari, S.S. 554 bivio Sestu, Monserrato, 09042 Cagliari, Italy, bDipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 bivio Sestu, Monserrato, 09042 Cagliari, Italy, and cUK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
*Correspondence e-mail: enrico.podda@unica.it, marca@unica.it
4,4′-(Disulfanediyl)dipyridinium chloride triiodide, C10H10N2S22+·Cl−·I3−, (1) was synthesized by reaction of 4,4′-dipyridyldisulfide with ICl in a 1:1 molar ratio in dichloromethane solution. The structural characterization of 1 by SC-XRD analysis was supported by elemental analysis, FT–IR, and FT–Raman spectroscopic measurements.
Keywords: bis(pyridine-4-yl)disulfide; polypyridyl donors; halogen bonding; polyhalides; SC-XRD; crystal structure.
CCDC reference: 2330302
1. Chemical context
The reactions of pnictogen/chalcogen donors with dihalogens X2 or interhalogens XY (X, Y = Cl, Br, I) afford a variety of products depending on the nature of the donor, the dihalogen/interhalogen, and the reaction conditions (Aragoni et al., 2008; Rimmer et al., 1998; Aragoni et al., 2022; Knight et al., 2012). For chalcogen donors, charge–transfer (CT) ‘spoke’ adducts, hypercoordinate ‘T-shaped’ adducts, halonium adducts, and different types of cationic oxidation products of the donors have been identified and structurally characterized (Knight et al., 2012; Saab et al., 2022). Worthy of note, diiodine CT-adducts have been extensively investigated, also with a view to their application as leaching agents for toxic (Isaia et al., 2011) and precious metals (Zupanc et al., 2022) in waste from electrical and electronic equipment (WEEE). Among the pnictogen donors, many studies have focused on (poly)pyridyl derivatives. Analogous to S/Se-donors, the reactions of pyridyl donors with X2/XY have resulted in the formation of CT-adducts featuring a linear N⋯X—Y group (Kukkonen et al., 2019; Tuikka & Haukka, 2015) and halonium derivatives with an N⋯X+⋯N moiety (X = I; Y = Cl, Br, I) (Kukkonen et al., 2019; Batsanov et al., 2005, 2006). In addition, N-protonated pyridinium cations were obtained, whose charge can be counterbalanced by discrete halides or extended fascinating networks (Aragoni et al., 2004; Aragoni et al., 2023). Oxidation of the aromatic heterocycle to give a cationic radical species followed by solvolysis or reaction with incipient moisture has been proposed as a possible explanation for the formation of pyridinium cations (Rimmer et al., 1998; Aragoni et al., 2023).
The nature of the products isolated in the solid state is reflected in their peculiar FT–Raman response (Aragoni et al., 2004, 2008; Pandeeswaran et al., 2009). In particular, an elongation of the perturbed X–Y moiety with respect to the free halogen/interhalogen is found in CT-adducts, which determines a low energy shift of the relevant Raman-active stretching vibration (Aragoni et al., 2008). When polyhalide networks are formed, the stretching vibrations of the interacting synthons can be detected in the low-energy region of the FT–Raman spectrum (Aragoni et al., 2008, 2023).
Disulfides are an important class of organic compounds with a variety of biological and pharmacological applications (Sevier & Kaiser, 2002; Lee et al., 2013), in particular due to their antioxidant and prooxidant properties (Zhu et al., 2023). It is well known that the dibromine and dichlorine oxidation of diaryldisulfides leads to the cleavage of the sulfur–sulfur bond (Zincke reaction; Zincke,1911; Baker et al., 1946), whereas the reaction of disulfides with the mildest oxidant, diiodine, does not involve the cleavage of the S—S bond (Aragoni et al., 2023). The reaction of 2,2′-dipyridyldisulfide (L) with I2 in CH2Cl2 afforded the compound [(HL+)(I−)·5/2I2]∞, featuring an unusual polyiodide network counterbalancing the N-monoprotonated HL+ cation. Recently, an assembly isostructural to [(HL+)(I−)·5/2I2]∞ was obtained by reacting 2,2′-dipyridyldiselenide with I2 in either CH2Cl2 or CH3CN (Aragoni et al., 2023).
Although 4,4′-dipyridyldisulfide (L′) has been widely reported as a donor towards a variety of metal ions (Sarkar et al., 2016; Zheng et al., 2022, 2023; Singha et al., 2018), its reactivity towards halogens or interhalogens has been only marginally explored (Wzgarda-Raj et al., 2021; Coe et al., 1997). An example is provided by 4,4′-(disulfanediyl)dipyridinium pentaiodide triiodide (CSD code OXAFIF; Wzgarda-Raj et al., 2021) where the cation H2L′2+ is counterbalanced by a polyiodide built up of interacting I3− and I5− ions.
Following our investigation on the reactivity of polypyridyl substrates towards ICl (Aragoni et al., 2008), we report here on the structural and spectroscopic characterization of the novel salt 4,4′-disulfanediyldipyridinium chloride triiodide (1).
2. Structural commentary
By reacting 4,4′-dipyridyldisulfide (L′) and ICl in 1:1 molar ratio, product 1 was isolated and characterized by elemental analysis, melting point determination, FT–IR, and FT–Raman spectroscopy. Single-crystal X-ray established 1 as (H2L′2+)(Cl−)(I3−) (Fig. 1).
Compound 1 crystallizes in the monoclinic P21/c with four (H2L′2+)(Cl−)(I3−) units in the The of compound 1 consists of a donor molecule protonated at both the N1 and N2 pyridine nitrogen atoms H2L′2+ counterbalanced by a chloride and a triiodide I3− anions. In the H2L′2+ cation, the two pyridine rings are almost perpendicular [C1—S1—S2—C6 torsion angle = 89.4 (1)°], being rotated by 2.7 (3) and 19.8 (3)° with respect to the respective C–S–S plane. The linear triiodide anion [I1—I2—I3 = 177.13 (1)°] is remarkably asymmetric with a very short I1—I2 distance [2.8180 (4) Å], close to the I—I distance of solid-state iodine (2.715 Å; van Bolhuis et al. 1967), and a longer one [I2—I3 = 3.0459 (4) Å], in agreement to the three-body system of the I3− anion, showing a correlation between the two I—I distances. Accordingly, the I1—I2 and I2—I3 bond distances fall in the correlation reported by Devillanova (Aragoni et al., 2012) featured by IA–IB–IC systems, which correlates the relative elongations of the two IA—IB and IC—ID lengths with respect to the the sum of the relevant covalent radii.
3. Supramolecular features
The protonated pyridine rings of the H2L′2+ cation are involved in hydrogen-bonding (HB) interactions with the chloride anions (interaction a in Fig. 1; a and c in Fig. 2 and Table 1), thus forming a wavy 1-D hydrogen-bonded polymeric structure that develops perpendicular to the b-axis. In addition, each chloride interacts with a terminal iodine atom of a triiodide [I1⋯Cl1 = 3.4764 (8) Å; interaction b in Figs. 1 and 2 and Table 1] at a distance shorter than the sum of the relevant van der Waals radii (3.73 Å; Bondi, 1964), so that the chloride and the triiodide could be considered to form a [I⋯I–I⋯Cl]2– dianionic ensemble, unprecedented among the relevant polyinterhalides (Sonnenberg et al., 2020) deposited at the Cambridge Structural Database (CSD, version 5.45 update 1, March 2024; Groom et al., 2016). Nevertheless, the Cl⋯I distance is longer than those previously reported for the parent [I2Cl]− anion [for example I⋯Cl = 3.158, 3.047 Å in the structures with CSD codes BEQXEA (Wang et al. 1999) and BOJYIL (Pan et al. 2019), respectively] and [Cl2I2]2– dianions [3.070 and 3.242 Å in DOXDOL (Buist & Kennedy, 2014) and JUPCAA (Pan et al. 2015), respectively]. These Cl⋯I interactions, shown in Fig. 2, which fall into the realm of halogen bonding (XB) interactions, generate the crystal packing along with a set of weak C—H⋯I contacts (entries d–g in Table 1).
4. Conclusions
4,4′-Disulfanediyldipyridinium chloride triiodide (H2L′2+)(Cl−)(I3−)(1) was synthesized and characterized structurally and spectroscopically. The isolation of 1 confirms that L′ is not susceptible to the oxidative cleavage of the S—S disulfide bond by diiodine and iodine monochloride under mild conditions, but that it can undergo protonation and template fascinating supramolecular structures, as previously observed in the case of [(HL+)(I−)·5/2I2]∞. Further studies are ongoing in our laboratory to investigate the reactivity of different dipyridyldichalcogenides towards dihalogens and interhalogens and their versatility as building blocks for extended supramolecular assemblies based on σ-hole interactions.
5. Synthesis and crystallization
5.1. Materials and methods
All the reagents and solvents were used without further purification. Elemental analysis determinations were performed with an EA1108 CHNS-O Fisons instrument. Fourier-Transform Infrared (FT–IR) spectroscopic measurements were recorded on a Bruker IFS55 spectrometer at room temperature using a flow of dried air. Far-infrared (FIR; 500–50 cm−1) spectra were recorded on polythene pellets using a Mylar beam-splitter and polythene windows (resolution 2 cm−1). Middle-infrared (MIR) spectra were recorded on KBr pellets, with a KBr beam-splitter and KBr windows (resolution 2 cm−1). FT-Raman spectroscopy measurements were recorded on a Bruker RFS100 spectrometer (resolution of 2 cm−1), with an In–Ga–As detector operating with a Nd:YAG laser (λ = 1064 nm) with a 180° scattering geometry (excitation power 5 mW). Melting point determinations were carried out on a FALC mod. C apparatus.
5.2. Synthesis of compound 1
To 2 mL of a CH2Cl2 solution of 4,4′-dipyridyldisulfide (19 mg, 8.6·10−5 mol), a 0.054 mol L−1 solution of ICl in the same solvent was added dropwise in donor/ICl in a 1:1 molar ratio. A brown crystalline precipitate was isolated from the mother liquor by air-evaporation and washed with light petroleum ether. A small number of crystals were placed on a glass slide and coated with a perfluoroether oil. A crystal suitable for X-ray was selected and mounted on a glass fibre. Elemental analysis calculated for C10H10N2S2I3Cl: 18.81; H, 1.57; N, 4.38; S, 10.04%. Found: C, 18.63; H, 1.78; N, 4.09, S 9.98%. M.p. > 513 K. FT–MIR (KBr pellet, 4000–400 cm−1): 3854s, 3460s, 3437s, 3088s, 2743s, 2363s, 1952s, 1846s, 1773m, 1653s, 1603s, 1589s, 1558m, 1441s, 1371s, 1277s, 1086m, 1034m, 997m, 951m, 783m, 773s, 617s, 498m cm−1. FT–FIR (polythene pellet, 500–50 cm–1): 484m, 477m, 449w, 418m, 390w, 378m, 352m, 294w, 256m, 227s, 170s, 131m, 94m, 67m cm−1. FT–Raman (500–50 cm−1, 5 mW, relative intensities in parentheses related to the highest peak taken equal to 10.0): 267(0.7), 155 (2.2), 137 (3.0), 113 (10.0) cm−1.
6. Refinement
Crystal data, data collection and structure . H atoms bonded to heteroatoms could be located from difference-Fourier maps and their positions were freely refined. Other H atoms were placed in geometrically calculated positions and were constrained to ride on their parent atom with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2330302
https://doi.org/10.1107/S2056989024004213/ee2006sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024004213/ee2006Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024004213/ee2006Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989024004213/ee2006Isup4.cml
C10H10N2S22+·Cl−·I3− | F(000) = 1168 |
Mr = 638.47 | Dx = 2.464 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.9631 (11) Å | Cell parameters from 17448 reflections |
b = 11.3802 (5) Å | θ = 2.9–27.5° |
c = 13.1675 (11) Å | µ = 5.83 mm−1 |
β = 117.624 (6)° | T = 120 K |
V = 1721.1 (2) Å3 | Cut-plate, brown |
Z = 4 | 0.32 × 0.22 × 0.06 mm |
Bruker-Nonius 95mm CCD camera on κ-goniostat diffractometer | 3621 reflections with I > 2σ(I) |
Detector resolution: 9.091 pixels mm-1 | Rint = 0.027 |
φ & ω scans | θmax = 27.6°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −16→16 |
Tmin = 0.632, Tmax = 1.000 | k = −14→14 |
16769 measured reflections | l = −16→17 |
3959 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.022 | w = 1/[σ2(Fo2) + (0.0127P)2 + 2.0409P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.046 | (Δ/σ)max = 0.003 |
S = 1.13 | Δρmax = 0.74 e Å−3 |
3959 reflections | Δρmin = −0.80 e Å−3 |
170 parameters | Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00091 (7) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.67827 (2) | 1.09634 (2) | 0.41894 (2) | 0.01952 (7) | |
I2 | 0.91260 (2) | 1.16703 (2) | 0.50892 (2) | 0.01704 (6) | |
I3 | 1.16454 (2) | 1.24311 (2) | 0.59403 (2) | 0.01907 (7) | |
Cl1 | 0.39992 (6) | 0.98349 (6) | 0.32707 (6) | 0.01852 (15) | |
S2 | 0.78491 (6) | 0.37523 (6) | 0.66898 (6) | 0.01882 (16) | |
S1 | 0.68199 (6) | 0.41735 (6) | 0.50222 (6) | 0.01885 (16) | |
N2 | 1.1441 (2) | 0.4996 (2) | 0.7561 (2) | 0.0192 (5) | |
H2 | 1.211 (3) | 0.515 (3) | 0.773 (3) | 0.023* | |
N1 | 0.5417 (2) | 0.7795 (2) | 0.4871 (2) | 0.0199 (5) | |
H1 | 0.516 (3) | 0.847 (3) | 0.477 (3) | 0.024* | |
C6 | 0.9235 (2) | 0.4272 (2) | 0.6967 (2) | 0.0158 (6) | |
C7 | 1.0175 (3) | 0.3800 (3) | 0.7912 (2) | 0.0177 (6) | |
H7 | 1.005658 | 0.321243 | 0.836033 | 0.021* | |
C8 | 1.1276 (3) | 0.4183 (3) | 0.8198 (2) | 0.0184 (6) | |
H8 | 1.192339 | 0.386896 | 0.885121 | 0.022* | |
C10 | 0.9433 (3) | 0.5117 (3) | 0.6312 (3) | 0.0218 (6) | |
H10 | 0.880332 | 0.545123 | 0.565665 | 0.026* | |
C9 | 1.0561 (3) | 0.5457 (3) | 0.6637 (3) | 0.0221 (6) | |
H9 | 1.071345 | 0.602813 | 0.619735 | 0.027* | |
C1 | 0.6298 (2) | 0.5595 (2) | 0.5052 (2) | 0.0152 (6) | |
C5 | 0.5599 (3) | 0.6079 (3) | 0.3976 (3) | 0.0198 (6) | |
H5 | 0.542253 | 0.564513 | 0.329894 | 0.024* | |
C2 | 0.6521 (2) | 0.6235 (3) | 0.6030 (2) | 0.0180 (6) | |
H2A | 0.698461 | 0.591158 | 0.676964 | 0.022* | |
C3 | 0.6063 (3) | 0.7340 (3) | 0.5911 (3) | 0.0223 (7) | |
H3 | 0.620692 | 0.778684 | 0.657258 | 0.027* | |
C4 | 0.5170 (3) | 0.7196 (3) | 0.3912 (3) | 0.0209 (6) | |
H4 | 0.469740 | 0.754210 | 0.318565 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01655 (11) | 0.02240 (11) | 0.02038 (11) | 0.00155 (7) | 0.00921 (9) | 0.00205 (8) |
I2 | 0.01911 (11) | 0.01738 (10) | 0.01659 (11) | 0.00135 (7) | 0.00995 (8) | 0.00154 (7) |
I3 | 0.01743 (11) | 0.02150 (11) | 0.01500 (11) | −0.00096 (7) | 0.00473 (8) | −0.00102 (7) |
Cl1 | 0.0157 (3) | 0.0192 (3) | 0.0216 (4) | 0.0040 (3) | 0.0095 (3) | 0.0045 (3) |
S2 | 0.0134 (4) | 0.0209 (3) | 0.0225 (4) | 0.0021 (3) | 0.0086 (3) | 0.0052 (3) |
S1 | 0.0150 (4) | 0.0173 (3) | 0.0196 (4) | 0.0037 (3) | 0.0042 (3) | −0.0033 (3) |
N2 | 0.0117 (12) | 0.0193 (12) | 0.0274 (14) | −0.0021 (10) | 0.0098 (11) | −0.0063 (11) |
N1 | 0.0167 (13) | 0.0164 (12) | 0.0264 (14) | 0.0037 (10) | 0.0099 (11) | 0.0005 (11) |
C6 | 0.0150 (14) | 0.0162 (13) | 0.0173 (14) | 0.0015 (11) | 0.0083 (12) | −0.0029 (11) |
C7 | 0.0193 (15) | 0.0203 (14) | 0.0148 (14) | 0.0041 (12) | 0.0091 (12) | 0.0013 (12) |
C8 | 0.0148 (15) | 0.0221 (14) | 0.0165 (14) | 0.0033 (11) | 0.0056 (12) | −0.0029 (12) |
C10 | 0.0186 (16) | 0.0207 (15) | 0.0225 (15) | 0.0042 (12) | 0.0064 (13) | 0.0084 (12) |
C9 | 0.0205 (16) | 0.0199 (14) | 0.0282 (17) | −0.0015 (12) | 0.0131 (14) | 0.0028 (13) |
C1 | 0.0084 (13) | 0.0163 (13) | 0.0187 (14) | −0.0010 (10) | 0.0043 (11) | −0.0023 (11) |
C5 | 0.0175 (15) | 0.0221 (15) | 0.0177 (15) | 0.0029 (12) | 0.0064 (12) | −0.0027 (12) |
C2 | 0.0153 (15) | 0.0191 (14) | 0.0147 (14) | 0.0007 (11) | 0.0027 (12) | 0.0000 (12) |
C3 | 0.0200 (16) | 0.0199 (14) | 0.0229 (16) | −0.0006 (12) | 0.0065 (13) | −0.0079 (13) |
C4 | 0.0194 (16) | 0.0228 (15) | 0.0207 (15) | 0.0036 (12) | 0.0094 (13) | 0.0043 (13) |
I1—I2 | 2.8180 (4) | C7—C8 | 1.368 (4) |
I2—I3 | 3.0459 (4) | C8—H8 | 0.9500 |
S2—S1 | 2.0285 (11) | C10—H10 | 0.9500 |
S2—C6 | 1.762 (3) | C10—C9 | 1.375 (4) |
S1—C1 | 1.762 (3) | C9—H9 | 0.9500 |
N2—H2 | 0.81 (3) | C1—C5 | 1.394 (4) |
N2—C8 | 1.331 (4) | C1—C2 | 1.387 (4) |
N2—C9 | 1.330 (4) | C5—H5 | 0.9500 |
N1—H1 | 0.82 (3) | C5—C4 | 1.374 (4) |
N1—C3 | 1.334 (4) | C2—H2A | 0.9500 |
N1—C4 | 1.337 (4) | C2—C3 | 1.368 (4) |
C6—C7 | 1.384 (4) | C3—H3 | 0.9500 |
C6—C10 | 1.393 (4) | C4—H4 | 0.9500 |
C7—H7 | 0.9500 | ||
I1—I2—I3 | 177.129 (8) | C9—C10—H10 | 120.8 |
C6—S2—S1 | 103.93 (10) | N2—C9—C10 | 120.7 (3) |
C1—S1—S2 | 105.03 (10) | N2—C9—H9 | 119.6 |
C8—N2—H2 | 116 (2) | C10—C9—H9 | 119.6 |
C9—N2—H2 | 122 (2) | C5—C1—S1 | 114.5 (2) |
C9—N2—C8 | 122.0 (3) | C2—C1—S1 | 125.9 (2) |
C3—N1—H1 | 123 (2) | C2—C1—C5 | 119.6 (3) |
C3—N1—C4 | 122.1 (3) | C1—C5—H5 | 120.6 |
C4—N1—H1 | 115 (2) | C4—C5—C1 | 118.8 (3) |
C7—C6—S2 | 116.4 (2) | C4—C5—H5 | 120.6 |
C7—C6—C10 | 119.1 (3) | C1—C2—H2A | 120.6 |
C10—C6—S2 | 124.5 (2) | C3—C2—C1 | 118.9 (3) |
C6—C7—H7 | 120.2 | C3—C2—H2A | 120.6 |
C8—C7—C6 | 119.6 (3) | N1—C3—C2 | 120.5 (3) |
C8—C7—H7 | 120.2 | N1—C3—H3 | 119.8 |
N2—C8—C7 | 120.0 (3) | C2—C3—H3 | 119.8 |
N2—C8—H8 | 120.0 | N1—C4—C5 | 120.1 (3) |
C7—C8—H8 | 120.0 | N1—C4—H4 | 120.0 |
C6—C10—H10 | 120.8 | C5—C4—H4 | 120.0 |
C9—C10—C6 | 118.4 (3) | ||
S2—S1—C1—C5 | 177.6 (2) | C7—C6—C10—C9 | −0.4 (4) |
S2—S1—C1—C2 | −2.7 (3) | C8—N2—C9—C10 | 0.9 (4) |
S2—C6—C7—C8 | −178.3 (2) | C10—C6—C7—C8 | 1.1 (4) |
S2—C6—C10—C9 | 178.9 (2) | C9—N2—C8—C7 | −0.2 (4) |
S1—S2—C6—C7 | −160.8 (2) | C1—C5—C4—N1 | −0.5 (4) |
S1—S2—C6—C10 | 19.9 (3) | C1—C2—C3—N1 | −0.2 (4) |
S1—C1—C5—C4 | −178.7 (2) | C5—C1—C2—C3 | −1.2 (4) |
S1—C1—C2—C3 | 179.1 (2) | C2—C1—C5—C4 | 1.5 (4) |
C6—C7—C8—N2 | −0.8 (4) | C3—N1—C4—C5 | −0.9 (5) |
C6—C10—C9—N2 | −0.5 (4) | C4—N1—C3—C2 | 1.3 (5) |
Interaction | A—B | B···C | A···C | A—B···C | |
a | N1—H1···Cl1 | 0.82 (3) | 2.41 (3) | 3.101 (2) | 142 (2) |
b | I2—I1···Cl1 | 2.8179 (4) | 3.4764 (8) | – | 173.93 (2) |
c | N2i—H2i···Cl1 | 0.81 (4) | 2.21 (4) | 3.006 (3) | 168 |
d | C10—H10···I3ii | 0.95 | 3.07 | 3.833 (3) | 138 |
e | C9—H9···I2ii | 0.95 | 3.18 | 4.108 (4) | 166 |
f | C7—H7···I2iii | 0.95 | 3.03 | 3.738 (4) | 132 |
g | C7—H7···I3iii | 0.95 | 3.14 | 3.801 (3) | 129 |
Symmetry codes: (i) -1 + x, 3/2 - y, -1/2 + z; (ii) 2 - x, 2 - y, 1 - z; (iii) x, 3/2 - y, 1/2 + z. |
Funding information
Funding for this research was provided by: the Ministero per l'Ambiente e la Sicurezza Energetica (MASE; formerly Ministero della Transizione Ecologica, MITE) - Direzione generale Economia Circolare for funding (RAEE - Edizione 2021); Fondazione di Sardegna (FdS Progetti Biennali di Ateneo, annualità 2022); EPSRC (Engineering and Physical Science Research Council) for continued support of the UK's National Crystallography Service (NCS), based at the University of Southampton.
References
Aragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V. & Mancini, A. (2004). CrystEngComm, 6, 540–542. CAS Google Scholar
Aragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V., Mancini, A. & Verani, G. (2008). Eur. J. Inorg. Chem. pp. 3921–3928. CSD CrossRef Google Scholar
Aragoni, M. C., Arca, M., Devillanova, F. A., Isaia, F. & Lippolis, V. (2012). Cryst. Growth Des. 12, 2769–2779. CrossRef CAS Google Scholar
Aragoni, M. C., Podda, E., Arca, M., Pintus, A., Lippolis, V., Caltagirone, C., Bartz, R. H., Lenardão, E. J., Perin, G., Schumacher, R. F., Coles, S. J. & Orton, J. B. (2022). New J. Chem. 46, 21921–21929. CSD CrossRef CAS Google Scholar
Aragoni, M. C., Podda, E., Chaudhary, S., Bhasin, A. K. K., Bhasin, K. K., Coles, S. J., Orton, J. B., Isaia, F., Lippolis, V., Pintus, A., Slawin, A. M. Z., Woollins, J. D. & Arca, M. (2023). Chem. Asian J. 18, e202300836. CSD CrossRef PubMed Google Scholar
Baker, R. H., Dodson, R. M. & Riegel, B. (1946). J. Am. Chem. Soc. 68, 2636–2639. CrossRef CAS Google Scholar
Batsanov, A. S., Lightfoot, A. P., Twiddle, S. J. R. & Whiting, A. (2005). Eur. J. Org. Chem. pp. 1876–1883. CSD CrossRef Google Scholar
Batsanov, A. S., Lightfoot, A. P., Twiddle, S. J. R. & Whiting, A. (2006). Acta Cryst. E62, o901–o902. CSD CrossRef IUCr Journals Google Scholar
Bolhuis, F. van, Koster, P. B. & Migchelsen, T. (1967). Acta Cryst. 23, 90–91. CrossRef ICSD IUCr Journals Web of Science Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Buist, A. R. & Kennedy, A. R. (2014). Cryst. Growth Des. 14, 6508–6513. Web of Science CSD CrossRef CAS Google Scholar
Coe, B. J., Hayat, S., Beddoes, R. L., Helliwell, M., Jeffery, J. C., Batten, S. R. & White, P. S. (1997). J. Chem. Soc. Dalton Trans. pp. 591–600. CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Isaia, F., Aragoni, M. C., Arca, M., Caltagirone, C., Castellano, C., Demartin, F., Garau, A., Lippolis, V. & Pintus, A. (2011). Dalton Trans. 40, 4505–4513. CSD CrossRef CAS PubMed Google Scholar
Knight, F. R., Athukorala Arachchige, K. S., Randall, R. A. M., Bühl, M., Slawin, A. M. Z. & Woollins, J. D. (2012). Dalton Trans. 41, 3154–3165. CSD CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kukkonen, E., Malinen, H., Haukka, M. & Konu, J. (2019). Cryst. Growth Des. 19, 2434–2445. CSD CrossRef CAS Google Scholar
Lee, M. H., Yang, Z., Lim, C. W., Lee, Y. H., Dongbang, S., Kang, C. & Kim, J. S. (2013). Chem. Rev. 113, 5071–5109. Web of Science CrossRef CAS PubMed Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pan, F., Chen, Y., Li, S., Jiang, M. & Rissanen, K. (2019). Chem. A Eur. J. 25, 7485–7488. CSD CrossRef CAS Google Scholar
Pan, F., Puttreddy, R., Rissanen, K. & Englert, U. (2015). CrystEngComm, 17, 6641–6645. Web of Science CSD CrossRef CAS Google Scholar
Pandeeswaran, M. & Elango, K. P. (2009). Spectrochim. Acta A Mol. Biomol. Spectrosc. 72, 789–795. CrossRef PubMed CAS Google Scholar
Rimmer, E. L., Bailey, R. D., Pennington, W. T. & Hanks, T. W. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 2557–2562. CSD CrossRef Google Scholar
Saab, M., Nelson, D. J., Leech, M., Lam, K., Nolan, S. P., Nahra, F. & Van Hecke, K. (2022). Dalton Trans. 51, 3721–3733. CSD CrossRef CAS PubMed Google Scholar
Sarkar, D., Chandra Rao, P., Aiyappa, H. B., Kurungot, S., Mandal, S., Ramanujam, K. & Mandal, S. (2016). RSC Adv. 6, 37515–37521. CSD CrossRef CAS Google Scholar
Sevier, C. S. & Kaiser, C. A. (2002). Nat. Rev. Mol. Cell Biol. 3, 836–847. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singha, S., Saha, A., Goswami, S., Dey, S. K., Payra, S., Banerjee, S., Kumar, S. & Saha, R. (2018). Cryst. Growth Des. 18, 189–199. CSD CrossRef CAS Google Scholar
Sonnenberg, K., Mann, L., Redeker, F. A., Schmidt, B. & Riedel, S. (2020). Angew. Chem. Int. Ed. 59, 5464–5493. Web of Science CSD CrossRef CAS Google Scholar
Tuikka, M. & Haukka, M. (2015). Acta Cryst. E71, o463. CSD CrossRef IUCr Journals Google Scholar
Wang, Y.-Q., Wang, Z.-M., Liao, C.-S. & Yan, C.-H. (1999). Acta Cryst. C55, 1503–1506. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wzgarda-Raj, K., Nawrot, M., Rybarczyk-Pirek, A. J. & Palusiak, M. (2021). Acta Cryst. C77, 458–466. CSD CrossRef IUCr Journals Google Scholar
Zheng, F., Chen, R., Liu, Y., Yang, Q., Zhang, Z., Yang, Y., Ren, Q. & Bao, Z. (2023). Adv. Sci. 10, 2207127. CSD CrossRef Google Scholar
Zheng, F., Guo, L., Chen, R., Chen, L., Zhang, Z., Yang, Q., Yang, Y., Su, B., Ren, Q. & Bao, Z. (2022). Angew. Chem. Int. Ed. 61, e202116686. CSD CrossRef Google Scholar
Zhu, Q., Costentin, C., Stubbe, J. & Nocera, D. G. (2023). Chem. Sci. 14, 6876–6881. CrossRef CAS PubMed Google Scholar
Zincke, T. (1911). Ber. Dtsch. Chem. Ges. 44, 769–771. CrossRef CAS Google Scholar
Zupanc, A., Heliövaara, E., Moslova, K., Eronen, A., Kemell, M., Podlipnik, Č., Jereb, M. & Repo, T. (2022). Angew. Chem. 134, e202117587. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.