research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and thermal properties of a new polymorphic modification of diiso­thio­cyanato­tetra­kis­(4-methyl­pyridine)cobalt(II)

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by T. Akitsu, Tokyo University of Science, Japan (Received 18 April 2024; accepted 27 May 2024; online 31 May 2024)

The title compound, [Co(NCS)2(C6H7N)4] or Co(NCS)2(4-methyl­pyridine)4, was prepared by the reaction of Co(NCS)2 with 4-methyl­pyridine in water and is isotypic to one of the polymorphs of Ni(NCS)2(4-methyl­pyridine)4 [Kerr & Williams (1977[Kerr, I. S. & Williams, D. J. (1977). Acta Cryst. B33, 3589-3592.]). Acta Cryst. B33, 3589–3592 and Soldatov et al. (2004[Soldatov, D. V., Enright, G. D. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 1185-1194.]). Cryst. Growth Des. 4, 1185–1194]. Comparison of the experimental X-ray powder pattern with that calculated from the single-crystal data proves that a pure phase has been obtained. The asymmetric unit consists of one CoII cation, two crystallographically independent thio­cyanate anions and four independent 4-meth­yl­pyridine ligands, all located in general positions. The CoII cations are sixfold coordinated to two terminally N-bonded thio­cyanate anions and four 4-methyl­pyridine coligands within slightly distorted octa­hedra. Between the complexes, a number of weak C—H⋯N and C—H⋯S contacts are found. This structure represent a polymorphic modification of Co(NCS)2(4-methyl­pyridine)4 already reported in the CCD [Harris et al. (2003[Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Hehemann, D. G., Fanwick, P. E. & Richardson, J. (2003). NASA Technical Reports, 211890.]). NASA Technical Reports, 211890]. In contrast to this form, the crystal structure of the new polymorph shows a denser packing, indicating that it is thermodynamically stable at least at low temperatures. Thermogravimetric and differential thermoanalysis reveal that the title compound starts to decomposes at about 100°C and that the coligands are removed in separate steps without any sign of a polymorphic transition before decomposition.

1. Chemical context

Polymorphism is a widespread phenomenon and of equal importance in academic and industrial research. It is frequently found in organic compounds but there are also several examples where it is observed in coordination compounds (Moulton & Zaworotko, 2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]; Braga & Grepioni, 2000[Braga, D. & Grepioni, F. (2000). Chem. Soc. Rev. 29, 229-238.]; Tao et al., 2012[Tao, J., Wei, R. J., Huang, R. B. & Zheng, L. S. (2012). Chem. Soc. Rev. 41, 703-737.]). This is the case, for example, for coordination compounds based on thio­cyanate anions, which we have been inter­ested in for several years. The majority of polymorphic modifications in this class of compounds are observed for discrete complexes with terminally N-bonded ligands (Wöhlert et al., 2013[Wöhlert, S., Jess, I., Englert, U. & Näther, C. (2013). CrystEngComm, 15, 5326-5336.]; Neumann et al., 2018a[Neumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018a). Eur. J. Inorg. Chem. pp. 4972-4981.]). In contrast, compounds with a bridging coordination of the anionic ligands typically form isomeric modifications (Mautner et al., 2018[Mautner, F. E., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Neumann et al., 2018b[Neumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018b). Inorg. Chem. 57, 3305-3314.]; Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. 2018, 4779-4789.]). Within this project, we are especially inter­ested in compounds based on Co(NCS)2 which, because if its high magneticotropy, shows a versatile magnetic behavior (Rams et al., 2017[Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 24534-24544.], 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]). In the course of these investigations, we became inter­ested in 4-methyl­pyridine as coligand, with a special focus on Co(NCS)2 compounds.

Several compounds based on Co(NCS)2 have already been reported with this ligand, predominantly discrete complexes with a tetra­hedral or an octa­hedral coordination, with most of them forming clathrates (see Database survey). As part of our synthetic work we have obtained crystals that were characterized by single-crystal X-ray diffraction. This proves that a discrete complex with the composition Co(NCS)2(4-methyl­pyridine)4 was obtained. Based on these findings, a CSD search was performed, which revealed that the structure of a compound with this composition had already been reported by Solacolu and co-workers and Harris and co-workers [refcodes QQQGKG (Solacolu et al., 1974[Solacolu, I., Sandulescu, D. & Dragulescu, C. (1974). Rev. Roum. Chim. 19, 415-419.]) and VERNUC (Harris et al., 2003[Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Hehemann, D. G., Fanwick, P. E. & Richardson, J. (2003). NASA Technical Reports, 211890.])]. The title compound crystallizes differently, which means that we have obtained a new polymorphic modification of this complex.

[Scheme 1]

2. Structural commentary

The title compound, Co(NCS)2(4-methyl­pyridine)4, is isotypic to Ni(NCS)2(4-methyl­pyridine)4 already reported in the literature (refcode ICMPNI01; Kerr & Williams, 1977[Kerr, I. S. & Williams, D. J. (1977). Acta Cryst. B33, 3589-3592.] and Soldatov et al., 2004[Soldatov, D. V., Enright, G. D. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 1185-1194.]). Its asymmetric unit consists of one CoII cation, two thio­cyanate anions and four 4-methyl­pyridine coligands that are located in general positions (Fig. 1[link]). The metal cations are sixfold coordinated to two terminally N-bonded thio­cyanate anions and four 4-methyl­pyridine co­ligands into discrete complexes. Bond lengths and angles are comparable to those in the polymorphic modification already reported in the literature (refcode VERNUC; Harris et al., 2003[Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Hehemann, D. G., Fanwick, P. E. & Richardson, J. (2003). NASA Technical Reports, 211890.]) and show that a slightly distorted octa­hedral coordination is present (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

Co1—N2 2.091 (3) Co1—N41 2.173 (3)
Co1—N1 2.097 (3) Co1—N21 2.180 (3)
Co1—N11 2.162 (3) Co1—N31 2.183 (3)
       
N2—Co1—N1 179.47 (14) N11—Co1—N21 178.63 (12)
N2—Co1—N11 88.91 (13) N41—Co1—N21 91.01 (12)
N1—Co1—N11 90.82 (13) N2—Co1—N31 88.72 (13)
N2—Co1—N41 89.29 (12) N1—Co1—N31 90.82 (12)
N1—Co1—N41 91.17 (12) N11—Co1—N31 88.60 (12)
N11—Co1—N41 90.33 (12) N41—Co1—N31 177.75 (12)
N2—Co1—N21 90.86 (13) N21—Co1—N31 90.05 (12)
N1—Co1—N21 89.41 (13)    
[Figure 1]
Figure 1
Crystal structure of the title compound with atom labeling and displacement ellipsoids drawn at the 50% probability level.

The title compound represents a further polymorph of the modifications that have already been reported in the literature [refcodes QQQGKG (Solacolu et al., 1974[Solacolu, I., Sandulescu, D. & Dragulescu, C. (1974). Rev. Roum. Chim. 19, 415-419.]) and VERNUC (Harris et al., 2003[Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Hehemann, D. G., Fanwick, P. E. & Richardson, J. (2003). NASA Technical Reports, 211890.])], but it is noted that some contradictory results have been published. The modification reported by Harris and co-workers crystallizes in the tetra­gonal space group I41/a with eight formula units in the unit cell and a unit-cell volume of 6329.415 Å3. The form reported by Solacolu and co-workers crystallizes in the space group I41/a but with twelve formula units in the unit cell with a unit-cell volume of 6877.013 Å3. However, in the same paper they also present a p-xylene clathrate crystallizing in the same space space group with a unit-cell volume of 6324.998 Å3, which is very similar to that in the modification reported by Harris et al. It is therefore likely that the two unit-cell volumes were accidentally mixed up and that only one modification of Co(NCS)2(4-methyl­pyridine)4 is reported. This is further supported by the fact that in the form reported by Solacula et al. with Z = 12, each non-hydrogen atom would need a volume of 16.4 Å3, which seem to be much too low for such a complex. Unfortunately, no atomic coordinates are given for the ansolvate and the solvate reported by Solacula et al. and therefore those crystal structures cannot be compared with that of the form reported by Harris et al.

However, if the volume of each non hydrogen atom in the title compound (20.3 Å3) is compared with that of the modification reported by Harris et al. (22.6 Å3), it is obvious that the title compound is much more densely packed, indicating that this modification represents the thermodynamically stable form, at least at 0 K.

3. Supra­molecular features

In the crystal structure of the title compound, the discrete complexes are arranged in columns that propagate along the crystallographic b-axis direction (Fig. 2[link]). A number of C—H⋯N and C—H⋯S contacts are observed between the complexes, but from the H⋯N and H⋯S distances and the C—H⋯N and C—H⋯S angles (Table 2[link]) it is unlikely that these are significant inter­actions.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯S1i 0.95 2.89 3.692 (5) 142
C22—H22⋯S2ii 0.95 2.98 3.604 (4) 125
C25—H25⋯N2 0.95 2.65 3.164 (6) 114
C31—H31⋯N1 0.95 2.68 3.181 (5) 114
C35—H35⋯N2 0.95 2.65 3.129 (5) 112
C41—H41⋯N2 0.95 2.57 3.062 (5) 113
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, y+1, z].
[Figure 2]
Figure 2
Crystal structure of the title compound in a view along the crystallographic b-axis direction.

In contrast, the form reported by Harris et al., exhibits three-dimensional pores (Fig. 3[link]), which might be responsible for the low density of this modification. Moreover, because most clathrates are isotypic to the form reported by Harris et al., it is possible that these solvates lose their solvent mol­ecules and transform into the ansolvate, presumably without collapse of the overall structure.

[Figure 3]
Figure 3
Crystal structure of Co(NCS)2(4-methyl­pyridine)4 (reported by Harris et al., 2003[Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Hehemann, D. G., Fanwick, P. E. & Richardson, J. (2003). NASA Technical Reports, 211890.]) drawn from the CIF file available in the CSD. Note that this structure contains three-dimensional pores in which solvents might be incorporated.

4. Database survey

A search of the CSD (version 5.43, last update December 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using CONQUEST (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) reveals that ten compounds with Co(NCS)2 and 4-methyl­pyridine are present in the CSD. This includes two discrete complexes with a tetra­hedral coordination and the composition Co(NCS)2(4-methyl­pyridine)2 and Co(NCS)2(4-methyl­pyridine)2 p-xylene clathrate (refcodes QQQGKD and QQQGKJ; Solacolu et al., 1974[Solacolu, I., Sandulescu, D. & Dragulescu, C. (1974). Rev. Roum. Chim. 19, 415-419.]). There is also one compound reported with the composition Co(NCS)2(4-methyl­pyridine)2·2p-toluidine clathrate in which the cations are linked into chains (refcode CECDAP; Micu-Semeniuc et al., 1983[Micu-Semeniuc, R., Hila, E., Dobos-Roman, G. & Ghergari, L. (1983). Rev. Roum. Chim. 28, 471-475.]).

All remaining compounds consists of discrete complexes with the composition Co(NCS)2(4-methyl­pyridine)4, [refcodes QQQGKG (Solacolu et al., 1974[Solacolu, I., Sandulescu, D. & Dragulescu, C. (1974). Rev. Roum. Chim. 19, 415-419.]) and VERNUC (Harris et al., 2003[Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Hehemann, D. G., Fanwick, P. E. & Richardson, J. (2003). NASA Technical Reports, 211890.])] with some of them crystallizing as clathrates [p-toluidine clathrate (CECCOC; Micu-Semeniuc et al., 1983[Micu-Semeniuc, R., Hila, E., Dobos-Roman, G. & Ghergari, L. (1983). Rev. Roum. Chim. 28, 471-475.]), p-xylene clathrate (QQQGKJ; Solacolu et al., 1974[Solacolu, I., Sandulescu, D. & Dragulescu, C. (1974). Rev. Roum. Chim. 19, 415-419.]), 4-methyl­pyridine clathrate (XIHHEB, Harris et al., 2001[Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Fanwick, P. E., Richardson, J. & Gordon, E. M. (2001). Mater. Des. 22, 625-634.], and XIHHEB01, Harris et al., 2003[Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Hehemann, D. G., Fanwick, P. E. & Richardson, J. (2003). NASA Technical Reports, 211890.]), nitro­benzene, nitro­ethane and benzene clathrate (ZZZUXU, ZZZUXY and ZZZUYI; Belitskus et al., 1963[Belitskus, D., Jeffrey, G. A., McMullan, R. K. & Stephenson, N. C. (1963). Inorg. Chem. 2, 873-875.])].

Finally, it is noted that for Ni(NCS)2(4-methyl­pyridine)4, two different polymorphic modifications have also been reported, including two reports on the form that is isotypic to the title compound [refcodes ICMPNI01 (Kerr & Williams, 1977[Kerr, I. S. & Williams, D. J. (1977). Acta Cryst. B33, 3589-3592.]) and ICMPNI03 (Soldatov et al., 2004[Soldatov, D. V., Enright, G. D. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 1185-1194.])] and four reports on the form isotypic to Co(NCS)2(4-methyl­pyridine)4 [ICMPNI (Andreetti et al., 1972[Andreetti, G. D., Bocelli, G. & Sgarabotto, P. (1972). Cryst. Struct. Commun. 1, 51-54.]), ICMPNI02 (Harris et al., 2001[Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Fanwick, P. E., Richardson, J. & Gordon, E. M. (2001). Mater. Des. 22, 625-634.]) ICMPNI04 and ICMPNI05 (Soldatov et al., 2004[Soldatov, D. V., Enright, G. D. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 1185-1194.]) and ICMPNI06 (Harris et al., 2003[Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Hehemann, D. G., Fanwick, P. E. & Richardson, J. (2003). NASA Technical Reports, 211890.])].

5. Additional investigations

The experimental X-ray powder pattern of the title compound was compared with that calculated from single-crystal data; this proves that a pure crystalline phase has been obtained (Fig. 4[link]).

[Figure 4]
Figure 4
Experimental (top) and calculated (bottom) X-ray powder patterns of the title compound.

The title compound was also investigated by thermogravimetry and differential thermoanalysis (TG-DTA) measurements. Upon heating, several mass losses are observed, which are accompanied by endothermic events in the DTA curve (Fig. 4[link]). From the DTG curve, it is obvious that all mass losses are poorly resolved (Fig. 5[link]). The experimental mass loss of the first and second step is in rough agreement with that calculated for the removal of one 4-methyl­pyridine ligand in each step (Δmcalc. = 17.0%). Upon further heating, the remaining 4-methyl­pyridine ligands are removed and the Co(NCS)2 formed as an inter­mediate decomposes.

[Figure 5]
Figure 5
DTG, TG and DTG curves for the title compound. The mass loss is given in % and the peak temperature in °C.

6. Synthesis and crystallization

Synthesis

Co(NCS)2 (99.9%) and 4-methyl­pyridine (98%) were purchased from Sigma Aldrich. Single crystals of the title compound suitable for structure determination were obtained by dissolving 0.25 mmol (43.8 mg) of Co(NCS)2 in 7 mL of demineralized water. To this solution, 1.00 mmol (97.3 µl) of 4-methyl­pyridine were added and the reaction mixture was heated to 413 K for 15 min in a closed vial. Afterwards, it was cooled to 363 K and stored at this temperature overnight, leading to the formation of violet-colored crystals. Larger amounts of a crystalline powder were prepared by stirring 0.50 mmol (87.6 mg) of Co(NCS)2 and 2.00 mmol (194.6 µl) of 4-methyl­pyridine in 2 mL of demineralized water for 3 d at room-temperature. The violet-colored powder was filtered off and dried in air.

Experimental details

The X-ray powder pattern was measured using a Stoe Transmission Powder Diffraction System (STADI P) equipped with a linear, position-sensitive MYTHEN 1K detector from Stoe & Cie. Thermogravimetry and differential thermoanalysis (TG-DTA) measurements were performed in a dynamic nitro­gen atmosphere in Al2O3 crucibles with 8°C min−1 using a STA-PT 1000 thermobalance from Linseis. The TG-DTA instrument was calibrated using standard references materials.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were positioned with idealized geometry (methyl H atoms allowed to rotate and not to tip) and were refined with Uĩso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model.

Table 3
Experimental details

Crystal data
Chemical formula [Co(NCS)2(C6H7N)4]
Mr 547.59
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 19.0089 (7), 9.7403 (3), 16.7516 (6)
β (°) 113.370 (3)
V3) 2847.15 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.77
Crystal size (mm) 0.14 × 0.10 × 0.06
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.735, 0.942
No. of measured, independent and observed [I > 2σ(I)] reflections 22646, 5557, 4740
Rint 0.075
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.164, 1.10
No. of reflections 5557
No. of parameters 321
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.34
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), XP in SHELXTL-PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Diisothiocyanatotetrakis(4-methylpyridine)cobalt(II) top
Crystal data top
[Co(NCS)2(C6H7N)4]F(000) = 1140
Mr = 547.59Dx = 1.277 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.0089 (7) ÅCell parameters from 22661 reflections
b = 9.7403 (3) Åθ = 2.4–26.0°
c = 16.7516 (6) ŵ = 0.77 mm1
β = 113.370 (3)°T = 200 K
V = 2847.15 (18) Å3Plate, red
Z = 40.14 × 0.10 × 0.06 mm
Data collection top
Stoe IPDS-2
diffractometer
4740 reflections with I > 2σ(I)
ω scansRint = 0.075
Absorption correction: numerical
(X-Red and X-Shape; Stoe, 2008)
θmax = 26.0°, θmin = 2.4°
Tmin = 0.735, Tmax = 0.942h = 2323
22646 measured reflectionsk = 1211
5557 independent reflectionsl = 1920
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0526P)2 + 3.0556P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.164(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.37 e Å3
5557 reflectionsΔρmin = 0.34 e Å3
321 parametersExtinction correction: SHELXL2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.020 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.75009 (3)0.27830 (5)0.72802 (3)0.0598 (2)
N10.83018 (19)0.4369 (4)0.7493 (2)0.0687 (8)
C10.8514 (2)0.5485 (4)0.7635 (3)0.0700 (10)
S10.88072 (10)0.70552 (14)0.78286 (16)0.1355 (8)
N20.6711 (2)0.1190 (3)0.7075 (2)0.0706 (9)
C20.6392 (2)0.0154 (4)0.6866 (2)0.0627 (9)
S20.59471 (9)0.12915 (13)0.65766 (9)0.0953 (4)
N110.81009 (18)0.1530 (3)0.6687 (2)0.0631 (8)
C110.7743 (2)0.0719 (4)0.5998 (3)0.0734 (11)
H110.7198640.0737720.5733840.088*
C120.8125 (3)0.0137 (5)0.5657 (3)0.0798 (12)
H120.7845220.0676720.5159370.096*
C130.8911 (3)0.0219 (4)0.6033 (3)0.0773 (11)
C140.9283 (2)0.0599 (5)0.6740 (3)0.0729 (11)
H140.9826240.0574490.7021500.087*
C150.8869 (2)0.1452 (4)0.7040 (2)0.0674 (10)
H150.9140970.2021170.7524880.081*
C160.9359 (4)0.1151 (6)0.5673 (4)0.114 (2)
H16A0.9436380.2046370.5962160.171*
H16B0.9857790.0734340.5780400.171*
H16C0.9071470.1270820.5046370.171*
N210.69095 (18)0.4019 (3)0.7907 (2)0.0618 (7)
C210.6878 (2)0.5394 (4)0.7865 (3)0.0666 (10)
H210.7110520.5849930.7530490.080*
C220.6527 (2)0.6173 (4)0.8283 (3)0.0705 (10)
H220.6526270.7145350.8239410.085*
C230.6172 (2)0.5543 (4)0.8771 (3)0.0678 (10)
C240.6202 (3)0.4139 (4)0.8810 (3)0.0708 (10)
H240.5968380.3656100.9133860.085*
C250.6572 (2)0.3426 (4)0.8376 (3)0.0681 (10)
H250.6586010.2452260.8415500.082*
C260.5760 (3)0.6355 (5)0.9219 (3)0.0942 (15)
H26A0.5794800.7335870.9110530.141*
H26B0.5996840.6178460.9846040.141*
H26C0.5220310.6077870.8991580.141*
N310.82027 (19)0.1859 (3)0.8531 (2)0.0627 (8)
C310.8626 (3)0.2631 (4)0.9211 (3)0.0714 (11)
H310.8616770.3598490.9136050.086*
C320.9076 (3)0.2104 (4)1.0015 (3)0.0767 (12)
H320.9374950.2701551.0472200.092*
C330.9093 (3)0.0714 (4)1.0156 (3)0.0715 (10)
C340.8663 (3)0.0092 (4)0.9449 (3)0.0780 (12)
H340.8664650.1061950.9509020.094*
C350.8234 (2)0.0505 (4)0.8662 (3)0.0709 (11)
H350.7945900.0073620.8188490.085*
C360.9558 (3)0.0107 (5)1.1038 (3)0.0936 (15)
H36A0.9790770.0847401.1455710.140*
H36B0.9962510.0478771.0998180.140*
H36C0.9224110.0443341.1232060.140*
N410.67845 (18)0.3624 (3)0.6016 (2)0.0622 (8)
C410.6027 (2)0.3398 (4)0.5677 (2)0.0625 (9)
H410.5806920.2963450.6031530.075*
C420.5553 (2)0.3761 (4)0.4845 (3)0.0641 (9)
H420.5019950.3568640.4637670.077*
C430.5844 (2)0.4403 (4)0.4309 (2)0.0675 (10)
C440.6623 (3)0.4658 (4)0.4658 (3)0.0716 (10)
H440.6852170.5106430.4317560.086*
C450.7068 (2)0.4263 (4)0.5496 (3)0.0676 (10)
H450.7601950.4450890.5718640.081*
C460.5336 (3)0.4760 (5)0.3387 (3)0.0888 (14)
H46A0.5612110.5372780.3147170.133*
H46B0.4873850.5221270.3374800.133*
H46C0.5191840.3919050.3038750.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0631 (3)0.0557 (3)0.0541 (3)0.0041 (2)0.0163 (2)0.0001 (2)
N10.0677 (19)0.064 (2)0.067 (2)0.0042 (16)0.0191 (16)0.0020 (16)
C10.062 (2)0.063 (2)0.079 (3)0.0027 (19)0.021 (2)0.004 (2)
S10.0977 (11)0.0653 (8)0.239 (2)0.0171 (7)0.0625 (13)0.0333 (10)
N20.075 (2)0.0621 (19)0.068 (2)0.0067 (17)0.0203 (17)0.0009 (16)
C20.066 (2)0.062 (2)0.053 (2)0.0015 (18)0.0160 (17)0.0060 (17)
S20.1259 (11)0.0697 (7)0.0837 (8)0.0312 (7)0.0345 (8)0.0084 (6)
N110.0613 (18)0.0658 (19)0.0539 (17)0.0028 (15)0.0141 (14)0.0015 (14)
C110.068 (2)0.077 (3)0.065 (2)0.004 (2)0.0153 (19)0.014 (2)
C120.089 (3)0.067 (3)0.073 (3)0.003 (2)0.022 (2)0.015 (2)
C130.091 (3)0.059 (2)0.080 (3)0.012 (2)0.033 (2)0.006 (2)
C140.068 (2)0.078 (3)0.066 (2)0.007 (2)0.020 (2)0.012 (2)
C150.067 (2)0.073 (2)0.053 (2)0.0020 (19)0.0145 (18)0.0006 (18)
C160.131 (5)0.093 (4)0.125 (5)0.032 (3)0.058 (4)0.008 (3)
N210.0658 (18)0.0588 (17)0.0574 (17)0.0020 (14)0.0207 (15)0.0045 (14)
C210.073 (2)0.057 (2)0.068 (2)0.0022 (18)0.026 (2)0.0085 (18)
C220.080 (3)0.058 (2)0.070 (2)0.0021 (19)0.026 (2)0.0033 (18)
C230.075 (2)0.066 (2)0.059 (2)0.0032 (19)0.0232 (19)0.0008 (18)
C240.082 (3)0.070 (2)0.062 (2)0.001 (2)0.030 (2)0.0066 (19)
C250.079 (3)0.058 (2)0.065 (2)0.0021 (19)0.026 (2)0.0065 (18)
C260.121 (4)0.079 (3)0.097 (4)0.003 (3)0.057 (3)0.009 (3)
N310.0714 (19)0.0558 (17)0.0531 (17)0.0022 (15)0.0164 (15)0.0030 (14)
C310.096 (3)0.056 (2)0.052 (2)0.001 (2)0.019 (2)0.0023 (17)
C320.094 (3)0.071 (3)0.053 (2)0.002 (2)0.016 (2)0.0047 (19)
C330.080 (3)0.070 (2)0.057 (2)0.008 (2)0.0187 (19)0.0062 (19)
C340.085 (3)0.060 (2)0.073 (3)0.002 (2)0.013 (2)0.010 (2)
C350.078 (3)0.055 (2)0.066 (2)0.0002 (19)0.013 (2)0.0036 (18)
C360.106 (4)0.091 (3)0.061 (3)0.007 (3)0.010 (2)0.017 (2)
N410.0608 (17)0.0644 (18)0.0550 (17)0.0005 (14)0.0161 (14)0.0022 (14)
C410.062 (2)0.062 (2)0.059 (2)0.0001 (17)0.0191 (17)0.0001 (17)
C420.060 (2)0.061 (2)0.062 (2)0.0016 (17)0.0150 (17)0.0054 (17)
C430.074 (2)0.063 (2)0.056 (2)0.0111 (19)0.0151 (19)0.0039 (17)
C440.080 (3)0.069 (2)0.064 (2)0.000 (2)0.026 (2)0.0048 (19)
C450.064 (2)0.070 (2)0.064 (2)0.0034 (19)0.0199 (19)0.0067 (19)
C460.092 (3)0.100 (3)0.057 (2)0.019 (3)0.011 (2)0.005 (2)
Geometric parameters (Å, º) top
Co1—N22.091 (3)C24—H240.9500
Co1—N12.097 (3)C25—H250.9500
Co1—N112.162 (3)C26—H26A0.9800
Co1—N412.173 (3)C26—H26B0.9800
Co1—N212.180 (3)C26—H26C0.9800
Co1—N312.183 (3)N31—C351.334 (5)
N1—C11.151 (5)N31—C311.336 (5)
C1—S11.616 (4)C31—C321.376 (6)
N2—C21.158 (5)C31—H310.9500
C2—S21.614 (4)C32—C331.372 (6)
N11—C111.341 (5)C32—H320.9500
N11—C151.342 (5)C33—C341.385 (6)
C11—C121.370 (6)C33—C361.509 (6)
C11—H110.9500C34—C351.375 (5)
C12—C131.375 (6)C34—H340.9500
C12—H120.9500C35—H350.9500
C13—C141.368 (6)C36—H36A0.9800
C13—C161.523 (7)C36—H36B0.9800
C14—C151.370 (6)C36—H36C0.9800
C14—H140.9500N41—C411.340 (5)
C15—H150.9500N41—C451.345 (5)
C16—H16A0.9800C41—C421.373 (5)
C16—H16B0.9800C41—H410.9500
C16—H16C0.9800C42—C431.378 (6)
N21—C251.327 (5)C42—H420.9500
N21—C211.341 (5)C43—C441.382 (6)
C21—C221.372 (6)C43—C461.501 (5)
C21—H210.9500C44—C451.376 (5)
C22—C231.392 (6)C44—H440.9500
C22—H220.9500C45—H450.9500
C23—C241.369 (6)C46—H46A0.9800
C23—C261.506 (6)C46—H46B0.9800
C24—C251.384 (6)C46—H46C0.9800
N2—Co1—N1179.47 (14)N21—C25—C24124.0 (4)
N2—Co1—N1188.91 (13)N21—C25—H25118.0
N1—Co1—N1190.82 (13)C24—C25—H25118.0
N2—Co1—N4189.29 (12)C23—C26—H26A109.5
N1—Co1—N4191.17 (12)C23—C26—H26B109.5
N11—Co1—N4190.33 (12)H26A—C26—H26B109.5
N2—Co1—N2190.86 (13)C23—C26—H26C109.5
N1—Co1—N2189.41 (13)H26A—C26—H26C109.5
N11—Co1—N21178.63 (12)H26B—C26—H26C109.5
N41—Co1—N2191.01 (12)C35—N31—C31116.4 (3)
N2—Co1—N3188.72 (13)C35—N31—Co1122.4 (3)
N1—Co1—N3190.82 (12)C31—N31—Co1121.2 (3)
N11—Co1—N3188.60 (12)N31—C31—C32123.7 (4)
N41—Co1—N31177.75 (12)N31—C31—H31118.2
N21—Co1—N3190.05 (12)C32—C31—H31118.2
C1—N1—Co1154.4 (3)C33—C32—C31120.0 (4)
N1—C1—S1179.7 (5)C33—C32—H32120.0
C2—N2—Co1162.3 (4)C31—C32—H32120.0
N2—C2—S2180.0 (5)C32—C33—C34116.5 (4)
C11—N11—C15115.9 (4)C32—C33—C36121.3 (4)
C11—N11—Co1123.2 (3)C34—C33—C36122.2 (4)
C15—N11—Co1120.7 (3)C35—C34—C33120.3 (4)
N11—C11—C12123.0 (4)C35—C34—H34119.8
N11—C11—H11118.5C33—C34—H34119.8
C12—C11—H11118.5N31—C35—C34123.1 (4)
C11—C12—C13120.3 (4)N31—C35—H35118.4
C11—C12—H12119.9C34—C35—H35118.4
C13—C12—H12119.9C33—C36—H36A109.5
C14—C13—C12117.2 (4)C33—C36—H36B109.5
C14—C13—C16120.7 (5)H36A—C36—H36B109.5
C12—C13—C16122.0 (5)C33—C36—H36C109.5
C13—C14—C15119.7 (4)H36A—C36—H36C109.5
C13—C14—H14120.2H36B—C36—H36C109.5
C15—C14—H14120.2C41—N41—C45116.2 (3)
N11—C15—C14123.8 (4)C41—N41—Co1120.2 (3)
N11—C15—H15118.1C45—N41—Co1123.3 (3)
C14—C15—H15118.1N41—C41—C42123.4 (4)
C13—C16—H16A109.5N41—C41—H41118.3
C13—C16—H16B109.5C42—C41—H41118.3
H16A—C16—H16B109.5C41—C42—C43120.5 (4)
C13—C16—H16C109.5C41—C42—H42119.8
H16A—C16—H16C109.5C43—C42—H42119.8
H16B—C16—H16C109.5C42—C43—C44116.5 (4)
C25—N21—C21116.4 (4)C42—C43—C46121.0 (4)
C25—N21—Co1120.5 (3)C44—C43—C46122.5 (4)
C21—N21—Co1123.2 (3)C45—C44—C43120.2 (4)
N21—C21—C22123.1 (4)C45—C44—H44119.9
N21—C21—H21118.5C43—C44—H44119.9
C22—C21—H21118.5N41—C45—C44123.3 (4)
C21—C22—C23120.2 (4)N41—C45—H45118.4
C21—C22—H22119.9C44—C45—H45118.4
C23—C22—H22119.9C43—C46—H46A109.5
C24—C23—C22116.6 (4)C43—C46—H46B109.5
C24—C23—C26121.4 (4)H46A—C46—H46B109.5
C22—C23—C26122.0 (4)C43—C46—H46C109.5
C23—C24—C25119.8 (4)H46A—C46—H46C109.5
C23—C24—H24120.1H46B—C46—H46C109.5
C25—C24—H24120.1
C15—N11—C11—C120.6 (6)C35—N31—C31—C320.3 (7)
Co1—N11—C11—C12175.9 (3)Co1—N31—C31—C32179.7 (4)
N11—C11—C12—C131.5 (7)N31—C31—C32—C331.4 (8)
C11—C12—C13—C141.0 (7)C31—C32—C33—C342.3 (7)
C11—C12—C13—C16179.7 (5)C31—C32—C33—C36177.9 (5)
C12—C13—C14—C150.2 (6)C32—C33—C34—C351.5 (7)
C16—C13—C14—C15178.5 (4)C36—C33—C34—C35178.6 (5)
C11—N11—C15—C140.7 (6)C31—N31—C35—C341.1 (7)
Co1—N11—C15—C14174.7 (3)Co1—N31—C35—C34178.9 (4)
C13—C14—C15—N111.1 (7)C33—C34—C35—N310.2 (8)
C25—N21—C21—C220.5 (6)C45—N41—C41—C421.2 (6)
Co1—N21—C21—C22177.8 (3)Co1—N41—C41—C42172.4 (3)
N21—C21—C22—C230.8 (6)N41—C41—C42—C430.5 (6)
C21—C22—C23—C240.5 (6)C41—C42—C43—C440.4 (6)
C21—C22—C23—C26178.2 (4)C41—C42—C43—C46177.8 (4)
C22—C23—C24—C250.0 (6)C42—C43—C44—C450.6 (6)
C26—C23—C24—C25178.7 (4)C46—C43—C44—C45177.5 (4)
C21—N21—C25—C240.0 (6)C41—N41—C45—C440.9 (6)
Co1—N21—C25—C24178.4 (3)Co1—N41—C45—C44172.4 (3)
C23—C24—C25—N210.3 (7)C43—C44—C45—N410.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···S1i0.952.893.692 (5)142
C22—H22···S2ii0.952.983.604 (4)125
C25—H25···N20.952.653.164 (6)114
C31—H31···N10.952.683.181 (5)114
C35—H35···N20.952.653.129 (5)112
C41—H41···N20.952.573.062 (5)113
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the State of Schleswig-Holstein.

References

First citationAndreetti, G. D., Bocelli, G. & Sgarabotto, P. (1972). Cryst. Struct. Commun. 1, 51–54.  Google Scholar
First citationBelitskus, D., Jeffrey, G. A., McMullan, R. K. & Stephenson, N. C. (1963). Inorg. Chem. 2, 873–875.  CrossRef CAS Google Scholar
First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBraga, D. & Grepioni, F. (2000). Chem. Soc. Rev. 29, 229–238.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Fanwick, P. E., Richardson, J. & Gordon, E. M. (2001). Mater. Des. 22, 625–634.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Hehemann, D. G., Fanwick, P. E. & Richardson, J. (2003). NASA Technical Reports, 211890.  Google Scholar
First citationJochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. 2018, 4779–4789.  Web of Science CSD CrossRef CAS Google Scholar
First citationKerr, I. S. & Williams, D. J. (1977). Acta Cryst. B33, 3589–3592.  CrossRef CAS IUCr Journals Google Scholar
First citationMautner, F. E., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  CrossRef CAS Google Scholar
First citationMicu-Semeniuc, R., Hila, E., Dobos-Roman, G. & Ghergari, L. (1983). Rev. Roum. Chim. 28, 471–475.  CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018b). Inorg. Chem. 57, 3305–3314.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNeumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018a). Eur. J. Inorg. Chem. pp. 4972–4981.  Web of Science CSD CrossRef Google Scholar
First citationRams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 24534–24544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSolacolu, I., Sandulescu, D. & Dragulescu, C. (1974). Rev. Roum. Chim. 19, 415–419.  CAS Google Scholar
First citationSoldatov, D. V., Enright, G. D. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 1185–1194.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTao, J., Wei, R. J., Huang, R. B. & Zheng, L. S. (2012). Chem. Soc. Rev. 41, 703–737.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Jess, I., Englert, U. & Näther, C. (2013). CrystEngComm, 15, 5326–5336.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds