research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­fluoro­methane­sulfonate salt of 5,10,15,20-tetra­kis­(1-benzyl­pyridin-1-ium-4-yl)-21H,23H-porphyrin and its CaII complex

crossmark logo

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico, 04510, D.F., Mexico, and bCentro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Instituto de Química, Universidad Nacional Autónoma de México, Carretera Toluca-Atlacomulco Km 14.5, CP 50200 Toluca, Estado de México, Mexico
*Correspondence e-mail: adg@unam.mx

Edited by N. Alvarez Failache, Universidad de la Repüblica, Uruguay (Received 18 April 2024; accepted 13 May 2024; online 21 May 2024)

The synthesis, crystallization and characterization of a tri­fluoro­methane­sulfonate salt of 5,10,15,20-tetra­kis­(1-benzyl­pyridin-1-ium-4-yl)-21H,23H-por­phy­rin, C68H54N84+·4CF3SO3·4H2O, 1·OTf, are reported in this work. The reaction between 5,10,15,20-tetra­kis­(pyridin-4-yl)-21H,23H-porphyrin and benzyl bromide in the presence of 0.1 equiv. of Ca(OH)2 in CH3CN under reflux with an N2 atmosphere and subsequent treatment with silver tri­fluoro­methane­sulfonate (AgOTf) salt produced a red–brown solution. This reaction mixture was filtered and the solvent was allowed to evaporate at room temperature for 3 d to give 1·OTf. Crystal structure determination by single-crystal X-ray diffraction (SCXD) revealed that 1·OTf crystallizes in the space group P21/c. The asymmetric unit contains half a porphyrin mol­ecule, two tri­fluoro­methane­sulfonate anions and two water mol­ecules of crystallization. The macrocycle of tetra­pyrrole moieties is planar and unexpectedly it has coordinated CaII ions in occupational disorder. This CaII ion has only 10% occupancy (C72H61.80Ca0.10F12N8O16S4). The pyridinium rings bonded to methyl­ene groups from porphyrin are located in two different arrangements in almost orthogonal positions between the plane formed by the porphyrin and the pyridinium rings. The crystal structure features cation⋯π inter­actions between the CaII atom and the π-system of the phenyl ring of neighboring mol­ecules. Both tri­fluoro­methane­sulfonate anions are found at the periphery of 1, forming hydrogen bonds with water mol­ecules.

1. Chemical context

Porphyrins are heterocyclic organic macrocycles; they are composed of four pyrrole subunits inter­connected at their α-carbon atoms through methine bridges. (Lee et al., 2018[Lee, H., Hong, K.-I. & Jang, W.-D. (2018). Coord. Chem. Rev. 354, 46-73.]) The structure of porphyrin can be found in nature, such as in various types of chloro­phylls and hemes. Chloro­phylls play a fundamental role in photosynthesis as light-gathering antennas and as charge-separation reaction systems. Hemes are one of the key components of biocatalysts and oxygen carriers in the blood. Without porphyrins, there can be no life on earth. (Hiroto et al., 2017[Hiroto, S., Miyake, Y. & Shinokubo, H. (2017). Chem. Rev. 117, 2910-3043.]) Porphyrin has an expanded electronic structure of 18 π-electrons; the resulting aromaticity gives rise to unique photophysical and semiconductor properties that make these compounds have a wide range of applications, which include artificial photosynthesis, catalysis, mol­ecular electronics, sensors, non-linear optics, and solar cells (Lee et al., 2018[Lee, H., Hong, K.-I. & Jang, W.-D. (2018). Coord. Chem. Rev. 354, 46-73.]; Cook et al., 2017[Cook, L. P., Brewer, G. & Wong-Ng, W. (2017). Crystals, 7, 223.]). They are also useful in medicine as photosensitizers in the photodynamic therapy of cancer (PDT) and in the treatment of some bacterial infections (Uttamlal & Sheila Holmes-Smith, 2008[Uttamlal, M. & Sheila Holmes-Smith, A. (2008). Chem. Phys. Lett. 454, 223-228.]).

For the past ten years, the motif of tetra­pyridyl­porphyrin in its free base (TPyP) and metalated form (MTPyP) has been one of the most used basic components in building blocks in the design of structural solids based on porphyrins in materials chemistry since it has a flat and rigid structure, bearing laterally divergent pyridyl groups prone to supra­molecular inter­action with neighboring entities (Seidel et al., 2011[Seidel, R. W., Goddard, R., Hoch, C., Breidung, J. & Oppel, I. M. (2011). J. Mol. Struct. 985, 307-315.]; Lipstman & Goldberg, 2009a[Lipstman, S. & Goldberg, I. (2009a). Acta Cryst. C65, m371-m373.],b[Lipstman, S. & Goldberg, I. (2009b). Acta Cryst. C65, o447-o452.], 2010[Lipstman, S. & Goldberg, I. (2010). Acta Cryst. C66, m222-m226.]; Koner & Goldberg, 2009[Koner, R. & Goldberg, I. (2009). Acta Cryst. C65, m139-m142.]). In this work, the periphery of tetra­pyridyl­porphyrin was modified by the benzyl­ation of the pyridyl groups, obtaining the tetra­cationic salt of triflate 5,10,15,20-tetra­kis­(1-benzyl­pyridin-1-ium-4-yl)-21H,23H-porphyrin, 1·OTf, which was studied as a fluorescent chemosensor for iodide in pure water in its bromide salt form (1·Br) published in a previous work (Salomón-Flores et al., 2019[Salomón-Flores, M. K., Hernández-Juárez, C. L., Bazany-Rodríguez, I. J., Barroso-Flores, J., Martínez-Otero, D., López-Arteaga, R., Valdés-Martínez, J. & Dorazco-González, A. (2019). Sens. Actuators B Chem. 281, 462-470.]). In this paper, we describe the most important structural characteristics of the 1·OTf crystal, which presents positional disorder, since 90% of the crystal is made up of free-base porphyrin while 10% of the crystal the tetra­pyrrolic nucleus is coordinated to a CaII ion.

[Scheme 1]

2. Structural commentary

Compound 1·OTf crystallizes in the monoclinic system in space group P21/c (Fig. 1[link]). The asymmetric unit consists of half the 1·OTf mol­ecule, two triflate anions to neutralize the charge, and two water mol­ecules of crystallization. The atoms of the triflate mol­ecules are in partially occupied sites. The degree of occupational disorder of the crystallization mol­ecules such as water, triflate and tosyl­ate are common in crystals of 5,10,15,20-tetra­kis (1-methyl­pyridinium-4-yl) cationic porphyrins (Lourenço et al., 2011[Lourenço, L. M. O., Fernandes, J. A., Neves, M. G. P. M. S., Cavaleiro, J. A. S., Tomé, J. P. C. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o3157-o3158.]; Makowski et al., 2012[Makowski, S. J., Lacher, M., Lermer, C. & Schnick, W. (2012). J. Mol. Struct. 1013, 19-25.]).

[Figure 1]
Figure 1
The mol­ecular structure of 1·OTf. The atoms of the asymmetric unit are labeled. Hydrogen atoms, except for the –NH pyrroles, have been omitted for clarity.

The C—C(meso), C—C and C—N bond lengths and angles in the pyrrole rings are in the ranges of 1.337 (2) to 1.451 (2) Å and 105.18 (12) to 126.89 (12)°, respectively, which are in the average ranges of bond lengths and angles reported for meso-pyridyl porphyrins. These macrocycle dimensions are relatively constant for all porphyrins, including complex multi-porphyrins, as well as the simpler derivatives of porphyrin (Konarev et al., 2018[Konarev, D. V., Kuzmin, A. V., Khasanov, S. S., Shestakov, A. F., Yudanova, E. I., Otsuka, A., Yamochi, H., Kitagawa, H. & Lyubovskaya, R. N. (2018). J. Org. Chem. 83, 1861-1866.]; Cook et al., 2017[Cook, L. P., Brewer, G. & Wong-Ng, W. (2017). Crystals, 7, 223.]). Specifically, the C—N—C bond angles are 109.83 (12) and 105.18 (8)° for the nitro­gen atoms of the protonated and non-protonated pyrroles, respectively. The transannular separations N⋯N [N1⋯N1i = 4.057 (2) Å and N2⋯N2i = 4.186 (2) Å] are comparable with the values found in the bromide salt of 5,10,15,20-tetra­(benzyl­pyridinium)-21H,23H porphyrin 1·Br (4.042 and 4.195 Å) and N⋯N distances between adjacent N atoms in 1·OTf [2.887 (2) and 2.942 (2) Å] are also similar to those of 1·Br (2.868 and 2.957 Å; Salomón-Flores et al., 2019[Salomón-Flores, M. K., Hernández-Juárez, C. L., Bazany-Rodríguez, I. J., Barroso-Flores, J., Martínez-Otero, D., López-Arteaga, R., Valdés-Martínez, J. & Dorazco-González, A. (2019). Sens. Actuators B Chem. 281, 462-470.]).

The tetra­pyrrole macrocycle is characteristically rigid and flat; the deviations of the individual atoms from the mean plane of the 24-membered porphyrin core range from 0.004 (1) (C1) to 0.060 (2) Å (C8), the core of 1·OTf is flatter than 1·Br, 100% free base, with values of atomic deviations from 0.012 (N1) to 0.094 Å (N2). The four pyridinium rings in the meso positions are in two different arrangements. The first pyridinium ring forms an almost orthogonal arrangement between the plane of the 24-membered porphyrin and the pyridinium ring N3/C11–C15 with an angle between the planes of 85.1 (3)°, while the second pyridinium ring N4/C23–C27 forms an angle between the planes of 61.54 (6)°. These angles are large due to the steric hindrance by the benzyl groups and their values are similar to those of 1·Br of 81.3 and 57.3°. Likewise, the benzyl groups are almost perpendicular to the corresponding pyridiniums, the angles between their planes being 77.1 (3) and 84.32 (1)° for the two benzyl­pyridinium fragments. The dihedral angle between the adjacent pyrrole rings N1/C1–C4 and N2/C6–C9 is 4.90 (9)°. The planes of the pyrrole rings are inclined to the N4 plane by 3.03 (7)° (N1/C1–C4 ring) and 4.71 (7)° (N2/C6–C9 ring), therefore the overall degree of distortion of the macrocycle is moderate and there is also no significant effect of the benzyl groups on the planar geometry of the porphyrin.

In this single crystal, one in ten entities of 1·OTf, has a CaII ion coordinated in its tetra­pyrrolic nucleus; this cation presents an occupational disorder. Fig. 2[link] shows the mol­ecular structure of 1·OTf-Ca. The calcium(II) atom coordinates to the four pyrrolic nitro­gen with a distorted square geometry and no ligand coordinated axially. In this context, complexes with high coordination numbers (hepta­coordinate) of CaII have been reported in porphyrins and porphyrinogens as well as with N-donor ligands (Bonomo et al., 1999[Bonomo, L., Dandin, O., Solari, E., Floriani, C. & Scopelliti, R. (1999). Angew. Chem. Int. Ed. 38, 913-915.], 2001[Bonomo, L., Lehaire, M.-L., Solari, E., Scopelliti, R. & Floriani, C. (2001). Angew. Chem. Int. Ed. 40, 771-774.]; Fromm, 2020[Fromm, K. M. (2020). Coord. Chem. Rev. 408, 213193.]; Dyall et al., 2019[Dyall, J., Hill, M. S., Mahon, M. F., Teh, L. & Wilson, A. S. S. (2019). Dalton Trans. 48, 4248-4254.]). For example, the calcium atom in 5,10,15,20-tetra­kis­(4-tert-butyl­phen­yl)porphyrinato calcium(II) {[Ca(tBuPP)(Py)3]} is hepta­coordinated with three pyridines and Ca—N bond distances in the tetra­pyrrolic macrocycle [Ca—N = 2.382 (4) and 2.416 (3) Å] are larger than found for 1·OTf-Ca [Ca1—N1 = 2.0284 (12) and Ca1—N2 = 2.0928 (12) Å] due to Ca(II) protruding from the N4 plane of the tetra­pyrrolic nucleus (Bonomo et al., 2001[Bonomo, L., Lehaire, M.-L., Solari, E., Scopelliti, R. & Floriani, C. (2001). Angew. Chem. Int. Ed. 40, 771-774.]). In the case of 1·OTf-Ca, CaII is exactly coplanar to the tetra­pyrrolic plane and is not out of the N4 plane, in comparison to [Ca(tBuPP)(Py)3] that has a distance of 1.657 (5) Å. Furthermore, the N—Ca—N bond angles are 88.92 (5), 91.08 (5) and 180°.

[Figure 2]
Figure 2
The mol­ecular structure of 1·OTf-Ca. The atoms of the asymmetric unit are labeled. Hydrogen atoms have been omitted for clarity.

3. Supra­molecular features

The porphyrin macrocycle of 1·OTf presents π-electron deficiency as a result of the multiple positive charge of the N-benzyl­pyridinium groups and is stabilized mainly by electrostatic inter­actions with the triflate anions; however, other supra­molecular inter­actions also stabilize the crystal.

The N-benzyl­pyridinium groups in 1·OTf produce steric hindrance, which prevents the aggregation of porphyrin mol­ecules and ππ stacking inter­actions between the tetra­pyrrolic nuclei, which are common in free-base tetra­pyridyl­porphyrins (Seidel et al., 2011[Seidel, R. W., Goddard, R., Hoch, C., Breidung, J. & Oppel, I. M. (2011). J. Mol. Struct. 985, 307-315.]; Lipstman & Goldberg, 2009b[Lipstman, S. & Goldberg, I. (2009b). Acta Cryst. C65, o447-o452.], 2010[Lipstman, S. & Goldberg, I. (2010). Acta Cryst. C66, m222-m226.]). Conversely, salts of tetra­pyridinium porphyrins quaternized with small groups such as –CH3 and –H generate porphyrin mol­ecules offset-stacked; this cofacial arrangement is a well-known feature of the supra­molecular inter­porphyrin organization. However, bulky groups as substituents in the meso positions of the porphyrins can hinder the inter­actions between porphyrins (Lourenço et al., 2011[Lourenço, L. M. O., Fernandes, J. A., Neves, M. G. P. M. S., Cavaleiro, J. A. S., Tomé, J. P. C. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o3157-o3158.]; Makowski et al., 2012[Makowski, S. J., Lacher, M., Lermer, C. & Schnick, W. (2012). J. Mol. Struct. 1013, 19-25.]; Wang et al., 2013[Wang, L., Chen, Y., Bian, Y. & Jiang, J. (2013). J. Phys. Chem. C, 117, 17352-17359.]; Zhao et al., 2013[Zhao, H.-B., Chen, L., Wang, B.-Y., Liao, J.-X. & Xu, Y.-J. (2013). Acta Cryst. C69, 651-653.]), as in this case.

The crystallographic results of 1·OTf show that each porphyrin mol­ecule binds to four neighboring porphyrin units through C—H⋯π and ππ inter­actions. The N3-benzyl­pyridinium fragments are involved in C13—H13⋯π inter­ ;actions (Table 1[link]) by means of the hydrogen atom of the pyridinium ring N3/C11–C15 adjacent to the positive charge (N+). According to the geometric parameters of Csp2—H⋯π-systems, this inter­action is considered strong because the C13—H13⋯π distance is 2.65 Å and the C—H⋯π angle is 164°(Nishio, 2011[Nishio, M. (2011). Phys. Chem. Chem. Phys. 13, 13873-13900.]; Nishio et al., 2014[Nishio, M., Umezawa, Y., Fantini, J., Weiss, M. S. & Chakrabarti, P. (2014). Phys. Chem. Chem. Phys. 16, 12648-12683.]; Brandl et al., 2001[Brandl, M., Weiss, M. S., Jabs, A., Sühnel, J. & Hilgenfeld, R. (2001). J. Mol. Biol. 307, 357-377.]). The ππ inter­action is through the stacking of the benzyl group bonded to the N4/C29–C34 pyridinium ring, where the centroid–centroid distance is 4.345 (4) Å. Fig. 3[link] shows the inter­action of a porphyrin unit with four neighboring units through C—H⋯π contacts and ππ inter­actions between the pyridinium and terminal phenyl groups.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O1 0.86 (2) 2.04 (2) 2.817 (5) 150 (3)
O7—H7A⋯O3A 0.86 (2) 2.14 (2) 2.874 (6) 143 (3)
O7—H7B⋯O4 0.88 (2) 2.24 (3) 2.965 (11) 140 (3)
O7—H7B⋯O6A 0.88 (2) 2.29 (3) 3.048 (10) 144 (3)
O8—H8A⋯O2i 0.87 (2) 2.08 (2) 2.914 (6) 163 (3)
O8—H8A⋯O2Ai 0.87 (2) 1.94 (2) 2.789 (7) 167 (3)
O8—H8B⋯O7 0.89 (2) 1.96 (2) 2.838 (3) 174 (3)
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
The inter­action of one porphyrin unit with four neighboring units through C—H⋯π contacts and ππ inter­actions.

Those inter­actions in 1·OTf lead to the formation of two-dimensional square-grid networks in which the squares are formed by N4-benzyl­pyridinium groups (green), while the N3-benzyl­pyridinium groups (blue) are placed inside each square and are separated from each other by 4.01 Å. This di-periodic lattice is illustrated in Fig. 4[link]. Di-periodic square grid networks are common in free-base tetra­pyridyl­porphyrins (Lipstman & Goldberg, 2009a[Lipstman, S. & Goldberg, I. (2009a). Acta Cryst. C65, m371-m373.], 2010[Lipstman, S. & Goldberg, I. (2010). Acta Cryst. C66, m222-m226.]).

[Figure 4]
Figure 4
Square-grid two-dimensional lattice pattern observed in 1·OTf. The N4-benzyl­pyridinium and N3-benzyl­pyridiniums groups are in green and blue, respectively. Hydrogen atoms have been omitted for clarity.

In contrast to 1·OTf-Ca, the phenyl group (C29–C34) bonded to the N4-pyridinium ring has a cation⋯π inter­action leading to di-periodic square-grid networks (Fig. 5[link]). The Ca2 +π distance is 3.897  Å (distance between the cation and the centroid of the π-ring), θ ≤ 45° (the most preferred geometry is when the cation is on the π-system where θ = 0°) and α = 13.761° (α is the dihedral angle between the planes of the π-system and that of the cation), which are within the geometric parameters of the cation–π inter­action (Yamada, 2020[Yamada, S. (2020). Coord. Chem. Rev. 415, 213301.]; Borozan et al., 2013[Borozan, S. Z., Dimitrijević, B. P. & Stojanović, S. Đ. (2013). Comput. Biol. Chem. 47, 105-112.]). Fig. 4[link] illustrates the Ca2+π inter­action in spacefilling mode.

[Figure 5]
Figure 5
Ca2+π contacts, shown in spacefilling mode, lead to di-periodic square-grid networks in 1·OTf-Ca. Hydrogen atoms have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (version 5.44, April, 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related salts of 5,10,15,20-tetra (4-benzyl­pyridinium)-21H,23H porphyrin and its CaII complexes, revealed that no structures have been reported thus far (April 2024).

5. Synthesis and crystallization

A mixture of 5,10,15,20-tetra (4-pyrid­yl)-21H,23H-porphyrin (99.7 mg, 0.161 mmol) and 10.0 equiv. of benzyl bromide (280 mg, 1.61 mmol) in CH3CN (20.0 mL) was stirred under reflux for 24 h. Subsequently, 4.1 equiv. of silver triflate was added. The mixture reaction was filtered and the solvent was evaporated at r.t. for three days to give red–brown single crystals corresponding to 1·Otf in a yield of 71%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].The hydrogen atoms of the C—H and N—H bonds were placed in idealized positions whereas the hydrogen from water molecules were localized from the difference electron density map and their position was refined with Uiso tied to the parent atom with distance restraints (DFIX) Uiso(H) = aUeq(parent atom) where a is 1.5 for –CH3 and N—H moieties and 1.2 for others.

Table 2
Experimental details

Crystal data
Chemical formula [Ca0.10(C68H53.81N8)](CF3O3S)4·4H2O
Mr 1655.20
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 10.4506 (4), 15.6166 (6), 22.3537 (9)
β (°) 90.417 (2)
V3) 3648.1 (2)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.18
Crystal size (mm) 0.49 × 0.29 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.586, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 50051, 6684, 5995
Rint 0.035
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.126, 1.04
No. of reflections 6684
No. of parameters 791
No. of restraints 1623
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2019[Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2019/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

(5,10,15,20-tetrakis(1-benzylpyridin-1-ium-4-yl)-21H,23H-porphyrin)calcium(II) tetrakis(trifluoromethanesulfonate) tetrahydrate top
Crystal data top
[Ca0.10(C68H53.81N8)](CF3O3S)4·4H2OF(000) = 1703
Mr = 1655.20Dx = 1.507 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 10.4506 (4) ÅCell parameters from 9998 reflections
b = 15.6166 (6) Åθ = 3.5–69.4°
c = 22.3537 (9) ŵ = 2.18 mm1
β = 90.417 (2)°T = 293 K
V = 3648.1 (2) Å3Plate, red
Z = 20.49 × 0.28 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
6684 independent reflections
Radiation source: Incoatec ImuS5995 reflections with I > 2σ(I)
Mirrors monochromatorRint = 0.035
ω scansθmax = 68.2°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.586, Tmax = 0.753k = 1818
50051 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0713P)2 + 1.1304P]
where P = (Fo2 + 2Fc2)/3
6684 reflections(Δ/σ)max = 0.001
791 parametersΔρmax = 0.22 e Å3
1623 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca10.5000001.0000000.5000000.0372 (17)0.096 (2)
O70.80659 (19)0.66609 (16)0.72189 (10)0.1002 (6)
H7A0.833 (3)0.7028 (17)0.6959 (12)0.120*
H7B0.767 (3)0.6257 (16)0.7019 (14)0.120*
O81.04027 (18)0.63868 (14)0.78449 (9)0.0916 (5)
H8A1.050 (3)0.5840 (12)0.7886 (15)0.110*
H8B0.970 (2)0.6459 (18)0.7624 (13)0.110*
N10.59926 (11)0.99267 (7)0.42253 (5)0.0354 (3)
N20.56666 (12)0.87932 (8)0.52642 (6)0.0368 (3)
H2A0.546 (2)0.9301 (11)0.5186 (10)0.055*0.904 (2)
N40.39344 (13)0.69299 (8)0.76441 (6)0.0429 (3)
C10.60390 (13)1.05069 (9)0.37688 (6)0.0356 (3)
C20.67922 (15)1.01782 (10)0.32765 (7)0.0422 (3)
H20.6947441.0450300.2914130.051*
C30.72193 (15)0.94075 (10)0.34459 (7)0.0411 (3)
H30.7736800.9041960.3225540.049*
C40.67194 (13)0.92520 (9)0.40395 (6)0.0349 (3)
C50.69278 (13)0.84937 (9)0.43609 (7)0.0360 (3)
C60.64139 (13)0.82779 (9)0.49145 (7)0.0368 (3)
C70.65604 (16)0.74870 (10)0.52261 (7)0.0447 (4)
H70.7025500.7016450.5094490.054*
C80.59099 (16)0.75367 (10)0.57446 (7)0.0445 (4)
H80.5843060.7106460.6030310.053*
C90.53414 (14)0.83692 (9)0.57764 (7)0.0375 (3)
C100.45622 (14)0.86894 (9)0.62318 (6)0.0371 (3)
C110.7804 (8)0.7846 (4)0.4085 (3)0.0374 (12)0.612 (10)
C120.9104 (9)0.7940 (6)0.4176 (3)0.0481 (13)0.612 (10)
H120.9405700.8389650.4410470.058*0.612 (10)
C130.9959 (8)0.7378 (5)0.3925 (3)0.0504 (12)0.612 (10)
H131.0831260.7456560.3988840.060*0.612 (10)
N30.9558 (7)0.6728 (5)0.3594 (3)0.0508 (12)0.612 (10)
C140.8305 (7)0.6615 (5)0.3485 (3)0.0561 (14)0.612 (10)
H140.8034910.6161890.3245100.067*0.612 (10)
C150.7418 (8)0.7163 (6)0.3726 (3)0.0503 (14)0.612 (10)
H150.6552160.7077110.3648340.060*0.612 (10)
C161.0498 (6)0.6067 (4)0.3377 (3)0.0619 (12)0.612 (10)
H16A1.1358320.6299050.3399320.074*0.612 (10)
H16B1.0312620.5927250.2963100.074*0.612 (10)
C171.0419 (4)0.5266 (4)0.3755 (3)0.0632 (11)0.612 (10)
C181.1090 (6)0.5187 (4)0.4289 (3)0.0873 (15)0.612 (10)
H181.1605370.5638800.4415040.105*0.612 (10)
C191.1021 (7)0.4457 (4)0.4644 (3)0.1036 (17)0.612 (10)
H191.1471290.4416120.5003320.124*0.612 (10)
C201.0256 (7)0.3795 (5)0.4440 (4)0.1120 (17)0.612 (10)
H201.0187010.3298200.4666640.134*0.612 (10)
C210.9596 (8)0.3860 (5)0.3909 (4)0.1020 (17)0.612 (10)
H210.9100710.3402660.3776360.122*0.612 (10)
C220.9659 (7)0.4591 (5)0.3571 (3)0.0855 (16)0.612 (10)
H220.9188700.4632080.3217730.103*0.612 (10)
C11A0.7828 (12)0.7861 (7)0.4086 (6)0.040 (2)0.388 (10)
C12A0.9133 (13)0.7979 (9)0.4049 (5)0.0452 (17)0.388 (10)
H12A0.9512680.8472630.4200820.054*0.388 (10)
C13A0.9868 (12)0.7350 (8)0.3780 (5)0.0528 (19)0.388 (10)
H13A1.0748420.7424230.3751020.063*0.388 (10)
N3A0.9330 (11)0.6644 (7)0.3563 (5)0.0518 (17)0.388 (10)
C14A0.8065 (11)0.6528 (8)0.3594 (5)0.0552 (18)0.388 (10)
H14A0.7707320.6031880.3434820.066*0.388 (10)
C15A0.7288 (13)0.7118 (9)0.3855 (5)0.0465 (17)0.388 (10)
H15A0.6410530.7025160.3876720.056*0.388 (10)
C16A1.0104 (10)0.5950 (7)0.3270 (4)0.0682 (19)0.388 (10)
H16C0.9675600.5764230.2905980.082*0.388 (10)
H16D1.0936870.6174820.3162040.082*0.388 (10)
C17A1.0272 (8)0.5203 (7)0.3681 (4)0.0686 (18)0.388 (10)
C18A1.1372 (8)0.5140 (5)0.4025 (5)0.0820 (18)0.388 (10)
H18A1.2010160.5554390.4005380.098*0.388 (10)
C19A1.1489 (10)0.4442 (6)0.4397 (5)0.101 (2)0.388 (10)
H19A1.2224370.4386790.4630980.122*0.388 (10)
C20A1.0556 (11)0.3822 (8)0.4435 (5)0.108 (2)0.388 (10)
H20A1.0666840.3359770.4692770.129*0.388 (10)
C21A0.9457 (12)0.3886 (8)0.4092 (6)0.101 (2)0.388 (10)
H21A0.8819870.3471670.4116480.121*0.388 (10)
C22A0.9325 (10)0.4580 (7)0.3711 (5)0.083 (2)0.388 (10)
H22A0.8595480.4629260.3472720.099*0.388 (10)
C230.43381 (14)0.81063 (9)0.67489 (7)0.0381 (3)
C240.53387 (15)0.78163 (11)0.71026 (7)0.0440 (4)
H240.6161720.8025270.7044210.053*
C250.51145 (16)0.72196 (11)0.75399 (7)0.0467 (4)
H250.5795790.7013320.7767800.056*
C260.29349 (16)0.72276 (11)0.73289 (8)0.0495 (4)
H260.2113970.7036080.7415000.059*
C270.31134 (15)0.78131 (11)0.68799 (8)0.0474 (4)
H270.2414240.8015000.6662210.057*
C280.37257 (19)0.62615 (11)0.81052 (8)0.0508 (4)
H28A0.4496290.5919090.8144030.061*
H28B0.3041030.5886190.7972180.061*
C290.33906 (15)0.66198 (11)0.87083 (7)0.0434 (4)
C300.28792 (19)0.60547 (13)0.91228 (8)0.0565 (4)
H300.2734600.5487200.9015880.068*
C310.2586 (2)0.63286 (17)0.96894 (9)0.0712 (6)
H310.2236180.5946280.9962210.085*
C320.2804 (2)0.71607 (18)0.98559 (9)0.0730 (6)
H320.2602400.7342381.0240090.088*
C330.3319 (2)0.77247 (15)0.94539 (10)0.0674 (5)
H330.3478230.8287910.9567280.081*
C340.36049 (17)0.74569 (12)0.88786 (9)0.0536 (4)
H340.3942790.7844010.8605880.064*
C350.9697 (7)0.9025 (5)0.5890 (3)0.0690 (15)0.567 (4)
F11.0514 (5)0.9648 (4)0.58440 (18)0.1336 (18)0.567 (4)
F21.0197 (6)0.8344 (3)0.5647 (2)0.1305 (17)0.567 (4)
F30.8743 (4)0.9241 (3)0.55352 (13)0.1006 (10)0.567 (4)
S10.9191 (2)0.8838 (2)0.66580 (13)0.0600 (6)0.567 (4)
O10.8216 (4)0.8207 (3)0.6574 (2)0.1173 (15)0.567 (4)
O20.8799 (6)0.9651 (3)0.6854 (2)0.1189 (16)0.567 (4)
O31.0294 (4)0.8502 (4)0.69258 (18)0.1132 (15)0.567 (4)
C35A0.9759 (10)0.9014 (7)0.5917 (4)0.075 (2)0.433 (4)
F1A1.0989 (3)0.8891 (4)0.59294 (18)0.1000 (14)0.433 (4)
F2A0.9287 (7)0.8438 (5)0.5565 (2)0.141 (2)0.433 (4)
F3A0.9587 (7)0.9759 (4)0.5681 (3)0.134 (2)0.433 (4)
S1A0.9040 (4)0.8957 (3)0.6639 (2)0.0908 (13)0.433 (4)
O1A0.7752 (4)0.9047 (4)0.6556 (2)0.1127 (18)0.433 (4)
O2A0.9687 (7)0.9624 (4)0.6962 (3)0.114 (2)0.433 (4)
O3A0.9478 (8)0.8153 (4)0.6862 (3)0.124 (2)0.433 (4)
C360.4698 (8)0.5056 (5)0.5924 (4)0.0843 (17)0.547 (12)
F40.4050 (9)0.5732 (5)0.5755 (4)0.1231 (19)0.547 (12)
F50.5709 (6)0.5059 (6)0.5597 (3)0.121 (2)0.547 (12)
F60.4130 (10)0.4395 (4)0.5706 (3)0.121 (2)0.547 (12)
S20.5069 (7)0.4987 (3)0.6715 (2)0.0864 (13)0.547 (12)
O40.5684 (12)0.5790 (6)0.6824 (6)0.091 (2)0.547 (12)
O50.5905 (11)0.4265 (4)0.6737 (3)0.115 (2)0.547 (12)
O60.3877 (9)0.4856 (7)0.6996 (4)0.125 (3)0.547 (12)
C36A0.4403 (12)0.5242 (7)0.5903 (4)0.090 (2)0.453 (12)
F4A0.3819 (10)0.6009 (6)0.5898 (5)0.126 (3)0.453 (12)
F5A0.5411 (11)0.5416 (6)0.5586 (4)0.124 (3)0.453 (12)
F6A0.3557 (10)0.4696 (7)0.5688 (4)0.122 (3)0.453 (12)
S2A0.4801 (7)0.5013 (3)0.6668 (3)0.0694 (9)0.453 (12)
O4A0.5144 (11)0.4154 (4)0.6694 (4)0.114 (2)0.453 (12)
O5A0.3550 (8)0.5159 (6)0.6925 (4)0.091 (2)0.453 (12)
O6A0.5726 (14)0.5616 (9)0.6850 (8)0.098 (3)0.453 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.044 (3)0.030 (2)0.037 (3)0.0098 (16)0.0126 (17)0.0093 (17)
O70.0761 (11)0.1164 (17)0.1084 (15)0.0033 (10)0.0128 (10)0.0417 (13)
O80.0759 (11)0.1117 (14)0.0873 (12)0.0215 (11)0.0056 (9)0.0076 (12)
N10.0385 (6)0.0301 (6)0.0376 (6)0.0035 (5)0.0065 (5)0.0050 (5)
N20.0401 (6)0.0306 (6)0.0399 (6)0.0069 (5)0.0082 (5)0.0080 (5)
N40.0508 (7)0.0382 (7)0.0399 (7)0.0066 (5)0.0117 (6)0.0104 (5)
C10.0364 (7)0.0339 (7)0.0366 (7)0.0006 (5)0.0052 (6)0.0055 (6)
C20.0504 (8)0.0398 (8)0.0365 (8)0.0024 (6)0.0100 (6)0.0056 (6)
C30.0458 (8)0.0377 (8)0.0401 (8)0.0044 (6)0.0118 (6)0.0007 (6)
C40.0349 (7)0.0326 (7)0.0373 (7)0.0012 (5)0.0053 (5)0.0020 (6)
C50.0356 (7)0.0317 (7)0.0408 (8)0.0030 (6)0.0043 (6)0.0011 (6)
C60.0371 (7)0.0326 (7)0.0407 (8)0.0048 (5)0.0048 (6)0.0041 (6)
C70.0521 (9)0.0337 (7)0.0484 (9)0.0130 (6)0.0090 (7)0.0060 (7)
C80.0545 (9)0.0334 (7)0.0456 (8)0.0086 (6)0.0080 (7)0.0113 (6)
C90.0397 (7)0.0336 (7)0.0394 (8)0.0034 (6)0.0052 (6)0.0080 (6)
C100.0386 (7)0.0346 (7)0.0381 (7)0.0018 (6)0.0045 (6)0.0081 (6)
C110.042 (2)0.032 (2)0.038 (2)0.007 (2)0.007 (2)0.009 (2)
C120.0457 (19)0.054 (2)0.044 (3)0.0071 (17)0.007 (2)0.007 (2)
C130.0452 (18)0.062 (2)0.044 (3)0.0094 (15)0.0027 (18)0.004 (2)
N30.050 (2)0.046 (2)0.0563 (19)0.0123 (17)0.0144 (16)0.0042 (16)
C140.066 (3)0.041 (2)0.061 (3)0.000 (2)0.022 (2)0.013 (2)
C150.047 (2)0.047 (2)0.058 (3)0.0005 (17)0.008 (2)0.009 (2)
C160.057 (2)0.061 (2)0.068 (2)0.0204 (19)0.0158 (19)0.0117 (18)
C170.062 (2)0.048 (2)0.080 (2)0.0226 (18)0.0039 (19)0.0120 (18)
C180.086 (3)0.070 (2)0.105 (3)0.005 (2)0.022 (3)0.006 (3)
C190.107 (4)0.085 (3)0.118 (4)0.021 (3)0.030 (3)0.019 (3)
C200.115 (4)0.068 (3)0.153 (4)0.013 (3)0.020 (3)0.025 (3)
C210.115 (3)0.063 (2)0.128 (4)0.002 (2)0.014 (3)0.012 (3)
C220.098 (4)0.068 (2)0.090 (3)0.011 (3)0.007 (3)0.019 (2)
C11A0.045 (3)0.036 (4)0.040 (4)0.007 (3)0.007 (4)0.003 (3)
C12A0.042 (3)0.048 (3)0.046 (4)0.002 (2)0.010 (3)0.003 (3)
C13A0.049 (3)0.063 (3)0.047 (4)0.016 (3)0.014 (3)0.005 (3)
N3A0.056 (3)0.045 (3)0.055 (3)0.015 (3)0.024 (3)0.005 (2)
C14A0.062 (3)0.041 (3)0.063 (4)0.001 (3)0.027 (3)0.001 (3)
C15A0.050 (3)0.038 (3)0.051 (4)0.005 (2)0.021 (3)0.003 (3)
C16A0.070 (4)0.065 (3)0.070 (3)0.024 (3)0.018 (3)0.005 (3)
C17A0.073 (3)0.052 (3)0.081 (3)0.022 (3)0.001 (3)0.014 (3)
C18A0.076 (3)0.058 (3)0.112 (4)0.018 (3)0.010 (3)0.009 (3)
C19A0.090 (4)0.073 (3)0.141 (5)0.021 (3)0.027 (4)0.025 (4)
C20A0.102 (4)0.067 (4)0.154 (4)0.017 (3)0.024 (4)0.026 (4)
C21A0.106 (4)0.068 (3)0.129 (5)0.004 (3)0.013 (4)0.011 (4)
C22A0.082 (4)0.067 (3)0.099 (4)0.014 (3)0.005 (3)0.005 (3)
C230.0429 (8)0.0335 (7)0.0379 (7)0.0049 (6)0.0083 (6)0.0054 (6)
C240.0396 (8)0.0484 (9)0.0440 (8)0.0024 (6)0.0072 (6)0.0107 (7)
C250.0457 (8)0.0521 (9)0.0424 (8)0.0100 (7)0.0046 (6)0.0121 (7)
C260.0425 (8)0.0504 (9)0.0558 (10)0.0014 (7)0.0105 (7)0.0133 (8)
C270.0404 (8)0.0492 (9)0.0526 (9)0.0041 (7)0.0028 (7)0.0153 (7)
C280.0670 (11)0.0384 (8)0.0472 (9)0.0053 (7)0.0139 (8)0.0137 (7)
C290.0401 (8)0.0475 (9)0.0428 (8)0.0024 (6)0.0042 (6)0.0106 (7)
C300.0639 (11)0.0555 (10)0.0503 (10)0.0009 (8)0.0088 (8)0.0174 (8)
C310.0764 (13)0.0886 (16)0.0488 (11)0.0090 (12)0.0159 (9)0.0250 (11)
C320.0722 (13)0.1041 (18)0.0428 (10)0.0168 (12)0.0035 (9)0.0010 (11)
C330.0629 (12)0.0715 (13)0.0677 (13)0.0035 (10)0.0010 (10)0.0145 (11)
C340.0506 (9)0.0519 (10)0.0584 (10)0.0035 (7)0.0103 (8)0.0039 (8)
C350.064 (3)0.077 (3)0.066 (3)0.005 (3)0.014 (2)0.009 (3)
F10.136 (3)0.155 (4)0.109 (3)0.087 (3)0.011 (3)0.012 (3)
F20.158 (4)0.116 (3)0.118 (3)0.044 (3)0.059 (3)0.018 (2)
F30.116 (2)0.119 (3)0.0660 (15)0.000 (2)0.0130 (15)0.0059 (16)
S10.0418 (6)0.0827 (13)0.0557 (10)0.0037 (7)0.0140 (5)0.0009 (8)
O10.094 (3)0.140 (4)0.118 (3)0.049 (3)0.016 (2)0.024 (3)
O20.151 (4)0.108 (3)0.098 (3)0.044 (3)0.017 (3)0.036 (2)
O30.079 (2)0.174 (4)0.086 (2)0.033 (3)0.0029 (19)0.013 (3)
C35A0.070 (3)0.084 (4)0.070 (4)0.002 (3)0.004 (3)0.003 (3)
F1A0.0652 (19)0.153 (4)0.082 (2)0.019 (2)0.0136 (16)0.003 (3)
F2A0.137 (4)0.190 (5)0.096 (3)0.030 (4)0.010 (3)0.069 (3)
F3A0.141 (5)0.136 (4)0.126 (4)0.039 (4)0.049 (4)0.069 (3)
S1A0.109 (3)0.087 (2)0.0757 (17)0.0344 (18)0.0129 (16)0.0161 (14)
O1A0.073 (3)0.150 (5)0.116 (4)0.024 (3)0.033 (2)0.007 (3)
O2A0.128 (4)0.126 (4)0.088 (3)0.041 (4)0.019 (3)0.029 (3)
O3A0.162 (6)0.093 (3)0.117 (4)0.014 (4)0.003 (4)0.048 (3)
C360.110 (4)0.067 (3)0.076 (3)0.003 (3)0.001 (3)0.004 (2)
F40.160 (4)0.092 (4)0.117 (4)0.034 (3)0.041 (3)0.009 (3)
F50.124 (3)0.169 (6)0.071 (2)0.025 (3)0.0232 (19)0.011 (4)
F60.194 (6)0.093 (3)0.075 (2)0.041 (3)0.013 (4)0.009 (2)
S20.137 (3)0.0700 (16)0.0527 (11)0.0024 (14)0.0088 (16)0.0095 (9)
O40.129 (4)0.053 (3)0.091 (3)0.010 (2)0.003 (3)0.010 (2)
O50.191 (6)0.062 (2)0.091 (3)0.031 (3)0.018 (4)0.010 (2)
O60.142 (5)0.155 (6)0.080 (3)0.033 (4)0.026 (4)0.007 (4)
C36A0.131 (4)0.072 (4)0.068 (3)0.026 (4)0.007 (3)0.017 (3)
F4A0.136 (5)0.099 (5)0.144 (6)0.015 (4)0.027 (4)0.026 (4)
F5A0.169 (6)0.117 (5)0.085 (3)0.039 (4)0.036 (4)0.001 (4)
F6A0.156 (6)0.132 (5)0.078 (3)0.060 (4)0.017 (4)0.001 (4)
S2A0.1048 (19)0.0401 (12)0.0632 (16)0.0050 (10)0.0020 (11)0.0086 (9)
O4A0.162 (6)0.056 (3)0.125 (4)0.018 (4)0.023 (5)0.012 (2)
O5A0.111 (4)0.094 (4)0.069 (3)0.005 (3)0.010 (3)0.021 (3)
O6A0.111 (5)0.071 (6)0.111 (5)0.008 (4)0.037 (4)0.019 (5)
Geometric parameters (Å, º) top
Ca1—N1i2.0283 (12)C13A—N3A1.329 (11)
Ca1—N12.0284 (12)C13A—H13A0.9300
Ca1—N2i2.0927 (12)N3A—C14A1.337 (10)
Ca1—N22.0928 (12)N3A—C16A1.505 (10)
Ca1—C43.0430 (14)C14A—C15A1.362 (11)
Ca1—C4i3.0430 (14)C14A—H14A0.9300
Ca1—C13.0698 (14)C15A—H15A0.9300
Ca1—C1i3.0698 (14)C16A—C17A1.495 (10)
Ca1—C63.0751 (14)C16A—H16C0.9700
Ca1—C6i3.0751 (14)C16A—H16D0.9700
Ca1—C9i3.1010 (14)C17A—C18A1.382 (7)
Ca1—C93.1011 (14)C17A—C22A1.390 (7)
Ca1—H2A1.263 (17)C18A—C19A1.377 (7)
Ca1—H2Ai1.263 (17)C18A—H18A0.9300
O7—H7A0.862 (18)C19A—C20A1.377 (8)
O7—H7B0.875 (17)C19A—H19A0.9300
O8—H8A0.865 (17)C20A—C21A1.380 (8)
O8—H8B0.885 (17)C20A—H20A0.9300
N1—C41.3653 (18)C21A—C22A1.385 (7)
N1—C11.3658 (18)C21A—H21A0.9300
N2—C91.3677 (19)C22A—H22A0.9300
N2—C61.3702 (19)C23—C241.383 (2)
N2—H2A0.839 (16)C23—C271.392 (2)
N4—C251.336 (2)C24—C251.372 (2)
N4—C261.339 (2)C24—H240.9300
N4—C281.4843 (19)C25—H250.9300
C1—C10i1.404 (2)C26—C271.371 (2)
C1—C21.451 (2)C26—H260.9300
C2—C31.337 (2)C27—H270.9300
C2—H20.9300C28—C291.503 (2)
C3—C41.450 (2)C28—H28A0.9700
C3—H30.9300C28—H28B0.9700
C4—C51.401 (2)C29—C341.379 (3)
C5—C61.394 (2)C29—C301.389 (2)
C5—C11A1.499 (2)C30—C311.374 (3)
C5—C111.500 (2)C30—H300.9300
C6—C71.426 (2)C31—C321.370 (4)
C7—C81.350 (2)C31—H310.9300
C7—H70.9300C32—C331.372 (3)
C8—C91.431 (2)C32—H320.9300
C8—H80.9300C33—C341.387 (3)
C9—C101.401 (2)C33—H330.9300
C10—C231.491 (2)C34—H340.9300
C11—C121.380 (7)C35—F11.298 (8)
C11—C151.393 (7)C35—F21.305 (8)
C12—C131.375 (7)C35—F31.314 (8)
C12—H120.9300C35—S11.823 (7)
C13—N31.323 (7)S1—O31.396 (4)
C13—H130.9300S1—O21.405 (5)
N3—C141.342 (7)S1—O11.429 (5)
N3—C161.506 (6)C35A—F3A1.289 (10)
C14—C151.375 (7)C35A—F2A1.292 (11)
C14—H140.9300C35A—F1A1.299 (11)
C15—H150.9300C35A—S1A1.786 (10)
C16—C171.513 (7)S1A—O1A1.365 (6)
C16—H16A0.9700S1A—O3A1.425 (7)
C16—H16B0.9700S1A—O2A1.434 (7)
C17—C221.381 (6)C36—F61.285 (8)
C17—C181.385 (6)C36—F51.288 (8)
C18—C191.391 (6)C36—F41.309 (8)
C18—H180.9300C36—S21.812 (8)
C19—C201.382 (6)S2—O61.414 (8)
C19—H190.9300S2—O51.426 (7)
C20—C211.373 (6)S2—O41.430 (8)
C20—H200.9300C36A—F5A1.302 (10)
C21—C221.369 (6)C36A—F6A1.318 (9)
C21—H210.9300C36A—F4A1.345 (10)
C22—H220.9300C36A—S2A1.793 (9)
C11A—C12A1.379 (11)S2A—O4A1.389 (8)
C11A—C15A1.388 (12)S2A—O6A1.408 (9)
C12A—C13A1.387 (11)S2A—O5A1.449 (8)
C12A—H12A0.9300
N1i—Ca1—N1180.0C14—N3—C16119.3 (6)
N1i—Ca1—N2i91.08 (5)N3—C14—C15120.5 (6)
N1—Ca1—N2i88.92 (5)N3—C14—H14119.8
N1i—Ca1—N288.92 (5)C15—C14—H14119.8
N1—Ca1—N291.08 (5)C14—C15—C11120.7 (6)
N2i—Ca1—N2180.00 (7)C14—C15—H15119.7
N1i—Ca1—C4158.81 (4)C11—C15—H15119.7
N1—Ca1—C421.19 (4)N3—C16—C17110.4 (4)
N2i—Ca1—C4110.10 (4)N3—C16—H16A109.6
N2—Ca1—C469.90 (4)C17—C16—H16A109.6
N1i—Ca1—C4i21.19 (4)N3—C16—H16B109.6
N1—Ca1—C4i158.81 (4)C17—C16—H16B109.6
N2i—Ca1—C4i69.90 (4)H16A—C16—H16B108.1
N2—Ca1—C4i110.10 (4)C22—C17—C18118.4 (6)
C4—Ca1—C4i180.0C22—C17—C16120.0 (5)
N1i—Ca1—C1159.60 (4)C18—C17—C16121.7 (5)
N1—Ca1—C120.40 (4)C17—C18—C19122.4 (5)
N2i—Ca1—C168.53 (4)C17—C18—H18118.8
N2—Ca1—C1111.47 (4)C19—C18—H18118.8
C4—Ca1—C141.57 (4)C20—C19—C18117.2 (6)
C4i—Ca1—C1138.43 (4)C20—C19—H19121.4
N1i—Ca1—C1i20.40 (4)C18—C19—H19121.4
N1—Ca1—C1i159.60 (4)C21—C20—C19121.0 (8)
N2i—Ca1—C1i111.47 (4)C21—C20—H20119.5
N2—Ca1—C1i68.53 (4)C19—C20—H20119.5
C4—Ca1—C1i138.43 (4)C22—C21—C20120.8 (7)
C4i—Ca1—C1i41.57 (4)C22—C21—H21119.6
C1—Ca1—C1i180.0C20—C21—H21119.6
N1i—Ca1—C6110.57 (4)C21—C22—C17120.1 (6)
N1—Ca1—C669.43 (4)C21—C22—H22119.9
N2i—Ca1—C6158.30 (4)C17—C22—H22119.9
N2—Ca1—C621.70 (4)C12A—C11A—C15A119.3 (7)
C4—Ca1—C648.24 (4)C12A—C11A—C5124.0 (11)
C4i—Ca1—C6131.76 (4)C15A—C11A—C5116.7 (11)
C1—Ca1—C689.80 (4)C11A—C12A—C13A118.8 (10)
C1i—Ca1—C690.20 (4)C11A—C12A—H12A120.6
N1i—Ca1—C6i69.43 (4)C13A—C12A—H12A120.6
N1—Ca1—C6i110.57 (4)N3A—C13A—C12A120.8 (10)
N2i—Ca1—C6i21.70 (4)N3A—C13A—H13A119.6
N2—Ca1—C6i158.30 (4)C12A—C13A—H13A119.6
C4—Ca1—C6i131.76 (4)C13A—N3A—C14A120.6 (9)
C4i—Ca1—C6i48.24 (4)C13A—N3A—C16A122.0 (10)
C1—Ca1—C6i90.20 (4)C14A—N3A—C16A117.4 (9)
C1i—Ca1—C6i89.80 (4)N3A—C14A—C15A121.6 (10)
C6—Ca1—C6i180.0N3A—C14A—H14A119.2
N1i—Ca1—C9i111.96 (4)C15A—C14A—H14A119.2
N1—Ca1—C9i68.04 (4)C14A—C15A—C11A118.8 (10)
N2i—Ca1—C9i20.90 (4)C14A—C15A—H15A120.6
N2—Ca1—C9i159.10 (4)C11A—C15A—H15A120.6
C4—Ca1—C9i89.23 (4)C17A—C16A—N3A110.8 (6)
C4i—Ca1—C9i90.77 (4)C17A—C16A—H16C109.5
C1—Ca1—C9i47.66 (4)N3A—C16A—H16C109.5
C1i—Ca1—C9i132.34 (4)C17A—C16A—H16D109.5
C6—Ca1—C9i137.46 (4)N3A—C16A—H16D109.5
C6i—Ca1—C9i42.54 (4)H16C—C16A—H16D108.1
N1i—Ca1—C968.04 (4)C18A—C17A—C22A120.9 (9)
N1—Ca1—C9111.96 (4)C18A—C17A—C16A119.4 (8)
N2i—Ca1—C9159.10 (4)C22A—C17A—C16A119.7 (8)
N2—Ca1—C920.90 (4)C19A—C18A—C17A117.5 (8)
C4—Ca1—C990.77 (4)C19A—C18A—H18A121.2
C4i—Ca1—C989.23 (4)C17A—C18A—H18A121.2
C1—Ca1—C9132.34 (4)C18A—C19A—C20A122.3 (9)
C1i—Ca1—C947.66 (4)C18A—C19A—H19A118.8
C6—Ca1—C942.54 (4)C20A—C19A—H19A118.8
C6i—Ca1—C9137.46 (4)C19A—C20A—C21A120.1 (11)
C9i—Ca1—C9180.0C19A—C20A—H20A119.9
N1i—Ca1—H2A87.9 (10)C21A—C20A—H20A119.9
N1—Ca1—H2A92.1 (10)C20A—C21A—C22A118.5 (11)
N2i—Ca1—H2A175.7 (10)C20A—C21A—H21A120.8
N2—Ca1—H2A4.3 (10)C22A—C21A—H21A120.8
C4—Ca1—H2A71.0 (10)C21A—C22A—C17A120.6 (10)
C4i—Ca1—H2A109.0 (10)C21A—C22A—H22A119.7
C1—Ca1—H2A112.4 (10)C17A—C22A—H22A119.7
C1i—Ca1—H2A67.6 (10)C24—C23—C27117.68 (14)
C6—Ca1—H2A23.3 (10)C24—C23—C10121.39 (13)
C6i—Ca1—H2A156.7 (10)C27—C23—C10120.90 (14)
C9i—Ca1—H2A159.5 (10)C25—C24—C23119.84 (15)
C9—Ca1—H2A20.5 (10)C25—C24—H24120.1
N1i—Ca1—H2Ai92.1 (10)C23—C24—H24120.1
N1—Ca1—H2Ai87.9 (10)N4—C25—C24121.13 (15)
N2i—Ca1—H2Ai4.3 (10)N4—C25—H25119.4
N2—Ca1—H2Ai175.7 (10)C24—C25—H25119.4
C4—Ca1—H2Ai109.0 (10)N4—C26—C27120.45 (15)
C4i—Ca1—H2Ai71.0 (10)N4—C26—H26119.8
C1—Ca1—H2Ai67.6 (10)C27—C26—H26119.8
C1i—Ca1—H2Ai112.4 (10)C26—C27—C23120.22 (15)
C6—Ca1—H2Ai156.7 (10)C26—C27—H27119.9
C6i—Ca1—H2Ai23.3 (10)C23—C27—H27119.9
C9i—Ca1—H2Ai20.5 (10)N4—C28—C29113.42 (14)
C9—Ca1—H2Ai159.5 (10)N4—C28—H28A108.9
H2A—Ca1—H2Ai179.997 (11)C29—C28—H28A108.9
H7A—O7—H7B107 (2)N4—C28—H28B108.9
H8A—O8—H8B106 (2)C29—C28—H28B108.9
C4—N1—C1105.18 (12)H28A—C28—H28B107.7
C4—N1—Ca1126.33 (9)C34—C29—C30118.72 (17)
C1—N1—Ca1128.43 (9)C34—C29—C28124.18 (15)
C9—N2—C6109.83 (12)C30—C29—C28117.05 (16)
C9—N2—Ca1126.02 (10)C31—C30—C29120.4 (2)
C6—N2—Ca1123.91 (10)C31—C30—H30119.8
C9—N2—H2A124.5 (16)C29—C30—H30119.8
C6—N2—H2A125.6 (16)C32—C31—C30120.5 (2)
Ca1—N2—H2A6.5 (16)C32—C31—H31119.7
C25—N4—C26120.56 (13)C30—C31—H31119.7
C25—N4—C28119.98 (14)C31—C32—C33119.8 (2)
C26—N4—C28119.45 (14)C31—C32—H32120.1
N1—C1—C10i125.15 (13)C33—C32—H32120.1
N1—C1—C2110.75 (12)C32—C33—C34120.1 (2)
C10i—C1—C2124.10 (13)C32—C33—H33119.9
N1—C1—Ca131.17 (6)C34—C33—H33119.9
C10i—C1—Ca194.03 (9)C29—C34—C33120.40 (18)
C2—C1—Ca1141.80 (10)C29—C34—H34119.8
C3—C2—C1106.57 (13)C33—C34—H34119.8
C3—C2—H2126.7F1—C35—F2108.2 (6)
C1—C2—H2126.7F1—C35—F3104.9 (6)
C2—C3—C4106.74 (13)F2—C35—F3105.2 (6)
C2—C3—H3126.6F1—C35—S1113.0 (5)
C4—C3—H3126.6F2—C35—S1112.3 (5)
N1—C4—C5125.51 (13)F3—C35—S1112.7 (5)
N1—C4—C3110.74 (12)O3—S1—O2116.5 (4)
C5—C4—C3123.71 (13)O3—S1—O1112.6 (4)
N1—C4—Ca132.48 (6)O2—S1—O1117.0 (4)
C5—C4—Ca193.04 (9)O3—S1—C35102.7 (3)
C3—C4—Ca1143.12 (10)O2—S1—C35103.6 (4)
C6—C5—C4126.87 (13)O1—S1—C35101.5 (3)
C6—C5—C11A116.8 (5)F3A—C35A—F2A109.1 (9)
C4—C5—C11A116.3 (5)F3A—C35A—F1A106.1 (8)
C6—C5—C11116.3 (3)F2A—C35A—F1A106.4 (8)
C4—C5—C11116.9 (3)F3A—C35A—S1A110.9 (7)
N2—C6—C5126.11 (13)F2A—C35A—S1A110.8 (7)
N2—C6—C7106.85 (12)F1A—C35A—S1A113.3 (7)
C5—C6—C7127.05 (13)O1A—S1A—O3A116.9 (5)
N2—C6—Ca134.39 (6)O1A—S1A—O2A117.0 (6)
C5—C6—Ca191.84 (9)O3A—S1A—O2A108.3 (5)
C7—C6—Ca1141.01 (10)O1A—S1A—C35A107.0 (5)
C8—C7—C6108.46 (13)O3A—S1A—C35A103.0 (5)
C8—C7—H7125.8O2A—S1A—C35A102.6 (5)
C6—C7—H7125.8F6—C36—F599.7 (8)
C7—C8—C9107.86 (13)F6—C36—F4107.6 (7)
C7—C8—H8126.1F5—C36—F4105.0 (7)
C9—C8—H8126.1F6—C36—S2114.6 (6)
N2—C9—C10125.80 (13)F5—C36—S2112.5 (6)
N2—C9—C8107.00 (13)F4—C36—S2115.9 (6)
C10—C9—C8127.17 (14)O6—S2—O5114.3 (6)
N2—C9—Ca133.08 (6)O6—S2—O4116.6 (7)
C10—C9—Ca192.77 (9)O5—S2—O4114.4 (7)
C8—C9—Ca1139.84 (10)O6—S2—C36105.0 (6)
C9—C10—C1i125.54 (13)O5—S2—C36102.0 (4)
C9—C10—C23116.15 (13)O4—S2—C36101.9 (7)
C1i—C10—C23118.29 (13)F5A—C36A—F6A118.7 (9)
C12—C11—C15116.5 (5)F5A—C36A—F4A100.2 (8)
C12—C11—C5118.1 (7)F6A—C36A—F4A105.6 (9)
C15—C11—C5125.4 (7)F5A—C36A—S2A112.2 (8)
C13—C12—C11120.9 (6)F6A—C36A—S2A111.7 (7)
C13—C12—H12119.5F4A—C36A—S2A106.8 (7)
C11—C12—H12119.5O4A—S2A—O6A117.2 (8)
N3—C13—C12121.0 (6)O4A—S2A—O5A111.6 (6)
N3—C13—H13119.5O6A—S2A—O5A113.6 (8)
C12—C13—H13119.5O4A—S2A—C36A106.8 (6)
C13—N3—C14120.4 (6)O6A—S2A—C36A107.2 (8)
C13—N3—C16120.1 (5)O5A—S2A—C36A98.2 (6)
C4—N1—C1—C10i179.03 (14)C6—C5—C11A—C15A73.1 (8)
Ca1—N1—C1—C10i3.8 (2)C4—C5—C11A—C15A108.5 (7)
C4—N1—C1—C21.37 (17)C15A—C11A—C12A—C13A0.0 (3)
Ca1—N1—C1—C2175.84 (10)C5—C11A—C12A—C13A179.5 (11)
C4—N1—C1—Ca1177.21 (18)C11A—C12A—C13A—N3A0.1 (3)
N1—C1—C2—C31.34 (18)C12A—C13A—N3A—C14A0.6 (6)
C10i—C1—C2—C3179.06 (15)C12A—C13A—N3A—C16A179.9 (10)
Ca1—C1—C2—C34.8 (2)C13A—N3A—C14A—C15A0.9 (8)
C1—C2—C3—C40.71 (18)C16A—N3A—C14A—C15A179.6 (9)
C1—N1—C4—C5178.69 (14)N3A—C14A—C15A—C11A0.7 (8)
Ca1—N1—C4—C51.4 (2)C12A—C11A—C15A—C14A0.2 (6)
C1—N1—C4—C30.93 (16)C5—C11A—C15A—C14A179.3 (10)
Ca1—N1—C4—C3176.37 (10)C13A—N3A—C16A—C17A103.7 (9)
C1—N1—C4—Ca1177.29 (17)C14A—N3A—C16A—C17A76.7 (10)
C2—C3—C4—N10.11 (18)N3A—C16A—C17A—C18A95.8 (8)
C2—C3—C4—C5177.93 (15)N3A—C16A—C17A—C22A84.5 (8)
C2—C3—C4—Ca13.4 (2)C22A—C17A—C18A—C19A0.2 (4)
N1—C4—C5—C61.8 (2)C16A—C17A—C18A—C19A179.9 (3)
C3—C4—C5—C6175.64 (15)C17A—C18A—C19A—C20A0.2 (6)
Ca1—C4—C5—C61.09 (16)C18A—C19A—C20A—C21A0.2 (8)
N1—C4—C5—C11A176.3 (7)C19A—C20A—C21A—C22A0.3 (8)
C3—C4—C5—C11A6.2 (7)C20A—C21A—C22A—C17A0.8 (8)
Ca1—C4—C5—C11A177.1 (7)C18A—C17A—C22A—C21A0.8 (6)
N1—C4—C5—C11177.6 (4)C16A—C17A—C22A—C21A179.5 (4)
C3—C4—C5—C114.9 (5)C9—C10—C23—C2460.9 (2)
Ca1—C4—C5—C11178.4 (4)C1i—C10—C23—C24120.65 (17)
C9—N2—C6—C5179.82 (15)C9—C10—C23—C27116.97 (17)
Ca1—N2—C6—C55.5 (2)C1i—C10—C23—C2761.4 (2)
C9—N2—C6—C70.13 (17)C27—C23—C24—C254.0 (2)
Ca1—N2—C6—C7174.54 (11)C10—C23—C24—C25174.02 (15)
C9—N2—C6—Ca1174.66 (18)C26—N4—C25—C241.1 (3)
C4—C5—C6—N24.2 (3)C28—N4—C25—C24177.82 (16)
C11A—C5—C6—N2174.0 (7)C23—C24—C25—N42.1 (3)
C11—C5—C6—N2175.3 (4)C25—N4—C26—C272.3 (3)
C4—C5—C6—C7175.87 (16)C28—N4—C26—C27176.68 (16)
C11A—C5—C6—C76.0 (7)N4—C26—C27—C230.2 (3)
C11—C5—C6—C74.7 (5)C24—C23—C27—C262.8 (3)
C4—C5—C6—Ca11.08 (16)C10—C23—C27—C26175.14 (16)
C11A—C5—C6—Ca1177.1 (7)C25—N4—C28—C2993.82 (19)
C11—C5—C6—Ca1178.4 (4)C26—N4—C28—C2987.2 (2)
N2—C6—C7—C80.26 (19)N4—C28—C29—C3417.9 (2)
C5—C6—C7—C8179.80 (16)N4—C28—C29—C30164.71 (16)
Ca1—C6—C7—C84.6 (2)C34—C29—C30—C310.5 (3)
C6—C7—C8—C90.5 (2)C28—C29—C30—C31178.00 (18)
C6—N2—C9—C10178.49 (15)C29—C30—C31—C320.6 (3)
Ca1—N2—C9—C104.0 (2)C30—C31—C32—C330.0 (3)
C6—N2—C9—C80.44 (17)C31—C32—C33—C340.8 (3)
Ca1—N2—C9—C8174.08 (11)C30—C29—C34—C330.3 (3)
C6—N2—C9—Ca1174.52 (19)C28—C29—C34—C33177.04 (18)
C7—C8—C9—N20.60 (19)C32—C33—C34—C290.9 (3)
C7—C8—C9—C10178.62 (16)F1—C35—S1—O369.7 (7)
C7—C8—C9—Ca15.6 (2)F2—C35—S1—O353.1 (7)
N2—C9—C10—C1i1.6 (3)F3—C35—S1—O3171.7 (6)
C8—C9—C10—C1i176.11 (16)F1—C35—S1—O252.1 (7)
Ca1—C9—C10—C1i0.62 (16)F2—C35—S1—O2174.8 (6)
N2—C9—C10—C23179.82 (14)F3—C35—S1—O266.6 (6)
C8—C9—C10—C232.2 (2)F1—C35—S1—O1173.8 (6)
Ca1—C9—C10—C23177.66 (11)F2—C35—S1—O163.5 (7)
C6—C5—C11—C1295.2 (5)F3—C35—S1—O155.1 (6)
C4—C5—C11—C1284.3 (5)F3A—C35A—S1A—O1A64.2 (9)
C6—C5—C11—C1586.8 (6)F2A—C35A—S1A—O1A57.0 (9)
C4—C5—C11—C1593.7 (6)F1A—C35A—S1A—O1A176.5 (7)
C15—C11—C12—C130.4 (2)F3A—C35A—S1A—O3A171.9 (8)
C5—C11—C12—C13178.7 (6)F2A—C35A—S1A—O3A66.8 (9)
C11—C12—C13—N30.6 (3)F1A—C35A—S1A—O3A52.7 (9)
C12—C13—N3—C141.5 (5)F3A—C35A—S1A—O2A59.5 (10)
C12—C13—N3—C16173.5 (6)F2A—C35A—S1A—O2A179.3 (8)
C13—N3—C14—C151.3 (6)F1A—C35A—S1A—O2A59.8 (9)
C16—N3—C14—C15173.8 (6)F6—C36—S2—O658.2 (7)
N3—C14—C15—C110.2 (6)F5—C36—S2—O6171.1 (8)
C12—C11—C15—C140.6 (5)F4—C36—S2—O668.1 (9)
C5—C11—C15—C14178.7 (7)F6—C36—S2—O561.3 (7)
C13—N3—C16—C17101.8 (6)F5—C36—S2—O551.6 (8)
C14—N3—C16—C1773.2 (6)F4—C36—S2—O5172.4 (8)
N3—C16—C17—C2294.9 (5)F6—C36—S2—O4179.7 (8)
N3—C16—C17—C1884.8 (4)F5—C36—S2—O466.9 (9)
C22—C17—C18—C190.2 (3)F4—C36—S2—O454.0 (10)
C16—C17—C18—C19179.5 (2)F5A—C36A—S2A—O4A83.9 (9)
C17—C18—C19—C200.6 (5)F6A—C36A—S2A—O4A52.2 (10)
C18—C19—C20—C210.1 (7)F4A—C36A—S2A—O4A167.3 (8)
C19—C20—C21—C221.3 (7)F5A—C36A—S2A—O6A42.6 (11)
C20—C21—C22—C171.8 (7)F6A—C36A—S2A—O6A178.7 (10)
C18—C17—C22—C211.0 (5)F4A—C36A—S2A—O6A66.3 (10)
C16—C17—C22—C21179.3 (3)F5A—C36A—S2A—O5A160.5 (8)
C6—C5—C11A—C12A107.4 (8)F6A—C36A—S2A—O5A63.4 (9)
C4—C5—C11A—C12A70.9 (8)F4A—C36A—S2A—O5A51.6 (8)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O10.86 (2)2.04 (2)2.817 (5)150 (3)
O7—H7A···O3A0.86 (2)2.14 (2)2.874 (6)143 (3)
O7—H7B···O40.88 (2)2.24 (3)2.965 (11)140 (3)
O7—H7B···O6A0.88 (2)2.29 (3)3.048 (10)144 (3)
O8—H8A···O2ii0.87 (2)2.08 (2)2.914 (6)163 (3)
O8—H8A···O2Aii0.87 (2)1.94 (2)2.789 (7)167 (3)
O8—H8B···O70.89 (2)1.96 (2)2.838 (3)174 (3)
Symmetry code: (ii) x+2, y1/2, z+3/2.
 

Acknowledgements

We thank Dr Adriana Romo Pérez for technical assistance.

Funding information

We thank PAPIIT-UNAM 220023 for financial support.

References

First citationBonomo, L., Dandin, O., Solari, E., Floriani, C. & Scopelliti, R. (1999). Angew. Chem. Int. Ed. 38, 913–915.  CrossRef Google Scholar
First citationBonomo, L., Lehaire, M.-L., Solari, E., Scopelliti, R. & Floriani, C. (2001). Angew. Chem. Int. Ed. 40, 771–774.  CrossRef CAS Google Scholar
First citationBorozan, S. Z., Dimitrijević, B. P. & Stojanović, S. Đ. (2013). Comput. Biol. Chem. 47, 105–112.  CrossRef CAS PubMed Google Scholar
First citationBrandl, M., Weiss, M. S., Jabs, A., Sühnel, J. & Hilgenfeld, R. (2001). J. Mol. Biol. 307, 357–377.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCook, L. P., Brewer, G. & Wong-Ng, W. (2017). Crystals, 7, 223.  CrossRef Google Scholar
First citationDyall, J., Hill, M. S., Mahon, M. F., Teh, L. & Wilson, A. S. S. (2019). Dalton Trans. 48, 4248–4254.  CSD CrossRef CAS PubMed Google Scholar
First citationFromm, K. M. (2020). Coord. Chem. Rev. 408, 213193.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHiroto, S., Miyake, Y. & Shinokubo, H. (2017). Chem. Rev. 117, 2910–3043.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKonarev, D. V., Kuzmin, A. V., Khasanov, S. S., Shestakov, A. F., Yudanova, E. I., Otsuka, A., Yamochi, H., Kitagawa, H. & Lyubovskaya, R. N. (2018). J. Org. Chem. 83, 1861–1866.  CSD CrossRef CAS PubMed Google Scholar
First citationKoner, R. & Goldberg, I. (2009). Acta Cryst. C65, m139–m142.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLee, H., Hong, K.-I. & Jang, W.-D. (2018). Coord. Chem. Rev. 354, 46–73.  CrossRef CAS Google Scholar
First citationLipstman, S. & Goldberg, I. (2009a). Acta Cryst. C65, m371–m373.  CSD CrossRef IUCr Journals Google Scholar
First citationLipstman, S. & Goldberg, I. (2009b). Acta Cryst. C65, o447–o452.  CSD CrossRef IUCr Journals Google Scholar
First citationLipstman, S. & Goldberg, I. (2010). Acta Cryst. C66, m222–m226.  CSD CrossRef IUCr Journals Google Scholar
First citationLourenço, L. M. O., Fernandes, J. A., Neves, M. G. P. M. S., Cavaleiro, J. A. S., Tomé, J. P. C. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o3157–o3158.  CSD CrossRef IUCr Journals Google Scholar
First citationMakowski, S. J., Lacher, M., Lermer, C. & Schnick, W. (2012). J. Mol. Struct. 1013, 19–25.  CSD CrossRef CAS Google Scholar
First citationNishio, M. (2011). Phys. Chem. Chem. Phys. 13, 13873–13900.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNishio, M., Umezawa, Y., Fantini, J., Weiss, M. S. & Chakrabarti, P. (2014). Phys. Chem. Chem. Phys. 16, 12648–12683.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSalomón-Flores, M. K., Hernández-Juárez, C. L., Bazany-Rodríguez, I. J., Barroso-Flores, J., Martínez-Otero, D., López-Arteaga, R., Valdés-Martínez, J. & Dorazco-González, A. (2019). Sens. Actuators B Chem. 281, 462–470.  Google Scholar
First citationSeidel, R. W., Goddard, R., Hoch, C., Breidung, J. & Oppel, I. M. (2011). J. Mol. Struct. 985, 307–315.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUttamlal, M. & Sheila Holmes-Smith, A. (2008). Chem. Phys. Lett. 454, 223–228.  CrossRef CAS Google Scholar
First citationWang, L., Chen, Y., Bian, Y. & Jiang, J. (2013). J. Phys. Chem. C, 117, 17352–17359.  CSD CrossRef CAS Google Scholar
First citationYamada, S. (2020). Coord. Chem. Rev. 415, 213301.  CrossRef Google Scholar
First citationZhao, H.-B., Chen, L., Wang, B.-Y., Liao, J.-X. & Xu, Y.-J. (2013). Acta Cryst. C69, 651–653.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds