research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{2-[5-(3,4,5-tri­meth­oxyphenyl)-4H-1,2,4-triazol-3-yl]pyridine}palladium(II) bis­­(tri­fluoro­acetate) tri­fluoro­acetic acid disolvate

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, bEnamine Ltd. (www.enamine.net), Winston Churchill str. 78, 02094 Kyiv, Ukraine, and c"PetruPoni" Institute of Macromolecular Chemistry, Aleea Gr., Ghica Voda 41A, 700487 Iasi, Romania
*Correspondence e-mail: vassilyeva@univ.kiev.ua

Edited by J. M. Delgado, Universidad de Los Andes, Venezuela (Received 5 February 2024; accepted 29 April 2024; online 3 May 2024)

The new palladium(II) complex, [Pd(C16H16N4O3)2](CF3COO)2·2CF3COOH, crystallizes in the triclinic space group P[\overline{1}] with the asymmetric unit containing half the cation (PdII site symmetry Ci), one tri­fluoro­actetate anion and one co-crystallized tri­fluoro­acetic acid mol­ecule. Two neutral chelating 2-[5-(3,4,5-tri­meth­oxy­phen­yl)-4H-1,2,4-triazol-3-yl]pyridine ligands coordinate to the PdII ion through the triazole-N and pyridine-N atoms in a distorted trans-PdN4 square-planar configuration [Pd—N 1.991 (2), 2.037 (2) Å; cis N—Pd—N 79.65 (8), 100.35 (8)°]. The complex cation is quite planar, except for the methoxo groups (δ = 0.117 Å for one of the C atoms). The planar configuration is supported by two intra­molecular C—H⋯N hydrogen bonds. In the crystal, the ππ-stacked cations are arranged in sheets parallel to the ab plane that are flanked on both sides by the tri­fluoro­acetic acid–tri­fluoro­acetate anion pairs. Apart from classical N/O—H⋯O hydrogen-bonding inter­actions, weak C—H⋯F/N/O contacts consolidate the three-dimensional architecture. Both tri­fluoro­acetic moieties were found to be disordered over two resolvable positions with a refined occupancy ratio of 0.587 (1):0.413 (17) and 0.530 (6):0.470 (6) for the protonated and deprotonated forms, respectively.

1. Chemical context

Triazoles are five-membered heterocyclic compounds containing three nitro­gen atoms and two carbon atoms in the ring. They can exist in different isomeric forms, such as 1,2,3-triazole and 1,2,4-triazole. 1,2,4-Triazole derivatives are of inter­est in various research fields ranging from medicinal chemistry and pharmaceuticals (Aggarwal & Sumran, 2020[Aggarwal, R. & Sumran, G. (2020). Eur. J. Med. Chem. 205, 112652.]; Leenders et al., 2021[Leenders, R. G., Brinch, S. A., Sowa, S. T., Amundsen-Isaksen, E., Galera-Prat, A., Murthy, S., Aertssen, S., Smits, J. N., Nieczypor, P., Damen, E., Wegert, A., Nazaré, M., Lehtiö, L., Waaler, J. & Krauss, S. (2021). J. Med. Chem. 64, 17936-17949.]) to materials science (Farooq, 2020[Farooq, T. (2020). Triazoles in Material Sciences. In Advances in Triazole Chemistry, 1st Edition, pp. 223-244. Amsterdam: Elsevier Science.]). Versatile coordination behaviour due to the presence of neutral, anionic or cationic nitro­gen donors (N-coordination) as well as carbanionic donors (C-coordination) makes 1,2,4-triazoles appealing ligands for the construction of metal complexes with useful functionalities (Song et al., 2019[Song, C., Chen, Y., Li, J., Zhao, F. & Zhang, H. (2019). Inorg. Chem. Front. 6, 2776-2787.]; Feltham et al., 2017[Feltham, H. L., Barltrop, A. S. & Brooker, S. (2017). Coord. Chem. Rev. 344, 26-53.]; Kumar et al., 2015[Kumar, A., Bheeter, L. P., Gangwar, M. K., Sortais, J. B., Darcel, C. & Ghosh, P. (2015). J. Organomet. Chem. 786, 63-70.]; Wen et al., 2017[Wen, S. Z., Kan, W. Q., Zhang, L. L. & He, Y. C. (2017). Cryst. Res. Technol. 52, 1700105.]). Substitution reactions at the azole ring create a virtually unlimited range of chemical and structural variations to tune the desired characteristics of the resulting complexes.

In our ongoing project exploring the rich potential of 1,2,4-triazoles in coordination and supra­molecular chemistry, a number of new metal complexes bearing 3-(pyridin-2-yl)-1,2,4-triazole derivatives as ligands were prepared. The CuII, RuII, PdII, EuIII, TbIII and PtII compounds revealed promising magnetic (Petrenko et al., 2021[Petrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). RSC Adv. 11, 23442-23449.]), catalytic (Zakharchenko et al., 2019[Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Starova, V. S., Trachevsky, V. V., Shova, S., Severynovska, O. V., Martins, L. M. D. R. S., Pombeiro, A. J. L., Arion, V. B. & Lampeka, R. D. (2019). New J. Chem. 43, 10973-10984.]) and luminescent properties (Khomenko et al., 2015[Khomenko, D. M., Doroschuk, R. O. & Lampeka, R. D. (2015). Polyhedron, 100, 82-88.], 2023[Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Tsapko, M. D., Smokal, V. O., Kutsevol, N. V., Smola, S. S., Rusakova, N. V. & Lampeka, R. D. (2023). Mol. Cryst. Liq. Cryst. 767, 139-146.]), as well as anti­proliferative activity against several human cancer cell lines (Ohorodnik et al., 2022[Ohorodnik, Y. M., Alexander, S. A., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Shova, S., Babak, M. V. & Lampeka, R. D. (2022). Transit. Met. Chem. 47, 213-221.], 2023[Ohorodnik, Y. M., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Shova, S., Babak, M. V., Milunovic, M. N. & Lampeka, R. D. (2023). Inorg. Chim. Acta, 556, 121646.]).

[Scheme 1]

In the present study, the crystal structure of [Pd(HL)2](CF3COO)2·2CF3COOH, (I)[link], where HL is 2-[5-(3,4,5-tri­meth­oxy­phen­yl)-4H-1,2,4-triazol-3-yl]pyridine, is reported. The title compound was isolated in an attempt to recrystallize its neutral precursor PdL2 from tri­fluoro­acetic acid (TFA). PdL2 was prepared and studied with IR, UV–Vis, NMR and photoluminescence spectroscopy, as well as MALDI mass spectrometry in solution and solid state but not structurally characterized (Zakharchenko et al., 2016[Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Severynovska, O. V., Starova, V. S., Raspertova, I. V. & Lampeka, R. D. (2016). Ukr. Khim. Zh. 82, 28-33.]).

2. Structural commentary

The title compound is assembled from discrete [Pd(HL)2]2+ cations (the PdII atom is located on a special position with Ci site symmetry), CF3COO anions, and CF3COOH mol­ecules of crystallization in a 1:2:2 ratio (Fig. 1[link]). Both neutral HL mol­ecules are coordinated to the metal atom as bidentate ligands through the triazole-N2 and pyridine-N1 atoms in a trans-configuration. The square-planar N4 environment of the PdII centre is moderately distorted with the two Pd—N distances and two cis N—Pd—N angles differing by 0.046 (2) Å and 20.70 (8)°, respectively (Table 1[link]). The [Pd(HL)2]2+ cation, except for the methoxo groups, is almost planar with the largest deviation from the mean plane being 0.117 Å (C11). Two intra­molecular hydrogen bonds, C1—H1⋯N3i and C15—H15B⋯O1, with an S(6) graph-set motif are observed (Fig. 2[link], Table 2[link]; symmetry code as given in Table 2[link]) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). The C—H⋯N S(6) rings support the planar configuration of the cation.

Table 1
Selected geometric parameters (Å, °)

Pd1—N2 1.991 (2) Pd1—N1 2.037 (2)
       
N2—Pd1—N1i 100.35 (8) N2—Pd1—N1 79.65 (8)
Symmetry code: (i) [-x+2, -y+2, -z+1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O5 0.84 1.73 2.56 (3) 172
O6X—H6X⋯F6X 0.86 2.27 2.77 (3) 118
N4—H4⋯O4 0.86 1.81 2.655 (3) 166
C15—H15A⋯N3ii 0.96 2.59 3.334 (5) 134
C15—H15B⋯O1 0.96 2.35 2.929 (5) 118
C15—H15C⋯O3iii 0.96 2.49 3.400 (4) 158
C14—H14A⋯O7 0.96 2.67 3.492 (17) 144
C4—H4A⋯F6iv 0.93 2.58 3.193 (6) 124
C4—H4A⋯O4 0.93 2.59 3.425 (4) 150
C9—H9⋯O4 0.93 2.63 3.510 (4) 158
C2—H2⋯O7v 0.93 2.44 3.363 (14) 174
C2—H2⋯O7Xv 0.93 2.57 3.498 (19) 178
C1—H1⋯N3i 0.93 2.34 3.146 (3) 145
C16—H16B⋯F4vi 0.96 2.52 3.400 (7) 152
Symmetry codes: (i) [-x+2, -y+2, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y, -z+1]; (iv) [-x+2, -y+1, -z]; (v) [x+1, y+1, z]; (vi) [-x+2, -y+1, -z+1].
[Figure 1]
Figure 1
Extended view of the asymmetric unit of (I)[link] with the atom labelling and displacement ellipsoids at the 50% probability level showing the coordination environment of the metal atom.
[Figure 2]
Figure 2
Intra­molecular C1—H1⋯N3i and C15—H15B⋯O1 hydrogen-bonding inter­actions forming rings of S(6) graph-set motif and inter­molecular hydrogen bonds involving the tri­fluoro­acetic moieties of (I)[link] (blue dashed lines). Minor disorder components have been omitted for clarity. Symmetry codes as given in Table 2[link].

The C—O bond distances for disordered carb­oxy­lic [1.177 (7)/1.174 (8), 1.273 (7)/1.275 (8) Å] and carbox­ylate units [1.223 (4), 1.227 (11)/1.231 (13) Å] unequivocally confirm the mol­ecular and anionic forms of the TFA and TFA anion, respectively.

3. Supra­molecular features

The crystal structure is built up of an alternate arrangement of distinct cationic and anionic supra­molecular layers oriented in the ab plane. In the cationic layer (Fig. 3[link]), the face-to-face aromatic stacking between triazole and benzene rings of the centrosymmetrically related ligands is significantly offset, as evidenced by a centroid-to-centroid distance of 3.566 (2) Å with the inter­planar distance and tilt angle being 3.263 Å and 76.26°, respectively. The [Pd(HL)2]2+ cations are additionally inter­twined by weak C15—H15A⋯N3ii and C15—H15C⋯O3iii hydrogen-bonding inter­actions (Table 2[link]; symmetry codes as given in Table 2[link]) forming rings of R44(18) and R22(12) graph-set motifs. The closest Pd⋯Pd separation in the layer exceeds 10 Å.

[Figure 3]
Figure 3
[Pd(HL)2]2+ cations of (I)[link] joined by aromatic stacking between triazole and benzene rings of the centrosymmetrically related ligands (black dashed lines) and inter­molecular C15—H15A⋯N3ii and C15—H15C⋯O3iii inter­actions forming rings with R44(18) and R22(12) graph-set motifs (blue dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (ii) −x + 1, −y + 1, −z + 1; (iii) −x + 1, −y, −z + 1.]

Within the anionic layer, the TFA mol­ecule acts as a proton donor in hydrogen bonding towards the TFA anion (O6—H6⋯O5; Fig. 2[link]). The TFA–TFA pairs stack on both sides of the cationic layers and create a three-dimensional C/N—H⋯F/O hydrogen-bonded network (Fig. 4[link]). C4—H4A⋯O4, N4—H4⋯O4, C9—H9⋯O4 and C14—H14A⋯O7 inter­actions between the cation and anion generate inter­connected rings exhibiting R21(7) and R33(13) graph-set motifs (Fig. 2[link]).

[Figure 4]
Figure 4
Fragment of the crystal packing of (I)[link] viewed along the a axis showing the alternate arrangement of cationic and anionic supra­molecular layers inter­acting through numerous C/N—H⋯F/O contacts. Minor disorder components have been omitted for clarity.

4. Database survey

More than 1400 crystal structures of metal complexes featuring the 3-(pyridin-2-yl)-1,2,4-triazole backbone having various substituents in the rings are found in the Cambridge Structural Database (CSD, Version 5.45, update of November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the nuclearity up to 24 metal (Co) centres (BIBHUS; Yao et al., 2018[Yao, P. F., Chen, Y. K., Lai, C. F., Li, H. Y., Bian, H. D., Liu, H. F., Yao, D. & Huang, F. P. (2018). Inorg. Chem. 57, 9182-9189.]). The only solid-state structure comprising HL, the ReI carbonyl [ReBr(HL)(CO)3]·CH3OH (GAMTOG; Kharlova et al., 2017[Kharlova, M. I., Piletska, K. O., Domasevitch, K. V. & Shtemenko, A. V. (2017). Acta Cryst. E73, 484-487.]), differs from (I)[link] in the position of the acidic NH function in the triazole ring. Of nine palladium compounds with 3-(pyridin-2-yl)-1,2,4-triazole derivatives, eight were reported by our research group. In the PdII complexes, the substituted 3-(pyridin-2-yl)-1,2,4-triazole ligands in the neutral or anionic form coordinate to the metal atom through the pyridine-N and either triazole-N1 (TOFXUK, TOFYAR, TOGNEL, TOGNIP; Zakharchenko et al., 2019[Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Starova, V. S., Trachevsky, V. V., Shova, S., Severynovska, O. V., Martins, L. M. D. R. S., Pombeiro, A. J. L., Arion, V. B. & Lampeka, R. D. (2019). New J. Chem. 43, 10973-10984.]) or triazole-N4 atoms (CAMSUI; Zakhar­chenko et al., 2021a[Zakharchenko, B. V., Khomenko, D. M., Doroschuk, R. O., Raspertova, I. V., Shova, S., Grebinyk, A. G., Grynyuk, I. I., Prylutska, S. V., Matyshevska, O. P., Slobodyanik, M. S., Frohme, M. & Lampeka, R. D. (2021a). Chem. Pap. 75, 4899-4906.]). Another example of the N4 protonation is found in hydrogen bis­{2-[3-(pyridin-2-yl)-1,2,4-triazol-1-yl]propano­ate} (CIPCUA; Gallagher et al., 2007[Gallagher, J. F., Duff, T. & Vos, J. G. (2007). CSD Communication (refcode CIPCUA). CCDC, Cambridge, England.]), which is a co-crystal of a neutral mol­ecule and a zwitterion with a proton­ated N4 atom. Most similar, but not isomorphous, to the title compound is [Pd(HL′)2](CF3COO)2·4CF3COOH with the neutral ligand HL′ having a phenyl group instead of the tri­meth­oxy­phenyl substituent in (I)[link], which also crystallizes in the triclinic space group P[\overline{1}] (KEFKUF; Zakharchenko et al., 2021b[Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Fesych, I. V., Starova, V. S., Rusakova, N. V., Smola, S. S., Shova, S. & Lampeka, R. D. (2021b). Theor. Exp. Chem. 57, 358-365.]).

5. Synthesis and crystallization

The initial complex PdL2 was synthesized according to the previously published method (Zakharchenko et al., 2016[Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Severynovska, O. V., Starova, V. S., Raspertova, I. V. & Lampeka, R. D. (2016). Ukr. Khim. Zh. 82, 28-33.]). X-ray quality crystals of the title compound were obtained by recrystallization of PdL2 from TFA. The compound was characterized by IR and 1H NMR spectroscopy; it starts to decompose above 548 K. FT–IR (KBr pellet), ν (cm−1): 3434br, 3104, 3110, 3010, 2948, 2926, 2850, 1776, 1676, 1638, 1618, 1596, 1490s, 1470, 1430, 1292, 1196s, 1178s, 1130vs, 1036, 1006, 842, 796, 726, 704, 598, 568, 524.

The IR spectrum of (I)[link] (Fig. 5[link]) is dominated by peaks associated with tri­fluoro­acetic moieties, which are absent in the spectrum of PdL2 (Zakharchenko et al., 2016[Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Severynovska, O. V., Starova, V. S., Raspertova, I. V. & Lampeka, R. D. (2016). Ukr. Khim. Zh. 82, 28-33.]). TFA mol­ecules are detected by an intense broad band due to ν(O—H) vibration centred at about 3430 cm−1 and a smaller band at 1776 cm−1 ascribed to ν(C=O) stretching. Two medium intensity bands observed at 1676 and 1430 cm−1 are assigned to νas(COO) and νs(COO) stretching modes of the TFA anion, respectively. As expected, major absorption peaks at 1196, 1178 and 1130 cm−1 are present in the C—F stretching region (1110–1220 cm−1). ν(C=N) and ν(C=C) stretching frequencies of the 1,2,4-triazole ligand in the range 1638–1596 cm−1 cannot be easily distinguished. Several bands observed above and below 3000 cm−1 are assigned to aromatic and methyl group ν(C—H) vibrations, respectively. A low intensity broad absorption at 3104 cm−1 can be ascribed to ν(N—H) stretching of the hydrogen-bonded N4H group of the triazole ring.

[Figure 5]
Figure 5
IR spectrum of (I)[link] in the 4000–400 cm−1 range.

Due to very poor solubility of the title compound in organic solvents, it was not possible to obtain its satisfactory 1H NMR spectrum in CDCl3. Only the protons of the meth­oxy groups are distinctly observed as two singlets in a 2:1 ratio at 4.01 and 3.96 ppm while the aromatic protons in the 10–7 ppm range were indistinguishable from the background. The presence of TFA mol­ecules and trace amounts of water in the solvent leads to significant broadening of the N4H signal to the point of disappearing in the spectrum. On the contrary, in the 1H NMR spectrum of the free HL ligand in CDCl3 the acidic N2-bound proton appears as a broadened singlet at 13.31 ppm (Zakharchenko et al., 2016[Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Severynovska, O. V., Starova, V. S., Raspertova, I. V. & Lampeka, R. D. (2016). Ukr. Khim. Zh. 82, 28-33.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Both tri­fluoro­acetic moieties were found to be disordered over two resolvable positions with a refined occupancy ratio of 0.587 (1):0.413 (17) and 0.530 (6):0.470 (6) for the protonated and deprotonated forms, respectively. The disorder was restrained using SIMU and RIGU commands in SHELXL for the ten resulting atoms except for C19 and O4 of the tri­fluoro­acetic anion and twelve resulting atoms except for C17 of the tri­fluoro­acetic acid. The four-atom C—COO fragments were restrained to be nearly planar by a FLAT command. Bond distances in the disordered fragments were restrained by the SAME command to be similar in length. Anisotropic displacement parameters were employed for the non-hydrogen atoms. Anisotropic displacement parameters for pairs of the disordered atoms were constrained to be the same. The H atom bound to O was found in difference-Fourier maps, C/N-bound H atoms were included in calculated positions and refined using a riding model with isotropic displacement parameters based on those of the parent atom [C—H = 0.93 Å, N/O—H = 0.86 Å, Uiso(H) = 1.2UeqC for CH, NH and OH; C—H = 0.96 Å, Uiso(H) = 1.5UeqC for CH3]. Idealised methyl groups were refined as rotating groups.

Table 3
Experimental details

Crystal data
Chemical formula [Pd(C16H16N4O3)2](C2F3O2)2·2C2HF3O2
Mr 1185.15
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.6173 (4), 10.6265 (6), 13.1312 (4)
α, β, γ (°) 93.384 (4), 98.121 (3), 94.090 (4)
V3) 1184.46 (9)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.51
Crystal size (mm) 0.4 × 0.3 × 0.3
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.968, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9462, 5010, 4615
Rint 0.026
(sin θ/λ)max−1) 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.095, 1.04
No. of reflections 5010
No. of parameters 444
No. of restraints 382
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.45
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Bis{2-[5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazol-3-yl]pyridine}palladium(II) bis(trifluoroacetate) trifluoroacetic acid disolvate top
Crystal data top
[Pd(C16H16N4O3)2](C2F3O2)2·2C2HF3O2Z = 1
Mr = 1185.15F(000) = 596
Triclinic, P1Dx = 1.662 Mg m3
a = 8.6173 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6265 (6) ÅCell parameters from 3996 reflections
c = 13.1312 (4) Åθ = 1.6–28.8°
α = 93.384 (4)°µ = 0.51 mm1
β = 98.121 (3)°T = 293 K
γ = 94.090 (4)°Irregular, clear light yellow
V = 1184.46 (9) Å30.4 × 0.3 × 0.3 mm
Data collection top
Xcalibur, Eos
diffractometer
4615 reflections with I > 2σ(I)
φ and ω scansRint = 0.026
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
θmax = 26.7°, θmin = 1.9°
Tmin = 0.968, Tmax = 1.000h = 1010
9462 measured reflectionsk = 1313
5010 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.5877P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5010 reflectionsΔρmax = 0.39 e Å3
444 parametersΔρmin = 0.45 e Å3
382 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd11.0000001.0000000.5000000.02885 (10)
C190.8894 (4)0.4302 (3)0.1535 (2)0.0488 (8)
C200.9655 (9)0.3470 (9)0.0791 (6)0.081 (2)0.530 (6)
F41.1096 (6)0.3858 (7)0.0705 (5)0.109 (2)0.530 (6)
F50.9508 (14)0.2294 (9)0.1005 (8)0.139 (3)0.530 (6)
F60.8973 (9)0.3527 (8)0.0170 (4)0.108 (2)0.530 (6)
O50.7452 (12)0.425 (3)0.140 (2)0.066 (4)0.530 (6)
C20X0.9676 (14)0.3301 (10)0.0963 (10)0.081 (2)0.470 (6)
F4X0.9952 (15)0.3563 (10)0.0080 (8)0.134 (3)0.470 (6)
F5X1.0921 (8)0.2898 (7)0.1463 (6)0.110 (3)0.470 (6)
F6X0.8690 (10)0.2246 (8)0.0722 (7)0.107 (3)0.470 (6)
O5X0.7498 (15)0.441 (3)0.123 (3)0.074 (6)0.470 (6)
O40.9779 (3)0.4896 (2)0.22379 (16)0.0580 (6)
C170.4530 (4)0.2377 (4)0.0206 (3)0.0643 (10)
C180.3492 (9)0.1637 (9)0.0678 (6)0.095 (2)0.587 (17)
F10.3053 (15)0.2296 (12)0.1475 (7)0.136 (3)0.587 (17)
F20.4262 (13)0.0721 (12)0.1043 (11)0.143 (3)0.587 (17)
F30.2162 (9)0.1158 (12)0.0410 (7)0.118 (3)0.587 (17)
O70.442 (2)0.2093 (17)0.1046 (6)0.100 (5)0.587 (17)
O60.5404 (17)0.3257 (15)0.0093 (13)0.094 (5)0.587 (17)
H60.6137980.3595740.0353140.113*0.587 (17)
C18X0.3438 (13)0.1690 (10)0.0676 (7)0.101 (3)0.413 (17)
F1X0.4166 (17)0.1293 (19)0.1438 (10)0.125 (4)0.413 (17)
F2X0.2443 (16)0.2475 (14)0.1086 (13)0.132 (4)0.413 (17)
F3X0.278 (2)0.0643 (15)0.0378 (12)0.141 (4)0.413 (17)
O7X0.428 (3)0.241 (2)0.1062 (8)0.078 (4)0.413 (17)
O6X0.574 (2)0.288 (2)0.0120 (18)0.081 (5)0.413 (17)
H6X0.6463400.3242850.0337840.097*0.413 (17)
O10.5903 (3)0.3676 (2)0.69590 (17)0.0607 (7)
O20.6094 (3)0.15652 (19)0.57418 (17)0.0506 (5)
O30.7086 (3)0.16746 (19)0.39566 (16)0.0543 (6)
N40.9103 (3)0.6437 (2)0.37512 (15)0.0306 (5)
H40.9160110.5896240.3246890.037*
N30.8561 (3)0.7280 (2)0.52237 (16)0.0329 (5)
N20.9308 (3)0.81692 (19)0.47212 (15)0.0300 (5)
N11.0785 (3)0.9649 (2)0.36266 (15)0.0311 (5)
C100.7119 (3)0.2797 (3)0.4517 (2)0.0386 (6)
C150.4529 (4)0.1298 (4)0.5844 (4)0.0795 (13)
H15A0.3877040.1449000.5215190.119*
H15B0.4266810.1831750.6400170.119*
H15C0.4359390.0427880.5988900.119*
C70.8445 (3)0.6231 (2)0.46214 (19)0.0303 (6)
C120.6508 (3)0.3838 (3)0.6071 (2)0.0409 (7)
C140.7558 (5)0.1699 (3)0.2963 (2)0.0638 (10)
H14A0.6879920.2198610.2538640.096*
H14B0.7491200.0852210.2653000.096*
H14C0.8622750.2062580.3027060.096*
C41.0995 (3)0.8044 (3)0.2315 (2)0.0388 (7)
H4A1.0772700.7211980.2043470.047*
C90.7732 (3)0.3943 (3)0.4228 (2)0.0365 (6)
H90.8136380.3985250.3609140.044*
C21.2150 (4)1.0120 (3)0.2234 (2)0.0497 (8)
H21.2720461.0710110.1908320.060*
C130.7108 (3)0.4976 (3)0.5783 (2)0.0382 (6)
H130.7092980.5711940.6200540.046*
C11.1601 (4)1.0467 (3)0.3140 (2)0.0403 (7)
H11.1808411.1297730.3417080.048*
C31.1847 (4)0.8902 (3)0.1821 (2)0.0492 (8)
H31.2211620.8654720.1212680.059*
C51.0485 (3)0.8437 (2)0.32096 (18)0.0293 (5)
C110.6520 (3)0.2734 (3)0.5440 (2)0.0384 (6)
C80.7734 (3)0.5023 (2)0.4872 (2)0.0322 (6)
C160.5794 (5)0.4776 (4)0.7613 (3)0.0674 (11)
H16A0.5194520.5365170.7230500.101*
H16B0.6830900.5160350.7861650.101*
H16C0.5284550.4541700.8185940.101*
C60.9639 (3)0.7659 (2)0.38500 (18)0.0292 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.04096 (18)0.01711 (15)0.02989 (16)0.00198 (11)0.01369 (12)0.00184 (10)
C190.064 (2)0.0396 (18)0.0431 (17)0.0077 (16)0.0198 (16)0.0102 (14)
C200.110 (4)0.077 (4)0.058 (4)0.005 (4)0.035 (4)0.034 (4)
F40.074 (3)0.144 (5)0.105 (4)0.008 (3)0.032 (3)0.064 (4)
F50.189 (8)0.086 (5)0.153 (7)0.043 (5)0.057 (6)0.014 (5)
F60.111 (5)0.153 (5)0.052 (3)0.007 (4)0.021 (3)0.057 (3)
O50.059 (5)0.079 (9)0.057 (6)0.014 (4)0.013 (4)0.010 (5)
C20X0.108 (5)0.063 (5)0.070 (5)0.000 (4)0.023 (4)0.028 (4)
F4X0.187 (8)0.130 (5)0.101 (6)0.022 (6)0.079 (6)0.014 (5)
F5X0.103 (4)0.089 (5)0.133 (5)0.049 (4)0.001 (4)0.046 (4)
F6X0.124 (6)0.067 (4)0.115 (5)0.011 (4)0.001 (4)0.058 (3)
O5X0.076 (7)0.072 (9)0.073 (12)0.012 (5)0.021 (5)0.015 (8)
O40.0708 (16)0.0521 (15)0.0483 (13)0.0024 (12)0.0127 (11)0.0217 (11)
C170.053 (2)0.075 (3)0.063 (2)0.0078 (19)0.0090 (18)0.004 (2)
C180.079 (5)0.117 (5)0.083 (5)0.024 (4)0.013 (4)0.019 (4)
F10.124 (6)0.186 (7)0.083 (4)0.025 (5)0.024 (4)0.010 (5)
F20.151 (6)0.131 (7)0.132 (7)0.006 (5)0.001 (5)0.058 (5)
F30.068 (4)0.142 (7)0.131 (4)0.045 (4)0.004 (3)0.010 (5)
O70.099 (7)0.123 (11)0.075 (6)0.035 (7)0.006 (5)0.040 (6)
O60.097 (8)0.116 (9)0.059 (5)0.046 (7)0.002 (5)0.022 (6)
C18X0.086 (6)0.122 (6)0.088 (6)0.023 (6)0.010 (5)0.019 (5)
F1X0.125 (6)0.151 (9)0.089 (6)0.018 (7)0.017 (5)0.042 (6)
F2X0.087 (6)0.176 (7)0.115 (7)0.012 (6)0.031 (5)0.022 (6)
F3X0.132 (8)0.129 (8)0.147 (7)0.064 (6)0.017 (7)0.008 (6)
O7X0.099 (8)0.076 (8)0.065 (7)0.007 (6)0.039 (6)0.012 (5)
O6X0.062 (6)0.116 (12)0.057 (6)0.028 (7)0.013 (5)0.013 (7)
O10.0919 (18)0.0384 (13)0.0582 (14)0.0097 (12)0.0406 (13)0.0027 (10)
O20.0538 (13)0.0281 (11)0.0716 (15)0.0050 (10)0.0154 (11)0.0121 (10)
O30.0882 (17)0.0208 (11)0.0522 (13)0.0098 (11)0.0160 (11)0.0074 (9)
N40.0412 (13)0.0206 (11)0.0288 (11)0.0052 (9)0.0084 (9)0.0058 (8)
N30.0463 (13)0.0196 (11)0.0345 (11)0.0037 (9)0.0148 (10)0.0010 (9)
N20.0410 (13)0.0181 (11)0.0323 (11)0.0024 (9)0.0139 (9)0.0017 (8)
N10.0429 (13)0.0206 (11)0.0311 (11)0.0022 (9)0.0131 (9)0.0012 (8)
C100.0488 (17)0.0232 (14)0.0419 (15)0.0044 (12)0.0057 (13)0.0013 (11)
C150.054 (2)0.042 (2)0.143 (4)0.0146 (17)0.026 (2)0.006 (2)
C70.0371 (15)0.0202 (13)0.0332 (13)0.0012 (11)0.0068 (11)0.0010 (10)
C120.0465 (17)0.0322 (16)0.0460 (16)0.0022 (13)0.0162 (13)0.0044 (13)
C140.105 (3)0.0382 (19)0.0460 (19)0.0013 (19)0.0120 (18)0.0093 (15)
C40.0528 (18)0.0307 (15)0.0322 (14)0.0040 (13)0.0113 (12)0.0064 (11)
C90.0494 (17)0.0244 (14)0.0351 (14)0.0046 (12)0.0087 (12)0.0005 (11)
C20.071 (2)0.0403 (18)0.0423 (16)0.0079 (16)0.0301 (15)0.0003 (13)
C130.0506 (17)0.0238 (14)0.0407 (15)0.0027 (12)0.0135 (13)0.0026 (11)
C10.0583 (19)0.0241 (14)0.0403 (15)0.0054 (13)0.0197 (13)0.0011 (11)
C30.070 (2)0.0453 (19)0.0349 (15)0.0060 (16)0.0272 (15)0.0070 (13)
C50.0341 (14)0.0248 (13)0.0289 (12)0.0010 (11)0.0055 (10)0.0003 (10)
C110.0420 (16)0.0239 (14)0.0488 (16)0.0052 (12)0.0067 (13)0.0067 (12)
C80.0391 (15)0.0216 (13)0.0352 (14)0.0029 (11)0.0061 (11)0.0011 (10)
C160.093 (3)0.057 (2)0.059 (2)0.001 (2)0.040 (2)0.0033 (18)
C60.0369 (14)0.0209 (13)0.0291 (12)0.0016 (10)0.0071 (10)0.0033 (10)
Geometric parameters (Å, º) top
Pd1—N21.991 (2)N4—H40.8600
Pd1—N2i1.991 (2)N4—C71.367 (3)
Pd1—N12.037 (2)N4—C61.340 (3)
Pd1—N1i2.037 (2)N3—N21.360 (3)
C19—C201.526 (9)N3—C71.317 (3)
C19—O51.227 (11)N2—C61.313 (3)
C19—C20X1.517 (11)N1—C11.328 (3)
C19—O5X1.231 (13)N1—C51.362 (3)
C19—O41.223 (4)C10—C91.388 (4)
C20—F41.303 (7)C10—C111.385 (4)
C20—F51.298 (7)C15—H15A0.9600
C20—F61.321 (7)C15—H15B0.9600
C20X—F4X1.258 (12)C15—H15C0.9600
C20X—F5X1.290 (12)C7—C81.458 (3)
C20X—F6X1.351 (11)C12—C131.376 (4)
C17—C181.504 (7)C12—C111.397 (4)
C17—O71.177 (7)C14—H14A0.9600
C17—O61.273 (7)C14—H14B0.9600
C17—C18X1.501 (8)C14—H14C0.9600
C17—O7X1.174 (8)C4—H4A0.9300
C17—O6X1.275 (8)C4—C31.378 (4)
C18—F11.320 (6)C4—C51.365 (3)
C18—F21.321 (6)C9—H90.9300
C18—F31.323 (6)C9—C81.384 (4)
O6—H60.8428C2—H20.9300
C18X—F1X1.319 (7)C2—C11.380 (4)
C18X—F2X1.321 (7)C2—C31.366 (4)
C18X—F3X1.319 (7)C13—H130.9300
O6X—H6X0.8555C13—C81.383 (4)
O1—C121.357 (3)C1—H10.9300
O1—C161.425 (4)C3—H30.9300
O2—C151.385 (4)C5—C61.446 (3)
O2—C111.367 (3)C16—H16A0.9600
O3—C101.360 (3)C16—H16B0.9600
O3—C141.421 (4)C16—H16C0.9600
N2—Pd1—N2i180.00 (12)O3—C10—C9124.2 (3)
N2—Pd1—N1i100.35 (8)O3—C10—C11115.4 (2)
N2i—Pd1—N1100.35 (8)C11—C10—C9120.4 (3)
N2i—Pd1—N1i79.65 (8)O2—C15—H15A109.5
N2—Pd1—N179.65 (8)O2—C15—H15B109.5
N1i—Pd1—N1180.00 (12)O2—C15—H15C109.5
O5—C19—C20116.4 (14)H15A—C15—H15B109.5
O5X—C19—C20X116.7 (16)H15A—C15—H15C109.5
O4—C19—C20116.6 (4)H15B—C15—H15C109.5
O4—C19—O5126.9 (14)N4—C7—C8125.5 (2)
O4—C19—C20X113.6 (6)N3—C7—N4110.5 (2)
O4—C19—O5X129.6 (17)N3—C7—C8123.9 (2)
F4—C20—C19114.3 (6)O1—C12—C13124.8 (3)
F4—C20—F6100.3 (7)O1—C12—C11115.1 (3)
F5—C20—C19110.6 (7)C13—C12—C11120.0 (2)
F5—C20—F4112.8 (8)O3—C14—H14A109.5
F5—C20—F6107.0 (9)O3—C14—H14B109.5
F6—C20—C19111.1 (6)O3—C14—H14C109.5
F4X—C20X—C19115.2 (10)H14A—C14—H14B109.5
F4X—C20X—F5X108.9 (11)H14A—C14—H14C109.5
F4X—C20X—F6X100.6 (11)H14B—C14—H14C109.5
F5X—C20X—C19116.1 (9)C3—C4—H4A120.6
F5X—C20X—F6X103.9 (9)C5—C4—H4A120.6
F6X—C20X—C19110.5 (9)C5—C4—C3118.8 (3)
O7—C17—C18117.9 (10)C10—C9—H9120.4
O7—C17—O6129.6 (11)C8—C9—C10119.1 (2)
O6—C17—C18112.5 (9)C8—C9—H9120.4
O7X—C17—C18X123.2 (13)C1—C2—H2120.3
O7X—C17—O6X126.8 (15)C3—C2—H2120.3
O6X—C17—C18X110.0 (12)C3—C2—C1119.4 (3)
F1—C18—C17114.7 (7)C12—C13—H13120.1
F1—C18—F2105.2 (8)C12—C13—C8119.8 (3)
F1—C18—F3104.8 (8)C8—C13—H13120.1
F2—C18—C17109.5 (7)N1—C1—C2121.9 (3)
F2—C18—F3109.9 (8)N1—C1—H1119.0
F3—C18—C17112.4 (6)C2—C1—H1119.0
C17—O6—H6116.1C4—C3—H3120.3
F1X—C18X—C17113.1 (9)C2—C3—C4119.4 (3)
F1X—C18X—F2X105.1 (10)C2—C3—H3120.3
F1X—C18X—F3X103.9 (10)N1—C5—C4122.1 (2)
F2X—C18X—C17109.2 (8)N1—C5—C6111.5 (2)
F3X—C18X—C17110.4 (9)C4—C5—C6126.3 (2)
F3X—C18X—F2X114.9 (12)O2—C11—C10117.9 (3)
C17—O6X—H6X116.5O2—C11—C12122.1 (3)
C12—O1—C16117.7 (2)C10—C11—C12119.6 (2)
C11—O2—C15117.5 (3)C9—C8—C7120.7 (2)
C10—O3—C14117.7 (2)C13—C8—C7118.3 (2)
C7—N4—H4127.3C13—C8—C9120.9 (2)
C6—N4—H4127.3O1—C16—H16A109.5
C6—N4—C7105.5 (2)O1—C16—H16B109.5
C7—N3—N2105.36 (19)O1—C16—H16C109.5
N3—N2—Pd1135.44 (16)H16A—C16—H16B109.5
C6—N2—Pd1114.75 (16)H16A—C16—H16C109.5
C6—N2—N3109.8 (2)H16B—C16—H16C109.5
C1—N1—Pd1126.23 (18)N4—C6—C5132.4 (2)
C1—N1—C5118.4 (2)N2—C6—N4108.8 (2)
C5—N1—Pd1115.29 (16)N2—C6—C5118.8 (2)
Pd1—N2—C6—N4179.45 (16)N3—C7—C8—C9176.4 (3)
Pd1—N2—C6—C51.7 (3)N3—C7—C8—C131.6 (4)
Pd1—N1—C1—C2176.7 (2)N2—N3—C7—N40.1 (3)
Pd1—N1—C5—C4177.2 (2)N2—N3—C7—C8179.1 (2)
Pd1—N1—C5—C60.6 (3)N1—C5—C6—N4179.9 (3)
O5—C19—C20—F4156.2 (17)N1—C5—C6—N21.5 (3)
O5—C19—C20—F575.1 (18)C10—C9—C8—C7176.6 (3)
O5—C19—C20—F643.6 (18)C10—C9—C8—C131.3 (4)
O5X—C19—C20X—F4X73 (2)C15—O2—C11—C10118.1 (4)
O5X—C19—C20X—F5X158 (2)C15—O2—C11—C1268.1 (4)
O5X—C19—C20X—F6X40 (2)C7—N4—C6—N20.8 (3)
O4—C19—C20—F427.5 (8)C7—N4—C6—C5177.9 (3)
O4—C19—C20—F5101.2 (8)C7—N3—N2—Pd1179.9 (2)
O4—C19—C20—F6140.1 (6)C7—N3—N2—C60.6 (3)
O4—C19—C20X—F4X106.0 (11)C12—C13—C8—C7176.4 (3)
O4—C19—C20X—F5X22.9 (12)C12—C13—C8—C91.6 (4)
O4—C19—C20X—F6X140.8 (9)C14—O3—C10—C96.8 (5)
O7—C17—C18—F1147.3 (16)C14—O3—C10—C11174.6 (3)
O7—C17—C18—F294.6 (16)C4—C5—C6—N42.4 (5)
O7—C17—C18—F327.8 (18)C4—C5—C6—N2176.2 (3)
O6—C17—C18—F131.6 (16)C9—C10—C11—O2172.8 (3)
O6—C17—C18—F286.4 (15)C9—C10—C11—C121.2 (5)
O6—C17—C18—F3151.2 (15)C13—C12—C11—O2172.9 (3)
O7X—C17—C18X—F1X151.8 (19)C13—C12—C11—C100.8 (5)
O7X—C17—C18X—F2X91.5 (19)C1—N1—C5—C40.1 (4)
O7X—C17—C18X—F3X36 (2)C1—N1—C5—C6177.9 (2)
O6X—C17—C18X—F1X27 (2)C1—C2—C3—C40.2 (5)
O6X—C17—C18X—F2X89.8 (19)C3—C4—C5—N10.2 (4)
O6X—C17—C18X—F3X142.9 (19)C3—C4—C5—C6177.2 (3)
O1—C12—C13—C8178.3 (3)C3—C2—C1—N10.1 (5)
O1—C12—C11—O26.0 (4)C5—N1—C1—C20.3 (4)
O1—C12—C11—C10179.7 (3)C5—C4—C3—C20.3 (5)
O3—C10—C9—C8178.6 (3)C11—C10—C9—C80.1 (4)
O3—C10—C11—O25.8 (4)C11—C12—C13—C80.5 (5)
O3—C10—C11—C12179.8 (3)C16—O1—C12—C133.9 (5)
N4—C7—C8—C92.5 (4)C16—O1—C12—C11177.2 (3)
N4—C7—C8—C13179.5 (3)C6—N4—C7—N30.4 (3)
N3—N2—C6—N40.9 (3)C6—N4—C7—C8178.5 (2)
N3—N2—C6—C5178.0 (2)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···F60.842.633.085 (15)115
O6—H6···O50.841.732.56 (3)172
O6X—H6X···F6X0.862.272.77 (3)118
O6X—H6X···O5X0.861.762.58 (4)160
N4—H4···O40.861.812.655 (3)166
C15—H15A···N3ii0.962.593.334 (5)134
C15—H15B···O10.962.352.929 (5)118
C15—H15C···O3iii0.962.493.400 (4)158
C14—H14A···O70.962.673.492 (17)144
C4—H4A···F6iv0.932.583.193 (6)124
C4—H4A···O40.932.593.425 (4)150
C9—H9···O40.932.633.510 (4)158
C2—H2···O7v0.932.443.363 (14)174
C2—H2···O7Xv0.932.573.498 (19)178
C1—H1···N3i0.932.343.146 (3)145
C16—H16B···F4vi0.962.523.400 (7)152
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+2, y+1, z; (v) x+1, y+1, z; (vi) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by a grant from the Ministry of Research, Innovation and Digitization, CCCDI – UEFISCDI, project No. PN-III-P2–2.1-PED-2021–3900, within PNCDI III, Contract PED 698/2022 (AI-Syn-PPOSS).

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 22BF037–06).

References

First citationAggarwal, R. & Sumran, G. (2020). Eur. J. Med. Chem. 205, 112652.  Web of Science CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarooq, T. (2020). Triazoles in Material Sciences. In Advances in Triazole Chemistry, 1st Edition, pp. 223–244. Amsterdam: Elsevier Science.  Google Scholar
First citationFeltham, H. L., Barltrop, A. S. & Brooker, S. (2017). Coord. Chem. Rev. 344, 26–53.  Web of Science CrossRef CAS Google Scholar
First citationGallagher, J. F., Duff, T. & Vos, J. G. (2007). CSD Communication (refcode CIPCUA). CCDC, Cambridge, England.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKharlova, M. I., Piletska, K. O., Domasevitch, K. V. & Shtemenko, A. V. (2017). Acta Cryst. E73, 484–487.  CSD CrossRef IUCr Journals Google Scholar
First citationKhomenko, D. M., Doroschuk, R. O. & Lampeka, R. D. (2015). Polyhedron, 100, 82–88.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Tsapko, M. D., Smokal, V. O., Kutsevol, N. V., Smola, S. S., Rusakova, N. V. & Lampeka, R. D. (2023). Mol. Cryst. Liq. Cryst. 767, 139–146.  Web of Science CrossRef CAS Google Scholar
First citationKumar, A., Bheeter, L. P., Gangwar, M. K., Sortais, J. B., Darcel, C. & Ghosh, P. (2015). J. Organomet. Chem. 786, 63–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeenders, R. G., Brinch, S. A., Sowa, S. T., Amundsen-Isaksen, E., Galera-Prat, A., Murthy, S., Aertssen, S., Smits, J. N., Nieczypor, P., Damen, E., Wegert, A., Nazaré, M., Lehtiö, L., Waaler, J. & Krauss, S. (2021). J. Med. Chem. 64, 17936–17949.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOhorodnik, Y. M., Alexander, S. A., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Shova, S., Babak, M. V. & Lampeka, R. D. (2022). Transit. Met. Chem. 47, 213–221.  Web of Science CSD CrossRef CAS Google Scholar
First citationOhorodnik, Y. M., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Shova, S., Babak, M. V., Milunovic, M. N. & Lampeka, R. D. (2023). Inorg. Chim. Acta, 556, 121646.  Web of Science CSD CrossRef Google Scholar
First citationPetrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). RSC Adv. 11, 23442–23449.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, C., Chen, Y., Li, J., Zhao, F. & Zhang, H. (2019). Inorg. Chem. Front. 6, 2776–2787.  Web of Science CrossRef CAS Google Scholar
First citationWen, S. Z., Kan, W. Q., Zhang, L. L. & He, Y. C. (2017). Cryst. Res. Technol. 52, 1700105.  Web of Science CrossRef Google Scholar
First citationYao, P. F., Chen, Y. K., Lai, C. F., Li, H. Y., Bian, H. D., Liu, H. F., Yao, D. & Huang, F. P. (2018). Inorg. Chem. 57, 9182–9189.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZakharchenko, B. V., Khomenko, D. M., Doroschuk, R. O., Raspertova, I. V., Shova, S., Grebinyk, A. G., Grynyuk, I. I., Prylutska, S. V., Matyshevska, O. P., Slobodyanik, M. S., Frohme, M. & Lampeka, R. D. (2021a). Chem. Pap. 75, 4899–4906.  Web of Science CSD CrossRef CAS Google Scholar
First citationZakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Fesych, I. V., Starova, V. S., Rusakova, N. V., Smola, S. S., Shova, S. & Lampeka, R. D. (2021b). Theor. Exp. Chem. 57, 358–365.  Web of Science CSD CrossRef CAS Google Scholar
First citationZakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Starova, V. S., Trachevsky, V. V., Shova, S., Severynovska, O. V., Martins, L. M. D. R. S., Pombeiro, A. J. L., Arion, V. B. & Lampeka, R. D. (2019). New J. Chem. 43, 10973–10984.  Web of Science CSD CrossRef CAS Google Scholar
First citationZakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Severynovska, O. V., Starova, V. S., Raspertova, I. V. & Lampeka, R. D. (2016). Ukr. Khim. Zh. 82, 28–33.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds